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ABSTRACT 

The impact of climate change on populations will be contingent upon their contemporary adaptive 

evolution. In this study, we investigated the contemporary evolution of four populations of the cold-

water kelp Laminaria digitata by analysing their spatial and temporal genomic variation using ddRAD-

sequencing. These populations were sampled from the center to the southern margin of its north-

eastern Atlantic distribution at two-time points, spanning at least two generations. Through genome 

scans for local adaptation at a single time point, we identified candidate loci that showed clinal 

variation correlated with changes in sea surface temperature (SST) along latitudinal gradients. This 

finding suggests that SST may drive the adaptive response of these kelp populations, although factors 

such as species' demographic history should also be considered. Additionally, we performed a 

simulation approach to distinguish the effect of selection from genetic drift in allele frequency changes 

over time. This enabled the detection of loci in the southernmost population that exhibited temporal 

differentiation beyond what would be expected from genetic drift alone: these are candidate loci 

which could have evolved under selection over time. In contrast, we did not detect any outlier locus 

based on temporal differentiation in the population from the North Sea, which also displayed low and 

decreasing levels of genetic diversity. The diverse evolutionary scenarios observed among populations 

can be attributed to variations in the prevalence of selection relative to genetic drift across different 

environments. Therefore, our study highlights the potential of temporal genomics to offer valuable 

insights into the contemporary evolution of marine foundation species facing climate change. 
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1. INTRODUCTION  

Genetic variation results from the interplay of selection, mutation, migration and genetic drift, 

and is essential to assess the ability of natural populations to cope with rapid climate change (Dawson 

et al., 2011; Hoban et al., 2020). Amongst these forces, genetic drift is expected to decrease within-

population genetic variation, while the between-population genetic variation may increase when 

different alleles fixate across populations. Nonetheless, strong drift is generally considered to hinder 

the implementation of local adaptation (Le Corre & Kremer, 2012), yet local adaptation remains an 

important source of intraspecific genetic variation when selection pressures vary across 

heterogeneous environment and species range. This is also expected in the presence of a substantial 

asymmetry in gene flow, as it could result in a situation where the local population's genetic makeup 

is overwhelmed ('swamping', Lenormand, 2002, but see Durkee et al., this issue; Sexton et al., this 

issue). Nonetheless, gene flow could also facilitate adaptation by increasing local genetic diversity and 

by decreasing the relative effect of genetic drift through the increase in effective population size (Ne).  

Large Ne is crucial for safeguarding genetic diversity (Bürger and Lynch, 1995; Frankham, 

1995). Yet with climate change and related extreme events, populations may encounter more frequent 

reductions and fluctuations in Ne over time (Holt, 1990; Pauls et al., 2013).  Any decline in Ne can 

compromise the effectiveness of selection compared to genetic drift (see Charlesworth, 2009 for a 

review), thus increasing the likelihood of stochastically losing alleles, which can be problematic, 

especially for those associated with fitness-related traits. Estimation of Ne through temporal methods 

across contemporary time frames (referred to as ‘contemporary Ne’, Waples, 1989) offers a current 

assessment of the relative influence of selective compared to neutral processes (Hare et al., 2011). 

Amongst the methods using temporal data, the one based on allele frequency changes has been shown 

to give more accurate inferences of contemporary Ne and to enhance the power to detect its declines 

particularly when historical population sizes were large (e.g., Nadachowska-Brzyska et al., 2021; Reid 

& Pinsky, 2022). Nonetheless, these methods usually neglect the effect that other evolutionary 

processes have on allelic fluctuations (Jorde & Ryman, 2007). While these methods can be beneficial 

for assessing Ne in spatially separated populations with minimal gene flow, their efficiency may 

decrease when local gene flow occurs. Local gene flow from populations, even those not sampled, has 

the potential to shape variation in allele frequency, implying that local Ne estimate may be confounded 

with gene flow. In this scenario, a joint estimate of Ne and gene flow should be considered instead 

(e.g., Wang & Whitlock, 2003). 

Genome-wide screening of genetic variation supports that populations can adapt to local 

environmental conditions despite substantial levels of genetic drift. Indeed, candidate loci for positive 

selection have been identified in relatively small and structured populations (e.g., Funk et al., 2016; 

Perrier et al., 2017; Leal et al., 2021; Pratlong et al., 2021), raising questions regarding the relative 

contribution of selection and drift in such small populations. Additionally, genome scan approaches, 



such as those using FST, can be biased by high variance in FST amongst loci as well as by processes other 

than selection leading to spatial variation in allele frequencies (Storz, 2005; Bierne et al., 2013; 

Lotterhos & Whitlock, 2015; Hoban et al., 2016). Apart from a spatial approach which comprises 

samples from populations distributed across the space, selection can also be studied at the temporal 

scale, by comparing data from different time points of a given population. Temporal genomics allows 

distinguishing signatures of selection from neutral processes through the analysis of genomic variation 

over time (see Clark et al., 2023 for a review). This framework offers valuable insights into the species’ 

adaptive response, by assessing adaptive patterns (e.g., Therkildsen et al., 2013a, b; Frachon et al., 

2017) and facilitating the monitoring of genetic erosion experienced by populations in response to 

rapidly changing environments (Jensen & Leigh, 2022). The underlying premise of temporal genomics 

is that alleles under selection exhibit a consistent directional trend in frequency variation, unlike the 

random changes expected with genetic drift. Hence comparing temporal genetic differentiation 

expected by genetic drift using simulations (Goldringer & Bataillon, 2004) or assessing temporal 

covariance in allele frequencies (Buffalo & Coop, 2019, 2020), enables to explore the presence of any 

response to contemporary selection. While the method of Buffalo & Coop (Buffalo & Coop, 2019, 2020) 

appears more suitable for polygenic adaptation (very large number of loci with each having a small 

effect on the trait), FST methods are better suited when the trait under interest involves few loci under 

strong selection.   

The laminariales, commonly known as kelps, represent an interesting model for investigating 

the interplay between selection and genetic drift in the contemporary evolution of populations facing 

rapid climate warming. Climate warming has been identified as one of the leading causes behind 

population declines, local extinctions and range shifts in kelp species (Araújo et al., 2016; Arafeh-

Dalmau et al., 2019; Filbee-Dexter et al., 2020). Evaluating the vulnerability of these cold-temperate 

water species to local extinction requires a comprehensive understanding of their capacity to adapt to 

warmer conditions. Recent studies on North Atlantic populations of Laminaria digitata have suggested 

that range edges populations might exhibit lower sensitivity to heat stress compared to central ones 

(Liesner et al., 2020; Schimpf et al., 2022). This is particularly true of the populations of Quiberon 

(South Brittany), located at the species’ southern margin, and Helgoland (North Sea), a highly isolated 

population situated at the edge of the South-Atlantic cluster (Liesner et al., 2020), where seawater 

warming has intensified over the past few years (Pehlke & Bartsch, 2008). Although significant progress 

has been made in understanding the genetic basis of heat tolerance in kelp species (Guzinski et al., 

2020; Mao et al., 2020; Vranken et al., 2021), identifying candidate loci for local adaptation by genome 

scans from a spatial approach remains challenging due to high levels of neutral differentiation in these 

species. Indeed, kelp species usually display considerable genetic structure attributed to limited 

dispersal capacities and seascape features (Coleman et al., 2011; Brennan et al., 2014; Assis et al., 

2022; Fouqueau et al., 2023). This genetic structure can also be exacerbated in the presence of isolated 



and marginal populations mainly characterized by low to moderate effective population sizes 

(Fouqueau, 2021). Based on the current state of knowledge, the relative contributions of local 

adaptation and phenotypic plasticity to the observed thermal tolerance are still uncertain for most 

kelp species. 

The primary objective of our study is to assess the relative contributions of local selection and 

genetic drift in the contemporary evolution of the kelp Laminaria digitata across both spatial and 

temporal dimensions. To achieve this, we used a reduced representation sequencing technique 

(double digest Restriction site Associated DNA sequencing, or ddRAD-seq, Peterson et al., 2012) on 

four populations, with three of these populations sampled at two-time points. Our objectives 

encompassed the following aims: i) Assessing whether temporal genomics on contemporary scales can 

be used to evaluate the relative contributions of genetic drift and selection within populations, ii) 

Testing the hypothesis that the high rate of genetic drift which is expected in small and isolated 

populations (Helgoland and Quiberon) may impede the efficiency of selection in these populations, iii) 

Conducting genome scans for detecting footprints of adaptation to local thermal conditions. Overall, 

our study introduces a novel framework, combining spatial and temporal genomics to gain deeper 

insights into the contemporary evolution of this fundamental marine species in response to rapid 

environmental changes.  

 

2. MATERIAL AND METHODS  

2.1 Model species and sampling  

Similar to all laminarian kelps, Laminaria digitata follows a dioecious haplo-diplontic life cycle, 

consisting of an alternation between microscopic haploid gametophytes (males or females) and 

macroscopic diploid sporophytes. Sex determination takes place during meiosis, through a UV sexual 

system (Coelho et al., 2018), while the diploid sporophyte remains asexual. The lifespan of sporophytes 

was reported to be four to six years (Bartsch et al., 2008). As the gametophytes of kelp species are 

microscopic and thus cannot be studied in the field due to technical constraints, our focus has been 

made on the sporophyte stage of L. digitata. Sporophytes of L. digitata were sampled in four locations 

spanning from the center to the southern margin of its north-eastern Atlantic distribution. The 

sampling sites included Clachan, Scotland (CLA); Helgoland, Germany (HLG); Roscoff, France (ROS) and 

Quiberon, France (QUI) (Table 1, Figure 1). Tissue samples of approximately 3 cm were collected from 

30-40 sporophytes in the low intertidal zone at each site and were promptly stored in silica gel to 

preserve their genetic material. For three out of the four populations (HLG, ROS, QUI), samples were 

collected at two time points from the same site to capture changes in allele frequencies over time and 

assess the relative influence of local selection and genetic drift. Given the lifespan of sporophytes and 

the interval between samplings, temporal samples are separated by at least two generations. The first 

set of samples was collected between 2005 and 2011, while the second set was collected in 2018. 



Regarding the CLA population, samples were collected in 2008 and 2018 from two separate sites, 

CLA_1 and CLA_2, which were approximately 20 km apart (Figure 1). Given the frequent observation 

of genetic structure in this species at a scale of 1-10 km (e.g., Billot et al., 2003; Robuchon et al., 2014), 

samples from CLA were treated as separate populations rather than two time points of the same 

population. 

 

2.2 Temperature data 

Given the increasing evidence that temperature has the potential to trigger adaptive differentiation 

among kelp populations (e.g., King et al., 2019; Liesner et al., 2020; Schimpf et al., 2022) sea surface 

temperature (SST) appeared as the most relevant selective agent for assessing adaptive differentiation 

in L. digitata. Daily mean SST were obtained from satellite observations spanning 37 years (1981-2018), 

with a spatial resolution of 0.05° × 0.05° for QUI and 0.02° × 0.02° for the other sites (sourced from 

E.U. Copernicus Marine Service, 2022). This long-term period was chosen to evaluate the trend and 

intensity of climate warming in the studied populations and relate it to the contemporary adaptive 

response. Warming was evaluated by performing a linear regression between time (measured in years) 

and average SST of the warmest months (June, July and August) for each site. The PELT (Pruned Exact 

Linear Time) algorithm, implemented in the changepoint v2.2.4 R package, was subsequently 

employed to identify significant shifts in SST for each population and delimit two thermal periods: one 

before and one after the significant shift. For each period, we subsequently defined the monthly 

average SST of the warmest months (referred to as ‘highest mean SST’ hereafter), of the coolest 

months (i.e., from January to March, and referred to as ‘lowest mean SST’ hereafter) and across the 

seasons (‘mean SST’).  

 

2.3 Library preparation, genotype and SNP calling  

DNA extraction was performed on dried tissue preserved in silica gel from three to 16 years using the 

Nucleospin R 96 plant kit II (Macherey-Nagel, Düren, Germany), following the manufacturer’s protocol. 

Two double-digest RAD-sequencing libraries (ddRAD-seq, Peterson et al., 2012) were prepared, with 

117 individuals for the first time point and 104 individuals for the second time point, including eight 

replicates (i.e., eight samples with the same DNA extract but independent library preparation, 

sequencing, read mapping, and SNP calling) in each population and time point. Individuals were 

randomly distributed across libraries, along with 355 samples of distinct projects to prevent batch 

effects and ensure library diversity. Library preparation was conducted according to Reynes et al., 

(2021), using 100 ng of DNA and the PstI and HhaI enzymes (NEB). Paired-end 150 reads were obtained 

by sequencing the libraries on an Illumina Hiseq 4000 platform (Génome Québec Innovation Centre, 

McGill Univ., Montreal, Canada). Quality control of raw reads and adaptor removal was performed 

using FASTQC v.0.11.7 (Andrews, 2010) and Trimmomatic (Bolger et al., 2014), respectively. 



Demultiplexing was carried out using process_radtags with default parameters, implemented in the 

Stacks v.2.52 pipeline. Individual paired-end reads were trimmed to 137 bp using Trimmomatic (Bolger 

et al., 2014) and mapped to the draft genome of L. digitata (Dryad Digital Repository, see Data 

Availability Statement) using BWA-mem with default parameters in BWA v.0.7.17 (Li & Durbin, 2009). 

The N50 of the genome is 9.9 Mb with a genome assembly size of ~470 Mb among 671 555 scaffolds. 

Uniquely mapped reads were retained with SAMtools v.1.13 (Danecek et al., 2021). Generated BAM 

files were processed for SNP calling using the reference mode of the Stacks v.2.52 pipeline (Catchen et 

al., 2011, 2013; Rochette et al., 2019). Genotyping and SNP calling were carried out separately for each 

time point, and the shared SNPs between temporal datasets were selected before merging individuals 

across these SNP positions. The bcftools isec and bcftools merge functions of BCFtools v.1.9 (Danecek 

et al., 2021) were used for these steps. Post-call filtering of SNPs was performed on the merged dataset 

by keeping SNPs with a call rate >90% per population in one or more populations using 

pop_missing_filter.sh of the dDocent pipeline (Puritz et al., 2014). Problematic individuals (n = 23) 

having a call rate below 80% were discarded. Filtering based on mean read depth (DP) and minor allele 

frequency was executed using vcftools v.0.1.16 (Danecek et al., 2011), with specific parameters 

indicated in Table 2. To address the effects of excessive linkage disequilibrium (LD) between loci, SNPs 

with a square correlation (r2) > 0.2 were removed using PLINK v.1.9 (Chang et al., 2015). The calculation 

of r2 values was performed separately for each population to separate the effects of physical proximity 

among SNPs from the effects of population structure in LD patterns. SNPs with r2 values exceeding the 

threshold in all populations were discarded (Table 2). After all post-filtering steps, a total of 2 854 SNPs 

remained among 190 individuals (excluding the eight replicates). Genotyping concordance was 

assessed in this dataset by calculating the SNP error rate between replicate pairs following Mastretta-

Yanes et al., (2015). 

 

2.4 Genetic differentiation 

An analysis of molecular variance (AMOVA) implemented in Arlequin v.3.11 (Excoffier et al., 2005), 

with 10 000 permutations was performed to test for temporal changes. We tested for changes in 

genetic variation between two time periods for each of the three populations that were resampled 

over time (HLG, ROS, QUI). Spatial and temporal genetic differentiation was quantified by calculating 

FST (Weir & Cockerham, 1984) using the R package diveRsity v.1.9.90 (Keenan et al., 2013). Genic 

differentiation was tested with an exact test in GENEPOP v.4.7.5 R package (Raymond & Rousset, 1995) 

with the Markov chain method and default parameters. A combination of all tests across loci was 

performed using Fisher’s method. Genetic structure was investigated using the sNMF (sparse Non-

Negative Matrix Factorization) algorithm implemented in the R package LEA v.2.8 (Frichot et al., 2014; 

Frichot & François, 2015). The analyses involved 10 000 iterations and 20 repetitions, with K ranging 

from 1 to 16. The best K value was determined based on the cross-entropy criterion. A complementary 



analysis of genetic structure was performed using a principal component analysis (PCA) on SNP 

variation, with the R packages Bigsnpr v.1.3.0 and Bigstatsr v.1.2.3 (Privé et al., 2018). Missing 

genotypes were imputed by replacing them with the average allele frequencies before performing the 

PCA. 

 

2.5 Genetic diversity and effective population size 

Genetic diversity within populations was estimated using the complete set of 2 854 SNPs. Expected 

heterozygosity (He), and observed heterozygosity (Ho) were estimated using the R package diversity. 

Differences in He between populations and time points were tested using pairwise Wilcoxon tests, 

with adjustment for multiple comparisons using the Bonferroni method. The proportion of 

polymorphic loci (P%) within each population and time point, has been computed with a custom bash 

script. A confidence interval on P% was calculated by randomly sampling 20 individuals with 

replacement within populations, and iterating this procedure 100 times. The extent of local genetic 

drift in temporal differentiation was additionally assessed by investigating whether the minor allele 

was retained over time given its frequency at the initial time point. 

The contemporary effective population size (Ne) was estimated using temporal variance in allele 

frequencies with three methods: two methods based on F-statistics, Fc (Nei & Tajima, 1981) and Fs 

(Jorde & Ryman, 2007), and a likelihood estimator (Wang & Whitlock, 2003), known for its improved 

precision and accuracy in the presence of rare alleles (Wang, 2001). The software Neestimator v.2.1 

(Do et al., 2014) was used for methods based on F-statistics and MLNe v.2.0 (Wang & Whitlock, 2003) 

for the likelihood approach. The 95% confidence intervals of the likelihood estimate and moment of 

the F-statistics were also calculated. Ne estimations were performed considering the plan II sampling 

procedure, which assumes that individuals are sampled before reproduction and are not returning to 

the population (Waples, 1989). Finally, given the L. digitata lifespan and the interval between 

samplings, we assumed that two generations had passed between the time points.  Ne was estimated 

twice: first, including both neutral and outlier SNPs, and second, by excluding spatial outliers detected 

by at least two genome scan methods. These spatial outliers are more likely to be influenced by strong 

directional selection. 

 

2.6 Outlier detection across space  

Outlier tests based on spatial differentiation were conducted to identify loci exhibiting high spatial 

differentiation, potentially deviating from neutral expectations, and indicating the possible influence 

of local selection. These outlier tests were performed separately for each time point and included 

individuals from CLA_1 (2008) and CLA_2 (2018). Three different methods were employed for outlier 

detection across space. We first used the Bayesian approach of Beaumont & Balding (2004) 



implemented in BayeScan 2.1 (Foll & Gaggiotti, 2008). The program was run with different prior odds 

(3, 5, 10 and 100) with 20 pilot runs of 5 000 iterations each, followed by a burn-in of 50 000 iterations 

and 5 000 samplings. We then ran a PCA using the R package pcadapt (Luu et al., 2017) to assess the 

contribution of each SNP to the K principal components (PCs). Lastly, we used the OutFLANK v.0.2 

software (Whitlock & Lotterhos, 2015) to identify outliers by comparing differentiation at each SNP 

against a trimmed null distribution of FST values. OutFLANK was run with LeftTrimFraction = 0.55 and 

RightTrimFraction = 0.10. To account for multiple testing, the p-values obtained from each method 

were corrected using the R package qvalue v.2.18, with a threshold set at 0.10. Overlapping outlier 

SNPs across methods and datasets were analyzed using jvenn (Bardou et al., 2014).  

 

2.7 Outlier detection across time 

Outlier tests were conducted between time points to distinguish the effects of selection from genetic 

drift in allele frequency changes. First, we simulated SNP frequencies over two generations using SLiM 

3 (Haller & Messer, 2019) to assess whether the observed patterns of temporal differentiation are 

consistent with those expected by genetic drift. For each simulated SNP, the frequency estimated in 

the population at the first time point was used as the SNP frequency at the beginning of the simulation. 

For each population, the simulations were iterated 5 000 times. We assumed panmictic reproduction 

and neglected mutation and migration. The simulations lasted two generations, according to the 

aforementioned time interval between sampling points. For each of the three populations (HLG, ROS, 

QUI), simulations were conducted using the lowest and highest estimates of Ne based on temporal 

methods and by assuming constant population size over time.  At the end of simulations, N individuals 

were sampled, with N corresponding to the sampling size reported (see Table 1). This framework 

served as a baseline for detecting candidate loci undergoing directional selection, as they would exhibit 

higher temporal differentiation than expected under neutral evolution. The vcf output files including 

empirical and simulated SNPs (5 000 files for each population and Ne scenario) were processed using 

vcftools to calculate pairwise FST. Finally, the p-value of the outlier test at a focal SNP was computed 

as the proportion of simulated FST that was equal to or larger than the observed FST. This was performed 

using a custom R script, which is accessible at https://lauricreynes.github.io/Temporal-genomics/.  In 

the main manuscript we will only show the results obtained from the outlier test ran on the high Ne 

scenario which is expected to underestimate the level of drift. However, the results were similar when 

using the low Ne scenario (Supplementary S1). We additionally compared our simulation to the 

method implemented in TempoDiff, which also aims to distinguish neutral from selected 

polymorphisms using temporal differentiation (Frachon et al., 2017). We also ran BayeScan, OutFLANK 

and pcadapt using the same parameters as reported in the section ‘Outlier detection across space’. 

https://lauricreynes.github.io/Temporal-genomics/


The p-values of the tests were corrected for multiple testing before conducting an overlap analysis 

among methods, as described in the previous section. 

 

2.8 SNPs-temperature associations 

The association between SNPs and temperature was investigated across space using a logistic 

regression framework, focusing specifically on SNPs identified as outliers by at least two tests across 

different geographical locations (see previous section ‘Outlier detection across space’). In the context 

of strong directional selection, logistic regression best meets the assumptions underlying a sigmoidal 

pattern compared to linear regression (Rellstab et al., 2015). Logistic regression was applied to the 

presence or absence of the alternative allele, respectively coded as 0 or 1 for individual genotypes. As 

we aimed to detect signals of local selection across populations, the analysis was conducted using the 

complete set of individual genotypes, associating them with SST parameters corresponding to those 

estimated for each period (T1 and T2; see Table 3). SST predictors included the ‘highest mean SST’, 

‘lowest mean SST’ and ‘mean SST’. To account for potential false positives stemming from shared 

ancestry, the first five PCs of SNP variation were incorporated as covariates in the logistic regression 

model. The logistic regression was carried out using the glm R function, specifying binomial variance 

and a logit link function. To refine the model and select the most relevant predictors, a stepwise 

variable selection procedure based on the Akaike Information Criterion (AIC) was performed in both 

forward and reverse directions using the stepAIC function from the MASS R package. The fitting of the 

model was evaluated using McFadden's pseudo R-squared, a commonly used metric for assessing the 

goodness of fit. Given that logistic regression was performed ‘n’ times, corresponding to the number 

of outlier SNPs, a strict Bonferroni correction was applied to adjust for multiple testing (P < 0.05/n). 

Only models for which at least one SST predictor showed a significant p-value after correction were 

retained. From the coefficients (slopes) of the fitted models, odds ratios and confidence intervals were 

estimated for each predictor. The fitted model's predictions were then visualized and compared to the 

observed data. 

 

2.9 Gene ontology analysis 

Candidate loci identified through outlier tests across space and time by at least two methods were 

subjected to functional annotation using Omics Box v.1.3.11 (Götz et al., 2008). Initially, candidate loci 

were annotated using the NCBI Basic Local Alignment Search Tool (BLAST, Johnson et al., 2008) with 

the non-redundant protein sequences database. The BLASTx approach was employed, with a specific 

focus on Phaeophyceae sequences. The resulting BLAST hits were further mapped using InterProScan 

(Zdobnov & Apweiler, 2001) and Gene Ontology (Ashburner et al., 2000). Finally, both analyses were 

merged to obtain comprehensive functional annotation for candidate loci.  



3. RESULTS  

3.1 Warming trends 

Sea Surface Temperature (SST) recorded between 1981 and 2018 displayed noticeable variations 

among the investigated populations. The ‘highest mean SST’ varied from 13°C in CLA to 17.7°C in HLG 

and QUI (Table 3), and the ‘lowest mean SST’ was the lowest in HLG (around 4°C), indicating that the 

latter population experienced the greatest variation over a season. Populations in Brittany experienced 

the most temperate winter period, with SST never dropping below 9.3°C (Table 3). In each studied 

population, a substantial rise in SST was observed over 37 years, illustrating the impact of global 

warming in that area. Rise in SST was particularly notable in HLG, in which the ‘highest mean SST’ 

increased by 0.048°C / year according to the linear regression (estimate = 0.048, sd = 0.009, p-value < 

0.0001, R2adj = 0.18, Figure 2). This trend contrasted with those reported in Brittany, for which the 

model estimated an average increase of 0.013°C / year in ROS (estimate = 0.013, sd = 0.004, p-value = 

0.004, R2adj = 0.07) and 0.009°C / year in QUI (estimate = 0.009, sd = 0.004, p-value = 0.035, R2adj = 

0.03), respectively. Given that SST increase was variable among the studied populations, the Pruned 

Exact Linear Time (PELT) method identified distinct changepoints when splitting the 37 years into two. 

These changepoints varied across populations between the years 1993 (QUI) and 2004 (HLG) (Table 3, 

see period).  

 

3.2 Sequencing, SNP filtering and data quality   

A total of 98.7 million reads were obtained for the first time point and 327 million reads for the second 

time point. The individual proportion of mapped reads was on average 86.6% for the first time point 

and 95.5% for the second time point. Both the count of high-quality reads and the mapping rate were 

significantly lower in the first time point compared to the second time-point (Wilcoxon test, p-value < 

0.001). As a result, SNPs were approximately 8.3 times higher for the second time point (644 794 SNPs) 

compared to the first time point (77 193 SNPs). After filtering for shared loci between time points, with 

a call rate >90% per population in one or more populations, a total of 4 151 SNPs was retained (Table 

2). Quality filtering, including individual missingness, read depth, minor allele frequency (MAF), and 

linkage disequilibrium further refined the dataset to a final set of 2 854 SNPs across 190 individuals, 

excluding eight technical replicates (Table 2). The analysis of the eight replicates indicated a high level 

of genotype concordance for the set of 2 854 SNPs, which was consistent across both time points. The 

SNP error rate ranged from 0.007 to 0.036 for the first time point and from 0 to 0.02 for the second 

time point (Table S1). The mean read depth was 16.7 X ± 17.9 SE for the first time point and 22.5 X ± 

14.2 SE for the second. Despite slight differences in sequencing depth between the two time points, 

we found no significant difference in individual heterozygosity (Wilcoxon test, p-value = 0.23).  

 

 



3.3 Genome-wide genetic diversity  

The expected heterozygosity (He) was significantly different between sites (Wilcoxon test, p-value < 

0.001). The northern populations (CLA_1 and CLA_2) showed the highest heterozygosity (He = 0.103 

and He = 0.109 for CLA_1 and CLA_2, respectively), which was seven times higher than for HLG (He = 

0.015 and He = 0.013 for T1 and T2, respectively). Furthermore, He values in CLA_1 and CLA_2 were 

1.5 to 2.7 times higher compared to those observed in Brittany (ROS and QUI, respectively, Table 1). 

Regarding genetic diversity over time, He slightly decreased (∼2%) in HLG (Wilcoxon test over SNPs, p-

value < 0.001), while its slight increase in Brittany was statistically significant for QUI (p-value = 0.047) 

but not for ROS (p-value = 0.13). The decline (∼3%) in the proportion of polymorphic loci was only 

reported in HLG (Table 1), further supporting its overall decrease in genetic diversity. Regarding, allelic 

variation over time, the proportion of minor alleles (MAF < 0.05) not detected at the second time point 

differed across populations: HLG (0.69), ROS (0.27) and QUI (0.47) (Figure 3). In addition, the 

proportion of alleles occurring at higher frequencies (MAF ⩾ 0.05) at the first time point and not 

detected at the second was more pronounced for HLG (0.27) than for ROS (0.03) and QUI (0.10).  

 

3.4 Genetic structure  

The AMOVA analysis conducted using the complete SNPs dataset revealed that variation was primarily 

attributable to variance within individuals (81%, p-value < 0.001) and secondly between populations 

(21%, p-value=0.002), while the effect of time was not significant (-0.61%, p-value = 0.708, Table 4). 

The average FST values among populations ranged from 0.196 to 0.221 for the first and second time 

point, respectively. When excluding CLA_1 and CLA_2, the average FST values were 0.100 and 0.129 for 

the first and second time points, respectively. All pairwise FST values in space were greater than or 

equal to 0.078 with a maximum of 0.297 observed between CLA_2 and the second time point of HLG 

(Table S2). All pairwise tests of genic differentiation for spatial comparisons were significant (p-values 

< 0.001), while none of the tests were significant for temporal comparisons (p-values = 1). This latter 

result is consistent with the fact that pairwise temporal FST values were close to zero (Table S2). The 

lack of significant differentiation over time was further confirmed by the Sparse Non-negative Matrix 

Factorization (sNMF), as there was no grouping by date and no important change in genetic structure 

between time points (Figure S1). When considering the most informative number of clusters according 

to the minimum cross-entropy criterion (K = 5), individuals were grouped by sites, with an additional 

distinction between CLA_1 and CLA_2.  

 

3.5 Candidate SNPs for local selection in space 

Among the 261 outliers (9.1 % of the total) identified by at least one method, 97 (3.4% of the total) 

were shared between time points, illustrating that genetic differentiation at these SNPs was conserved 

over time. On the other hand, 47 SNPs were exclusively detected in the first time point, and 88 SNPs 



in the second. Interestingly, 36 of the SNPs detected in space were also identified as outliers by the 

temporal data-based tests. To reduce the number of false positives, we further considered only those 

SNPs that were detected by at least two out of the three detection methods in space. By doing so, 

none of the 47 outlier SNP remained for the first time point, while 16 out of the 88 outlier SNPs 

remained for the second. Among these 16 SNPs, 15 were detected by both OutFLANK and pcadapt, 

and only one SNP was detected by all three methods (OutFLANK, pcadapt and BayeScan). 

 

3.6  Ne is closely related to temporal outliers 

When searching for temporal outliers, 149 SNPs (5,2% of the total) were identified by at least one 

method: TempoDiff, OutFLANK, or the simulation framework. BayeScan and pcadapt did not detect 

any outliers. The outlier tests based on our simulation framework reported the occurrence of 131 SNPs 

with FST values higher than the neutral expectations (Figure 4). Among the 53 SNPs detected by 

TempoDiff, 35 were identified by the simulation framework, including 13 SNPs that were detected by 

all three methods. When solely considering the SNPs detected by at least two methods, the number 

of outlier SNPs decreased to 38, among which 23 were detected in ROS, 15 in QUI and none was 

detected in HLG (Figure 5). Interestingly, the absence of temporal outliers was observed in the 

population with the lowest effective size. Temporal estimates of Ne indicated that the HLG population 

had the smallest Ne values compared to those reported at ROS and QUI. Although Ne estimates varied 

depending on the estimator used, and whether spatial outliers were considered in the estimation of 

Ne or not (see Table 5), all estimators followed this trend and underscored the small effective size of 

the HLG population. Considering observed heterozygosity (Ho) for outlier SNPs reported in ROS and 

QUI, Ho increased over time from 0.125 to 0.192 for ROS and from 0.087 to 0.184 for QUI. Further 

analyses of allele frequencies indicated that the increase in Ho was primarily attributed to an increase 

in low-frequency variants between time points. Specifically, the Minor Allele Frequency (MAF) 

increased on average from 0.07 to 0.23 in QUI and from 0.07 to 0.14 in ROS (Figure S3). This pattern 

starkly contrasted with the low Ho values observed in HLG, which decreased from 0.033 to 0.021 over 

time. 

 

3.7 SNPs-temperature associations 

We conducted a logistic regression to analyze the occurrence of the alternative allele as a function of 

sea surface temperature (SST) predictors, for the 16 SNPs identified as outliers in the spatial analysis. 

This analysis indicated that three of these 16 SNPs were correlated with SST predictors. However, after 

applying correction for multiple testing, two of these remained statistically significant (P<0.003) and 

correlated with the ‘highest mean SST’. Among the principal components (PCs) of genetic variation, 

only PC1 remained statistically significant after applying correction for multiple testing. PC1 was 

associated with three SNPs out of the 16 that were different from the ones correlated with SST 



predictors. The 10 remaining SNPs did not show any significant associations with either the PCs of 

genetic variation or the SST predictors. A summary of the model with predictor significance after 

conducting a stepwise variable selection procedure is presented in Table S3. The GLM for the two SNPs 

correlated to the ‘highest mean SST’, predicted an increase in the occurrence of the alternative alleles 

as the ‘highest mean SST’ increased (Figure 6). This aligns with the expectation in cases where 

directional selection favors different alleles in different populations. However, the response curves of 

the GLMs are relatively contrasted between these SNPs, suggesting that SST may not have the same 

effect on their alternative alleles. For instance, the response curve of the SNP ID ‘144563:157’ indicated 

that an increase of one unit in the ‘highest mean SST’ raised the probability of the alternative allele's 

presence by 8.03 (OR = 8.03; 95% CI: 4.42-21.7; P < 0.003). This is supported by empirical observations, 

which highlight that the alternative allele at this SNP is nearly absent when the ‘highest mean SST’ is 

lower than 15°C, as observed in CLA (Figure 6), and increases in frequency until reaching fixation at 

17.5°C, as observed in QUI. In contrast, the response curve of the second SNP (ID ‘71212:99‘), indicated 

that both reference and alternative alleles are predicted to co-occur in equal frequency at intermediate 

temperatures, gradually increasing or decreasing in frequency with rising or falling temperatures 

(Figure 6). 

 

3.8 Gene ontology  

Functional analyses were conducted using the OmicsBox 2.2.4/Blast2GO pipeline, focusing on 53 loci 

with SNPs detected as outliers in space (16 SNPs) and time (38 SNPs), identified by at least two 

methods. Out of these 53 loci, eight showed significant hits in the BLASTX search against the UniProt 

database. The top hits were associated with brown algae of the Ectocarpus genus, featuring e-values 

ranging from 2.8E-4 to 6.4E-19. Six of the targeted loci were annotated to diverse Gene Ontology terms 

(see Table S4). In the context of spatial outlier SNPs, particularly the locus with ID ‘71212’, which 

demonstrated correlation with the ‘highest mean SST’ in SNPs-temperature associations, functional 

annotation revealed associations with domains involved in lipid transport and cellular anatomical 

entity. The remaining three annotated loci associated with spatial outlier SNPs were linked to functions 

involving membrane structures, oxidoreductase activity, and methyltransferase activity. Regarding the 

three annotated loci associated with temporal outlier SNPs, the analysis indicated specific functions 

ranging from phosphorylation and kinase activity to mismatch repair and RNA polyadenylation (Table 

S4). 

 

 

 

 

 



4. DISCUSSION  

We studied the contemporary evolution of populations of the kelp Laminaria digitata by examining 

spatial and temporal genetic variation. While the detection of outlier SNPs through space, partly linked 

to Sea Surface Temperatures (SST), pointed out that temperature may drive adaptive response, 

temporal genomics offered further insights into the efficiency of selection relative to genetic drift. With 

the support of these spatial and temporal analyses, we delve into a detailed discussion regarding how 

the studied populations are currently responding to the challenges posed by climate change. 

 

4.1 Adaptive potential at the southern margin 

Analyses of changes in SST indicate that the studied populations experienced distinct thermal 

regimes that gradually became warmer over the study period. Nevertheless, our findings revealed 

variations in warming trends across populations, suggesting that vulnerability to climate change and 

selection for climate-related traits may not occur uniformly throughout the species' geographical 

range. While our results emphasized the moderate effective size (Ne) of the southernmost population 

(Quiberon) compared to the core one (Roscoff), we expected that selection efficiency would be 

reduced at the southern margin. This hypothesis aligns with theoretical expectations and is 

corroborated by previous studies on L. digitata, which reported low within-population variation for 

Quiberon using microsatellites (Oppliger et al., 2014; Robuchon et al., 2014; Liesner et al., 2020).  

Even though Ne was smaller for Quiberon than Roscoff, we did not detect any evidence of 

reduced adaptive potential in Quiberon. This is supported by the detection of two types of candidate 

loci: i) loci exhibiting high spatial differentiation and potentially associated with SST, and ii) loci showing 

greater temporal differentiation than expected under genetic drift alone. Additionally, some of these 

candidate loci were shown to be linked to metabolic and cellular functions that might be involved in 

adaptive responses, such as variations in thermal regimes. Our findings, therefore, support that SST 

may drive the adaptive response of L. digitata, in line with previous heat stress experiments conducted 

on the same populations (Liesner et al., 2020; Schimpf et al., 2022) and genome scans from other kelp 

species (Guzinski et al., 2020; Mao et al., 2020; Vranken et al., 2021). Nonetheless, confounding factors 

may also be at play, such as the phylogeographical history of the species along the north-eastern coast 

of the Atlantic which would split the studied populations into two different clusters (Neiva et al., 2020). 

In this context where genetic structure complicates the inference of selective loci (see Bierne et al., 

2013), our temporal genomics framework, applied over a short time interval, offered further insights 

on the detection of non-neutral loci.  

The identification of temporal outliers over a short period, particularly during a period marked 

by climate warming, raises questions about the role of SST in driving temporal differentiation. 

Nonetheless, despite a moderate increase in SST over the study period at Quiberon, temporal outliers 

were mainly observed in this population. Several hypotheses can be advanced to explain this 



observation: (i) Other selective factors besides SST may be influencing the observed temporal 

differentiation. (ii) Fine-scale variations in temperature, especially in coastal areas, may not be 

adequately captured by the available SST data. (iii) Genetic differentiation could potentially be a 

reflection of significant changes in SST that occurred before the study period. Regarding the latter 

assumption, genetic differentiation at Quiberon may indeed reflect a gradual response to selective 

pressures imposed by climate change over successive generations. This aligns with the theory that 

populations' adaptation lags (see Martin et al., 2013 for a review) increase with marginality while 

stronger intensity is predicted at the species' warm margin (Hampe & Petit, 2005; Fréjaville et al., 

2020). 

 

4.2 The role of genetic drift in shaping genetic variation 

The study of the population from the island of Helgoland gave contrasting results compared 

to Quiberon. Similar climate-related selective pressures were expected in Quiberon and Helgoland as 

both populations experienced warmer SST (Derrien-Courtel et al., 2013) and were shown to exhibit 

slightly higher thermal tolerance than populations from the cool margins (Liesner et al., 2020). 

However, Helgoland exhibited the lowest level of genome-wide genetic diversity among the 

populations included in this study and its diversity tended to decrease over time. In addition, candidate 

loci with elevated temporal differentiation were rare in Helgoland, even absent when considering 

those detected by at least two genome scan methods. The high environmental variability observed in 

this population may have led to increased plasticity for a wide range of temperatures, thereby reducing 

the selection pressure and explaining the rarity of temporal outliers. Another explanation is the 

detrimental effect of accelerated warming, surpassing that of the other sites, and leading to major 

demographic reduction. The high incidence of genetic drift in this population was evidenced by a 

reduction in the number of polymorphic loci over time, mainly marked by the loss of low-frequency 

alleles. This is in line with earlier studies which have shown low levels of genetic diversity at 

microsatellites loci (Liesner et al., 2020; Fouqueau, 2021) and patterns of local adaptation to 

temperature that became less clear when including gametophytes from Helgoland rather than 

Quiberon (Schimpf et al., 2022). This genetic impoverishment likely results from a smaller effective 

population size and/or geographical isolation (Blows & Hoffmann, 1993; Johannesson & André, 2006; 

Eckert et al., 2008; Pilczynska et al., 2019), potentially exacerbated by climate change. For instance, 

Bartsch et al., (2013) noted that the prevailing SST of approximately 18°C in August inhibited the 

summer reproduction of the species in Helgoland. Furthermore, climate change appears to have 

played a major role in the substantial biomass decline of L. digitata (in terms of sporophytes) observed 

between 1970 and 2005 in Helgoland, as reported by Pehlke and Bartsch (2008). The demographic and 

genetic erosion observed here does not appear to be limited to L. digitata alone. The kelp Saccharina 

latissima also experienced low levels of genetic diversity, as evidenced by both microsatellites and 



SNPs (Guzinski et al., 2020). The contemporary response of kelp populations in Helgoland could serve 

as a valuable model for gaining insight into how kelp populations might respond to climate change, 

particularly for small and fragmented populations already damaged by high rates of genetic drift (e.g., 

Arizmendi-Mejía et al., 2015; Crisci et al., 2017). 

 

4.3 Technical considerations 

DNA damage can be a concern in temporal genomics studies, particularly when they have been 

carried out on historical samples (Dehasque et al., 2020; Therkildsen et al., 2013a, b). In our study, the 

decrease in the number of reads and SNPs in the oldest samples compared with the most recent ones 

may be the result of lower DNA quality for the oldest time points. As shown by our results, this implies 

that only a small proportion of the loci sequenced at the second time point was recovered at the first 

time point. Although this reduces the amount of data to study temporal genetic changes at putatively 

selected loci, our filtering strategy, by retaining SNPs shared between time points with enough allele 

depths, together with an analysis of genotype concordance at each time point, allows us to conclude 

that DNA damage is not relevant here to explain temporal genetic changes. An important aspect of 

this study is that the earliest sampling point did not occur in the same year for all populations due to 

practical constraints. We expect to enhance our ability to assess the effects of climate change on 

genetic variation by increasing the interval between sampling periods. In contrast, reducing the 

interval between samplings or delaying the initial sampling until after significant climatic changes have 

occurred may limit such investigations, as the genetic makeup of the sampled generations could 

already be influenced by climate change. However, our results highlighted that temporal outlier SNPs 

were detected in Roscoff and Quiberon, even though both populations had the shortest interval 

between samplings. This underlines that temporal genomics spanning two or three generations can be 

highly valuable in detecting ongoing selection, especially in species with short generation times.  

 

4.4 Beyond selection: factors influencing temporal outliers 

By investigating genetic variation among the sporophyte stage, our study only captures half of 

the species’ biphasic life cycle. Gametophytes have the potential to persist as a genetic bank of 

microscopic forms (e.g., Edwards, 2000; Bartsch et al., 2013) and are generally associated with higher 

thermal resistance than sporophytes (Bolton & Lüning, 1982). Both of these characteristics suggest 

that gametophytes may serve as a buffer, retaining genetic variation when episodes of heatwave cause 

a severe bottleneck in the sporophytic population. Although the importance of gametophytes in 

preserving the evolutionary potential is still poorly understood (see Veenhof et al., 2022 for a review), 

our results rather question the idea that gametophyte stages represent important hidden genetic 

variance. Indeed, if the population of Helgoland has been replenished from its microscopic forms as 



suggested by Bartsch et al., (2013), the observed low genomic variation suggests that a restricted 

number of gametophytes might have contributed.  

Finally, it is important to discuss the assumptions that were made for estimating contemporary 

Ne and detecting temporal outliers. Firstly, we assumed that temporal samples were separated by two 

sporophytic generations, whichever the populations, although life spans of L. hyperborea sporophytes 

are shortened at warmer temperatures (Bartsch et al., 2008). Yet when considering three generations 

rather than two, the effect of genetic drift might have been underestimated. This is especially of 

concern for the southernmost population which is confronted with the warmest climate. However, 

given that loci detected by at least two methods of temporal genome scans exhibited FST values 

exceeding 2.4 to 3 times the threshold of neutral expectation, this effect should be minimized here. 

Secondly, we made the assumption of isolated populations for estimating Ne. However, signatures of 

elevated temporal differentiation may be expected in the presence of substantial levels of gene flow 

(e.g., Therkildsen et al., 2013a, b). While the effect of gene flow from unsampled populations in the 

detection of temporal outliers cannot be ruled out, gene flow is still expected to be extremely limited 

among local populations (Fouqueau et al., 2023). Gene flow is anticipated to exert substantial 

influences on allele frequencies within species characterized by genetic structure operating at the scale 

of a few kilometers. While our results indicate that temporal differentiation was not significant when 

considering the full set of SNPs, this does not rule out the possibility that there have been moderate 

changes in allele frequencies due to local gene flow. Further analysis using chromosome-wide 

assembly will be necessary to determine whether temporal outlier SNPs are clustered in the same 

genomic regions or distributed randomly across distinct regions. While careful interpretation is 

essential regarding temporal genetic changes, selection remains the most pertinent factor for 

explaining the detection of temporal outliers in L. digitata populations.” 

 

4.5  Conclusion 

Our spatio-temporal study on Laminaria digitata populations has provided valuable insights 

into the species' contemporary evolution. We have documented contrasting evolutionary responses, 

highlighting the variability in how populations react to the challenges imposed by climate change. This 

understanding has been significantly bolstered by temporal genomics, which provided a more detailed 

view of the interplay between genetic drift and selection in contemporary times. Given the high threat 

that climate warming poses to kelps and other marine foundation species, we anticipate that spatio-

temporal genomic frameworks will become more common, encouraging monitoring and guiding 

conservation efforts. 
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Figure 1. Sampling sites of the Laminaria digitata populations used in this study, with populations from 

Clachan highlighted in a zoomed-in area at the bottom right corner. 

 

Figure 2. Linear regression analysis between the average Sea Surface Temperature (SST) of the 

warmest months (‘highest mean SST’) and the Years. Each population was subject to separate linear 

regression analysis with the corresponding regression equation displayed in the bottom right corner 

of each subplot. Note that the Y-axis scale is not uniform throughout the entire graph. 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3. Minor allele frequencies (MAF) change between time points. Alleles not reported at the 

second time point are depicted in red, while retained polymorphic shown in blue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 4. Temporal FST per SNP is compared to the upper limit of the neutral expectation. The green 

line represents the 99% quantile of FST values expected under genetic drift alone, determined from 

5 000 simulations for (A) HLG, (B) ROS, and (C) QUI. Outlier SNPs detected only by the simulation 

framework are represented by gray triangles. Those detected by two or three methods are 

represented by purple and red triangles, respectively. Gray crosses indicate putatively neutral SNPs 

that were not detected by outlier tests. Note that the order of SNPs is based on contigs and does not 

reflect their position along the genome. 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 5. Outlier SNPs based on temporal differentiation are shown, depicting (A) the unique or shared 

outlier SNPs among methods for HLG, ROS, and QUI. The (B) allele frequency between time points and 

(C) observed FST values are provided depending on whether the SNPs were detected by none or only 

one method (gray), two methods (2X; purple) and three methods (3X; red). Note that the total number 

of SNPs on the Venn diagrams (A) is not equal to 149 SNPs, as two outliers were detected twice in ROS 

and QUI by the simulation framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 6. Absence (coded 0) or presence (coded 1) of the alternative allele for three outlier SNPs of the 

spatial analysis, best fitted by the highest and lowest mean SST predictors in the GLM models. Dots, 

colored according to the legend, represent observed data, while the response curve derived from the 

model highlights the relationship between SST and the alternative allele. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Geographical coordinates and genetic diversity of populations at two different time points. 

Population Year Lat.   Lon. n P (± SE) He (± SE) 

Helgoland (HLG) 
2005 

54.178 N 7.893 E 
18 0.11 (0.001) 0.015 (0.001)  

2018 22 0.08 (0.001) 0.013 (0.001) 

Clachan (CLA_1) 2008 56.454 N 5.444 W 25 0.42 (0.001) 0.103 (0.003) 

Clachan (CLA_2) 2018 56.318 N 5.592 W 25 0.42 (0.001) 0.109 (0.003) 

Roscoff (ROS) 
2011 

 48.727 N  4.005 W 
27 0.36 (0.001) 0.065 (0.002) 

2018 25 0.36 (0.001) 0.069 (0.002) 

Quiberon (QUI) 
2009 

47.470 N 3.091 W 
24 0.21 (0.001) 0.038 (0.001) 

2018 24 0.20 (0.001) 0.040 (0.002) 

Year: the specific year when the samples were collected; Lat: latitude coordinates of the sampling location; Lon: 

longitude coordinates of the sampling location; n: the number of genotyped individuals; P (± SE): the proportion 

of polymorphic loci using a minor allele frequency threshold of 0.01 (mean and ± SE); He (± SE): expected 

heterozygosity, represented as the mean value with standard error (SE) 

 

Table 2. The filtering steps applied to the raw sets of 77 193 SNPs and 644 794 SNPs for the first and 

second time points, respectively. 

Filtering steps SNP Individual 

SNPs present in both the first and second time points 36 293 213 

Shared SNPs among populations with less than 10% of missingness per 

SNP within a population 
4 151 - 

Individual missingness rate ≤ 0.2 4 151 190 

Mean read depth (DP); SNPs between 10x and twice the mean. For the 

first time point, the mean read depth was 34x, and for the second time 

point, it was 45x 

3 995 - 

SNPs deviating from HWE (P < 0.001) in at least 25% of the populations 3 995 - 

Minimum allele count of three 3 609 - 

SNPs pruned at an LD threshold of r2 = 0.20 within and among populations 2 854 - 

 

 

 

 

 

 

 

 



Table 3. SST predictors employed in the analysis of SNP-temperature associations. SST predictors were 

estimated for each period according to the Pruned Exact Linear Time (PELT) algorithm. 

 

*mean SST: monthly average over the entire period; highest mean SST: monthly average over the warmest 

months of the year (June, July, and August); lowest mean SST: monthly average over the coolest months of the 

year (January, February and March). 

 

Table 4. Analyses of molecular variance (AMOVA) using the complete SNPs dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of variation  D.f  Var. components Variation (%) P-value 

Among populations 4  16.07 20.71 0.00188 

Between time points 3  -0.47 -0.61 0.70832 

Within populations 182  -0.88 -1.14 0.91881 

Within individuals 190  62.93 81.04 < 0.00001 

Population Period mean SST highest mean SST lowest mean SST 

CLA 1981-1996 10.07 12.99 7.32 

CLA 1997-2018 10.65 13.46 7.87 

HLG 1981-2004 10.34 17.02 3.99 

HLG 2005-2018 11.08 17.74 4.58 

ROS 1981-1995 12.37 15.18 9.92 

ROS 1996-2018 12.85 15.51 10.27 

QUI 1981-1993 13.44 17.57 9.35 

QUI 1994-2018 13.68 17.75 9.51 



Table 5. Contemporary effective population size (Ne) based on temporal genetic changes using two F-

statistics (Fc, Fs) and the likelihood estimator implemented in MLNe. Ne estimates were computed for 

the entire dataset and selectively for putatively neutral SNPs, achieved by excluding those identified 

through outlier tests in space.  

 

Supplementary section 

Supplementary material S1  

This supplementary section aims to evaluate the impact of choosing low or high Ne scenarios in the simulation 

framework. We performed simulations of SNP frequencies 5 000 times with the same parameters as the ones 

described in the “Outlier detection across time” section of the main manuscript but considering the lowest Ne 

estimates obtained from temporal methods (see Table 5). We expected that decreasing Ne would strengthen 

genetic drift, leading to increased levels of temporal neutral genetic differentiation and a higher detection 

threshold for outlier SNPs. However, we found no significant differences in mean FST values when comparing 

simulations based on the low and high Ne scenarios. The mean FST values ranged from 0.002 to 0.003 for the 

high and low Ne scenarios, respectively. Additionally, the detection of outlier SNPs was minimally influenced by 

this parameter. Person's correlations between SNP p-values in the low and high Ne scenarios were high, with 

correlations of r = 0.962 at HLG, r = 0.997 at ROS and r = 0.986 at QUI. This indicates that the SNPs detected as 

outliers were almost identical across the two different Ne scenarios. Interestingly, reducing Ne at ROS from 

43 063 to 247 prevented the detection of two outliers that were reported from the high Ne scenario. It is 

noteworthy that major differences were expected at ROS, considering the reduction in Ne from thousands to 

hundreds of individuals, while the range was narrower at HLG and QUI (around two times). This suggests that 

changes in allele frequencies under genetic drift over two generations may be buffered at ROS by maintaining 

Ne in at least two hundred individuals. However, subsequent analyses indicated that reducing Ne had a greater 

impact on simulations and genetic changes when genetic drift was simulated over a thousand generations, 

rather than two (data not shown).  

 

 

 

 

SNP dataset  Ne estimator  HLG ROS QUI 

  initial dataset 
(2854 SNPs) 

Fc  59 [26 - 469] 451 [157 - Inf] 165 [77 - 3412] 

Fs  45 [23 - 1403] 247 [111 - Inf] 104 [56 - 738] 

likelihood  104 [70 - 195] 43 063 [935 - Inf] 227 [134 - 667] 

Neutral                      
(2838 SNPs) 

Fc  77 [30 - Inf] 443 [155 - Inf] 168 [77 - 6558] 

Fs  60 [28 - Inf] 251 [112 - Inf] 107 [57 - 918] 

likelihood  112 [74 - 227] 43 455 [949 - Inf] 238 [138 - 772] 



Figure S1. SNMF admixture plots for different values of K, including K = 2, K = 3, and the optimal number 

of clusters K = 5. Each bar in the plots represents one sampled individual, and the colors within the bar 

represent the membership proportions of each cluster. 

  



Figure S2.  PCA biplots of SNP variation, including the five principal components: PC1 (46.5%) vs PC2 

(8.3%); PC2 vs PC3 (6.1%), PC3 vs PC4 (4.5%) and PC4 vs PC5 (2.7%). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S3. Analysis of minor allele frequencies (MAF) for temporal outliers reported at Quiberon (QUI) 

and Roscoff (Roscoff). The upper plots illustrate the density of the MAF at the first time point, while 

the lower plots report those at the second time point for the same SNPs.  

 

 

  



Table S1. Individual missingness, and mean read depth (Mean DP) were assessed at both time points. 

Individual missingness refers to the average proportion of missing genotypes for each individual. Mean 

read depth was calculated by averaging the read depth across all sites. The SNP error rate estimated 

using eight replicates is also indicated.  

 

Population    Time point n Ind. missingness Mean DP SNP error rate 

HLG 
   1st 18 0.05 13.218 0.020 

   2nd 22 0.02 11.640 0.012 

CLA 
   1st 25 0.04 12.497 0.036 

   2nd 25 0.02 26.362 0.002 

ROS 
   1st 27 0.03 28.457 0.021 

   2nd 25 0.02 26.177 0.001 

QUI 
  1st 24 0.06 10.570 0.007 

   2nd 24 0.02 24.703 0 

 

 
Table S2. Pairwise FST values between populations and the comparisons between time points are 

highlighted in bold in the lower diagonal matrix. The p-values of the genic differentiation tests are 

displayed in the upper diagonal matrix. 

FST HLG (T1) HLG (T2) CLA_1 CLA_2 ROS (T1) ROS (T2) QUI (T1) QUI (T2) 

HLG (T1)  NS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

HLG (T2) 0.008  < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

CLA_1 0.257 0.285  < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

CLA_2 0.266 0.297 0.039  < 0.001 < 0.001 < 0.001 < 0.001 

ROS (T1) 0.094 0.113 0.224 0.235  NS < 0.001 < 0.001 

ROS (T2) 0.104 0.125 0.223 0.237 0.000  < 0.001 < 0.001 

QUI (T1) 0.127 0.150 0.251 0.262 0.078 0.083  NS 

QUI (T2) 0.142 0.167 0.249 0.272 0.090 0.095 0.003  

 

 

 

 

 

 

 

 

 



Table S3. Predictors retained in each GLM model for predicting the occurrence of the alternative allele 

in outlier SNPs detected in space. Only predictors deemed significant after conducting a stepwise 

variable selection procedure are presented. P-values highlighted in bold indicate predictors that 

remain significant after correcting for multiple testing. 

 

* This summary includes Odds Ratios (OR), estimated odds ratios derived from logistic regression coefficients, 

95% Confidence Intervals (CIs) for ORs, P-values, AIC, and pseudo R² values of the fitted model.

SNP ID fitted model OR IC2.5 IC97.5 Pval AIC R2 

144563:157:- PC4 0.54 0.29 0.74 0.0053 58.07 0.74 

144563:157:- highest mean SST 8.03 4.42 21.7 <0.003 58.07 0.74 

174791:33:+ PC1 2.29 1.62 5.92 0.0045 46.02 0.83 

218088:45:+ PC1 1.65 1.45 2.01 <0.003 36.73 0.84 

24705:82:+ lowest mean SST 7.68 3.3 104.45 0.0043 39.54 0.82 

35776:116:+ PC1 1.63 1.4 2.21 <0.003 70.05 0.72 

59182:127:- PC1 1.93 1.57 2.94 <0.003 24.45 0.91 

71212:99:- PC1 11.06 4.13 37.49 <0.003 118.57 0.56 

71212:99:- PC3 0.67 0.48 0.87 0.0077 118.57 0.56 

71212:99:- PC5 0.11 0.02 0.45 0.0033 118.57 0.56 

71212:99:- highest mean SST 3.16 1.94 5.67 <0.003 118.57 0.56 

72447:52:- PC2 0.58 0.32 0.78 0.0050 58.14 0.77 



 

1 
 

Table S4. Functional categorization of eight annotated loci derived from outlier SNPs out of the 53 loci. 1 

 2 

 3 

 4 

 5 

 6 

Locus Description Lengt

h 

Hits e-value sim mean GO GO Names Enzyme Names 

71212 conserved unknown 

protein 

216 2 6.4E-19 92.0 2 P:lipid transport; C:cellular anatomical entity   

100680 ankyrin repeat protein 254 20 4.8E-11 54.24 3 P:protein phosphorylation; F:protein kinase 

activity; F:ATP binding 

Transferring phosphorus-

containing groups 

10940 MutS protein homolog 4 503 1 1.9E-4 85.29 4 P:mismatch repair; F:ATP binding; 

F:mismatched DNA binding; F:ATP-

dependent DNA damage sensor activity 

  

30235 ankyrin repeat protein 241 20 8.1E-10 54.25 1 C:membrane   

59182 2-hydroxy-3-

oxopropionate reductase 

339 2 6.9E-4 96.3 3 F:oxidoreductase activity; F:NADP binding; 

F:NAD binding 

Oxidoreductases 

62443 unnamed protein product 319 5 1.6E-6 60.99 5 P:RNA polyadenylation; F:polynucleotide 

adenylyltransferase activity; F:metal ion 

binding; C:membrane; C:TRAMP complex 

polynucleotide 

adenylyltransferase 

94321 unnamed protein product 229 1 2.8E-4 95.45     

95165 methyltransferase 257 19 2.2E-5 71.64       


