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Abstract 

In nuclear magnetic resonance (NMR), long-lived coherences (LLCs) constitute a class of zero-quantum (ZQ) coher-

ences that have lifetimes that can be longer than the relaxation lifetimes T2 of transverse magnetization. So far, such 

coherences have been observed in systems with two coupled spins with spin quantum numbers I = ½, where a term 

� � � �  in the density operator corresponds to a coherent superposition between the singlet �  and the 

central triplet �  state. Here we report on the excitation and detection of collective long-lived coherences in 

AA’MM’XX’ spin systems in molecules containing a chain of at least three methylene (-CH2-) groups. Several variants 

of excitation by polychromatic spin-lock induced crossing (poly-SLIC) are introduced that can excite a non-uniform 

distribution of the amplitudes of terms such as � � � � � � , � � � � � � , and � � � � � � . Once the 

radio frequency (RF) fields are switched off, these are not eigenstates, leading to ZQ precession involving all 6 pro-

tons, a process that can be understood as a propagation of spin order along the chain of -CH2- groups, before their 

reconversion into observable magnetization by a second poly-SLIC pulse that can be applied to any one or several of 

the CH2 groups. In the resulting 2D spectra, the ω2 domain shows SQ spectra with the chemical shifts of the CH2 

groups irradiated during the reconversion, while the ω1 dimension shows ZQ signals in absorption mode with lin-

ewidths on the order of 0.1 Hz that are not affected by the inhomogeneity of the static magnetic field, but can be 

broadened by chemical exchange as occurs in drug screening. The ZQ frequencies are primarily determined by differ-

ences ∆J between vicinal J-couplings. 

 

Key words 

Long-Lived Coherences, Spin-Chains, Zero-Quantum Spectroscopy, Polychromatic Spin-Lock Induced Crossings, Drug 

Screening. 
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Introduction 

Spin symmetry plays a pivotal role for relaxation properties in nuclear magnetic resonance (NMR). Population 

imbalances between states belonging to different irreducible representations of the spin permutation group are 

known as long-lived states (LLSs), since their lifetimes TLLS can be significantly longer than the longitudinal (‘spin-

lattice’) relaxation time constant T1 [1–5]. On the other hand, zero-quantum coherences between states belonging 

to different irreducible representations, known as long-lived coherences (LLCs), can have lifetimes TLLC that may be 

longer than the relaxation time constant �  of transverse magnetization. For a pair of spins with I = ½, an LLC 

corresponds to a coherent superposition between the singlet state �
�

√�  and the central triplet state 

( �
�

√� ). Such LLCs were first described for a pair of chemically inequivalent spins evolving at very low 

static magnetic fields [6], where they can be excited by extremely low frequency (ELF) irradiation, using 

electromagnetic fields that oscillate in the audio range. The excitation and observation of LLCs was soon extended to 

higher static fields, where their evolution can be “sustained” by a strong RF field that suppresses the differences 

between chemical shifts and hence forces the pair of spins to be chemically equivalent [7]. Similar LLCs can also be 

observed in strongly coupled spin pairs without sustaining by RF fields [8]. The lifetime TLLC can be longer than T2 by 

a factor ��� � for relaxation caused by dipolar interactions in the extreme narrowing regime (i.e., for small 

molecules such as drugs in non-viscous liquids) and  in the slow motion regime [9]. Experimentally, the 

homogeneous linewidths in LLC spectra were observed to be up to 2.6 times narrower than in single-quantum (SQ) 

spectra in the extreme narrowing regime, and up to 4.6 times narrower in the slow motion regime [8,9]. Since LLCs 

constitute a particular class of zero-quantum coherences (ZQCs), they benefit from the attractive property that they 

are insensitive to the inhomogeneity of the static magnetic field [10–13]. On the other hand, zero-quantum (ZQ) 

linewidths can be exquisitely sensitive to exchange broadening as may occur in drug screening experiments. In 

heteronuclear systems comprising, say, 1H and 13C, LLCs can be observed at zero- or ultralow-fields [14,15].  

Here we expand our work [16] on aliphatic chains in achiral molecules at high fields. We consider the case of 

molecules containing three CH2
 groups, each group having a distinct chemical shift. The geminal protons of each 

group are chemically equivalent but magnetically inequivalent, thus forming an AA’MM’XX’ spin system in Pople’s 

notation [17]. The dominant intra-pair dipole-dipole couplings DAA’, DMM’, and DXX’ do not affect relaxation of LLSs for 

reasons of symmetry, while out-of-pair dipole-dipole couplings such as DAM, DAM’, etc. have much smaller 

contributions to their relaxation rates because of the larger internuclear distances. By contrast, both intra-pair and 

out-of-pair dipole-dipole couplings may contribute to LLC relaxation [8,9]. Relaxation of both LLSs and LLCs is affected 

by dissolved oxygen [18,19] and other paramagnetic species [20]. 
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The application of various mono- or polychromatic variants [16] of spin-lock induced crossing (SLIC) [21] to such 

systems generates population imbalances between states of different symmetry. Within each CH2 group, scalar two-

spin order can be expressed by a scalar product � �′ �� ��
′

	� 	�
′


� 
�
′ �

� ����′ ����′

���′ ���′ 
���′ 
���′ ����′ ����′ . If all two-spin order terms associated with the three geminal 

spin pairs (e.g., � ��, � ��and � ��
) could be excited uniformly, the resulting state would be a stationary 

eigenstate of the free precession Hamiltonian, by essence time-independent, apart from slow relaxation. If we excite 

these scalar two-spin terms with different amplitudes, the resulting state can comprise both LLSs (diagonal terms in 

the density matrix represented in the eigenbasis of the free precession Hamiltonian) and LLCs (off-diagonal elements 

in the same eigenbasis). Our earlier work [16] focused attention on the slowly-decaying LLS, whereas the present 

paper provides a detailed description of the rapidly-oscillating LLCs.  

We have found that to describe the behavior of the LLCs in 6-spin systems, one should consider singlet-triplet product 

states such as ���� ���� ���� , ���� ���� ���� , ���� ���� ���� . In practice, the amplitudes of these product states, 

i.e., the projections of the density operator onto terms such as ���� ���� ���� ���� ���� ���� , etc., are usually not 

uniform along the chain. The resulting state is therefore not an eigenstate of the free precession Hamiltonian and 

will evolve, a process that we shall refer to as propagation. When these LLCs involve more than two spins, they will 

be called collective.  

Here, we present experiments which aim to enhance the non-uniformity of the amplitudes of the relevant singlet-

triplet product states and thereby increase the amplitude of the collective LLCs. This can be achieved by suitable poly-

SLIC excitation schemes. We also explore the effects of selective decoupling of one or several of the CH2 groups, either 

during the excitation of LLSs and LLCs, or during the evolution time t1. Selective decoupling, which can be achieved 

by applying a weak RF field with an amplitude that must differ from the SLIC condition, in effect allows one to cut the 

length of a chain of coupled CH2 groups, as if one could tailor the length of the molecule at will, as used to be the 

realm of alchemists. 

After excitation, the spin order propagates along the chain. The velocity of the propagation, or, equivalently, the 

precession frequency of the LLCs, is determined by energy differences between eigenstates, which in turn are 

primarily determined by differences ∆J between vicinal couplings. ZQ spectra are obtained by a real Fourier 

transformation of the time-dependence of signals derived from LLCs by reconversion SLIC sequences. At the end of 

the evolution interval t1, after filtration by a T00 filter, various SLIC methods can be used to project chosen constituents 

of the density operator onto observable magnetization. Our method has the potential to be generalized to aliphatic 

chains of arbitrary length, provided the chemical shifts are not degenerate. 
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Similar experiments conducted on ABXY systems in chiral molecules by DeVience et al. [22] showed that the 

propagation of the expectation values of the singlet-triplet product states between two CH2 groups can be facilitated 

by exploiting differences between vicinal J-couplings in the presence of a sustaining (spin-locking) RF irradiation. In 

this paper, we focus on achiral molecules containing aliphatic chains, and the propagation takes place during free 

evolution, without requiring any RF fields. 

There are analogies between our NMR methods and the concept of spin waves that has been discussed since the 

1920’s to elucidate the physics of ferromagnetism, conductors, and semiconductors, where the motions of unpaired 

electrons are constrained by a periodic potential in solids. Subsequent theories have given rise to the emergence of 

the Lenz-Ising model for ferromagnetism [23,24] and to Bloch’s theorem that demonstrates how the eigenstates of 

Schrödinger’s equation in a periodic potential are plane waves modulated by periodic functions [25]. While electron 

spin waves became a classical textbook problem [26], they have so far rarely been considered in solution-state NMR, 

although the propagation of magnetization along a chain of scalar-coupled nuclei has been observed under spin-

locking conditions [27–30]. The proton spin systems in aliphatic chains -(CH2)n- can be considered as examples of one-

dimensional lattices of magnetically inequivalent pairs of coupled spins of finite length [31]. In each -(CH2)- 

subsystem, the pair of states �  and �  spans a two-level subsystem that can be described by a fictitious spin with 

spin quantum number I = 1/2. Such a spin-chain bears analogies to one-dimensional chains of unpaired electron spins 

with I = 1/2 that have been described for arbitrary values of n [26]. 

Theory  

Full spin Hamiltonian of the AA’MM’XX’ spin system 

In this work we shall focus attention on aliphatic chains with n = 3 consecutive methylene groups ( ����

���� ���� ). The full spin Hamiltonian of aliphatic protons in achiral molecules with magnetically 

inequivalent (although chemically equivalent) pairs of protons can be written as:  

� �, 

� � 
� 
�� � 
� 
�� � 
� 
�� , 

, where 

��′
� �′

��′
� �′

��′
� �′

, 

1
2 ��

� � � �′ �′ � �′ �′
  

(1) 
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�
� �� � � � �� �� � �� �   

�
� �� � � � �′ �′ � �� ��   

�
� �� � � � �′ �′ � �� �� , 

1
2 ��

� � � �� �� � �� �′
  

�
� �� � � � �′ �′ � �� � . 

here all terms are expressed in units of Hz, � stand for chemical shifts, �� denote J-couplings, �� = �� ��� and 

��  �� ��� etc. Bold operators represent vector operators, e.g., � �� 	� 
� .  

The two protons of a CH2 group in such a system are magnetically inequivalent if the vicinal couplings to protons in 

a neighboring CH2 group are not equal: 

�� �� ��� ���� ��� . (2) 

�� �� ��� ���� ��� . 
(3) 

The condition of magnetic inequivalence can only be fulfilled if the populations of the three rotamers with respect to 

a rotation about the bond between the two neighboring carbon atoms are not equal, i.e., if the three potential wells 

have unequal depths [39,40]. This aspect will be discussed in more detail in a forthcoming paper. 

All terms in the Hamiltonian of Eq. (1) commute with the operator representing simultaneous intra-pair permutation 

of all pairs of geminal protons: 

���� � ��� ��� ���, 
(4) 

where the operators �� swap spins i and j. If the eigenvalue of �� is +1, the state is locally symmetric (for triplet 

states); if it is -1 the state is locally antisymmetric (for singlet states). If the eigenvalue of ���� �  is +1, the state is 

globally symmetric, which occurs when it is a product of an even number of antisymmetric singlet states, such as 

���� ���� ����. If the eigenvalue of ���� �  is -1 the state is globally antisymmetric with an odd number of singlet 

states, like ���� ���� ����. All terms �, !
"#$%&'(

, !
)%*%&'(

, and !
(+&"−-'&"#

 commute with ���� � since simultaneous 

permutation of the spins either leaves these terms unchanged or changes their sign.  
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Idealized Hamiltonian of the AA’MM’XX’ spin system 

Typically, the values of all geminal J-couplings 2JHH are similar in all CH2 groups. Therefore, we may consider an 

idealized Hamiltonian that will allow us to develop an intuitive understanding of the spin dynamics.  

(i) We assume that all geminal couplings in the aliphatic chain are equal: 

��� ��� ��� �./�0 � (5) 

(ii) We assume for simplicity that the vicinal couplings 3JHH obey the following equalities along the chain: 

�� ���� �� ����, 

��� ��� ��� ���. 
(6) 

so that the sums   and differences  are the same for all neighboring pairs of CH2 groups along the entire aliphatic 

chain, i.e., �� �� , and �� �� . We define average parameters �� ��  and 

�� �� .  

(iii) Finally, we assume that all long-range couplings can be neglected:  

�� ���� ��� ���� (+&"−-'&"#  (7) 

These assumptions amount to imposing a translational symmetry, so that the spin system of an aliphatic chain (CH2)n 

has the characteristics of an ideal one-dimensional lattice with n nodes. Furthermore, we assume weak coupling 

between neighboring spin pairs, i.e., we assume that the difference in chemical shifts of neighboring CH2 groups is 

much larger than the vicinal J-couplings. The idealized Hamiltonian is thus: 

� , 

� �′ � �′ � �′
, 

1
2 2

�
2
�′

2
�

2
�′

2
�

2
�′

2
�

2
�′ 1

2 2
�

2
�′

2
�

2
�′

2
�

2
�′

2
�

2
�′

 .. 

    

 

(8) 

Only those terms which differ from Eq. (1) are given explicitly. The weak coupling approximation allows one to retain 

only longitudinal components like 
� of !
)%*%&'(

rather than the full vectors �. One may wonder to what extent the 

idealized Hamiltonian of Eq. (8) is realistic. The J-couplings of the AA’MM’XX’ system of trimethylsilylpropanesulfonic 

acid (DSS) have been determined with great precision by exploiting the complementary information contained in ZQ 

and SQ spectra (Table 1). It appears that, by and large, the approximations of Eqs. (5)-(7) are reasonably well justified. 

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
96

80
8



 

 

 

8  

Collective Long-Lived Zero-Quantum Coherences in Aliphatic Chains 
 

  

Table 1: Best estimates of the J-couplings of the AA’MM’XX’ system of DSS, determined by complementary analysis of single- and zero-quantum 

spectra by iterative optimization of all the J-couplings with numerical diagonalization of the full Hamiltonian of Eq (1). The approximations of Eqs. 

(5) – (7) are justified to a reasonable extent. 

Geminal  

couplings 

Value (Hz) 

 

Vicinal  

couplings 

Value (Hz) 

 

Long-range 

couplings 

Value (Hz) 

 

��′ -14.03 �� �′�′ 10.58 �� �′�′ -0.24 

��′ -13.53 �′� ��′ 5.26 ��′ �′� -0.25 

��′ -14.24 �� �′�′ 11.77   

  �′� ��′ 5.22   

�./�0 �  -14   6 ��0�
3 0�. 0 

 

Full singlet-triplet product basis 

A system with 2n = 6 spins with I = 1/2 spans a Hilbert space with 26 = 64 spin states. A full singlet-triplet product 

basis can be constructed by taking all 4x4x4 = 64 direct products of the intra-pair singlet states �44�
  and intra-pair 

triplet states 544� with p = -1, 0, +1 and KK’ = AA’ or MM’ or XX’: 

����
�����

����

����

����
�����

����

����

����
�����

����

����

. (9) 

The resulting states, such as ����
���� ���� etc., will be referred to as localized states since they are represented by 

a product of eigenstates associated with individual spin pairs. These states can be separated into two distinct 

manifolds, 36 globally symmetric states and 28 globally antisymmetric states, comprising even and odd numbers of 

singlet states �44�
 , respectively. Their conventional ordering according to symmetry and total z-projection is given 

in Appendix I. The symmetric and antisymmetric manifolds are completely disconnected from each other: in the 

matrix representation of the full Hamiltonian of Eq. (1), there are no off-diagonal elements that connect the two 

manifolds, so that coherent evolution in these manifolds is completely independent. 

Reduced singlet-triplet product basis 

We choose to focus our attention on the manifold of states which can support collective long-lived zero-quantum 

coherences that can be experimentally excited and reconverted into observable magnetization by poly-SLIC 

sequences (see Methods). For this purpose, we only need to retain a reduced set of 23 = 8 states by excluding all 

triplet states �544� with p  0: 
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����
����

����
����

����
����

 (10) 

As a consequence of this reduction (Fig. 1, bottom), one neglects the 64-8 = 56 states involving terms ��44�

�44�

 

This implies that one ignores all ZQ transitions between pairs of spins that are not chemically equivalent, e.g., 

involving pairs like A and M, or M and X, which are exploited in conventional ZQ spectroscopy [34–39]. Of the 8 states 

of the reduced manifold ��63.786.7, 4 belong to the symmetric manifold ��6
9	/

. These will be numbered as follows:  

���� ���� ���� � � �  

���� ���� ���� � � �  

���� ���� ���� � � �  

���� ���� ���� � � � . 

(11) 

On the right-hand side, we have dropped the indices AA’, MM’, and XX’ since the sequence of states suffices to 

identify the three neighboring spin pairs. The remaining 4 states belong to the antisymmetric manifold ��6 0:� of the 

reduced set ��63.786.7, and will be numbered as follows:  

���� ���� ���� � � � , 

���� ���� ���� � � � , 

���� ���� ���� � � � , 

���� ���� ���� � � � . 

(12) 

These 8 localized states can be collected in the form of a column vector Φloc. 
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Fig. 1. (Top) Matrix representations of (a) the 36x36 globally symmetric and (b) the 28x28 antisymmetric manifolds of the idealized J-coupling 

Hamiltonian in the full singlet-triplet product basis (+*
;<((

 of Eq. (9). The explicit ordering of the 64 states is given in the Appendix. (Bottom) Matrix 

representations of (c) the 4x4 globally symmetric and (d) the 4x4 antisymmetric manifolds of the Hamiltonian in the reduced singlet-triplet product 

basis ��63.786.7
 of Eq (10). For �./�0 �  -14 Hz,  6 Hz, and  16 Hz, the elements are color-coded with -0.8 ��  +1, normalized with 

respect to the antisymmetric diagonal element � � �  � � �  the value of which is arbitrarily set to �� = +1.  

 

Diagonalization of the idealized Hamiltonian in the reduced singlet-triplet product basis 

In the limit where �� �� we have a simple A2M2X2 system with three geminal pairs of nuclei that 

are both chemically and magnetically equivalent. In this case, all 8 product states defined in Eq. (10-12) are good 

eigenstates. The energies of these states are shown in the upper part of Fig. 2. When one cannot excite any 

LLSs or LLCs by SLIC. However, if   0, the geminal protons become magnetically inequivalent, so that off-diagonal 

elements appear in the matrix representation of the free precession Hamiltonian in the product basis (Fig. 1, top and 

bottom). Diagonalization of the Hamiltonian leads to mixing of the localized product states within both the symmetric 

and antisymmetric manifolds, resulting in a set of delocalized states.  
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A perturbation approach can be used to achieve a partial diagonalization of the idealized Hamiltonian because the 

couplings �./�0 � are much larger than the differences between the vicinal couplings . The Hamiltonian can be 

split into two non-commuting parts, where the dominant term 0 is given by: 

� � � �� � �� � �� �
� 
� 
�

�

� 
�

�

� 
�� 
�


�
�

. 
(13) 

The remaining terms of the idealized Hamiltonian constitute a weak perturbation: 

�
�
� 
� 
�� 
� 
�� �

� 
� 
�� 
� 
�� . (14) 

The perturbation �  leads to off-diagonal elements in the ��63.786.7 basis. There exist analytical expressions to 

calculate matrix elements of the Zeeman and J-coupling terms of the spin Hamiltonian for arbitrarily large spin 

systems [40], page 159. Here we obtain an analytical form of the matrices by using the Spin Dynamica software [41], 

expressing the Hamiltonians in analytical form as in Eq. (13) and (14), choosing the basis ��6
>8��

 and then calculating 

all the 16 matrix elements of �  and �  in the ��63.786.7  subspace. The matrix representations of � �  in the 

reduced basis ��63.786.7 are shown in Fig. 1c and d. Since the elements belonging to the states 1-8 are disconnected 

from all remaining states, as shown in Fig. 1a and b for the basis ��6
>8��

, the perturbation analysis can be limited to 

the reduced set. For the symmetric manifold of Eqs. (11), two 4 x 4 matrices represent � �: 

, (15) 

Note that the terms proportional to  do not contribute to the Hamiltonian in this subspace. In the antisymmetric 

manifold of Eqs. (12), two similar 4 x 4 sub-matrices can be constructed for � �: 

, (16) 

If we consider only the Hamiltonian � the three symmetric states , , and  are degenerate with energies 

�./�0 � , while level  has an energy of �./�0 �. Since geminal 

J-couplings of methylene groups are generally negative, the energies of the first three symmetric levels are higher 

than the energy of the fourth one, as shown in the bottom left of Fig. 2. The opposite applies to the antisymmetric 

states , , , and , as can be seen on the right-hand side of Fig. 2. In this case, the degenerate energies

�./�0 �  are lower than �./�0 � . In both the symmetric and 
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antisymmetric manifolds, the energy difference between the three degenerate states and the fourth state is ∆E = 

�./�0 � . We shall only derive explicit expressions for the symmetric states , , , and , since similar 

derivations hold for the antisymmetric states. 

 

Fig. 2. (Top) Energy diagram of the full set (+*
;<((

 of the 64 spin states of the AA’MM’XX’ spin system in an external magnetic field, expressed in 

terms of products of singlet and triplet states. The numbers in the left margin show the z projections <Mz> of the total spin. Only levels shown in 

bold are connected by off-diagonal elements that are proportional to , depicted by dotted lines. (Bottom) Expanded views of the energy-level 

diagrams of the reduced set (+*
-#?<*#?  of 2 x 4 = 8 states that are relevant for the ZQ spectra in this work. Diagonalization leads to mixing of these 

states. From left to right: zeroth, first- and second-order corrections in terms of , assuming an idealized Hamiltonian with ��� ��� ��� 

�./�0 � , and �� �� �./�0 � . (Left) States that are globally symmetric according to their symmetry with respect to three 

simultaneous intra-pair permutations. (Right) Globally antisymmetric states. 

A partial diagonalization of the matrix representation of the Hamiltonian in both symmetric and antisymmetric blocks 

can be achieved by transformation into the following delocalized reduced basis: 

 , (17) 

Where  and 
�  are unitary 4x4 matrices that transform the localized basis ��63.786.7  into the delocalized basis 

7.��63.786.7 ��63.786.7:  
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� �
� . (18) 

Henceforth, we shall drop the labels “reduced” and “full”. The explicit expression for the delocalized symmetrical 

states are: 

�
� � � � � � � � � � , 

�
� � � � � � � , 

�
� � � � � � � � � � , 

� � � . 

(19) 

The matrix representation of the Hamiltonian in this new basis is: 

@ABCDEF
, (20) 

The first two matrices are diagonal and provide first-order corrections to the energies: 

�./�0 � , 

�./�0 �, 

�./�0 � , 

�./�0 �. 

(21) 

At this point, the three states , , and  are no longer degenerate but equidistant from each other as shown 

in the bottom left-hand side of Fig. 2, with the indication “correction to first-order in ”. The third matrix in Eq. (20) 

contains off-diagonal elements between the “outer” states  and  and the “remote” state . These off-

diagonal elements are much smaller than the differences between the corresponding diagonal elements of the 

Hamiltonian, but they cannot be neglected for the qualitative description of experimental ZQ spectra. According to 

degenerate perturbation theory [42], the eigen-energies corrected to second-order are: 

G
� �./�0 �

�
√�

�
H

I�J
�@ABCDEF

, 

G
� �./�0 �, 

(22) 
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G
� �./�0 �

�
√�

�
H

I�J
�@ABCDEF

, 

′
"#$%&'(

2

"#$%&'(
 

as shown in the bottom right-hand side of Fig. 2, with the indication “correction to second order in  ”. The outer 

levels  and  now appear to be “repelled” with respect to the remote level  so that they are no longer 

equidistant from the middle level . The true eigenstates of the free precession Hamiltonian are only slightly 

different from the delocalized basis 7.��6 of Eqs. (19). If we switch from the idealized Hamiltonian of Eq. (8) to the 

full Hamiltonian of Eq. (1), the eigen-energies can only be determined by numerical diagonalization, but the resulting 

exact eigenstates .��.0  of the full Hamiltonian remain to a very good approximation very similar to the delocalized 

basis 7.��6, so that we can write: 

. (23) 

The approximate equality of Eq. (23) is consistent with the coefficients of the localized product states obtained by 

numerical diagonalization of the full Hamiltonian (see Appendix). Note that the energy �� � is corrected to second 

order in  but the diagonalization does not significantly affect the eigenfunctions. We noticed in our experiments 

that ZQ coherences involving levels  and  are effectively destroyed by the filters used in the pulse sequence. 

Therefore, from now on, we will restrict the Hilbert space to the three delocalized states , , and  in the 

symmetric manifold, and likewise to the states , , and  in the antisymmetric manifold, ignoring the states 

 and .  

Pairwise degenerate zero-quantum frequencies  

The zero-quantum transition frequencies correspond to differences of the eigen-energies of Eq. (20) of the idealized 

Hamiltonian: 

√
2

"#$%&'(
, 

√
2

"#$%&'(
, 

. 

(24) 

The ZQ transitions are depicted by pink arrows in Fig. 2b. Although the approximations of Eqs. (5)-(7) are generally 

not quite accurate, the frequencies obtained in Eq. (24) are in reasonable agreement with the experimentally 

observed ZQ frequencies. Fortunately, the differences between geminal J-couplings can be determined with 
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sufficient precision from conventional 1D spectra, while differences �� �� between vicinal J-couplings can 

be determined much more precisely from ZQ frequencies. A proper diagonalization of the full Hamiltonian using our 

best estimates of all couplings can only be carried out numerically. In a separate work, we have shown how one can 

iteratively analyze conventional 1D spectra and ZQ spectra to obtain precise values for geminal, vicinal and long-

range J-couplings. 

In the antisymmetric manifold, the same perturbative approach can be applied, leading to the following equalities: 

, 

, 

. 

(25) 

These equalities imply that each of the three signals in the ZQ spectrum results from an exact superposition of two 

distinct signals, one from the symmetric, the other from the antisymmetric manifold. This also holds if the full 

Hamiltonian of Eq. (1) is considered, without assuming an idealized spin system (Eq. (8)), i.e., without assuming all 

three geminal and the differences between vicinal coupling to be equal. Note that the amplitudes of these pairwise 

degenerate signals depend on the excitation and reconversion methods. As can be seen from Table 3 in the Appendix, 

the amplitudes of the coherences between the antisymmetric states that are excited by various SLIC sequences are 

generally weaker than the amplitudes of the coherences between the symmetric states.  

Projection operators  

To visualize the behavior of the time-dependence of the states, which cannot be observed directly, in the evolution 

interval t1, the density operator 1 can be projected onto one or several basis states K. Formally, this can be 

written as: 

. (26) 

In this work, we shall consider projections onto one of the 6 localized singlet-triplet product states defined in Eqs. 

(11) and (12): 

K (with k = 1, 2, 3 or 5, 6, 7, but not 4 and 8) (27) 

Thus, for example KL� � � � � � �  extracts the part of the density operator that is proportional 

to the population of the localized state �  � � . We shall see below that suitable SLIC pulses can be used to 

materialize such mathematical projectors experimentally. The expectation values M 1  can have positive or 
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negative values with respect to the average population of the triplet manifold N O K N O K N,O,K , which is 

manifested by an increase or decrease of the signal intensity after SLIC reconversion. 

 

Irreducible tensor operators for the subspaces 

Matrix representations of the irreducible tensor operators of three-level systems can be useful to describe the exci-

tation and evolution of the ZQ coherences in the symmetric 3x3 subspaces in both Hilbert bases ��6 and 7.��6 , as 

shown in Fig. 3. Similar matrices (not shown) can be defined for the antisymmetric 3x3 subspaces.  

We can interpret the meaning of these matrices by referring to the energy-level diagram in Fig. 2. Let us first focus 

on the symmetrical states ,  and . Numerical simulations with the full Hamiltonian of Eq. (1) show that 

the coherences between levels  and  are always excited with approximately equal coeffi-

cients. Therefore, we construct operators and their matrix representations which describe these coherences to-

gether. The � operator, when it is represented in the basis ��6 (second column of Fig. 3) corresponds to a popula-

tion imbalance between the symmetric states � � � � � �  and � � � � � � . On the 

other hand, when the same operator � is represented in the basis 7.��6  (third column of Fig. 3), it describes a 

superposition of two ZQ coherences and . Both of these coherences have real 

amplitudes, described by the phase “x”. This state can be also represented by the sum of two single-transition oper-

ators �
�’,�’

�
�’,R’. 

Similarly, 	 describes the case in which the same two ZQ coherences have phase “y”. We can therefore say that the 

operators �  and 	  describe an in-phase superposition of two ZQCs ( �

	 � � � � ). Analogously, operators �  and 	  represent an anti-

phase superposition of the same two ZQCs ( � � � � � � � � � 	 � �

� � � � � � ). The operators � and 	 are used to describe the coherence in the two-level sys-

tem spanned by the states  and . These are reminiscent of double-quantum transitions in a spin I = 1. In 

addition to these six operators, we employ the operators �� and �� to describe the population differences between 

the states ,  and . If the populations of all three states are equal, this is described by ��. These 9 opera-

tors form a complete Liouville basis of the subspace and allow us to describe any states in the reduced basis that can 

be excited by SLIC excitation schemes (see Appendix).  
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Fig. 3. Matrix representations of an orthonormal basis set of operators in 3x3 subspaces that can be used to describe populations and coherences 

between the three levels in the localized product basis (+* (left), in the delocalized basis ?#(+*  (middle), and in terms of 

irreducible tensor operators of a three-level system (right) . A similar set can be defined for the three levels The interconversion 

of the matrices between localized and delocalized bases can be achieved by � 
�, where  is defined in Eq. (18). All matrices are 

normalized to fulfill S .  

It can be shown that only four terms – two LLS-related terms ( �� and ��) and two LLC-related terms ( � and �) – 

can be excited and reconverted from observable magnetization and back using SLIC pulses. None of the 9 remaining 

operators in Fig. 3 can be reconverted, so that they can be considered as “silent” or “unobservable”. 

 

Invariant and oscillating components of the density operator 

The spin dynamics in each reduced 3x3 subspace can be described by evolution of a state vector in Liouville space. 

Both the state vector  and the full scalar coupling Hamiltonian � of Eq (1) (or the idealized form of Eq.(8)) can be 

represented as vectors in this Liouville space. If these vectors are parallel, their commutator will vanish: 
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5 3 ��.� , (28) 

so that there will be no evolution, apart from relaxation. One may speak of invariants of motion [43]. A component 

3
5 3 ��.�

 that is parallel to the vector � corresponds to a long-lived state. Various excitation methods using single- 

or double-SLIC also allow one to excite states that generally do not commute with the Hamiltonian in the subspace: 

3
�3:T���0 �

. (29) 

Such components will precess in a plane perpendicular to the vector � at a frequency given by the strength of � : 

3
�3:T���0 �

� 3
�3:T���0 �

3 � 39 � UUV99 . (30) 

Thus, a component that is orthogonal to the vector � corresponds to a (possibly long-lived) ZQ coherence. Barring 

degeneracies, their magnitudes usually decay mono-exponentially, so that there is again only one non-vanishing 

coefficient 33 . 

In actual fact, the ZQCs are pairwise degenerate, with pairs of terms belonging to the symmetric and antisymmetric 

manifolds. These terms could in principle have different lifetimes UUV9 . Thus, states like �  � �  and �  � �  are 

likely to have different lifetimes, bearing in mind that T1
A = T1

 A’ can be different from T1
X = T1

 X’. Off-diagonal terms in 

the matrix of coefficients ( 39) represent couplings that may be not negligible between degenerate coherences [44]. 

However, If the relaxation (super-) operator does not contain any elements that violate the global permutation 

symmetry, all couplings 39 between degenerate coherences must be zero. Note that this may not be applicable 

when a ligand that carries an LLS or LLC binds to a chiral protein. 

 

Free precession of ZQ coherences 

The density operator spanned by the symmetrical states , ,  in the eigenbasis of the free precession Hamil-

tonian can be split into LLS and LLC parts: 

UUW � �� � �� R ��  

UUV � � G 	 X � Y 	 H � Z 	. 

(31) 

Where the density operator UUW describes the populations in the 3x3 subspace while UUV  describes the ZQ coher-

ences in this same subspace. Similar expressions apply for the antisymmetric states , , ). Assuming that at 

time t = 0, only in-phase terms are present in the density operator, the coefficients of the 9 operator terms have the 

following time dependence: 
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� �
�
� �� �R , 

G �
�
� �� �R , 

X �
�
� �� �R , 

Y �
�
� �R �� . 

(32) 

These 4 equations describe the evolution of the density operator terms �, 	, �, and 	 (Fig. 3). Out of these four 

terms, only � is “reconvertable” into observable magnetization by SLIC, so that the signal will be modulated by the 

two frequencies �� and �R contained in � .  

Furthermore, the precession in the two-dimensional subspace spanned by the operators � and 	 leads to 

H H �R  

Z H �R , 

(33) 

Note that the subspace spanned by the operators ��, � and 	 can be represented on a Bloch sphere by noticing 

that the matrix representations of these three operators in the delocalized basis coincides with the three Pauli ma-

trices for a spin ½, unlike the operators �, 	, �, and 	. Since only the term � is reconvertable into observable 

magnetization by SLIC, the signal will be modulated at the frequency �R contained in H  

 

Methods 

A generic pulse sequence that is suitable to excite both LLSs and LLCs and that can probe their evolution and 

relaxation is shown in Fig. 4. This sequence is similar to the ones used in our earlier work [16] and is inspired by the 

pioneering work of DeVience et al. [22]. In our earlier work [16], some LLCs were excited along with LLSs but they 

were not discussed in any detail. The first SLIC irradiation populates various singlet-triplet product states in the 

molecule of interest, which then evolve and relax during the t1 evolution period. After applying a T00 filter, they are 

reconverted into observable magnetization by a SLIC pulse, so that an NMR signal can be detected during the t2 

period. The experiments presented here use polychromatic SLIC (poly-SLIC) pulses [16] to unequally populate various 

singlet-triplet product states like � � � � � � , � � � � � � , and � � � � � � . There are several poly-

SLIC pulses which can be used for this purpose, two of which are shown by way of examples in Fig. 4b and c. These 

and other methods are represented by pictograms drawn on the molecular structures in panel g. In all cases, the 

excitation starts by applying a ‘hard’ non-selective 90o
x pulse. This can be replaced by one, two or three simultaneous 

selective 90o
x pulses. In this work, the initial excitation is followed by double SLIC irradiation that is selectively applied 
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at the chemical shifts νA = νA’ and/or νM = νM’ and/or νX = νX’ of the three proton pairs. The RF amplitude can be chosen 

to fulfill the “single quantum” (SQ) condition of the level anti-crossings (LACs) responsible for the excitation. For SQ-

SLIC pulses, the optimum amplitude and duration are [45]: 

�
W[
WU\V

�./�0 � , 

W[
WU\V . 

(34) 

The optimum duration of SQ-SLIC pulses is determined by the requirement that the populations of two levels must 

be swapped (in analogy to the effect of a 180o pulse on an isolated spin I = ½). Alternatively, one can choose a weaker 

RF amplitude to fulfill the “double quantum” (DQ) condition of the LACs. This requires only half the RF amplitude, but 

the optimum duration must be extended by a factor : 

�
][
WU\V

�./�0 � , 

][
WU\V . 
(35) 

In practice, one can optimize the RF amplitude and the duration of the SLIC pulses empirically. This allows one to 

estimate average values of �./�0 � (usually in the vicinity of �./�0 �= -14 Hz in aliphatic CH2 groups) and  which 

may span a range 0 <  6 Hz, depending on the populations of the rotamers [45]. 
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Fig. 4. Pulse sequences used in this work. (a) General scheme with a recovery delay, the excitation of LLSs and LLCs by one of several possible poly-

SLIC schemes with or without decoupling, t1 evolution, T00 filtering, reconversion into observable magnetization by further poly-SLIC pulses, and 

finally a detection period t2. Phase-cycling selects the coherence order p = 0 to retain both populations and zero-quantum coherences (ZQCs) in 

the t1 interval [46]. (b) Antiphase-SQ-AX-SLIC excitation with RF phases +y and -y. (c) In-phase-DQ-AM-SLIC{X}, where spins X and X’ are decoupled 

during SLIC excitation, which is represented by {X}. (d) A T00-filter [47] is applied in the manner of Sabba et al. [48], where the π/2 pulse can be 

replaced by a composite pulse of the type BB1 [49]. (e) and (f) Examples of double- and single-SLIC pulses that can be used to reconvert LLSs and 

LLCs into observable magnetization. (g) Examples of possible excitation schemes displayed as pictograms. The pink arrows above the molecular 

structures indicate the RF fields applied to CH2 groups for the excitation. The +/- signs in pink circles denote the relative phases of the two SLIC 

pulses. The wavy black arrows indicate the CH2 groups that are decoupled during excitation. (h) Similar pictogram representations of some possible 

reconversion schemes using single- and double-SLIC, indicated by arrows shown below the molecular structures.  

Fig. 4b shows a novel variant of the poly-SLIC excitation scheme where, after the initial 90o pulse, two RF fields with 

equal amplitudes �
W[
WU\V

 but with opposite initial phases are applied simultaneously at the chemical shifts νA = νA’ 

and νX = νX’. We term this excitation scheme antiphase-SQ-AX-SLIC. The Hamiltonians that describe these two RF 

fields in a doubly-rotating frame can be written as: 

�
, (36) 
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Where  = -1 for antiphase-SQ-AX-SLIC, as shown in Fig. 4b, which is in contrast to in-phase-SQ-AX-SLIC used for 

reconversion with  = +1 (Fig. 4e). 

An alternative excitation that maximizes the non-uniformity of the amplitudes of the relevant singlet-triplet-product 

states is the in-phase-DQ-AM-SLIC{X} method shown in Fig. 4c. Two RF fields with the same initial phase are applied 

simultaneously at the chemical shifts νA and νM. At the same time, the X and X’ spins are decoupled, which is 

represented by the usual symbol {X}. This has the effect of tailoring the length of the aliphatic chain during the 

excitation and allows one to confine the excited terms to the two CH2 groups of the A, A’ and M, M’ spins. The 

Hamiltonian in a triply-rotating frame during in-phase-DQ-AM-SLIC{X} excitation with decoupling of XX’ is: 

, (37) 

where �7.6 stands for the RF amplitude of the decoupling field, which should be larger than �./�0 �  and , but 

smaller than the differences between the chemical shifts � �  and � � . Typically, we use �7.6 = 100 Hz if 

the chemical shifts are not too close. Bloch-Siegert shifts [50] may have to be taken into account. The phase of the 

decoupling field is immaterial. 

A third possibility to excite LLCs is in-phase-DQ-SLIC applied at the chemical shifts � and � without decoupling of X 

and X’ (in-phase-DQ-AM-SLIC). In this case, the efficiency of the excitation is roughly 66 % of what can be achieved 

with decoupling, but this can still be a method of choice if the chemical shifts are too close to perform proper 

decoupling or to achieve efficient antiphase-SQ-AX-SLIC excitation. The conversion efficiencies of all these methods 

are recapitulated in the Appendix (Table 3). Fig. 4e, f and g show different options for the reconversion SLIC pulses. 

We use a self-explanatory graphical representation to specify at which chemical shifts the SLIC pulses are applied 

(Fig. 4g and h). 

 

Results and discussion 

The action of the SLIC pulse leads to the over- or underpopulation of symmetrical states , , and  with respect 

to the average population N O K N O K . A similar effect occurs for the antisymmetrical states , ,  with 

respect to the unique state � � � . Fig. 5 introduces a graphical representation of these population imbalances. 

For example, a population imbalance between � � �  and the mean population of the 27 triplet states 

� � K  is depicted graphically by two blue circles on a schematic molecular structure (Fig. 5, upper left). These blue 

circles are filled or empty for positive or negative imbalances. Population imbalances involving any of the remaining 
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states are depicted according to the same principle. All of these population imbalances are “reconvertable” since the 

application of a reconversion SLIC pulse can transform them back into observable magnetization. 

 

Fig. 5. Graphical representation of singlet-triplet 

population imbalances associated with spins AA’ 

and MM’ are depicted in blue, those associated with 

AA’ and XX’ in purple, those associated with MM’ 

and XX’ in red. Filled and empty circles represent 

population imbalances with positive and negative 

signs. 

 

The excited density operator depends on the SLIC irradiation scheme. For example, anti-phase-SQ-AX-SLIC irradiation 

leads to an overpopulation of � � �  and � � �  and a simultaneous underpopulation of 

� � �  and � � � , which corresponds to � (Fig. 3) in both symmetric and antisymmetric manifolds of 

��6 and 7.��6: 

 0:�5T 9.
WU\V^��_ 
��6 √ , 

(38) 

 

 0:�5T 9.
WU\V^��_ 
7.��6

�
� . 

(39) 

When using the in-phase-DQ-AM-SLIC excitation scheme – be it with or without decoupling of X and X’ during SLIC – 

the resulting population imbalance in the symmetric subsystem can be written as the follows: 

�0
5T 9.
WU\V^��_ 
��6

�
√�

�
√�

�
√� . 

(40) 
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The first term on the right-hand side is the same as the operator � in eq. (38). The last term represents a population 

imbalance between � � �  and the two equally populated states � � �  and � � � . In the 

basis 7.��6 this corresponds to: 

�0
5T 9.
WU\V^��_ 
7.��6

�
�√� . (41) 

This expression describes an imbalance between the population of  and the two equal populations of the “outer” 

states  and , plus a zero-quantum coherence � �
^��,R�_

 between levels  and . The expressions for 

ZQ coherences shown here are supported by numerical simulations (see Appendix.)  

 

Non-adiabatic interconversion  

The � operator corresponds to a population imbalance when represented in the basis ��6 and at the same time 

describes ZQ coherences in the basis 7.��6. In the absence of RF irradiation, i.e., in the evolution period t1, the rele-

vant basis is the eigenbasis of the free precession Hamiltonian [51]. In the presence of RF fields, i.e., during excitation 

or reconversion by polychromatic SLIC irradiation, the relevant basis is the eigenbasis in the doubly- (or multiply-) 

rotating frame. Thus “population imbalances” in the rotating frame may be converted instantaneously (i.e., non-

adiabatically) into collective LLCs in the laboratory frame when the RF fields are switched off at the beginning of the 

evolution interval t1. These coherences are then reconverted into population imbalances in the rotating frame when 

the RF fields are switched back on after the T00 filter. A similar approach involving a change of basis (using the ‘Zeeman 

basis’ during the excitation and the ‘singlet-triplet basis’ during the sustaining period) was proposed by Vasos et 

al.  [10] to gain an understanding of the spin dynamics for the unique LLC in a system with two spins with I = ½. 

 

Projections and reconversion by SLIC 

One can project the density operator � >��:.3.7 (i.e., at the end of the evolution interval t1, after the T00 filter and 

the phase cycle) onto one or several terms of the localized basis. In this work we are interested in the projections 

onto one of the three localized symmetrical states � � � , � � � , or � � � , or one of the three localized anti-

symmetrical states � � � , � � � , or � � � . However, such a formal projection operation does not provide a 

prescription for experimental measurements. 

One of the central tenets of this paper is that the oscillating signal observed after the action of the superoperator 

WU\V  that describes the reconversion into single-quantum coherences in the subsequent detection interval t2 is pro-

portional to the expectation value of Pk: 
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. (42) 

The details of the reconversion process are complex, since they involve dynamics occurring at LACs conditions that 

depend on the number of selective RF fields (single- or double SLIC), their relative phases (in-phase or antiphase), 

their RF amplitudes (to match the SQ or DQ conditions), and their durations τSLIC. Furthermore, our unitary numerical 

simulations based on SpinDynamica [41] do not account for relaxation phenomena during the reconversion process, 

with rates of the type 1/T1rho that depend on many parameters. 

Fortunately, the equivalence between Eqs. (26) and (42) can be shown heuristically. Fig. 6 shows dynamics of expec-

tation values calculated using Eq. (26) by projecting � >��:.3.7 onto two of the localized states � � � � � �  

(blue) and � � � � � �  (red), using our best estimates of the scalar couplings of the full Hamiltonian of DSS (Ta-

ble 1), after the T00 filter that is applied at the end of the evolution interval t1, assuming that the excitation prior to 

t1 was achieved either by anti-phase-SQ-AX-SLIC or in-phase-DQ-MX-SLIC{A}.  

Although we cannot provide a rigorous proof at this time, one obtains very similar results experimentally by recon-

version of � >��:.3.7 into �  according to Eq.(42) when WU\V  is materialized by in-phase-SQ-AX-SLIC. Indeed, 

Fig. 7 shows comparisons of the experimental signals observed at the chemical shifts of XX’ (dark red) and AA’ (dark 

blue) with the simulated expectation values of � � � � � �  (light blue) and � � � � � �  (light red), both 

reproduced from Fig. 6. Thus in-phase-SQ-AX-SLIC offers an effective means of converting into observable magneti-

zation the two localized terms � � � � � �  and � � � � � �  that are represented by blue and red lines in 

Fig. 6 at the end of the evolution interval t1.  

Propagation of spin order  

As we have seen, the spin dynamics during free evolution can be considered in different bases. In the delocalized 

eigenbasis of free precession, the ZQ coherences are represented by off-diagonal matrix elements and precess in the 

course of time. Their characteristic frequency is determined by the difference between the energies of the eigen-

states that they span. However, we can also project  � >��:.3.7  onto states of the localized product basis, which 

is not an eigenbasis during free evolution. This has the advantage that one can associate the over-/under-populations 

of localized states in ��6 of different spin pairs in the molecule and superimpose a schematic representation of sin-

glet-triplet product states onto the molecular structure. 
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Fig. 6. (Top) Simulated expectation values of the populations of localized states � � �  (red) and � � �  (blue) over the course of the evolution 

time t1 after excitation using (left) anti-phase-SQ-AX-SLIC or (right) in-phase-DQ-MX-SLIC{A}. (Bottom) Expanded views of the first 150 ms of the 

simulated t1 oscillations. Different time points in the trajectories are marked by numbers (1)-(4). For each of these points, graphical representations 

of the amplitudes of the states � � � , � � � , � � �  are superimposed on a schematic drawing of the molecule DSS. The open and filled 

circles indicate whether the expectation values are positive or negative. 

Such graphical representations at four different time points marked (1) to (4) are shown on the left-hand side of Fig. 

6: (1) At t = 0, immediately after anti-phase-SQ-AX-SLIC excitation, there is an underpopulation of the state � � �  

(depicted by empty blue circles) and a simultaneous overpopulation of the state � � �  (depicted by filled red 

circles). (2) As time evolves, the coefficient of � � �  increases, while the coefficient of � � �  decreases, so that 

(3) at t ≈ 0.075 ms, the signs of both terms change, and (4) at t ≈ 0.12 ms, the situation is reversed with respect to 

(1), resulting in a positive term � � �  and a negative term � � � . A similar effect is shown on the right-hand 

side of Fig. 6 for in-phase-DQ-MX-SLIC{A} excitation. Note that the imbalances do not change sign in this case. These 

figures illustrate how spin order propagates, moving back and forth along a chain of finite length, like a particle in a 

box. While this is unusual for free precession, similar phenomena have been observed under RF irradiation [27,28,30]. 
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By projecting the density operator onto one of the localized states defined in Eqs. (11) and (12) (with k = 1, 2, 3 

or 5, 6, 7, but not 4 and 8), one sees that the oscillating part of the observable magnetization after reconversion is, 

to a good approximation, proportional to the over-/under-populations of the localized states. This is apparent when 

comparing experimental signals s(t1) and simulated coefficients of these localized states. Fig. 7 shows the time 

dependence of the integrals of the multiplets of AA’ (dark blue) and XX’ (dark red) in the molecule DSS where the ZQ 

coherences are excited by anti-phase-SQ-AX-SLIC or in-phase-DQ-MX-SLIC{A} with decoupling of A and A’. No Fourier 

transformation was carried out with respect to t1. Simulations of the populations of the states � � �  and � � �  

were carried out using our best estimates of the J-couplings of Table 1 rather than those of the idealized Hamiltonian. 

These oscillations correspond very closely to the observed oscillations of experimental signals, except for some minor 

high-frequency modulations due to transitions that we neglected. 

 

Fig. 7: (Top left) Experimental signals of trimethylsilylpropanesulfonic acid (DSS) recorded as a function of the evolution time t1 after in-phase-DQ-

MX-SLIC{A} excitation and in-phase-SQ-AX-SLIC reconversion. (Bottom left) Integrals of DSS multiplets recorded in the detection interval t2 as a 

function of the evolution time t1 after anti-phase-SQ-AX-SLIC excitation and in-phase-SQ-AX-SLIC reconversion. (Right) Experimental signals (dark 
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colors) of XX’ (red) and AA’ (blue) compared with simulated expectation values (light colors) of localized � � �  (red) and � � �  (blue) states. 

The best estimates of the J-couplings used for the simulations are shown in Table 1. 

The populations of the states , , and  are proportional to the coherences described by operators � and �. 

In the case of antiphase-SQ-AX-SLIC excitation in Fig. 7 (bottom), no ZQ coherences of the type described by � are 

excited. The � operator, however, is excited efficiently. Since this operator comprises two distinct ZQ coherences, 

it evolves with two distinct frequencies. As these frequencies are close to one another, this leads to a low frequency 

beating. The oscillations are superimposed onto an unmodulated, slowly decaying component, which is due to the 

LLS. 

In the case of in-phase-DQ-MX-SLIC{A} excitation (Fig. 7, top), the three ZQ coherences described by both � and � 

are excited. Thus, the time evolution of the experimental signals contains three distinct frequencies. It is interesting 

to note that the unmodulated component of the trace belonging to the AA’ spin pair has a vanishing initial amplitude, 

as opposed to the negative values obtained when using anti-phase-SQ-AX-SLIC excitation. 

When carefully comparing the experimental traces with the simulated populations, one can see that the experimental 

signals contain some high-frequency oscillations that do not appear in the simulations. These oscillations are due to 

the ZQ coherence between levels  and  in the symmetric manifold, and to the coherence between levels  

and  in the antisymmetric manifold in Fig. 2. It seems that – in contrast to the simulations – these coherences are 

not fully suppressed in experiments by the T00 filter. This could be due to pulse imperfections. 

 

Experimental zero-quantum (ZQ) spectra 

ZQ spectra were obtained by performing a complex Fourier transformation of the single-quantum signals detected 

in the t2-dimension and a real (cosine) transformation of the oscillations observed indirectly in the t1-dimension, 

which leads to pure 2D absorption-absorption lineshapes. An example of a 2D spectrum of DSS using in-phase-DQ-

AM-SLIC excitation and anti-phase-SQ-AX-SLIC reconversion is shown in Fig. 8 (top). There are three ZQ peaks in ω1 

at the chemical shifts of AA’ and XX’ in the ω2 dimension.  
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Fig. 8. (Middle) Conventional 1H spectrum with signal assignments of 

a sample containing a mixture of ca. 50 mM 

trimethylsilylpropanesulfonic acid (DSS) and ca. 50 mM homotaurine 

(HTau) in D2O. The chemical shifts of AA’ and XX’ of DSS are indicated 

by dotted lines. (Top) Expanded view of a 2D ZQ spectrum of DSS using 

in-phase-DQ-MX-SLIC{A} excitation while decoupling the AA’ pair, 

combined with in-phase-SQ-AX-SLIC reconversion. (Bottom) 

Expanded view of a ZQ spectrum of HTau using in-phase-DQ-AM-SLIC 

excitation without decoupling, followed by SQ-X-SLIC reconversion. 

 

Fig. 9a shows cross-sections along ω1 of the same 2D spectrum of DSS at the chemical shifts in ω2 of AA’ (red 

spectrum) and XX’ (blue signals). The frequencies of the ZQ peaks in the ω1-dimension are labelled ��, where i and j 

refer to delocalized eigenstates. In Fig. 9a, the two peaks at �� Hz and �R  Hz have approximately 

equal intensities, showing that these ZQ coherences are excited equally. The linewidths of these peaks are on the 

order of 120 mHz. The peak at �R  Hz has a lower intensity and appears at the same frequency as the ��

�R  Hz, which agrees with the energy level structure shown in Fig. 2. The peak associated with the coherence 

2’-4’ appears at ��  Hz and has a nearly negligible amplitude. Fig. 9c shows the ZQ spectrum for DSS excited 

with anti-phase-SQ-AX-SLIC and selective decoupling applied to XX’ during the evolution interval t1. Decoupling during 

free evolution has the effect of effectively “shortening” the chain of coupled methylene groups from n = 3 to n = 2. 

Thus, selective decoupling of XX’ during the evolution interval t1 leads in effect to reduce the 6-spin system to a mere 

4-spin system, which entails a simplification of both Hilbert space and  eigenbasis of the Hamiltonian, causing the 3-

level system in Fig. 2 to collapse into a 2-level system. These two levels correspond to the states ���� ����  and 

���� ���� , whose energies differ by ΔJAM [17]. The two states can only support a single ZQ coherence, and indeed, 
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the experimental ZQ spectrum contains a single dominant signal at 5.45 Hz ≈ ΔJAM = 5.32 Hz. The origin of the weak 

signals around 2 and 3 Hz is the subject of further investigation but may be related to the imperfect selectivity of the 

decoupling. Note that the intensity of the peak at �� (blue trace) appears to be enhanced when observed on the AA’ 

multiplet. In a complementary experiment (not shown), selective decoupling was applied to the AA’ spins during t1. 

In the resulting spectrum, the peak with the highest intensity has a frequency of 6.63 Hz, which approximately 

matches ΔJMX = 6.55 Hz (Table 1). The discrepancy of ca. 0.1 Hz of determined values of ΔJAM and ΔJMX obtained from 

the experiments with and without selective decoupling during t1 will be the subject of further research. Perhaps it 

can be explained either by imperfections of the selective decoupling or by local minima of the complementary 

analysis of 1D and ZQ spectra. 

Similar ZQ spectra were also acquired for HTau (Fig. 9b, d). The ZQ coherences were excited using in-phase-DQ-AM-

SLIC and reconverted into magnetization using either SQ-A-SLIC (Fig. 9b) or SQ-X-SLIC (Fig. 9d). In these spectra, three 

peaks appear at �R  Hz, ��  Hz, and �R  Hz ≈ �� �R  4.17 Hz. 

 

Fig. 9. Cross-sections parallel to the ω1 axis of ZQ spectra of DSS (left) and homotaurine (right). Figures (a) and (c) show cross-sections at the ω2 

frequencies of the chemical shifts of AA’ (red trace) and XX’ (blue trace). The coherences were excited using either (a) in-phase-DQ-MX{A} or (c) 

anti-phase-SQ-AX-SLIC and reconverted in both (a) and (c) using in-phase-SQ-AX-SLIC. In the case of (c), selective decoupling was applied at the 

chemical shifts of XX’ during the evolution interval t1, leading in effect to a reduction of the AA’MM’XX’ system to a mere AA’MM’ system in t1. In 

the ZQ spectrum, this leads to a collapse of the peaks at the frequencies 23, 12 and 13 and to a unique peak at a frequency of ca. ΔJAM, as 

discussed in the text. Both ZQ spectra of homotaurine in (b) and (d) were obtained with in-phase-DQ-AM-SLIC for excitation, while the reconversion 

was achieved using either SQ-A-SLIC (b) or SQ-X-SLIC (d). 

The linewidths of these ZQ spectra can be used to determine the lifetimes of the collective ZQ coherences as UUV
 (where is the full width at half height). For DSS this gives a UUV  of 2.7 s, whereas the � of the aliphatic 
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protons found in the CPMG experiments was 1.7 s. For HTau UUV  3.2 s, and the corresponding �  2.3 s. There-

fore, we conclude that the collective coherences observed in the introduced experiments are long-lived. 

Experimental  

All NMR spectra were obtained at 298 K with a 5-mm iProbe in a Bruker 500 MHz WB magnet (B0 = 11.66 T) equipped 

with a “Neo” console. The sample contained a mixture of ca. 50 mM of trimethylsilylpropanesulfonic acid (DSS) and 

ca. 50 mM Homotaurine (HTau) in D2O and was not degassed.  

The SLIC pulse sequences used are shown in Fig. 4. For DSS the SLIC pulses had an amplitude of νSLIC = 27 Hz and a 

duration of τSLIC = 110 ms (to match the SQ condition), or νSLIC = 14 Hz and τSLIC = 155 ms (for the DQ condition). The 

SLIC pulses used for HTau had an RF amplitude νSLIC = 26 Hz and a duration τSLIC = 180 ms (SQ condition) or νSLIC = 13 

Hz and τSLIC = 254 ms (DQ condition). Multiple frequencies for poly-SLIC were generated by the superposition of 

rectangular phase-modulated pulses. To remove spin order of ranks 0 < l ≤ 3, a single-scan T00 filter was used, 

consisting of three Gz gradient pulses, each followed by a delay of 200 ms and interleaved with three non-selective 

90° pulses. The latter can be replaced by composite pulses of the type BB1  [49]. The three gradients had sinusoidal 

shapes and durations of 4.4, 2.4, and 2.0 ms, while their amplitudes were set to 10, −10, and 15% of the maximum 

available field gradient Gz = 50 G/cm = 0.5 T/m. The first RF pulse of the T00 filter, applied between the first and second 

gradients, had a phase φ = 90° (i.e., along the y-axis), and the second and third pulses were applied after the second 

and third gradients, with phases φ = 54.7° and 0°, respectively. A four-step phase cycle was used in all experiments, 

by alternating the phases of the excitation SLIC pulses (y, −y, y, −y) and of the reconversion SLIC pulses (y, y, −y, −y), 

while the phase of the receiver followed the pattern (y, −y, −y, y). In principle, the recovery delays must exceed 5 TLLS, 

unless one destroys all remaining LLS [52]. In this work, we have used recovery delays as short as 5 T1, i.e., much 

shorter than 5 TLLS. The ZQ spectrum of DSS obtained by exciting with in-phase-DQ-MX{A} was acquired with 4 

transients, t1
max = 17 s, and 1024 increments with ∆t1 = 16.666 ms. The ZQ spectrum of DSS excited with anti-phase-

SQ-AX-SLIC and decoupling during t1 was acquired with 4 transients, t1
max = 20.48 s, and 1024 increments with ∆t1 = 

20 ms. Both ZQ spectra of HTau were acquired with 8 transients, t1
max = 20 s, and 400 increments with ∆t1 = 50 ms. In 

all cases, the t1-dependent oscillating signals arising from the collective LLCs were transformed into the ω1 frequency 

domain by a real (cosine) Fourier transformation.  
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Conclusions 

The present work represents an extension of more familiar applications of zero-quantum spectroscopy, which exploit 

scalar couplings between chemically inequivalent spins [34–39]. In our work, the frequencies of the ZQ peaks can be 

determined experimentally with a precision on the order of 10 mHz, a feature that will be exploited in a forthcoming 

paper. We shall demonstrate how the comparison between ZQ spectra and conventional SQ spectra allows one to 

determine all scalar couplings of an AA’MM’XX’ spin system with unprecedented accuracy. We shall exploit this ZQ 

spectroscopy to determine the energies of the potential wells of rotamers. Finally, we shall show that ZQ coherences 

are affected by binding to macromolecules such as proteins in view of drug screening. Even with a very low protein 

concentration, weak binding in the rapid exchange regime dramatically accelerates the relaxation rate constants RLLC, 

or, equivalently, reduces the time constant TLLC, and hence broadens the lines in ZQ spectra. This effect may be 

exacerbated for BSA which is known to have multiple non-selective binding sites. The contrast between free and 

bound ligands should be useful to improve drug screening methods. Inter alia, this is due to the fact that an achiral 

molecule that carries an LLS or LLC experiences a loss of symmetry when it forms a (transient) complex with a (chiral) 

protein. The contrast between free and bound molecules is exacerbated in experiments that are affected by a change 

of spin symmetry, rather than by a mere change of rotational diffusion times [53–55]. The development of LLS and 

LLC methods therefore offers a promising approach for fragment-based drug discovery (FBDD), where one seeks to 

identify fragments of potential drugs that have a rather weak affinity for their target, so that the exchange between 

free and bound drugs remains rapid on the time-scale of relaxation in the bound form [53,56]. These aspects will be 

discussed in more detail in a forthcoming paper. The ZQ methods can be used for the precise determination of vicinal 

J-couplings, and therefore to determine populations of rotamers by Karplus relations. 

 

Here, we have demonstrated various methods to observe collective long-lived zero-quantum coherences in aliphatic 

chains.  An analytical approach was developed to describe the spin dynamics, showing that the behavior of collective 

LLCs can be understood as a propagation of spin order along the chain of methylene protons. We like to refer to these 

ZQ experiments in aliphatic chains as spin-chain ZQ spectroscopy. In each CH2 group, the pair of states S0 and T0 spans 

a two-level subsystem that can be described by a fictitious spin I = ½. A chain of such two-level subsystems bears 

analogies to one-dimensional chains of unpaired electron spins with I = ½. The length of the chain need not be re-

stricted  to the case of n = 3 considered here, so that novel experiments may be designed for longer aliphatic chains. 
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Appendix  

A1. Singlet-triplet product basis  

Order of states in the full singlet-triplet product basis used in the matrix representations of Fig. 1.

Symmetric block: 

� � � � � � 
 � � � � � � � � � 
 � � � � � � � � � � � � 
 � � � � � � � � � � � � � � �

� � � � � � 
 � � � 
 � � � 
 � � � 
 � � � 
 � � � 
 
 � � � 
 � � � 
 � � 
 � 
 � 
 � �


 
 � 
 � 
 � 
 
 � 
 
 
 � 
 
 
 � 
 
 


Antisymmetric block: 

� � � � � � � � � � 
 � � � � � � � � 
 � � � 
 � � 
 � 
 
 � � � � � � 
 � � � � � � � �


 � � � � 
 � � 
 
 � 
 � � � � � � 
 � � � � � � � � 
 � � � 
 � � 
 � 
 
 �

A2. Coefficients of true eigenstates expressed in terms of idealized states 

The approximate equality of Eq. (23) can be justified by comparing the coefficients in Table 2. 

Table 2. Scalar products 5
.��.0

a� and 5
.��.0

a��  taken between the true eigenstates 5
.��.0 .��.0 found by numerical diagonalization of 

the (non-idealized) Hamiltonian of Eq. (1) for the case of DSS with our best estimates of the J-couplings. The singly-primed states 5� 7.��6
9	/  

 

were obtained from Eq.(17) derived by zeroth-order perturbation theory. The doubly-primed states 5�� 7.��6
9	/

 of Eq. (A1) were derived by first-

order perturbation theory. Note that coefficients in the vicinity of 0.99 (bold numbers) confirm that both singly- and doubly-primed states are 

good approximations of the true eigenstates. 

         

 0.9955 0.0280 -0.0001 0.0907 0.9988 0.0280 0.0275 -0.0149 

 -0.0250 0.9905 0.1313 -0.0321 -0.0331 0.9905 0.1330 -0.0154 

 0.0145 -0.1339 0.9840 -0.1168 -0.0347 -0.1339 0.9906 -0.0136 

 -0.0904 0.0138 0.1204 0.9881 0.0100 0.0138 0.0120 0.9992 
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The doubly-primed states 5�� corresponded to functions calculated according to first-order degenerate perturbation 

theory for the eigenstates. They can be expressed in terms of the singly-primed states 5�  as: 

�
b c d

e�
� �@ABCDEF

�
√� , 

, 

�
b c d

e�
� �@ABCDEF

�
√� , 

�
b c d

e�
� �@ABCDEF

. 

(A1) 
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A3. Numerical simulations of the excitation efficiency  

The efficiency of the excitation of the individual terms depends on the SLIC scheme. Table 3 below shows the coeffi-

cients for the terms described by the operators introduced in Fig. 3. 

Table 3. Excitation efficiency for the symmetric and the antisymmetric manifolds after using different poly-SLIC schemes applied to DSS with the 

J-couplings specified in Table 1. Terms with coefficients below 0.04 in the symmetric subspace are deemed negligible and are not shown. The 

coefficients are calculated by projecting the simulated density operator  onto one of the irreducible tensor operators \5 (see Fig. 3) according 

to 
fg

‖fg‖
S Sijk

lSijkl . 

Irradiation 

scheme 

Anti-phase-double 

SQ-AX-SLIC 

In-phase-double 

DQ-AM-SLIC 

In-phase-double 

DQ-AM-SLIC {X}  

with decoupling of XX’ 

Symmetric sub-

space 
 

� ( ��) 0 -0.19 -0.26 

R ( ��) 0 0.06 0.09 

� ( �) 0.50 0.22 0.32 

H ( �) 0 -0.10 -0.16 

Antisymmetric 

subspace 

 

� ( ��) 0.01 -0.05 -0.04 

G ( ��) 0.01 0.02 0.02 

H ( �) -0.10 -0.05 -0.06 

Z ( �) 0 -0.03 -0.02 

 

A4. Glossary 

Long-lived states (LLS) refer to population imbalances with lifetimes TLLS > T1, usually imbalances between popula-

tions of states belonging to different irreducible representations of the spin permutation symmetry group, described 

by diagonal terms of the density matrix in the eigenbasis.  

Long-lived coherences (LLC) refer to zero-quantum coherences with lifetimes TLLC > T2, which are coherences between 

states belonging to different irreducible representations, described by off-diagonal terms of the density matrix in the 

eigenbasis.  
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Separable or localized states refer to states in Hilbert space (there are 64 states in this work) that can be represented 

by direct products of eigenstates describing the spin pair KK’ where K = A, M or X: 

44� �44� �44� �44� ��44� R44� �44� �44� 
�44� . (A2) 

A general form of a separable or localized state obtained for the 6-spin system is given by: 

��� ��� ��� ���� ���� K���K�� ���� ���� K��� . (A3) 

A separable state is a state which corresponds to a direct product of the pure states describing individual particles or 

subsystems. An example of such a state is ���� ���� ����  with the coefficients R��� ���� ���� , while all 

remaining coefficients vanish. 

Delocalized states refer to spin states in Hilbert space that cannot be obtained as a direct product of states 44� 

Eq. (A2), in analogy to delocalized linear combinations of atomic orbitals (LCAO’s) that are familiar to chemists. This 

term here is synonymous to an inseparable and an entangled state. Examples of such states are given by states ,

 and  of Eq. (19). This can be verified by considering the corresponding coefficients: 

�
� ���� ���� ���� ���� ���� ���� ���� ���� ���� . (A4) 

From this equation it follows that localized states that could constitute such a state must have non-zero coefficients 

����, R���, ����, R���, ����, R���. But at the same time, terms like ���� ���� ����  and ���� ���� ����  do not ap-

pear, meaning that some of these six coefficients must be zero. These two requirements are in direct conflict with 

each other, meaning that there is no set of states ��� ��� and ���  of which the direct product would pro-

duce the state . We can therefore say that this state is neither localized nor separable. 

Entanglement is easily evaluated in bipartite systems, or systems comprising two subsystems, but can be difficult in 

multipartite systems. In such systems, two subsystems can be chosen to evaluate entanglement  [57]. For a system 

with three qubits, pairwise entanglement of qubits occurs for states like  and  [58].  

Collective long-lived coherences refer to LLCs that comprise spins associated with nuclei belonging to different (not 

necessarily neighbouring) CH2 groups.  

Zero-quantum coherences refer to coherences between states that have the same total z-projection of the magnetic 

quantum number in the laboratory frame. 

Precession refers to the evolution of coherences spanned between products of singlet and triplet states that may be 

delocalized.  
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Propagation refers to the interconversion of the coefficients of population imbalances between localized states. 

These imbalances can be associated with different CH2 groups in the manner of Fig. 8. For example, the coefficients 

�  and �  in the density operator  

� � � � � � � N O K N O K � � � � � � � N O K N O K   (A5) 

contains two terms that evolve so that � �  if relaxation is neglected. 

Reconvertable refers to terms in Liouville space that can be reconverted into observable magnetization by single- or 

poly-SLIC. 

Spin-chain refers (in this work) to a sequence of n pairs of CH2 groups with states S0 and T0 (neglecting the states T+ 

and T-), where each pair of states S0 and T0 spans a two-level subsystem that can be described by a fictitious spin with 

spin quantum number I = ½. Such a chain bears analogies to one-dimensional chains of unpaired electron spins with 

I = 1/2. Such spin-chains (physical rather than fictitious) have been discussed for arbitrary n. 

Spin-chain ZQ NMR refers to experiments that allow one to excite and observe specific LLSs and collective LLCs in an 

aliphatic chain (CH2)n. 
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