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Abstract

Nanoelectrochemical devices have become a promising candidate technology across

various applications, including sensing and energy storage, and provide new plat-

forms for studying fundamental properties of electrode/electrolyte interfaces. In this

work, we employ constant-potential molecular dynamics simulations to investigate the

impedance of gold-aqueous electrolyte nanocapacitors, exploiting a recently-introduced

fluctuation-dissipation relation. In particular, we relate the frequency-dependent impedance

of these nanocapacitors to the complex conductivity of the bulk electrolyte in differ-

ent regimes, and use this connection to design simple but accurate equivalent circuit
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models. We show that the electrode/electrolyte interfacial contribution is essentially

capacitive and that the electrolyte response is bulk-like even when the interelectrode

distance is only a few nanometers, provided that the latter is sufficiently large com-

pared to the Debye screening length. We extensively compare our simulation results

with spectroscopy experiments and predictions from analytical theories. In contrast

to experiments, direct access in simulations to the ionic and solvent contributions to

the polarization allows us to highlight their significant and persistent anticorrelation

and to investigate the microscopic origin of the timescales observed in the impedance

spectrum. This work opens avenues for the molecular interpretation of impedance

measurements, and offers valuable contributions for future developments of accurate

coarse-grained representations of confined electrolytes.

Introduction

In recent decades, fueled by technological advances, the miniaturization of electrochemical

devices has made tremendous progress. In this context, micro- and nanogap devices have

demonstrated peculiar properties and promising performance in nanofluidics,1,2 sensing,3–5

as well as energy storage and conversion applications.6,7 Beyond their technological impor-

tance, nanoelectrochemical devices serve as valuable platforms for acquiring fundamental

insights into solid-liquid interfaces,8,9 highlighting how microscopic phenomena can impact

macroscopic properties. For instance, nanofluidic experiments10 (later corroborated by the-

oretical and computational studies11,12) have shown how friction can be massively modified

at water/carbon interfaces because of the coupling of electronic and dielectric fluctuations

between the solid and the liquid. Recent studies have also focused on the dielectric properties

of confined liquids between planar walls, revealing the influence of the inter-plane separation

on the static dielectric response13–15 and its anisotropy.16–19

In electrochemical devices, and in particular for capacitors, the dynamical dielectric/electrical

response is assessed through electrochemical impedance spectroscopy (EIS) experiments.20–22
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Here, the impedance Z(ω) [or equivalently the admittance Y (ω) = 1/Z(ω)] quantifies the

system’s electric current response I(ω) to an oscillating voltage ∆Ψ(ω), under linear re-

sponse conditions. EIS results are commonly interpreted through equivalent circuit (EC)

models,23,24 which are fitted to the experimental data to extract parameters such as the

electrical resistance R, capacitance C, and, more broadly, the distribution of relevant time

scales governing polarization and charge transport.25 One of the most commonly used EC

models is the transmission line model (TLM),26–29 which is employed to model the charging

dynamics of capacitors with porous electrodes. Despite their popularity, the physical inter-

pretation of such representations is not always straightforward and has led to long-standing

debates (see, e.g., Ref. 30). For this reason, coupling experiments with theoretical and

computational investigations is crucial to elucidate the physical mechanisms behind a given

electrochemical signal.

Popular approaches to model the dynamical response of capacitors include analytic mean-

field theories31–35 and numerical simulations at the mesoscale.36,37 The tractability of such

approaches, however, relies on strong assumptions that often neglect important molecular

details. In recent years, molecular simulations have proven a powerful tool to investigate the

electrode-electrolyte interface that retain details about relevant molecular correlations.38–41

In particular, classical constant-potential molecular dynamics (MD) simulations have been

extensively used to uncover the microscopic mechanisms that underlie macroscopic proper-

ties of electrochemical devices, such as supercapacitors.42–45 In this kind of simulation, the

electrode charges fluctuate in response to changes in the electrolyte configuration, subject

to the constraints of constant applied potential and global neutrality.46–48

The dynamical behavior of the total charge Q(t) of an electrode, which fluctuates in

the constant-potential ensemble, provides a means to obtain important electrochemical in-

formation about the system. For example, following the classic approach of Johnson and

Nyquist,49,50 in fact anticipated in 1912 by De Haas-Lorentz in her PhD thesis,51 one can

use the equilibrium charge or current fluctuations to compute the electrical response of
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an electrochemical system. Indeed, previous works have shown how the differential capac-

itance, which describes how the average electrode charge changes with applied potential

∆Ψ, can be calculated from the charge fluctuations using a fluctuation-dissipation relation

Cdiff = ∂⟨Q⟩/∂∆Ψ = β⟨δQ2⟩, where brackets denote an ensemble average, δQ = Q−⟨Q⟩ and

β = 1/kBT with kB the Boltzmann constant and T the temperature.48,52,53 Furthermore, in

recent work,54 this fluctuation-dissipation relation was extended to dynamical properties, in

particular, to calculate the whole impedance spectrum from the total charge autocorrelation

function ⟨δQ(0)δQ(t)⟩ (QACF). This approach was illustrated for the case of nanocapacitors

with pure water confined between electrodes.

In this work, we leverage this approach to investigate a far more challenging problem:

To understand the electrochemical impedance of electrolyte solutions. Not only do the long

time scales associated with ionic motion mean statistical sampling is more demanding than

the pure water case, but, as we will see, differences in the underlying statistical mechanics

of electrolytes vs dielectrics play an important role in interpreting the resulting impedance.

For the simple aqueous electrolyte that we investigate, however, we show that a simple EC

model comprising just bulk and interfacial elements is remarkably accurate in describing

the simulation results. Even more surprisingly, we find that the interfacial contribution is

purely capacitive, i.e., there is no measurable interfacial resistance. We also discuss the time

scales of charge relaxation obtained in our MD simulations, and highlight the limitations of

standard analytical theories. At the microscopic level, our simulations show that this arises

from a coupling of solvent and ionic fluctuations, a feature that is only approximately taken

into account in most implicit-solvent models of electrochemical response.
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Figure 1: (a) Snapshot of the 1.0 M NaCl system, with the color of gold electrode atoms
representing their instantaneous charge, as indicated by the color bar. Hydrogen, oxygen,
sodium and chloride atoms are represented as white, red, cyan and green spheres, respec-
tively. (b) Differential capacitance Cdiff divided by the electrode area Ael, as a function of
NaCl concentration. (c) Electrode charge autocorrelation function divided by Ael for the five
salt concentrations we considered. (d) Comparison of the responses to a voltage change from
∆Ψ = 0 to 1 V (symbols) with the equilibrium charge ACFs ⟨δQ(0)δQ(t)⟩, normalized as
(f(t)−f(∞))/(f(0)−f(∞)), where f(t) is either Q(t) recorded during the charging process
(symbols), or ⟨δQ(0)δQ(t)⟩ at equilibrium (solid lines), for the 0.1 M and 1 M systems. The
uncertainty, calculated as 95% confidence intervals, is represented as error bars in panels (b)
and (d), and with shaded areas in panel (c).

Results and discussion

Electrode charge dynamics and salt concentration

We consider NaCl(aq)-gold nanocapacitors at four different salt concentrations: 0.1 M, 0.5

M, 1.0 M, and 1.5 M. To emphasize the fundamental differences between electrolytes and

dielectric media, we also compare to simulation results for pure water.54 A representative

snapshot for the 1 M case is shown in Figure 1(a). For each concentration, the interelec-
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trode distance d ≈ 5 nm was obtained from the average of a constant pressure simulation

at atmospheric pressure and T = 298 K. Simulations at constant ∆Ψ (and constant vol-

ume) were performed with the fluctuating charge method, where the atomic charges on the

electrode atoms are calculated self-consistently depending on the instantaneous electrolyte

configuration at each simulation step.47 The consequences of such a Born-Oppenheimer (BO)

approximation on charge fluctuations and electrochemical properties have been discussed in

previous works.48,54 In addition, recent works in the context of nanoscale flow have shown

how dynamical coupling between electronic degrees of freedom in a solid and dielectric fluc-

tuations in a fluid can impact interfacial friction.11,12 Such effects are also neglected in the

BO approximation; their potential impact on (high-frequency) impedance, which depends

on the specific details of how they are described, lies beyond the scope of this work. We

perform two types of simulations: (i) we characterize the equilibrium fluctuations of the

system with ∆Ψ = 0 V; (ii) we interrogate the nonequilibrium response of the solution to

a voltage step by instantaneously switching ∆Ψ = 0 → 1 V. More simulation details are

provided in Methods and SI Appendix.

Figure 1(b) shows the differential capacitance, Cdiff , estimated from the fluctuations of

the total charge Q on one of the two electrodes48,52 as a function of salt concentration. Note

that these results do not account for the empty capacitor contribution Cempty
diff , which results

from the fluctuations neglected by the BO approximation.48 This contribution depends in

particular on the distance between the electrodes and typically amounts to ∼10% of the

BO capacitance for the systems considered in the present work. The capacitance values for

the pure water and 1 M cases are in excellent agreement with recent simulation results on

the same setup55 and compare favorably with simulations performed with different force-

fields.56,57 Our results show that the presence of ions introduces a positive contribution to

capacitance. However, the capacitance does not depend on the salt concentration beyond

1 M in the considered range. A similar trend was found in simulations of supercapacitors58

and in recent impedance experiments for NaCl solutions at planar electrodes, where Cdiff
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was found to be almost constant for salt concentrations spanning six orders of magnitude.59

Interestingly, these results are in stark contrast with the cell capacitance values predicted

by Debye-Hückel (DH) theory,

CDH =
1

2
Ael

ε0εw
λD

, (1)

where Ael is the surface area of each electrode, ε0 is the vacuum permittivity, εw is the

permittivity of the solvent, and the Debye screening length is given by

λD =

(
εwε0kBT

e2
∑

α cαZ
2
α

) 1
2

, (2)

where e is the elementary charge and the sum runs over the species α with concentration

cα and valency Zα. Using εw = 70.7 for SPC/E water,60 Eq. 1 predicts capacitances that

are ∼25 to ∼100 times larger (at 0.1 M and 1.0 M, respectively) than the values obtained

from simulations. This mismatch is not unexpected, given that DH theory implies a very

simplified picture of the electrode/electrolyte interface. Furthermore, at sufficiently high salt

concentrations (i.e., ≥ 0.5 M), λD becomes comparable to the ionic size, a regime where ionic

correlations and molecular features of the solvent, which are neglected entirely in DH theory,

are known to become important.38,61 More sophisticated capacitance models could be used

to fit MD results,58 but this falls beyond the scope of the present work.

Fig. 1(c) shows ⟨δQ(0)δQ(t)⟩ for the different salt concentrations we consider. The

QACFs in the presence of ions share some qualitative similarities with the pure water case.

However, for finite salt concentrations, we observe an additional exponential-like slow mode

with a decay rate that depends on concentration (discussed below, see also SI Appendix and

Fig. S1). In particular, the relaxation rate of the slow mode is faster for higher salt concen-

trations. In the considered concentration range, it is known (and we will confirm later) that

the ionic conductivity increases with salt concentration.62 The observed long-time behavior

of the QACFs therefore suggests an intuitive connection with the ionic conductivity.
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The impedance that we will derive from these QACFs describes the linear response

between the current and voltage. This raises the issue of the voltage range over which

the response is linear. We address it by performing nonequilibrium simulations where we

subject the system to a step change ∆Ψ = 0 → 1 V, and measure Q(t) as it relaxes to a new

equilibrium. Results for the 0.1 M and 1.0 M systems are presented in Fig. 1d, where we also

compare to the predicted nonequlibrium response from the QACFs. The excellent agreement

between the equilibrium and nonequilibrium results demonstrates that linear response is a

valid approximation (see SI Appendix ), at least up to ∆Ψ = 1 V. This is consistent with

previous results for water/gold nanocapacitors.54 Having established this fact, we now use

these QACFs to obtain the impedance.

Impedance of nanocapacitors as bulk impedance and interfacial ca-

pacitance

Confined electrolytes Following the approach used in Ref. 54 for pure water, we obtain

Z(ω) from the QACF sampled at ∆Ψ = 0 V. As in this previous work, and for consistency

with the BO contribution to the differential capacitance (see above), we limit our analysis

to the impedance contributions within the BO approximation. Figs. 2(a) and (b) report the

real and imaginary parts of Z(ω), respectively. Here, to represent intensive quantities, Z(ω)

is multiplied by Ael/dDDS, where dDDS = d−2wDDS is the effective width of the confined elec-

trolyte based on the positions of the dielectric dividing surface at each electrode/electrolyte

interface.16 Roughly speaking, wDDS is the width of the vacuum layer between the first atomic

plane of the electrode and the closest water molecules. In this work, we use wDDS = 1.27 Å

from Ref. 54, which employed the same force field as this study (without salt).

The impedance results display some distinctive features of capacitors at low frequencies.20

In particular, the real part ℜ[Z(ω)] plateaus at ω → 0, corresponding to the total electrical

resistance of each electrochemical system. For finite salt concentrations, resistance decreases

with increasing salt concentration, suggesting an intuitive link with bulk conductivity, which
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Figure 2: (a) Real and (b) imaginary parts of the total impedance Z(ω) as calculated
from confined simulations for all the salt concentrations we considered, as a function of
frequency. (c) Real and (d) imaginary parts of interfacial impedance Zint(ω). The inset in
(c) shows the resistivity ρ = ℜ[Z(ω → 0)]Ael/dDDS, estimated as described below Eq. 9,
and ρbulk = 1/σ0, with the EH and Nernst-Einstein (NE) estimates of the conductivity. The
inset in (d) highlights the low frequency behavior of ℑ[Zint(ω)], as indicated by the black
dashed box in the main panel. Solid lines indicate ℑ[Zint(ω)] = −1/ωCdiff , and the dotted
line shows ℑ[Zint(ω)] = −1/ωCw,int given by Eq. 8. Symbols show results from our molecular
simulations.

will be further discussed below. Furthermore, the imaginary part ℑ[Z(ω)] displays a clear

ω−1 scaling at low frequencies, which is typical of capacitive systems. Above ω ≳ 1011

rad/s, the impedance results do not depend on salt concentration and closely resemble that

for pure water. This overlap suggests that, at high frequencies, the impedance reflects the

individual motion of solvent molecules and ions, which, under the concentrations we consider,

is dominated by water.

The global response of the confined systems encoded in Z(ω) includes all the molecular

correlations that contribute to the total polarization or charge dynamics. Intuitively, we
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Figure 3: (a) Conductivity calculated from bulk simulations (symbols), as a function of
frequency, for the 1 M system compared with experimental optical measurements (solid
lines).62–64 (b) Conductivity from bulk simulations for all the salt concentrations considered
calculated using the GK (solid lines) and EH (dashed lines) approaches. The inset shows
the low-frequency branches of conductivity from MD (symbols), compared with experimen-
tal measurements (solid lines) from Ref. 62. (c) Conductivity at zero frequency σ0 from
bulk simulations with the EH approach (symbols) and from experimental measurements62,65

(dashed lines).

expect the global response to comprise “interfacial contributions” from electrolyte proximate

to the electrodes, and a bulk-like contribution from the remaining electrolyte far from the

electrodes. Experimentally, it can be challenging to rigorously disentangle such interfacial

and bulk contributions to the charging dynamics.66 Here, we exploit the fact that molecular

simulations allow us to characterise the bulk response, by performing simulations of the

electrolyte in the absence of any explicit interfaces (see SI Appendix ). In particular, we

use bulk simulations to estimate the electric conductivity σ in two distinct ways: (i) at

finite frequencies [σ(ω)] using a Green-Kubo (GK) approach;67 and (ii) at zero frequency

[σ0 ≡ σ(0)] using the Einstein-Helfand (EH) approach.68 [Note that, while σ(ω) is a complex

10



function, σ0 is a real number.] More details on these calculations are provided in the Methods

section.

Bulk electrolytes In Figure 3, we compare our bulk simulations with experimental re-

sults obtained with different spectroscopic techniques.62–65 The experimental datasets were

converted from permittivity to conductivity using the relation67,69 σ(ω) = iωε0 [ε(ω)− 1].

The simulation results for the 1 M system reported in Fig. 3(a) show that ℜ[σ(ω)] reaches

a global maximum at ω ≈ 1.5 × 1014 rad/s corresponding to the water librational band.70

At lower frequencies, we find a shoulder resembling the Debye-like modes of polar fluids and

a plateau corresponding to σ0. Comparing to experiments, we observe minor discrepancies;

this is expected due to the limitations of the molecular model that we use. In particular,

at high frequencies, the SPC/E model of water lacks any polarization modes resulting from

intramolecular or electronic response.70 Nonetheless, overall agreement across the whole fre-

quency range is fair. In Fig. 3(b), we present ℜ[σ(ω)] for all concentrations investigated. The

dashed lines indicate σ0 obtained by the EH method, which demonstrate the consistency be-

tween our two approaches to estimate the conductivity. (We note the large statistical errors

for 0.1 M.) For concentrations other than 1 M, experimental data over the whole frequency

range is scarcer, though we note that, similar to Z(ω), spectra overlap at high frequencies.

Comparison to experimental data at low frequencies is shown in the inset, where we ob-

serve reasonable agreement with our simulation results. Figure 3(c) shows explicitly the

comparison between σ0 from simulation and ℜ[σ(ω → 0)] from experiment. While we find

quantitative agreement at low concentrations, σ0 is progressively underestimated at higher

concentrations. Notwithstanding the limitations of the underlying model, the above analyses

suggest that our bulk simulations faithfully capture the experimental conductivity of NaCl

solutions.

Interfacial impedance and low-frequency behavior To discern the interfacial and

bulk-like contributions to the impedance, we adopt a subtraction technique similar to that

11



used in experiments.66 Specifically, we define the bulk-like impedance as that which describes

a hypothetical system in which the electrolyte retains bulk-like characteristics over the whole

volume that it occupies,

Zbulk(ω) =
dDDS

Ael

1

σ(ω)
. (3)

The interfacial contribution Zint(ω) is then defined as the excess contribution to the total

impedance:

Zint(ω) = Z(ω)− Zbulk(ω). (4)

We note that Zint implicitly includes the two electrode-electrolyte interfaces; in our symmetric

setup the contribution of a single interface is simply Zint(ω)/2. The results for the real and

imaginary parts of Zint(ω) are shown in Figs. 2(c) and (d), respectively.

For finite ion concentration, it is remarkable that ℑ[Zint(ω → 0)] ≈ −1/ωCdiff is well-

described by the static differential capacitance. This can be understood by acknowledging

that, at low frequencies,

ℜ[σ(ω)] = σ0 + σ2ω
2 + σ4ω

4 + . . . (5)

ℑ[σ(ω)] = σ1ω + σ3ω
3 + . . . (6)

where σ1 = ε0(εeff − 1), with εeff an effective, frequency-independent, dielectric constant of

the solution.69 As detailed in the SI Appendix, both the real and imaginary parts of the

bulk conductivity are well described by these expansions (see Figs. S4 and S5), and it is

straightforward to show that

ℑ[Zint(ω → 0)] ≈ − 1

ωCdiff

+
σ1ω

σ2
0 + (2σ0σ2 + σ2

1)ω
2

dDDS

Ael

. (7)

Provided that σ0 > 0, which is true for finite ion concentration, the second term (which

describes ℑ[Zbulk(ω)] well, see Fig. S7) vanishes as ω → 0. For dielectric systems such as

pure water, however, this is no longer the case. As is apparent when setting σ0 = 0 in
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Eq. 7, we instead expect ℑ[Zw,int(ω)] ∼ −1/ωCw,int with an effective interfacial differential

capacitance

1

Cw,int

=

[
1

Cdiff

− dDDS

Aelε0(εw − 1)

]
, (8)

which, as seen in Fig. 2(d), describes the simulation data well. It clear from Eq. 8 that Cdiff

contains both interfacial and bulk contributions. For the d = 5.07 nm system that we have

investigated, we estimate that Cw,int/Ael ≈ 2.80 µF/cm2, while ε0(εw − 1)/dDDS ≈ 13.17

µF/cm2. The total series capacitance Cdiff/Ael ≈ 2.31 µF/cm2 is therefore dominated by the

interfacial contribution. Evidently, as dDDS increases, so too does the relative importance of

the bulk contribution.

We now turn our attention to the real part of the interfacial impedance. Somewhat

surprisingly, as shown in Fig. 2(c), we find that ℜ[Zint] is negligible to within statistical

uncertainty; this is the case for all concentrations we investigate, including pure water. This

suggests that the real part of the cell impedance ℜ[Z] behaves at low frequency as the bulk

contribution (see SI Appendix :)

ℜ[Zbulk(ω → 0)] ≈ 1

σ0

[
1−

(
σ0σ2 + σ2

1

σ2
0

)
ω2

]
dDDS

Ael

. (9)

Fig. S6 shows that this expansion, using the parameters fitted on the conductivity σ(ω),

describes well the bulk impedance at low frequency. For the confined case, a quadratic fit

(see Fig. S8) allows to us to obtain the cell resistance R = ℜ[Z(ω → 0)]. These different

estimates for the resistance, together with those obtained using the EH and Nernst-Einstein

values for σ0, are summarized in Table S4. The inset of Fig. 2(c) confirms the good agreement

between the corresponding confined RAel/dDDS and bulk ρbulk = 1/σ0 resistivities, except for

0.1 M where ρ ≈ ρbulk/3.6. While it is possible that for this concentration the low-frequency

regime might not be fully reached, we also note that the width of the EDL (λD ≈ 9.1 Å)

is only 5 times smaller than the interelectrode distance d and the separation between bulk

and interfacial regions might be less straightforward (see also the discussion of timescales in
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Section ).

For pure water, σ0 vanishes, and we obtain a qualitatively different behavior (see SI

Appendix ):

ℜ[Zw,bulk(ω → 0)] ≈ σ2

σ2
1

[
1−

(
σ2
2 + 2σ1σ3

σ2
1

− σ4

σ2

)
ω2

]
dDDS

Ael

, (10)

with σ1 = ε0(εw − 1). In this case, the overall resistance of the cell is R ≈ Rw,bulk =

dDDSσ2/[Aelε
2
0(εw−1)2]. In the SI Appendix, we further show that within the Debye relaxation

model, σ2 ≈ ε0(εw−1)τw,bulk, where τw,bulk ≈ 9 ps is the Debye relaxation time of bulk water.

By fitting the bulk conductivity at low frequencies, we obtain an estimate σ2/ε0(εw − 1) ≈

10 ps consistent with this model.

Equivalent circuit model and effect of interelectrode distance From our analysis,

we conclude that for finite salt concentrations the interfacial contribution to the impedance

is mostly capacitive and is well-described by Zint(ω) ≈ 1/iωCdiff . This is in stark contrast

with recent findings on electrode-ionic liquid interfaces, where the resistance was dominated

by interfacial contributions.71 Our observations mean that we can model the total impedance

of our systems as an equivalent circuit (EC) with a bulk component, parameterized on σ(ω)

as in Eq. 3, in series with a purely capacitive element with Cdiff = β⟨δQ2⟩. Such EC models

are already widely used by experimental groups to model macroscopic electrochemical cells

with planar blocking electrodes.66 It is worth emphasizing, however, that this work brings

the first direct evidence of this behavior at the molecular scale and confirms the validity of

these EC models to represent nanocapacitors.

Finally, we note that, to the extent that Cdiff is independent of d, which we might

reasonably expect if λD ≪ d (see, e.g., Fig. S9), we can use this simple EC model to predict

Z(ω) for different system sizes. We demonstrate this in Fig. 4, where we present results for

Z(ω) for 2.5 ≲ d/nm ≲ 20. The results from simulation compare favorably to those predicted

by Z(ω) = 1/iωCdiff + dDDS/Aelσ(ω), where we have used Cdiff obtained with d = 5.07 nm.
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This suggests that, aside from the capacitive contribution arising from the EDL formation

at the interface, the dielectric response of the confined electrolyte remains bulk-like. This

observation is consistent with recent works that highlight how the dielectric response of

nanoconfined water is essentially bulk-like, provided that one appropriately accounts for the

boundary of the liquid.16,54,72–75 Our results extend this conclusion to systems with dissolved

ions.

Figure 4: (a) Real and (b) imaginary parts of the impedance for different values of d (as
indicated in the legends), for the 1 M electrolyte. The solid lines show results obtained from
molecular simulations, while the dashed lines indicate the prediction of the simple EC model
in which the interfacial impedance is purely capacitive. Importantly, the simple EC model
has been parameterized with Cdiff from a single simulation with d = 5.07 nm.

Effect of the salt concentration on relaxation times

As shown in previous work, for pure water confined between the gold-electrodes, the relax-

ation of the QACF is well-characterized by a single exponential with a characteristic time

τw = τw,∞d/[d + (εw − 1)wDDS],
54 where τw,∞ ≈ 8.6 ps is close to the bulk value for the

Debye relaxation mode of water. Upon introducing ions, the QACF is broadly characterized

by two timescales: a fast relaxation that is comparable to τw, and a much slower relaxation

τslow, which depends on salt concentration [see Fig. 1(c)]. A global timescale can be defined
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Figure 5: Comparison of relevant characteristic times as a function of salt concentration
from simulations (symbols) and analytical theories (dashed lines).31,33–35,76 τQ is calculated
as the integral of the normalized QACFs (see Eq. 11). For τion−tot (blue dots) and τdiff
(green dots), the characteristic time is extracted by fitting the data (see Figs. 6(b,c) and
SI Appendix, Fig. S1) with exponential functions. The RC and RbulkC characteristic times
use the resistance computed from confined and bulk simulations, respectively, and C = Cdiff

from confined simulations. Note that Rbulk was calculated from the EH estimate of the bulk
conductivity and using dDDS instead of d, consistently with Eq. 3. Here, RC, RbulkC, τQ
and τdiff were computed from equilibrium simulations, whereas τion−tot was estimated from
nonequilibrium simulations.

from the integral of the normalized QACF,54

τQ =

∫ ∞

0

⟨δQ(0)δQ(t)⟩
⟨δQ2⟩

dt, (11)

such that the admittance behaves at low frequency as Y (ω) ≈ iωCdiff/(1+ iωτQ). Consistent

with our simple EC model, this translates in terms of impedance to Z(ω) ≈ R + 1/iωCdiff ,

with R = ℜ[Z(ω → 0)].

As shown in Fig. 5, beyond the initial jump from the pure water case (for which no

ions from water autodissociation are captured by the present force field), τQ decreases with

increasing ion concentration, but remains on the order 10−11 s. It is compared with the ‘RC’

times, using Cdiff obtained from ⟨δQ2⟩ [see Fig. 1(b)], and the total resistance estimated
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either as Rbulk = dDDS/Aelσ0 or R = ℜ[Z(ω → 0)] [see Fig. 2(a)]. As expected, RCdiff agrees

well with τQ for the whole concentration range. The agreement obtained with Rbulk from bulk

simulations is also good for the higher concentrations, but for the lowest concentration, 0.1 M,

RbulkCdiff is approximately 3.6 times larger than τQ. As discussed above, this discrepancy

between RCdiff and RbulkCdiff might be caused by the fact that we have not fully accessed

the low frequency limit at 0.1 M, or simply due to the departure from the thin EDL limit

(λD ≪ d) where the interfacial and bulk contributions can be decoupled.

While the intermediate and high frequency range of Zbulk(ω) is dominated by the con-

tribution of water, the behavior at low frequency significantly depends on the ions. We

now examine three timescales frequently considered in the dynamics of ions in confined

electrolytes obtained with analytical theories.31,33–35,37,76 Such approaches are inherently ap-

proximate: they typically describe the solvent implicitly; use a common diffusion constant D

for anions and cations; rely on mean-field assumptions; and use a simplified representation

of the electrode-electrolyte interface. Therefore, we limit ourselves to examining qualitative

trends with salt concentration rather than how well these time scales compare quantitatively

with our simulations. The first timescale is τd = d2/4D, which corresponds to ion diffusion

over the distance between the electrodes. The second timescale is the ionic Debye relax-

ation time τD = λ2
D/D, which corresponds to the relaxation of charge fluctuations in bulk

electrolytes, with the diffusion of ions over the corresponding Debye screening length. The

third timescale τmix = λD(d − 2λD)/2D mixes both λD and d;31 it corresponds to the ‘RC’

charging time assuming Nernst-Einstein conductivity and DH capacitance and reduces to

τmix ≈ λDd/2D in the limit of thin EDLs. The time scales introduced so far can be broadly

interpreted as approximations or limiting cases of the more general solution obtained within

the Debye-Falkenhagen approximation by Janssen and Bier.33

We show these different time scales in Fig. 5 together with the simulation results for τQ.

For the diffusion coefficient we use D = 1.41 × 10−9 m2/s, the average diffusion coefficient

of Na+ and Cl− ions computed from bulk simulations at 0.1 M. All the analytical timescales
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overestimate the relaxation time, but with different orders of magnitudes and trends with salt

concentration. The worst estimate is τd, by several orders of magnitude and no dependence

on salt concentration; this result is not unsurprising as the build-up of EDLs does not

require ions to diffuse over the whole electrochemical cell. While the order of magnitude

of τD is correct for the highest concentrations we consider, the agreement with τQ is worse

for the lower concentrations, with τD/τQ ≈ 10 at 0.1M. Naively, we would expect such a

mean-field prediction to improve as concentration is decreased. This discrepancy suggests

the observation that τD ∼ τQ for the higher concentrations is largely coincidental. Finally,

despite the wrong order of magnitude, only τmix displays a trend with concentration similar to

that of τQ. This observation suggests that τQ, and more generally the system’s impedance,

reflects the interplay between the dynamics of a bulk-like electrolyte and the interfacial

capacitive behavior induced by the blocking electrodes. A more detailed discussion of the

concentration dependence of τD, τmix, and τQ is included in the SI Appendix (see Fig. S10).

In a bid to rationalize the quantitative disagreement between theory and simulation, in the

next section, we probe the relaxation process in terms of contributions from ions, water and

their cross correlations.

Water and ionic contributions

As shown in previous works, at ∆Ψ = 0 V and with global electroneutrality, the total elec-

trode charge Q is proportional to the total dipole moment of the solution Mtot in the direc-

tion perpendicular to the electrode surface.54,77 For this reason, the behavior of ⟨δQ(0)δQ(t)⟩

is determined entirely by ⟨Mtot(0)Mtot(t)⟩. Clearly, in the case of an electrolyte solution,

Mtot(t) = Mwat(t) + Mion(t) has contributions from both the solvent water molecules and

the dissolved ions. Molecular simulations offer the possibility of computing directly the ionic

and solvent contributions, thus ‘dissecting’ the global response to understand the source of

specific features, as shown in previous works.78–80 We can therefore decompose the autocor-
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relation function of the total dipole moment:

⟨δMtot(0)δMtot(t)⟩ = (12)

⟨δMtot(0)δMion(t)⟩+ ⟨δMtot(0)δMwat(t)⟩,

with

⟨δMtot(0)δMion(t)⟩ = (13)

⟨δMion(0)δMion(t)⟩+ ⟨δMwat(0)δMion(t)⟩,

and

⟨δMtot(0)δMwat(t)⟩ = (14)

⟨δMwat(0)δMwat(t)⟩+ ⟨δMwat(0)δMion(t)⟩.

The correlation functions on the right hand side of Eq. 12 rigorously relate the linear response

of Mion(t) and Mwat(t) to a change in voltage across the cell; consequently, they can be

obtained by monitoring the time evolution of Mion(t) and Mwat(t) upon the step change

∆Ψ = 0 → 1 V.

In Fig. 6(a), we present the static limit of these normalized decomposed dipole correlation

functions. For all ion concentrations, the total comprises positive contributions from ⟨δM2
ion⟩

and ⟨δM2
wat⟩ and a large negative contribution from the cross correlation ⟨δMionδMwat⟩. This

anticorrelation between the equilibrium fluctuations of the ionic and solvent contributions to

the polarization was also found in bulk systems,78,79,81 and reflects the well-known Stillinger-

Lovett (SL) conditions.82,83 While Ref. 81 provided a framework to understand the SL con-

ditions for the total dipole moment in bulk systems in terms of ‘virtual electrodes’ arising

from the imposed boundary conditions, our results demonstrate that these SL conditions are

also obeyed in the presence of explicit electrodes held at constant bias. See also Ref. 84.
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Figure 6: (a) Static correlations of the water and ionic contributions to the total dipole
moment as a function salt concentration. (b,c) Normalized time correlation functions of
the contributions to the total dipole moment for 0.1 M and 1.0 M salt concentrations, as a
function of time. In all panels, each color indicates the same combination of contributions α
and β. In panels (b,c), we compare the results of equilibrium simulations (lines with error
bars), those of nonequilibrium simulations (dotted lines), and exponential fits (dashed lines).

We now turn our attention to the nonequilibrium relaxation of Mion and Mwat, shown

in Fig. 6(b,c) for 0.1M and 1.0M, respectively. For both systems, we see an initial fast

response of the solvent polarization (see dotted orange lines in Fig. 6(b,c)). In fact, the

negative values of ⟨Mtot(0)Mwat(t)⟩ for t ≳ 10−12 s indicate that the solvent polarization

overshoots its equilibrium value (see Eq. S7 in the SI). On larger time scales, the ionic po-

larization begins to relax accompanied by further relaxation of the solvent polarization in

an almost equal-and-opposite fashion. The relaxation of Mion appears to follow a simple

exponential time dependence, from which we can obtain an associated time scale τion−tot. In

Fig. 5 we plot τion−tot for all concentrations. Despite being roughly an order of magnitude

smaller, we see that the dependence of τion−tot on concentration closely follows that of τmix.

The observed anticorrelations between the solvent and ionic polarization during the system’s
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nonequilibrium response are reminiscent of the SL conditions at equilibrium, and consistent

with recent observations in bulk electrolyte solutions at finite wavevector and frequency.79

The impact of these anticorrelations appears to manifest as a much faster overall charging

dynamics than predicted by ionic relaxation alone, as reflected by the order of magnitude

discrepancy between τion−tot and τQ. Also shown in Fig. 6(b,c) are the correlation functions

⟨δMtot(0)δMion(t)⟩ and ⟨δMtot(0)δMwat(t)⟩ obtained directly from the equilibrium fluctua-

tions at ∆Ψ = 0V, albeit at a lower time resolution (full lines). As expected, these results

agree with those obtained from our nonequilibrium simulations.

In an attempt to quantify the impact of introducing ions, we have computed ⟨δQ(0)δQ(t)⟩diff ,

by subtracting the pure water QACF from the QACF at finite salt concentration. We find

that, for all investigated concentrations, ⟨δQ(0)δQ(t)⟩diff is well-described by a simple expo-

nential with characteristic time τdiff (see Fig. S1). The behavior of τdiff with concentration

is shown in Fig. 5. For all concentrations, τdiff is roughly seven times larger than τQ and

comparable to τion−tot. While it is tempting to attribute fast and slow timescales in the

system into motions that involve ions and those that do not, such a decomposition is not

straightforward. This can be seen in Fig. 6(b,c), where we further decompose the equilibrium

correlation functions according to Eqs. 13 and 14. Not only do we see that ⟨δMion(0)δMion(t)⟩

and ⟨δMion(0)δMwat(t)⟩ decay slowly, but so too does ⟨δMwat(0)δMwat(t)⟩. In other words,

fast and slow relaxation cannot be separated into purely solvent and ionic contributions.

To summarize, we find that analytical theories and implicit solvent descriptions can

describe the qualitative scaling of the relaxation time scales with concentration. However,

these predictions are far from quantitative agreement with simulation results. Our MD

results highlight: (i) ion and water polarization are strongly anticorrelated, and this effect

is persistent in time; and (ii) ion and water polarization relax with different time scales

(single exponential with τion−tot, and a combination of τw and τion−tot, respectively). These

two features are absent in most analytical theories of electrolytes and present a significant

challenge for implicit solvent models to faithfully capture relaxation in EDL capacitors.
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Conclusions

In this work, we employed molecular dynamics simulations to study electrode charge and po-

larization dynamics in gold/NaCl(aq) nanocapacitors. Using both equilibrium and nonequi-

librium simulations, we investigated the impact of ion concentration and interelectrode dis-

tance on the charging dynamics. As expected, we found that ions induce slower dynamics

compared to pure water systems, and more concentrated solutions result in faster charge re-

laxation. Using equilibrium charge autocorrelation functions, we obtained impedance spectra

for the nanocapacitors that exhibit features typical for systems with blocking electrodes. Ex-

ploiting the fact that we can obtain the bulk conductivity directly in molecular simulations,

we showed that the total impedance is well-described by a simple sum of interfacial and

bulk contributions. Remarkably, we found that the interfacial impedance for the considered

systems is purely capacitive, i.e., interfacial resistance is negligible. We demonstrated that

this simple EC model permits extrapolation to larger system sizes; while nanocapacitors are

interesting in their own right, this observation will help to bridge the gap between molecular

simulations and EIS experiments on larger length scales. We also showed that the electrolyte

response, aside from the capacitive interfacial contribution, remains bulk-like even when the

interelectrode separation is only a few nanometers.

Future work could focus on the influence of more complicated, possibly porous42,58 and

heterogeneous electrode-electrolyte interfaces,85 as well as on the effect of screening within

the electrode material via the Thomas-Fermi length,86,87 many-body interactions at the

surface (as done e.g. for water on platinum electrodes88,89) or even non-adiabatic effects.12

The same methodology could be applied and we expect the main conclusions to hold for a

variety of non-reactive systems. If these more elaborate descriptions of the electrode material

induce specific ion binding to the surface, this may require longer simulations to correctly

sample the adsorption/desorption processes, but would in turn provide a direct link between

the measured frequency-dependent impedance and the corresponding processes (possibly via

more complex EC models, as often done to analyze experiments). Furthermore, the present
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theoretical framework to predict and analyze the impedance could be extended to include

interfacial electron-transfer phenomena at a classical level,90 which would allow representing

devices such as pseudocapacitors and batteries.

We also investigated the most relevant characteristic times of charge and polarization

relaxation. While we found that analytical predictions fail to quantitatively describe the

simulation results, they succeed in reproducing the qualitative behavior. By dissecting the

global response into contributions from the ionic and solvent polarization, we showed that

the failure of the analytic predictions originates from an anti-correlation between ions and

water. In particular, we found that not only do the ions themselves relax slowly, but their

presence also introduces a slow time scale in the solvent relaxation. Future coarse-grained

descriptions of confined electrolytes could include the nonlocality and frequency-dependence

of the solvent response79,91 beyond a uniform static permittivity36,92 to restore, at least

partially, this fundamental physics.

Methods

Numerical simulations

Classical molecular dynamics simulations were performed using MetalWalls93,94 and LAMMPS95

(equipped with the ELECTRODE package96), which allows for the computation of custom

properties on-the-fly. Equivalent simulations performed on the two software packages yielded

consistent results, as already checked by other authors on similar systems.96 In this work,

we simulated two different kinds of systems: bulk and confined simulations. The force field

pameterization and simulation setups are similar to those used in previous works.86 Bulk

simulations of the electrolyte, described by a simple point charge model (i.e., water with the

SPC/E model97 and NaCl ions modelled as Lennard-Jones particles with point charges98),

were performed with 3D periodic boundary conditions (PBCs) with “tin-foil” boundary

conditions. The confined system also included gold electrodes modelled as Lennard-Jones
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particles99 with a gaussian charge density fluctuating in magnitude (see below). Simulations

performed with MetalWalls were carried out under 2D PBCs, while those with LAMMPS

used 3D PBCs and a finite field to impose ∆Ψ.100,101 In all the confined simulations, the

spacing between the electrodes d was equilibrated at constant atmospheric pressure and pro-

duction runs were carried out at fixed separation. All the simulations are performed in the

NVT ensemble and the temperature is fixed at 298 K using a Nosé–Hoover chain thermo-

stat,102 with 5 chained thermostats having all the same time constant of 1 ps. In confined

simulations, we enforce the additional constraints of constant applied potential and global

electroneutrality. The constant potential condition is ensured by the fluctuating charge

method.38

More simulation details and a list of all simulation runs can be found in the SI Appendix.

Frequency-dependent impedance from charge fluctuations and bulk

conductivity spectrum

The frequency-dependent electrical impedance and admittance were calculated from the dy-

namics of the equilibrium fluctuations of the electrode charge sampled from MD simulations,

using the fluctuation-dissipation relation introduced in our previous work:54

Y (ω) = β

[
iω⟨δQ2⟩+ ω2

∫ ∞

0

⟨δQ(0)δQ(t)⟩e−iωtdt

]
, (15)

where Y = 1/Z is the admittance, Z is the impedance, β = 1/kBT with kB the Boltzmann

constant and T the temperature, ω is the angular frequency, Q is the electrode charge, and

δQ = Q − ⟨Q⟩, with ⟨·⟩ denoting the canonical average. The numerical calculation of the

Fourier-Laplace transform in Eq. 15 was performed as in Ref. 54, using Filon-Lagrange inte-

gration and by applying a windowing procedure to ⟨δQ(0)δQ(t)⟩ to suppress the numerical

noise at large times. In this work, we used a normalized version of the windowing function,

which allows preserving the magnitude of the original function at short times. A direct
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comparison between the raw and windowed autocorrelation functions is shown in the SI

Appendix, Figs. S10, S11 and S12.

In principle, the frequency-dependent conductivity in bulk systems can be estimated

from the dynamics of the total dipole moment M, calculated with unwrapped coordinates

and including both salt and solvent species.67 In particular, the susceptibility χ(ω) can be

estimated from the total dipole moment69 via

χ(ω) =
β

3V

[
⟨δM2⟩ − iω

∫ ∞

0

⟨δM(0)δM(t)⟩e−iωtdt

]
, (16)

where V is the system volume. The frequency-dependent conductivity can be then calculated

as

σ(ω) = iωχ(ω) = iωχ′(ω)− ωχ′′(ω), (17)

where χ′ and χ′′ denote the real and imaginary parts of the susceptibility. We used this

approach to estimate the frequency-dependent conductivity from bulk water simulations.

In the presence of free charge carriers (i.e., for finite salt concentrations), ⟨M2⟩ becomes a

divergent quantity, so the frequency-dependent conductivity has to be calculated using a

different approach. The problem can be circumvented using electric currents J(t) = dM/dt

instead of the total polarization.67 The conductivity can be rewritten in the following form

σ(ω) =
β

3V

∫ ∞

0

⟨δJ(0)δJ(t)⟩e−iωtdt. (18)

The Fourier-Laplace transform in Eqs. 16 and 18 was calculated numerically with the same

windowing and integration scheme used to solve the transform in Eq. 15.

For finite salt concentrations, the DC conductivity [σ(ω → 0) = σ0] can be estimated from

the behavior of ℜ[σ(ω)] at low frequency (see Fig. S5 in the SI Appendix). Alternatively, it

can be computed using the Einstein-Helfand formalism which relates the total dipole moment
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of ions Mion to σ0:
68

lim
t→∞

⟨∆M2
ion(t)⟩ =

6V

β
σ0t+ 2⟨M2

ion⟩, (19)

where t is the time. In practice, we fit ⟨∆M2
ion(t)⟩ with a line and extract σ0 from the slope

of the fitted line (see Fig. S2 in the SI Appendix ).

Data availability

Input files and raw data for figures have been deposited on Zenodo.103
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44. Péan, C.; Rotenberg, B.; Simon, P.; Salanne, M. Multi-scale Modelling of Supercapac-

itors: From molecular Simulations to a Transmission Line Model. J. Power Sources

2016, 326, 680–685.

45. Bi, S.; Salanne, M. Co-Ion Desorption as the Main Charging Mechanism in Metallic

1T-MoS 2 Supercapacitors. ACS Nano 2022, 16, 18658–18666.

46. Siepmann, J. I.; Sprik, M. Influence of Surface-Topology and Electrostatic Potential on

Water Electrode Systems. J. Chem. Phys. 1995, 102, 511–524.

47. Reed, S. K.; Lanning, O. J.; Madden, P. A. Electrochemical interface between an ionic

liquid and a model metallic electrode. J. Chem. Phys. 2007, 126, 084704, Publisher:

American Institute of Physics.

48. Scalfi, L.; Limmer, D. T.; Coretti, A.; Bonella, S.; Madden, P. A.; Salanne, M.; Roten-

berg, B. Charge fluctuations from molecular simulations in the constant-potential en-

semble. Phys. Chem. Chem. Phys. 2020, 22, 10480–10489.

31



49. Nyquist, H. Thermal Agitation of Electric Charge in Conductors. Phys. Rev. 1928, 32,

110.

50. Johnson, J. Thermal Agitation of Electricity in Conductors. Phys. Rev. 1928, 32, 97.

51. De Haas-Lorentz, G. L. Over De Theorie Van De Brown’sche Beweging En Daarmede

Verwante Verschijnselen. Ph.D. thesis, Rijks-Universiteit Te Leiden,, 1912.

52. Limmer, D. T.; Merlet, C.; Salanne, M.; Chandler, D.; Madden, P. A.; van Roij, R.;

Rotenberg, B. Charge Fluctuations in Nanoscale Capacitors. Phys. Rev. Lett. 2013,

111 .

53. Uralcan, B.; Aksay, I. A.; Debenedetti, P. G.; Limmer, D. T. Concentration Fluctua-

tions and Capacitive Response in Dense Ionic Solutions. J. Phys. Chem. Letters 2016,

7, 2333–2338.

54. Pireddu, G.; Rotenberg, B. Frequency-Dependent Impedance of Nanocapacitors from

Electrode Charge Fluctuations as a Probe of Electrolyte Dynamics. Phys. Rev. Lett.

2023, 130, 098001.

55. Serva, A.; Scalfi, L.; Rotenberg, B.; Salanne, M. Effect of the metallicity on the ca-

pacitance of gold–aqueous sodium chloride interfaces. The Journal of Chemical Physics

2021, 155, 044703, Publisher: American Institute of Physics.

56. Park, S.; McDaniel, J. G. Helmholtz Capacitance of Aqueous NaCl Solutions at the

Au(100) Electrode from Polarizable and Nonpolarizable Molecular Dynamics Simula-

tions. The Journal of Physical Chemistry C 2022, 126, 16461–16476.

57. Ntim, S.; Sulpizi, M. Molecular dynamics simulations of electrified interfaces including

the metal polarisation. Physical Chemistry Chemical Physics 2023, 25, 22619–22625.

58. Simoncelli, M.; Ganfoud, N.; Sene, A.; Haefele, M.; Daffos, B.; Taberna, P.-L.;

Salanne, M.; Simon, P.; Rotenberg, B. Blue Energy and Desalination with Nanoporous

32



Carbon Electrodes: Capacitance from Molecular Simulations to Continuous Models.

Physical Review X 2018, 8, 021024.

59. Khademi, M.; Barz, D. P. J. Structure of the Electrical Double Layer Revisited: Elec-

trode Capacitance in Aqueous Solutions. Langmuir 2020, 36, 4250–4260.

60. Rami Reddy, M.; Berkowitz, M. The dielectric constant of SPC/E water. Chemical

Physics Letters 1989, 155, 173–176.

61. Rotenberg, B.; Bernard, O.; Hansen, J.-P. Underscreening in ionic liquids: a first prin-

ciples analysis. Journal of Physics: Condensed Matter 2018, 30, 054005.

62. Peyman, A.; Gabriel, C.; Grant, E. Complex permittivity of sodium chloride solutions

at microwave frequencies. Bioelectromagnetics 2007, 28, 264–274.

63. Vinh, N. Q.; Sherwin, M. S.; Allen, S. J.; George, D. K.; Rahmani, A. J.; Plaxco, K. W.

High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe

of the femtosecond-to-picosecond dynamics of liquid water. The Journal of Chemical

Physics 2015, 142, 164502.

64. Querry, M. R.; Waring, R. C.; Holland, W. E.; Hale, G. M.; Nijm, W. Optical Con-

stants in the Infrared for Aqueous Solutions of NaClt. Journal of the Optical Society of

America 1972, 62 .

65. Buchner, R.; Hefter, G. T.; May, P. M. Dielectric Relaxation of Aqueous NaCl Solutions.

The Journal of Physical Chemistry A 1999, 103, 1–9.
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†Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes
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1 Simulation details

1.1 Confined simulations

A summary of all simulation runs for the confined systems at equilibrium and non-equilibrium

conditions are provided in tables S1 and S2. In the tables, we report the electrode surface

area Ael, the distance between the electrodes d (obtained from equilibration at constant

atmospheric pressure), the total number of ion pairs, the total number of water molecules,

the number of replicas, and the simulation time considered for the production runs. For

all the systems, we first run an equilibration simulation of 0.5 ns to find the equilibrium

interelectrode distance d at constant atmospheric pressure. Then, we run at least 0.5 ns of

dynamics in the NVT ensemble for a further equilibration. Replicas of the original systems

are prepared by simulated annealing by performing 0.5 ns of dynamics at constant temper-

ature T = 500 K followed by a 0.5 ns simulation at T = 298 K to re-equilibrate the system

at the target temperature.

The uncertainty of the properties computed from simulation results was computed as the

95% confidence interval. In particular, in the case of equilibrium simulations at 0.1 M salt

concentration, we considered each replica as an independent sample. In all the other cases,

within each replica we split the simulation results into 5 samples (that are assumed to be

uncorrelated) and calculate the confidence interval for each replica independently. Finally,

the ‘global’ confidence interval for each system is obtained from error propagation of the

mean among all the replicas. This procedure was designed to ensure that each individual

sample would contain at least 10 ns of dynamics, which is beyond all the correlation times

observed in this work.

For the non-equilibrium simulations, for each concentration a set of uncorrelated initial

configurations were sampled from the equilibrium ensemble at ∆Ψ = 0V (see Table S2).

To obtain estimates of equilibrium values at ∆Ψ = 1V [e.g., Q(∞)], further equilibrium

simulations were performed for: 8 ns (0.1M); 4.2 ns (0.5M); 10 ns (1.0M); 4.0 ns (1.5M).
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The uncertainty was computed as a 95% confidence interval by treating each replica as an

independent sample and by propagating the uncertainty from the equilibrium 1V simula-

tions.

1.2 Bulk simulations

In table S3, we report the simulation setups (volume of the simulation box V , number of

ion pairs, number of water molecules) as well as the number of replicas and time windows

considered for the bulk simulations. In all cases, prior to the production runs, we performed

equilibration runs which included at least 1 ns of dynamics.

The uncertainty, calculated as the 95% confidence interval, was calculated by splitting

each run into 5 samples, which are assumed to be uncorrelated.

2 Difference between QACFs for solutions and pure

water

In order to analyse the influence of the presence of ions in the systems on the electrode

charge dynamics, we subtracted the total charge autocorrelation functions sampled with pure

water from the same quantity computed from finite salt concentration: ⟨δQ(0)δQ(t)⟩diff =

⟨δQ(0)δQ(t)⟩ − ⟨δQ(0)δQ(t)⟩w, where ⟨δQ(0)δQ(t)⟩w is the QACF in the pure water case.

Fig. S1 displays the QACF difference, normalised by the value at t = 0, for all the finite

salt concentrations we considered. We then fitted all the QACF differences with exponential

functions, in order to extract the characteristic times discussed in the main text.
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3 Notes on decomposing the nonequilibirium polariza-

tion response

In Fig. 6 of the main article, we decomposed the polarization response into contributions

from the solvent and ions. Here, we provide further details on how this decomposition relates

to the equilibrium correlation functions at ∆Ψ = 0V. To begin, it is useful to briefly recap

some of the key ideas underlying the statistical mechanics of linear response theory. Let us

denote the Hamiltonian of the unperturbed system as H0. We then consider a perturbed

Hamiltonian of the form

H(t) = H0 − f(t)A(t) (1)

where A(t) ≡ A(rN(t)) is an observable that couples to the driving force

f(t) =


0, t ≤ 0,

f, t > 0.

It can then be shown1 that the nonequilibrium average of an observable B(t) (for t > 0) is

∆B(t) = βf⟨δB(t)δA(0)⟩0, (2)

where ∆B(t) = B(t) − B(0), and ⟨·⟩0 denotes an equilibrium average in the absence of the

perturbation. Assuming ⟨δB(t → ∞)δA(0)⟩0 = 0, it can further be shown that

B(t)−B(∞)

B(0)−B(∞)
=

⟨δB(t)δA(0)⟩0
⟨δB(0)δA(0)⟩0

. (3)

For example, if we consider the response of the total charge on an electrode in response to

a step change in the potential, we take −f(t)A(t) = −∆Ψ(t)Q(t) and B(t) = Q(t):

Q(t)−Q(∞)

Q(0)−Q(∞)
=

⟨δQ(t)δQ(0)⟩0
⟨(δQ)2⟩0

. (4)
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Linear response is valid to the extent that Eq. 4 is satisfied (see Fig. 1(d) in the main text).

In the case of the electrolyte response, we instead consider −fA(t) = −EQ(t)Mtot(t),

where EQ(t) = −Q(t)/d is the instantaneous electric field established between electrodes by

the charge Q(t), and Mtot is the value of the total dipole moment of the solution along the

surface normal (the field EQ does not include the contribution from polarized electrolyte).

It then follows that:

M tot(t)−M tot(∞)

M tot(0)−M tot(∞)
=

⟨δMtot(t)δMtot(0)⟩0
⟨(δMtot)2⟩0

, (5)

M ion(t)−M ion(∞)

M tot(0)−M tot(∞)
=

⟨δMion(t)δMtot(0)⟩0
⟨(δMtot)2⟩0

, (6)

and,

Mwat(t)−Mwat(∞)

M tot(0)−M tot(∞)
=

⟨δMwat(t)δMtot(0)⟩0
⟨(δMtot)2⟩0

, (7)

The sum of Eqs. 6 and 7 yields Eq. 5.

4 Dynamics of ionic polarization

Fig. S2 shows the mean squared displacement of the total ionic dipole moment Mion as a

function of time, calculated from bulk simulations, for all the salt concentrations we consid-

ered. We fitted the simulation data with lines and extracted the ionic conductivity σ0 using

the Einstein-Helfand approach2 (see the Methods section in the main text).

5 Bulk conductivity spectra

Fig. 3(b) of the main text displays the real part of the complex conductivity σ(ω) as a

function of frequency, for all the salt concentrations we considered. It demonstrates the

broad consistency between the low frequency behavior of σ(ω) obtained from Eq. 18 of the

main paper, and the conductivity at ω = 0 obtained with the Einstein-Helfand approach.
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However, we note that results for 0.1 M are subject to large statistical uncertainty, and it is

likely that we are yet to fully reach the low frequency regime in this case, nor can we rule

out departure from the thin EDL limit (λD ≪ d).

Fig. S3 reports the imaginary part of σ(ω) as a function of frequency. For finite salt con-

centration, we found it beneficial for the analysis to remove the numerical noise present

at low frequencies (shown in grey in Fig. S3). In particular, we exploit the fact that

ℑ[σ(ω → 0)] ≈ ωε0(εeff − 1),3 where ε0 is the vacuum permittivity and εeff is the effec-

tive static permittivity of the electrolyte solution. Indeed, in the low frequency part, besides

the numerical noise, we observe this qualitative trend (see Fig. S4).

For the filtering procedure, we first fitted the MD data with ωε0(εeff − 1), by tuning the

effective permittivity εeff . We obtained εeff = 61, 56, 46, and 39, corresponding to 0.1, 0.5,

1.0, 1.5 M, respectively. The fact that εeff decreases with increasing salt concentration is in

qualitative agreement with the notion of a dielectric decrement found both in simulations

and experiments.4,5 After fitting, the raw data is simply replaced by ωε0(εeff − 1) for ω <

1.9 × 1010 rad/s. We emphasize that this filtering procedure was only performed for finite

salt concentrations; in the case of pure water, ϵw = 70.7 for SPC/E water was taken from

the literature,6 and found to describe the low frequency behavior of σ(ω) well.

6 Low frequency behavior of the bulk conductivity

We begin our discussion with the Green-Kubo expression for the bulk conductivity, Eq. 18

in the main text, which we repeat here for clarity:

σ(ω) =
β

3V

∫ ∞

0

⟨δJ(0) · δJ(t)⟩e−iωtdt (8)

=
β⟨(δJ)2⟩

3V

∫ ∞

0

CJ(t)e
−iωtdt, (9)
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where CJ(t) = ⟨δJ(0) · δJ(t)⟩/⟨(δJ)2⟩. Expanding the exponential,

β⟨(δJ)2⟩
3V

∫ ∞

0

CJ(t)

(
1− iωt− ω2t2

2
− iω3t3

6
+ . . .

)
dt, (10)

defining,

σ0 =
β⟨(δJ)2⟩

3V

∫ ∞

0

CJ(t)dt, (11)

σ1 = −β⟨(δJ)2⟩
3V

∫ ∞

0

tCJ(t)dt, (12)

σ2 = −β⟨(δJ)2⟩
6V

∫ ∞

0

t2CJ(t)dt, (13)

. . . , (14)

and collecting real and imaginary parts, we arrive at Eqs. 5 and 6 in the main text:

ℜ[σ(ω)] = σ0 + σ2ω
2 + σ4ω

4 + . . . , (15)

ℑ[σ(ω)] = σ1ω + σ3ω
3 . . . (16)

with σ1 = ϵ0(ϵeff − 1). For the practical purposes of this work, we only need to extract

numerical values for coefficients up to and including σ2. We obtain σ1 from ℑ[σ(ω)] as

described in the previous section. The remaining coefficients σ0 and σ2 are obtained by

fitting Eq. 15 directly to simulation data for ℜ[σ(ω)] (see Fig. S5). For pure water, σ0 = 0

and σ1 = ε0(εw − 1) with the known value of the SPC/E water permittivity, so that only

σ2 is fitted, resulting in σ2 ≈ 6.4 10−21 S s2/m. This corresponds (see Eqs. 32-33 below) to

a Debye relaxation time σ2/σ1 = τw,bulk ≈ 10 ps, which is consistent with the value for bulk

water (9 ps).
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7 Low frequency behavior of the bulk impedance

As described in the main text, the bulk impedance is given by

Zbulk(ω) =
dDDS

Ael

1

σ(ω)
, (17)

with real and imaginary parts

ℜ[Zbulk(ω)] =
ℜ[σ(ω)]

ℜ[σ(ω)]2 + ℑ[σ(ω)]2
dDDS

Ael

, (18)

and

ℑ[Zbulk(ω)] = − ℑ[σ(ω)]
ℜ[σ(ω)]2 + ℑ[σ(ω)]2

dDDS

Ael

, (19)

respectively. The MD results for real and imaginary parts of Zbulk are reported as a function

of frequency in Figs. S6 and S7, respectively. In Fig. S6 we note the striking similarity of

ℜ[Zbulk(ω)] with the real part of the total impedance Z(ω) shown in Fig. 2 of the main text,

across all frequencies we have investigated. We now consider the low frequency behavior of

ℜ[Zbulk] for the case σ0 > 0, i.e., finite ion concentration. Substituting in the low-frequency

expansions of σ(ω) (Eqs. 15 and 16):

ℜ[Zbulk(ω → 0)] =
σ0 + σ2ω

2

(σ0 + σ2ω2)2 + (σ1ω + σ3ω3)2
dDDS

Ael

(20)

=
σ0 + σ2ω

2

σ2
0 [1 + (2σ0σ2 + σ2

1)ω
2/σ2

0 +O(ω4)]

dDDS

Ael

, (21)

≈ 1

σ0

[
1−

(
σ0σ2 + σ2

1

σ2
0

)
ω2

]
dDDS

Ael

. (22)

This is Eq. 9 in the main article. A comparison between simulation data and Eq. 22 with the

parameters fitted on the bulk conductivity is shown in Fig. S6. In general, we find a good

agreement between simulation data and this quadratic form at low frequencies. The low-
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frequency extrapolations are also in broadly good agreement with the resistivity predicted by

the Einstein-Helfand approach (see also Table S4). Given the similarity between the bulk and

confined impedance (shown in Figs. S6 and S8, respectively), we also use a two-parameter fit

(i.e., the intercept and coefficient of ω2) to obtain the cell resistance R = ℜ[Z(ω → 0)] (see

Table S4). [In principle, we could also use such a two-parameter fit to obtain new estimates

for σ0 and σ2, while using the value of σ1 from ℑ[Zbulk(ω → 0)]; however, as σ0σ2 ≪ σ2
1 (see

Table S5), we have found this numerically challenging.] In general, we find a good agreement

between the fitted parameters, except for the 0.1 M case.

In the main text, we also discuss the Nernst-Einstein (NE) approximation of the static

conductivity:

σNE
0 =

e2

kBT

(
cNaDNaz

2
Na + cClDClz

2
Cl

)
=

2

kBT
FeDCNaCl, (23)

where F is the Faraday constant, e is the electron charge, D = 1.41×10−9 m2/s is the average

diffusion coefficient of Na and Cl ions, and CNaCl is the NaCl concentration in units of moles

m−3. The NE resistivity and corresponding resistance are calculated as ρNE = 1/σNE
0 and

RNE = ρNEd/Ael, respectively.

We now consider the case of dielectrics, σ0 = 0, e.g., pure water,

ℜ[Zw,bulk(ω → 0)] =
σ2ω

2 + σ4ω
4

(σ2ω2 + σ4ω4)2 + (σ1ω + σ3ω3)2
dDDS

Ael

, (24)

=
σ2 + σ4ω

2

σ2
1 + (σ2

2 + 2σ1σ3)ω2 +O(ω4)

dDDS

Ael

, (25)

≈ σ2

σ2
1

[
1−

(
σ2
2 + 2σ1σ3

σ2
1

− σ4

σ2

)
ω2

]
dDDS

Ael

. (26)

This is Eq. 10 in the main article. Unlike the case of electrolytes, we see that the coefficient of

ω2 depends upon all non-zero coefficients of the bulk conductivity up to σ4; obtaining reliable

estimates for these higher-order coefficients is challenging. Instead, we simply perform a two-

parameter fit (i.e., the intercept and coefficient of ω2) of Eq. 26 to our simulation data. As

10



shown in Fig. S6, such a quadratic form describes the simulation data well at sufficiently low

frequency.

We now consider the low frequency behavior of ℑ[Zbulk] (Eq. 19). Following a similar

procedure as we did for ℜ[Zbulk(ω)], we find

ℑ[Zbulk(ω → 0)] = − σ1ω

σ2
0 + (2σ0σ2 + σ2

1)ω
2

dDDS

Ael

, (27)

where again we note that σ1 = ε0(εeff − 1). This is Eq. 7 in the main article. For finite

salt concentration, σ0 > 0, Eq. 27 predicts a minimum at σ0/
√

2σ0σ2 + σ2
1. For dielectric

systems such as pure water, σ0 = 0, we instead obtain a qualitatively different behavior:

ℑ[Zw,bulk(ω → 0)] = − 1

ωσ1

= − 1

ωε0(εw − 1)

dDDS

Ael

. (28)

Fig. S7 shows that Eqs. 27 and 28 capture very well the trends observed from MD results

for all systems we have investigated. The results for 0.1 M are subject to large statistical

uncertainty, and it is also likely that we have not fully reached the low frequency limit in

our simulations.

Finally, in the specific case of the Debye relaxation model for the solvent polarization,

the frequency-dependent permittivity is

εw(ω) = 1 +
εw − 1

1 + iωτw,bulk

(29)

where τw ≈ 9 ps for bulk SPC/E water, so that the conductivity reads:

σ(ω) = iωε0[εw(ω)− 1] =
iωε0[εw − 1]

1 + iωτw,bulk

≈ iωε0[εw − 1] + ε0[εw − 1]τw,bulkω
2 + ... (30)

11



Comparing with Eqs. 5 and 6 from the main text, this provides:

σ0 = 0 (31)

σ1 = ε0[εw − 1] (32)

σ2 = ε0[εw − 1]τw,bulk . (33)

In particular, with this model we expect σ2/σ1 = τw,bulk.

8 Effect of interelectrode distance

As shown in the main text (Section 1B), to the extent that Cdiff is independent of d, we

can use the simple EC model to predict Z(ω) for different system sizes. Here we provide

additional data on the effect of the interelectrode distance, for d = 2.56, 5.07, 9.80, and

19.84 nm. Fig. S9(a) shows a direct comparison of Cdiff (scaled by the lateral area Ael of

the electrodes) as a function of d, for gold nanocapacitors with pure water and 1.0 M NaCl

solutions. For pure water, Cdiff decreases with increasing d, in qualitative agreement with

what is expected from macroscopic theories of pure dielectrics, C = ε0εwAel/d (see Ref. 7

for more discussion of this case). In contrast, at 1.0 M Cdiff only mildly depends on d. This

result is in qualitative agreement with mean field theories, which predict that, for finite salt

concentrations, the differential capacitance is expected to depend exclusively on the screening

length λD (see e.g. Eq. 2 of the main text, despite its limitations at such a concentration)

in the limit of large d.

Fig. S9(b) reports the QACF at ∆Ψ = 0 V, which quantifies the electrode charge dy-

namics, for all the considered values of d. In all cases, we recognize the same qualitative

features discussed in the main text for d = 5.07 nm (see Fig. 1(c) of the main text). The

short time oscillations, corresponding to the high frequency peak in the admittance (see

Fig. 3(a) of the main text), are very similar to that observed for pure water. As described

12



in Ref. 7, they can be ascribed to water libration of water molecules that reside beyond the

adlayer (formed by water molecules in contact with the surface), even though the latter also

contribute to a lesser extent, with a relative weight which depends on the distance between

the electrodes. As the inter-electrode distance d increases, these oscillations appear to be

progressively attenuated due to the increased dissipation also reflected in the larger real part

of the impedance.7 In the presence of ions, we further observe that both the characteristic

time and the amplitude of the additional slow relaxation mode increase with d, as described

in Section 1B of the main text.

9 Fitting τQ

As discussed in the main text, a comparison between characteristic times and MD results

showed that τmix = λD(d − 2λD)/2D, better than the Debye time τD = λ2
D/D, can qual-

itatively describe the scaling of the overall relaxation time τQ with salt concentration. In

this section, we also consider τJB which is the more general solution to the electrokinetics of

charging in capacitors obtained within the Debye-Falkenhagen approximation.8 To highlight

the qualitative match between analytical theories and MD data, we fit scaling factors (resp.

γ1, γ2, γ3) that multiply the time scales (resp. τDebye, τmix, τJB) to fit the behaviour of τQ

with concentration.

The results of the fitting procedure are shown in Fig. S10. We observe that τDebye describes

the MD data only in a qualitative way, whereas τmix and τJB fit well the simulation data with

similar accuracy. The optimal scaling parameters are γ1 = 0.102, γ2 = 0.036 and γ3 = 0.032.

10 Windowing

As reported in a previous work,7 the autocorrelation functions estimated from molecular

simulations are affected by numerical noise at large times. This negatively impacts the quality

of the numerical Fourier-Laplace transforms used in this work, especially at high frequencies.
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To mitigate this effect, we multiply the autocorrelation functions by a windowing function

W with the following form

W (ϵ, τ) =
e−ϵτ + 1

eϵ(t−τ) + 1
, (34)

where ϵ and τ are adjustable parameters that are tuned by hand for each system indepen-

dently. The tuning is done with the goal of removing the long-time noise while preserving

the overall shape of the original functions.

Direct comparisons of the original functions, their windowed version, and the window

functions are shown in Figs. S11 and S12 for the confined systems, and in Figs. S13 for the

bulk water system.

For pure water (shown in Fig. S13), 1.0 M and 1.5 M systems, we used window functions

with ϵ = 18.9 × 109 s−1 and τ = 0.1 × 10−9 s. For the 0.1 M and 0.5 M cases we used the

same value for ϵ, but a higher value for τ (0.2 × 10−9), as required by the slower decay at

long times.
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11 Figures

Figure S1: Difference between total charge autocorrelation functions at finite salt concentra-
tions with respect to the same quantity computed for pure water systems7 (⟨δQ(0)δQ(t)⟩diff ,
solid lines), as a function of time. The results are normalized with respect to the value at
t = 0 (⟨δQ2⟩diff). All the curves are fitted with exponential functions (dashed lines).
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Figure S2: Mean squared displacement of the total ionic dipole moment Mion as a function
of time, for all the salt concentration we considered (solid lines). The simulation data are
fitted with linear functions (dashed lines).
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Figure S3: Imaginary part of conductivity computed from bulk simulations ℑ[σ(ω)], shown
as solid lines as a function of frequency. The colored lines represent the raw data set, whereas
the colored lines represent the dataset upon filtering (see text).

17



Figure S4: Imaginary part of conductivity computed from bulk simulations σ(ω) as a function
of frequency. The dots correspond to the raw data (ℑ[σ(ω)] computed directly from MD
results), while the solid lines represent σ1ω = ε0(εeff − 1)ω functions fitted to the MD data,
except for pure water where we use the permittivity of the SPC/E model6. The colors are
coded as in Fig. S3. Namely, 0.1, 0.5, 1.0, and 1.5 M are represented with orange, green,
red, and violet colors, respectively.
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Figure S5: Real part of conductivity computed from bulk simulations σ(ω) as a function of
frequency. The dots correspond to MD results, while the fits (Eq. 15) are represented with
solid lines. The corresponding fitting parameters σ0 and σ2 can be found in Table S5 (for
water only σ2 is fitted since σ0 = 0).
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Figure S6: Real part of bulk impedance Zbulk as a function of frequency for different NaCl
concentrations. The horizontal dotted lines correspond to the Einstein-Helfand estimate of
the bulk resistance REH

bulk = d/σEH
0 Ael. For the electrolytes, the dashed lines are predictions

from Eq. 22 using the values of parameters σi obtained by fitting ℜ[σ(ω)] and ℑ[σ(ω)] (see
text and Figs. S4 and S5). For water, the dashed line is a quadratic fit.
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Figure S7: Imaginary part of bulk impedance Zbulk as a function of frequency. The MD
results (solid lines) are compared with the low-frequency limit of Eq. 19 (see Eq. 27), using
the parameters σi obtained by fitting ℜ[σ(ω)] and ℑ[σ(ω)] (see text and Figs. S4 and S5),
represented as black dashed lines. For water, the black dashed line corresponds to Eq. 28
using the bulk permittivity of the SPC/E water model. The vertical dotted lines indicate
the location of the local minima of Eq. 27.
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Figure S8: Real part of the cell impedance Z as a function of frequency for different NaCl
concentrations. The dashed lines represent quadratic fits (following the form of Eq. 22, even
though the bulk parameters are not used), from which we extract the plateau value for
R = Z(ω → 0).
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Figure S9: (a) Differential capacitance Cdiff divided by the lateral area of the electrodes, Ael,
as a function of d for pure water7 (blue) and 1.0 M NaCl aqueous solution (orange). (b)
Electrode charge auto-correlation function, ⟨δQ(0)δQ(t)⟩, divided by Ael as a function of t,
for all the considered inter-electrode distances.

23



Figure S10: Comparison between the characteristic time τQ computed from the integral
of the QACFs (symbols) and scaled formulas from analytical theories (dashed lines). The
optimal parameters γ1 = 0.102, γ2 = 0.036 and γ3 = 0.032 were obtained by fitting to the
simulation data.
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Figure S11: Comparison between the window functions W (see Eq. 34), the raw total charge
autocorrelation functions as calculated from the MD simulations, and the same after being
multiplied by W . Each plot reports the salt concentration, and the parameters ϵ and τ used
for the window function.
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Figure S12: Comparison between the window functions W (see Eq. 34), the raw total charge
autocorrelation functions as calculated from the MD simulations, and the same after being
multiplied by W . Each plot reports the interelectrode distance d, and the parameters ϵ and
τ used for the window function.
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Figure S13: Comparison between the window function W (see Eq. 34), the raw total dipole
moment autocorrelation function as calculated from the MD simulations of the bulk water
system, and the same after being multiplied by W .
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12 Tables

Table S1: Confined equilibrium simulations

[NaCl](M) Ael (Å
2) d (Å) ion pairs water molecules replicas simulation time (ns)

0.0∗ 1341.75∗ 49.4∗ 0∗ 2160∗ 1∗ 50∗

0.1 5367.00 49.3 16 8640 10 12
0.5 1341.75 49.8 20 2160 3 50
1.0 1341.75 25.6 19 1080 1 50
1.0 1341.75 50.6 39 2160 3 50
1.0 1341.75 98.0 78 4320 1 50
1.0 1341.75 198.4 156 8640 1 50
1.5 1341.75 51.0 59 2160 2 50

* Simulation results from Ref. 7.
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Table S2: Confined non-equilibrium simulations

[NaCl](M) Ael (Å
2) d (Å) ion pairs water molecules replicas simulation time (ns)

0.1 5367.00 49.3 16 8640 20 1.0
0.5 1341.75 49.8 20 2160 10 1.0
1.0 1341.75 50.6 39 2160 40 1.0
1.5 1341.75 51.0 59 2160 10 1.0
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Table S3: Bulk equilibrium simulations

[NaCl](M) V (Å3) ion pairs water molecules replicas simulation time (ns)
0.0 68468.11 0 2160 1 50
0.1 68468.11 4 2160 1 50
0.5 68468.11 20 2160 1 50
1.0 68468.11 39 2160 1 50
1.5 68468.11 59 2160 1 50
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Table S4: Bulk resistivity values ρbulk = 1/σ0 for each concentration, obtained by the
Einstein-Helfand (EH) or Green-Kubo (GK) methods or predicted by the Nernst-Einstein
(NE) equation. The results are compared with the resistivity of the confined system for
d = 5.07 nm, obtained from the cell resistance as ρ = RAel/dDDS.

[NaCl](M) ρEH
bulk (Ωm) ρGK

bulk (Ωm) ρNE
bulk (Ωm) RAel/dDDS (Ωm)

0.1 1.06 ± 0.11 0.510 ± 0.075 0.94 0.296 ± 0.030
0.5 0.23 ± 0.03 0.213 ± 0.007 0.19 0.200 ± 0.007
1.0 0.14 ± 0.01 0.120 ± 0.002 0.09 0.116 ± 0.004
1.5 0.10 ± 0.01 0.086 ± 0.001 0.06 0.096 ± 0.003
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Table S5: Optimal values for σ0 and σ2 resulting form the fit of the conductivity ℜ[σ(ω)] of
bulk electrolytes (see Eq. 15) and Fig. S5.

[NaCl](M) σ0 (S/m) σ2 (S s2/m)
0.1 2.0 ± 0.3 6.1E-21 ± 1E-21
0.5 4.7 ± 0.2 4.7E-21 ± 4E-22
1.0 8.3 ± 0.1 3.4E-21 ± 4E-22
1.5 11.6 ± 0.1 2.8E-21 ± 4E-22
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