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Abstract

Satellite-based remote sensing missions have revolutionized our understanding of the Ocean
state and dynamics. Among them, space-borne altimetry provides valuable Sea Surface
Height (SSH) measurements, used to estimate surface geostrophic currents. Due to the
sensor technology employed, important gaps occur in SSH observations. Complete SSH
maps are produced using linear Optimal Interpolations (OI) such as the widely-used Data
Unification and Altimeter Combination System (DUACS). On the other hand, Sea Sur-
face Temperature (SST) products have much higher data coverage and SST is physically
linked to geostrophic currents through advection. We propose a new multi-variate Ob-
serving System Simulation Experiment (OSSE) emulating 20 years of SSH and SST satel-
lite observations. We train an Attention-Based Encoder-Decoder deep learning network
(ABED) on this data, comparing two settings: one with access to ground truth during
training and one without. On our OSSE, we compare ABED reconstructions when trained
using either supervised or unsupervised loss functions, with or without SST information.
We evaluate the SSH interpolations in terms of eddy detection. We also introduce a new
way to transfer the learning from simulation to observations: supervised pre-training on
our OSSE followed by unsupervised fine-tuning on satellite data. Based on real SSH ob-
servations from the Ocean Data Challenge 2021, we find that this learning strategy, com-

bined with the use of SST, decreases the root mean squared error by 24% compared to
Ol

Plain Language Summary

The surface of the ocean is observed through various sensors embedded in satel-
lites. Specifically, the height of the sea surface is a crucial variable as it can be used to
estimate surface currents. It is currently measured through satellite altimeters, but the
data acquisition process leaves gaps in their observations. Providing fully gridded maps
of the sea surface height is thus an important interpolation problem. The widely used
interpolated product has some troubles, especially when dealing with small and rapidly
evolving eddies. To enhance its quality, we propose an artificial neural network, a train-
able method able to estimate complete sea surface height images. The flexibility of these
methods allows us to use different satellite information, such as the sea surface temper-
ature, which has a better resolution. Usually, neural networks are trained on a dataset
upon which they learn the link between input and output data. However, in a realistic
geoscience scenario, the output is never known for sure. We propose a dataset that sim-
ulates this problem and explores methodologies to train these methods. Finally, we de-
sign a new way of learning SSH reconstruction using both simulated data and real satel-
lite observation.

1 Introduction
1.1 Background

Since the first ocean remote sensing missions in the 1970s, satellite observation has
become one of the most determining contributions to understanding ocean state and dy-
namics (S. Martin, 2014). Through the years, satellites have provided a huge amount
of data of various physical natures with wide spatial coverage that complemented in situ
datasets. Among these techniques, satellite altimetry is used to retrieve the Sea Surface
Height (SSH) a determining variable of the ocean circulation. The SSH spatial gradi-
ent can be used to estimate geostrophic circulation, i.e. the currents issued from the equi-
librium between the Coriolis force and the pressure force in the surface layer of the Ocean.
SSH (also called Absolute Dynamical Topography by the altimetry community) is cur-
rently measured by nadir-pointing altimeters, meaning that they can only take measure-
ments vertically, along their ground tracks, by calculating the return time of a radar pulse.
This leads to large gaps in the observed SSH, and providing a gap-free product (L4) is



a challenging Spatio-Temporal interpolation problem. One of the most widely used L4
products in oceanography applications is provided by the Data Unification and Altime-
ter Combination System (DUACS) (Taburet et al., 2019). It is a linear Optimal Interpo-
lation (OI) of the nadir along-track measurements leveraging a covariance matrix tuned
on 25 years of data. However, several studies show that DuAcs OI misses some of the
mesoscales structures and eddies (Amores et al., 2018; Stegner et al., 2021). Improving
the reconstruction of gridded altimetry products remains an open challenge.

To enhance the quality of the SSH reconstruction and sea surface current estima-
tion, using additional physical information such as the Sea Surface Temperature (SST)
has been demonstrated to be beneficial (Ciani et al., 2020; Thiria et al., 2023; S. A. Mar-
tin et al., 2023; Archambault et al., 2023; Fablet et al., 2023). SST motion is linked to
ocean circulation (Isern-Fontanet et al., 2006), and therefore to SSH, as currents trans-
port heat in an advection dynamics. SST measurements obtained through passive in-
frared technology offer a remarkably high spatial resolution, ranging from 1.1 to 4.4km (Emery
et al., 1989), even if intermittent clouds introduce data gaps. On the other hand, microwave
sensors provide lower-resolution SST data (25km) which can be obtained through non-
raining clouds. Infrared and microwave data are then combined with in situ measure-
ments, to produce fully gridded SST maps (Donlon et al., 2012; Chin et al., 2017). Thus,
a crucial challenge lies in developing efficient reconstruction methods capable of fusing
data derived from different remote sensing techniques, each presenting distinct interpo-
lation challenges. This is essential to unlock the full potential of satellite oceanography
products.

1.2 SSH interpolation with deep neural networks

In the last decade, deep learning has emerged as one of the leading methods to ad-
dress image inverse problems. Neural networks demonstrated remarkable flexibility in
fusing observations from various sources and modalities, exhibiting their capacity to learn
complex relationships given enough training samples (McCann et al., 2017; Ongie et al.,
2020). Prior works proved that it is possible to use SST to enhance SSH reconstruction
with a deep-learning network, whether from a downscaling perspective (Nardelli et al.,
2022; Thiria et al., 2023) or an interpolation one (Fablet et al., 2023; S. A. Martin et al.,
2023). However, training neural networks usually requires fully gridded ground truth,
which is unavailable in a realistic geoscience scenario. To overcome this limitation, it is
possible to design a twin experiment of the satellite observing system on a numerical sim-
ulation, also called an Observing System Simulation Experiment (OSSE). Neural net-
works can then be trained on simulated data and applied to satellite observations. The
Ocean Data Challenge 2020 (CLS/MEOM, 2020) is a 1-year OSSE providing SSH sim-
ulated observations and ground truth, aiming to compare various reconstruction meth-
ods. Among them, Fablet et al. (2021) performed a supervised deep learning of the SSH
interpolation and extended their study using SST showing increased performance (Fablet
et al., 2023). However, if the SSH-only network was successfully applied to real data, adapt-
ing its SST-using version is still a challenging problem. Another way to overcome the
lack of ground truth is to employ loss functions allowing the neural network to learn from
observations alone. Archambault et al. (2023); S. A. Martin et al. (2023) trained a neu-
ral network using only SST and SSH observations showing the potential of unsupervised
learning for SSH interpolation. This last option has the advantage of not suffering from
the domain gap between the simulation and the real data, but we expect unsupervised
interpolations to produce less accurate reconstructions.

1.3 Contributions

First, as the previously existing Ocean Data Challenge OSSE provided only one
year of data without SST, it presents clear limitations to train neural networks. We pro-



pose a new OSSE that includes 20 years of SSH and SST data, with realistic simulated
observations of these variables.

Second, we compare a fixed neural architecture trained in a supervised and unsupervised
way, with or without SST. The SSH interpolation is learned by an Attention-Based Encoder-
Decoder (ABED) on our OSSE. Its assessment involves evaluating errors in SSH and geostrophic
currents reconstruction. Additionally, a comparison of the eddy structures is conducted,
both quantitatively and visually.

Third, we propose a hybrid learning strategy consisting of supervised pre-training on our
OSSE and unsupervised fine-tuning on real-world observations. Specifically, we compare

the same network architecture, trained in the three following manners: supervised on our
OSSE and directly applied to observations, trained directly on observations, and the pro-
posed hybrid approach.

This paper is structured as follows. In Section 2, after giving a rationale for lev-
raging SST information in the interpolation method, we detail our OSSE. In Section 3
we present our architecture and the training loss functions. In Section 4 we evaluate the
interpolation on our OSSE, in terms of SSH reconstruction and geostrophic circulation
errors. We also perform an eddy detection to demonstrate that SST-using methods re-
trieve more realistic ocean structures, and we compare ourselves to existing state-of-the-
art methods on the Ocean Data Challenge 2020 OSSE. Finally, we compare the learn-
ing strategies on real observations. In Section 5, we discuss the limitations and perspec-
tives of this work.

2 Multi-variate data

In the following, we provide a rationale for the SSH and SST relationship, outline
the reference data source we utilized (Global Ocean physics Reanalysis (CMEMS, 2020)),
and detail our OSSE’s SSH and SST observations. We also present the satellite obser-
vations that will be used for training and fine-tuning.

2.1 Physical relationship between SSH and SST

One of the most important uses of SSH data is to recover oceanic currents through
geostrophic approximation. It consists of supposing a static equilibrium between the sur-
face projection of the Coriolis force and the resultant pressure forces. Far from the Equa-
tor, where the Coriolis force projection is null, it is a good approximation of the circu-
lation. The surface geostrophic currents can be computed from the SSH h following Equa-
tion 1

_goh
(s]e) a
Wgeo = (ug > = T oy (1)
Ugeo goh
fox

where ugeo and vge, are the Eastward and Northward geostrophic currents,  and y the
Eastward and Northward coordinates and where f = 20, sin(¢) is the Coriolis factor,
), being the Earth the rotation period, ¢ the latitude and g the gravitational acceler-
ation.

In a first approximation, the surface temperature 7' can be considered as a passive
tracer transported by surface currents. The evolution of a scalar in a velocity field is de-
scribed by the linear advection given in Equation 2.
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Combining the geostrophic and the advection Equations (1,2), we understand why a time
series of SST observations should provide pertinent information for constraining the SSH



reconstruction. Several studies pointed out the interest in using SST to reconstruct SSH
as Isern-Fontanet et al. (2006); Gonzédlez-Haro et al. (2020), which established spectral
relations between SSH and SST in a Surface Quasi Geostrophic framework. However,
the physical link between temperature and SSH is more complex, as other phenomena
must be considered, such as diffusion, convection, circulation between water depths, at-
mosphere interactions, and viscosity. Satellite observations of temperature and sea sur-
face height also suffer from instrumental errors and are, by nature, limited to observing
the ocean surface. This is why neural network architectures, thanks to their flexibility,
seem appropriate to learn the complex underlying link between the data.

2.2 Observing System Simulation Experiment

To effectively replicate the relationship between the two variables, we propose an
Observing System Simulation Experiment (OSSE), meaning a twin experiment that ac-
curately models the satellite observations of the Ocean. This approach is widely used
in the geosciences community as it provides a way to test reconstruction methods and
errors (Gaultier et al., 2016; Amores et al., 2018; Stegner et al., 2021). With this mind-
set, SSH and SST variables of a high-resolution simulation are considered as the ground
truth ocean state upon which we simulate satellite measurements. The coherence of the
relation between SSH and SST is ensured by the physical model, while with our OSSE
we produce enough pairs of ground truth/observation to train a neural network.

In this paper, we denote X*** and X*** the ground truth fields of the SSH and SST
and Y*" and Y*¢, the simulated observations. Hereafter, we detail the reference dataset
of our OSSE and the observation operators of the two variables.

2.2.1 Base simulation

We conduct our experiments on the Global Ocean Physics Reanalysis product (GLO-
RYS12) (CMEMS, 2020). It provides various physical data such as SSH, SST, and oceanic
currents with a spatial resolution of 1/12° (around 8 km). GLORYS12 is based on the
NEMO 3.6 model (Madec et al., 2017) and assimilates satellite observations (SSH along-
track observations and SST full domain observations) through a reduced-order Kalman
filter. It is updated annually by the Copernicus European Marine Service, making it im-
possible to use in near real-time applications. We select a temporal subset of this sim-
ulation from 2000/03/20/ to 2019/12/29, for a total of 7194 days.

We select a portion of the Gulf Stream, between 33° to 43° North and -65° to -55°
East. This area is known for its intense circulation, its water mass of very different tem-
peratures, and is far enough from the equator that the geostrophic approximation can
be applied. Comparing the surface circulation of the model with its geostrophic approx-
imation, we find that an RMSE of 6.6 cm/s for uge, and 6.1 6.1 cm/s for vge,. Consider-
ing the high intensity and variations of the currents in the Gulf Stream (with 37.1 and
34.3 em/s of standard deviation for u and v respectively), geostrophy seems to be an ad-
equate estimation. Thus, we expect a significant synergy between SSH and SST which
a neural network can learn. For computational reasons, we resample the data to images
of size 128 x 128 with a bilinear interpolation, corresponding to a resolution of 0.078°
by pixel (approximately 8.7km). Doing so, the perceptive field of the network covers the
entire 10° by 10° area.

2.2.2 SSH simulated observations

The nadir-pointing altimetry satellites take approximately a measurement per sec-
ond, along their ground tracks. Their observations are a series of values with precise spatio-
temporal coordinates that we aim to simulate. To do so, we retrieve the support of real-
world satellite observations denoted Q2 = {§2; = (¢;,lat;, lon;),i € [0 : N]} from the Coper-



nicus sea level product (CMEMS, 2021). Using 2 and the ground truth data X**" we
simulate SSH observations Y**" as the trilinear interpolation of the simulated field on
each point of the support. We add an instrumental error € ~ N (0,0) with ¢ = 1.9cm,
which is the distribution used in the Ocean data challenge 2020 (CLS/MEOM, 2020).

The SSH observations Y**" is defined as following:

Yssh — HSSh (}(ssh7 Q) te (3)

where H**" is the trilinear interpolation operator of the ground truth X**" on the
support €. An example of these simulated along-track measurements is presented on the
first row of Figure 1. For the neural network input observations, we regrid these data
to a daily 128x128 image. We set the pixel value with no simulated satellite observa-
tion to zero, and we average the daily measurements of SSH inside each pixel to repre-
sent the mean of the daily data from the different satellites (if any). As GLORYS12 re-
analysis assimilates along-track SSH data, selecting satellite measurements at the same
location as the assimilated data might introduce a bias in our observations. To overcome
this issue, we desynchronize the real satellite ground tracks from the one we use to pro-
duce SSH observations by introducing a time delay (772 days) between the real L3 satel-
lite observations and the simulation. It ensures that simulated along-track data is selected
randomly, rather than specifically where the model assimilated real-world observations.
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Figure 1. Images of the ground truth SSH from GLORYS12, the simulated along-track mea-

surements, and the difference.

2.2.83 SST stmulated observations

SST remote sensing is based on direct infrared imaging, leading to wider measure-
ment swaths but making the data sensitive to cloud cover. The so-called L3 satellite prod-
ucts have much higher data coverage, but no observation is possible when clouds are present.
To fill the gaps, the L3 products from several satellites are merged and interpolated to
form the fully gridded image, using complementary microwave satellite sensors (which
produce lower resolution data but are less sensitive to clouds), and in situ measurements (Donlon
et al., 2012; Chin et al., 2017). This results in various resolutions in the same product,
where high-resolution structures are artificially smoothed when the cloud cover (C) is
too thick.

We simulate the SST observation operator H**! as follows:
Ysst — HSSt ()(sst7 C) — (1 _ C) @ (Xsst + 8) + C @ ggham * (Xsst _|_ 8) (4)

where ©® is the element-wise product, * the convolution product, and ¢ is a white Gaus-
sian noise image of size 32 x 32 linearly upsampled to a 128 x 128 image. We also use



a spatio-temporal Gaussian filter, G, , with o, = 1.23 days and o, ~ 16(km) to sim-
ulate the smoothing of the interpolation performed by satellite products. To compute

a realistic cloud cover C, we use 2 years of data from an NRT L3 product (CMEMS, 2023),
which we periodically replicate to match the length of our dataset. We then linearly in-
terpolate the cloud cover to our spatial resolution, and perform an average filter with

a kernel size approximately equal to 43 (km). This step is essential, as applying a binary
mask results in patches at the frontiers between cloud-free and cloudy regions. Our SST
observations thus present a spatially and temporally correlated noise, with different res-
olutions depending on cloud cover. In the end, H*** adds a noise with RMSE of 0.48°C
where the SST standard deviation of the ground truth is 4.96 °C, which we present in
Figure 2. This observation operator is different from real-world degradations but pro-
duces an image with an in-equal noise resolution similar to the errors present in the L4
SST products. Also, as SST presents strong annual variations that should be removed,
we deseasonalize it. For each SST image, we subtract the mean image calculated for the
corresponding day across the dataset. This is known to improve machine learning time-
series prediction (Ahmed et al., 2010), and in our case, it produces better reconstruc-
tions as shown in Appendix 6.3.
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Figure 2. Images of our cloud cover, the ground truth SST from GLORYS12, the noised SST,

and the difference.

2.3 Satellite observations

To constitute a dataset of real-world observations, we propose the L3 SSH prod-
uct that we used to recover realistic satellite ground tracks (CMEMS, 2021). These data
are the inputs used in the DUACS optimal interpolation process and are available from
the years 1993 to 2023. For the L4 SST product, we use the Multiscale Ultrahigh Res-
olution (MUR) SST (NASA/JPL, 2019). MUR SST is produced through an optimal in-
terpolation of infrared, microwave, and in situ measurements (Chin et al., 2017). Its res-
olution is very high (0.01°), so we linearly interpolate the data to our resolution (0.078°),
and are available from 2002/05/31 to the present. We select satellite observations from
2002/06/01 to 2022/02/09 for a total of 7194 days which is the same number of timesteps
that our OSSE. We also select the same geographical area between 33° to 43° North and
-65° to -55° East. The two data are presented in Figure 3.

3 Proposed interpolation method
3.1 Learning the interpolation

The observation operator H**" previously described can be seen as a forward op-
erator that we aim to inverse. In the past years, deep neural networks, especially con-
volutional neural networks, have proven their ability to solve ill-posed image inverse prob-
lems (McCann et al., 2017) and more specifically inpainting problems (Jam et al., 2021;
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Figure 3. Images of satellite observations of the SSH and the SST, respectively.

Qin et al., 2021). A neural network fy is trained on a database to estimate the true state
from observations fy(y) = &. Learning this inversion operator thus requires (y,x) pairs
(supervised) or only y (unsupervised) (Ongie et al., 2020).

We chose to perform the interpolation on a temporal window of 21 days; the in-
put is thus a tensor of 21 images of SSH, with or without SST images, and the output
is the 21 corresponding days of SSH only. The neural network estimates the true state
from observations, X" = f, (Y), where Y = Y**" for a SSH-only interpolation, and
Y = (Y“h, YS“) if the network uses SST. The length of the time window is discussed
in Section 4.1, and training losses of the network in Section 3.3.

3.2 Architecture

Convolutional neural networks, one of the most used deep learning methods in im-
age tasks, learn convolution operations able to identify features over space and/or time.
These networks have been used for multiple tasks in geosciences, from forecasting (Che
et al., 2022) to interpolation (Manucharyan et al., 2020; Fablet et al., 2021; S. A. Mar-
tin et al., 2023; Archambault et al., 2023), and from eddy detection (Moschos et al., 2020)
to super-resolution (Nardelli et al., 2022; Thiria et al., 2023), to name a few. Over time,
the machine learning community introduced various ways to organize these convolution
operations, each one presenting distinct advantages. Residual layers learn small mod-
ifications between their input and output, making neural networks easier to train (He
et al., 2016). Attention layers ponder their inputs by a factor between zero and one. This
allows subsequent layers to focus on important features while neglecting irrelevant ones,
which makes it well-suited to extracting information from contextual variables. It is widely
used in many computer vision tasks (Guo et al., 2021) and can be transposed to geoscience
applications such as (Che et al., 2022). An encoder-decoder architecture progressively
compresses and decompresses the input data, identifying structures at different resolu-
tions.

In this study, we compare different learning techniques on a fixed architecture: an
attention-based encoder-decoder (ABED) presented in Figure 4. This neural network ben-
efits from the layers described above. The overall structure of our neural network is in-
spired by Che et al. (2022), who introduced a residual U-Net with attention layers for
rain nowcasting. We removed U-Net residual connections that were not suited for the
interpolation task and changed the attention and the upsampling blocks. The encoder
starts with a batch normalization and a 3D convolution (in time and space) followed by
two downsampling blocks that divide spatial dimensions by 2 (see Figure 4). The decoder
is composed of residual attention blocks followed by upsampling blocks.

Hereafter, we describe our attention block, which consists of two essential steps:
temporal and spatial attention modules. Our approach builds upon the Convolutional
Block Attention Module (CBAM) principle introduced by Woo et al. (2018), which suc-
cessively performs channel and spatial attention. We extend this idea by incorporating
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Figure 4. The architecture of the proposed Attention-Based Encoder Decoder (ABED) neural
network. It is designed to take a time series of 21 images of SSH, with or without a time series
of SST. The encoder divides the spatial dimensions of the images by 4 through 2 “down-block”.
Then, a 3D attention layer block is used to highlight relevant information in the images, followed
by a residual connection. Finally, a decoding block upsamples the images, and attention and

decoding blocks are repeated to get back to the initial image size.

temporal information in the channel attention mechanism. To do so, we first compute

the spatial average of each channel and instant, resulting in a tensor of size C'xT where
C' is the channel number and T is the time series length. Subsequently, we apply two one-
dimensional convolutional layers with a kernel of size 1, followed by a sigmoid activation
function to estimate the attention weights. This corresponds to a 2-layer perceptron shared
by every time step, which is different from the CBAM, as it includes the temporal in-
formation in the channel attention. These weights are then multiplied to each timestep

of every channel, enabling the network to highlight salient features and suppress irrel-
evant information. After performing temporal attention, we proceed with spatial atten-
tion. This step involves utilizing a 3-dimensional convolutional operation, where the ker-
nel size’s temporal length matches the time series’s length. As a result, the entire time
series is aggregated into a single 2D image, which serves as the basis for deriving spa-

tial attention. A residual skip connection is then applied, and the described block is re-
peated 4, 2, and 1 time for the first, second, and last block, respectively. For further de-
tails about our implementation, we provide the PyTorch implementation of our network
in https://gitlab.lip6.fr/archambault/james2024.

3.3 Loss and regularization

We propose to compare two main strategies to train the neural network. Thanks
to the OSSE previously described, we have access to the ground truth, which we can use
to learn the interpolation in a classic supervised fashion. However, it is also possible to
train directly on observations by applying the H**" on the generated map Xssh before
computing the loss (see Equations 5,6,7). Filoche et al. (2022) performed the interpo-
lation with SSH observations only, and, using the same principle, Archambault et al. (2023)



showed that it was possible to estimate SSH images starting from SST only and constrain-
ing on SSH observations. Both these methods are fitted on one (or a small number) ex-
ample and must be refitted to be applied to unseen data. Using a larger real-world satel-
lite dataset, S. A. Martin et al. (2023) trained a neural network directly from observa-
tions by constraining it on independent satellite observations that were not given in the
input. However, the lack of ground truth reference makes it harder to compare the dif-
ferent reconstructions, especially regarding detected eddies and structures. We propose

to train neural networks using the 3 following losses:

e The MSE using ground truth:

~ 1 ~ 2
ssh sshy __ ssh ssh
[’sup(X X ) T Tx Hx W ;I y: (Xt,ﬂﬁay - Xtaﬂﬂ,y) (5)
e The MSE using only observations:
ssh ~rss 1 ss ssh (~rss 2
Lo (Y, X5) = =37 (ot — g (Xeh, ) (6)

7

¢ The MSE using only observations and the regularization introduced by S. A. Mar-
tin et al. (2023):

- . 1 9 9 . 2
ssh ssh ssh ssh ssh ssh ssh
Eunsup,reg (Y X ) :‘Cunsup (Y X ) + A1 N, EZ (as Yi - 83H (X )Z>
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(7)

where % is the along-track derivation of the SSH approximated by its rate of change
(see Appendix 6.1). T is the temporal length of the time series (here 21), H and W the
spatial dimensions of the images (here both equals 128), and N, Ny, Ny, the number of
satellite measurements of SSH, SSH first, and SSH second spatial derivative along satel-
lite tracks, respectively. We take A\; = Ay = 0.05 the regularization coefficients, the
same values used by S. A. Martin et al. (2023).

The losses L¢, and L6 reg aPPly the observation operator Hsh | before com-
puting the MSE, which allows the training in a framework where only observations are
available. Thus, from an interpolation point of view, the inversion methods that use these
losses are unsupervised as they can be trained without any ground truth image. How-
ever, if we constrain the network on the same observations that were given in input, an
over-fitting of along tracks will occur with no guarantee of generalization. To avoid this
problem, S. A. Martin et al. (2023) constrained their network on the observations of one
satellite that were withdrawn from the input. Similarly, we remove the data of one satel-
lite from the inputs but we calculate the loss function on all satellite observations (the
ones given and the ones left aside). In doing so, the network must generalize outside the
along-track measurement that was given as input. In Figure 5, we call Y5" the input

mn

observations and present an unsupervised inversion computational graph.

3.4 Training details

Train, validation, test split. We partitioned the OSSE dataset into three subsets: train-
ing, validation, and test data. We used the year 2017 exclusively to test our reconstruc-
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Figure 5. Computational graph of the proposed unsupervised interpolation method. The
neural network input is a 21-day time series of SSH satellite observations, excluding data from a
single satellite, and optionally includes SST measurements. The network estimates a time series
of SSH field states, upon which the observation operator is subsequently applied in order to de-
duce Y**". Finally, the Mean Squared Error between the Y**" and Y**” is used to control the

network.

tions (every analysis conducted in the following was performed on this data). We val-
idate our methods on three distinct time intervals: (1) from 2002/07/14 to 2003/07/28,
(2) from 2008/01/05 to 2009/01/18, and (3) from 2013/06/28 to 2014/07/13. The re-
maining data was used for training, but leaving a 15-day period to prevent data leak-
age.

Normalization. We normalize the artificial network’s input and output by subtract-
ing the mean and dividing by the standard deviation. The normalization parameters are
computed only on the neural network inputs, SST, or along-track data. Specifically, we
first perform this normalization for images related to SSH along-track measurements and
subsequently replace any missing values with zeros. We normalize the neural network
SSH outputs with the statistics computed on the input observations (so that the method
remains applicable in an unsupervised setting). When training with the regularized loss
of Equation 7, we also normalize the data from the first and second SSH along-tracks
derivative.

Training hyperparameters. We train every method using an ADAM optimizer (Kingma
& Ba, 2017) with a learning rate starting at 5.10~° and a decay of 0.99. We perform an
early stopping with a patience of 8 epochs. For the supervised training, the stopping cri-
teria is the RMSE of the reconstruction on the fully gridded domain on the validation
data, but in the unsupervised setting, we compute this RMSE on left-aside along-track
measurements. Doing so, the stopping strategy is still compliant with a situation where

no ground truth is accessible.

Ensemble. As neural network optimization is sensitive to its weight initialization, we
train 3 networks for every setting. The so-called “Ensemble” estimation is the average
SSH map of the 3 networks. An ensemble estimation helps stabilize performances and
enhances the reconstruction (Hinton & Dean, 2015). In the following, we call “Ensem-
ble score” the score of the previously mentioned ensemble estimation and “Mean score”
the average of the score of each network taken independently.

4 Results

In Sections 4.1 and 4.2, we compare the different training methods on our OSSE
to highlight the drawbacks of unsupervised learning and the advantages of SST. In Sec-
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tion 4.3, we assess the similarity of our OSSE and the previously existing one, the Ocean
Data Challenge 2020. In Section 4.4, we build upon the conclusions drawn in previous
sections to present a transfer learning method from our OSSE to observations.

4.1 SSH reconstruction and quality of derived geostrophic currents

We compare the fields estimated by the networks trained using the 3 losses L,
L insup a0d Lpcp ey With 3 different sets of input data: only SSH tracks, SSH and the
noised SST (denoted nSST), and noise-free SST (denoted SST). The noise-free SST pro-
vides an upper-bound performance of the neural network in the case of a perfect phys-
ical link between SSH and SST. We give the RMSE of the SSH estimates fields on the
test set in Table 1, and the RMSE on the velocity fields in Table 2. Systematically, the
ensemble reconstruction has a lower RMSE than the mean performance, which is usual
in machine learning, as individual member errors are compensated by others. Compar-
ing the ensemble scores, we observe that the supervised loss function outperforms the
unsupervised framework in every data scenario. Specifically, in the SSH+SST scenario,
the supervised loss decreases the ensemble RMSE of L., by 17%, and 9% without SST.
Also, adding SST as an additional input to the network generally improves performance
compared to using SSH alone. This improvement is observed across all three loss func-
tions, as the error values decrease for SSH+nSST compared to SSH. For instance, the
SSH-only ensemble RMSE is decreased by 31% and 20% for SST and nSST, respectively,
with L. The regularization introduced by S. A. Martin et al. (2023) slightly increases
reconstruction but is still close to the unregularized inversion.

‘ Loss ‘ SSH ‘ SSH+nSST ‘ SSH+SST ‘
Lo 416 — 3.81 | 3.34 — 3.03 | 2.97 — 2.63
L nsup 4.56 — 4.20 | 3.84 — 3.49 | 3.56 — 3.16
L 4.33 —4.07 | 3.76 — 3.52 | 3.48 — 3.20

unsup-reg

Table 1. SSH reconstruction RMSE in centimeters (mean score on the left and ensemble score
on the right) of 3 ABED networks. The interpolation is trained using the 3 different losses de-
scribed in Section 3.3 with the following settings: SSH-only interpolation, SSH and noised SST,

and SSH and noise-free SST. All metrics are given on the central image of a 21-day time window.

We estimate the surface currents from the reconstructed SSH from Equation 1, and
we compare it to the surface circulation of the model. The errors on velocity in Table 2
follow the same patterns as the RMSE on the SSH fields but with lesser differences be-
tween methods. The RMSE is not too far from the minimal error achievable through geostro-
phy, which is 6.57 cm/s for u and 6.14 for v on this data.

In Figure 6, we show the daily errors of the different methods on the test year. We
notice a strong temporal variability of the RMSE, with a notable increase in late sum-
mer. Specifically, in August and September, all methods are performing worse than in
Winter, which can be explained by the high kinetic energy of the ocean in summer (Zhai
et al., 2008; Kang et al., 2016).

An important challenge of ocean satellite products is to provide real-time estima-
tions, as many applications cannot use products available with too much time delay. In
an operational framework, products that are immediately available are called Near Real
Time (NRT) whereas those that require a time delay before release are called Delayed
Time (DT). While in Table 1 we presented the results obtained on the central image of
the time window, we can also display their scores along the 21-day temporal window as
in Figure 7. The central image is a 10-day Delayed Time reconstruction as we need im-
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‘ Loss ‘ SSH ‘ SSH+nSST ‘ SSH+SST ‘

‘ ‘ u v ‘ u v ‘ u v ‘
Lowp 128 139 | 11.1 12.0 | 10.1 10.7
c 134 155|120 14.1 | 11.1  13.1

unsup

12.8 143 | 11.7 129 | 11.0 12.0

unsup-reg

Table 2. Eastward (u) and Northward (v) surface currents in cm/s. The currents were esti-
mated by applying the geostrophic approximation (see Equationl) on the SSH ensemble estima-
tion of the 3 ABED networks.
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Figure 6. RMSE of the different reconstructions during the test year (2017).
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Figure 7. RMSE of the different reconstructions along the time window. The errors at a time
delay of —20 correspond to an anti-causal scheme (knowing only future observations) whereas
timedelay = 0 corresponds to a causal scheme (knowing no future observations). Knowing both

past and future observations leads to the optimal reconstruction at timedelay = —10.

ages of observations 10 days in the future. In Figure 7 we can verify that 21 days of data
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contain enough information to reconstruct the central image: for instance, 5 days from
the border of the temporal window the reconstruction error is just 3% higher than the
one at the center. This means that we can significantly reduce the delay (and therefore
the training cost of our model) without causing severe drops in performance, which could
be useful if applied in an operational framework. However, when it comes to producing
NRT products (0 delay) this graph shows that we expect a significant loss of quality in
the reconstruction which is usual (Amores et al., 2018; Stegner et al., 2021).

4.2 Eddy detection analysis
4.2.1 Importance of mesoscale eddies

Mesoscale eddies play an important role in ocean circulation and dynamics, and
their understanding leads to diverse applications in oceanography or navigation (Chelton,
Schlax, & Samelson, 2011). Previous studies underline how these structures transport
heat, especially between latitudes 0° and 40° in the North Atlantic (Jayne & Marotzke,
2002), but also salinity (Amores et al., 2017), or plankton (Chelton, Gaube, et al., 2011).
In practice, mesoscale eddies and structures are estimated through geostrophic currents
derived from satellite altimetry. However, operational satellite products such as DUACS
OI, have too coarse resolutions to resolve accurately mesoscale structures. Performing
an OSSE to simulate the satellite’s remote sensing, Amores et al. (2018); Stegner et al.
(2021) showed that Duacs-like optimal interpolation aggregates small eddies into larger
ones (i.e. with a radius greater than 100km). These interpolations also capture a small
percentage of eddies in the model simulation (around 6% in the North Atlantic) and change
the eddies’ distribution and properties. This is why we are interested in finding to what
extent our reconstruction methods can detect small eddies in the ground truth, and how
well the detected eddies are resolved and their physical properties conserved.

4.2.2 Automatic eddy detection algorithm: AMEDA

We use the Angular Momentum for Eddy Detection and tracking Algorithm (AMEDA)
introduced by Vu et al. (2018) to perform the eddies detection. It is based on the Lo-
cal Normalized Angular Momentum (LNAM), a dynamic metric first introduced by (Mkhinini
et al., 2014), that we define hereafter:

—
PP XV .

LNAM(P;) = 277 LA = =3 LZBL (8)

> PPV + 3 PPy ot Bl

where P; is the point of the grid where we compute the LNAM, P; is a neighbor point

of the grid, P;P; is the position vector from P; to P; and Vj is the velocity vector in P;.
Thus, the unnormalized angular momentum L; is computed through a sum of cross prod-
ucts and is bounded by BL;, so that if P; is the center of an axisymmetric cyclone (resp
anticyclone), LNAM(P;) will be equal to 1 (resp -1). Also, if the circulation field is hy-
perbolic and not an ellipsoid, S; will reach large values, and LNAM(P;) will be close to
0. All sum is computed on a local neighborhood of P;, which is a hyperparameter of the
method (typically a square centered in P;). In our case, we used the default parameters
where the square has a length of 2Az, with Az being the grid resolution (~9km).

AMEDA finds potential eddy centers by searching for the local extrema of the LNAM
field, more precisely by taking the points P; where | LNAM(P;)| > 0.7. The character-
istic contour of an eddy is then defined as the closed streamline of maximum velocity which
does not include another eddy center. We perform the AMEDA algorithm on the geostrophic
velocity field of our estimation and on the ground truth currents. We then look for the
eddies that are both present in the ground truth and in our estimation. An eddy is said
to be detected if the distance between its barycenter and the reference one is smaller than
the average of the mean radius of the two characteristic contours. This definition allows
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“multiple” detection (i.e., colocalization with several eddies). Therefore, we exclude ed-
dies that include more than one candidate in the ground truth. For further details about
the AMEDA algorithm, we refer the reader to Vu et al. (2018).

4.2.3 FEddy detection performances

We present the detection scores of the different reconstruction methods, with three
data scenarios and three losses. We take the ensemble SSH estimation of the neural net-
works and perform the AMEDA algorithm on the velocity field derived through the geostrophic
approximation (see Equation 1).

In Table 3 we present the Fj score, the recall, and the precision of the methods.
The recall tells us the proportion of actual positive instances that were correctly iden-
tified by the detection (a recall of 1 means that all ground truth eddies were detected).
The precision gauges our trust in the detected eddies (a precision of 1 means that all ed-
dies in the simulation were also present in the ground truth). To aggregate recall and
precision, we use the Fj score, which is the harmonic mean of recall and precision. A value
of 1 means a perfect detection: all ground truth eddies were detected, and the estima-
tion produced no false positives.

| Loss | SSH | SSH+nSST | SSH+SST |
‘ H F1 ‘ recall ‘ precision H Fy ‘ recall ‘ precision H F1 ‘ recall ‘ precision ‘
Leup 0.699 | 0.607 0.825 0.735 | 0.657 0.833 0.762 | 0.705 0.83
L ynsup 0.692 | 0.634 0.76 0.715 | 0.665 0.772 0.731 0.694 0.771
L 0.684 | 0.581 0.831 0.704 | 0.608 0.835 0.713 0.622 0.836

unsup.-reg

Table 3. Scores of the AMEDA eddy detection performed on the Ensemble estimation of ABED

interpolation. The considered scores are the precision, the recall, and the F; score.

Data comparison. As expected, no matter which loss we consider, the noise-free tem-
perature detection method outperforms the two other scenarios with higher F scores.
Even the noisy SST provides important information for eddy reconstruction, as the SSH-
only method yields lower results than the two other scenarios. We also see that for each
loss, the precision scores are less impacted by the input data than the recall is. This means
that the SSH-only scenario does not produce a lot more false detection than the SST meth-
ods but misses much more structures.

Loss comparison. On the other hand, the loss function used to perform the inversion
substantially impacts precision and recall. The regularization of the unsupervised loss
brings the detection precision to the level of the supervised method (even higher for the
SSH-only and SSH4SST) but also reduces the recall of all methods compared to their
unregularized version. In other words, the regularization prevents the neural network from
generating false eddies and from retrieving some structures, which leads to lower Fj scores.

Visual comparison. We plot in Figure 8 the SSH maps and eddies detected by AMEDA,

and in Figure 9 the relative vorticity £ computed from geostrophic currents (see Equa-

tion 1) as follows:

¢ - Ovgeo  Ougeo )
ox Jy

Relative vorticity is an important quantity in the analysis of surface circulation as it high-

lights areas of important direction change of the stream. ¢ is positive in counterclock-

wise spin and negative in clockwise spin. In the presented figures, we normalize relative
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Figure 8. SSH maps and detected eddies the 15* June 2017 on our OSSE. The first line
presents the True SSH, the noised SST, and the True SST, on which we plot the eddies detected
on the True SSH. The second, third, and last lines present respectively the inversion using Lg,p,
Lunsups and Lynsup reg- The first, second, and last columns present the maps using the SSH-only,
SSH+nSST, SSH+SST data, respectively. Each SSH map is the ensemble reconstruction of 3

networks with their associated eddies.
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Figure 9. Relative vorticity (normalized by the Coriolis factor) and detected eddies on the 1%
June 2017 in our OSSE. The first line presents the True relative vorticity. The second, third, and
last lines present the neural networks trained with Ly, Lunsup, a0d Lynsupreg- Lhe first, second,
and last columns present the SSH-only, SSH+nSST, and SSH+SST interpolations. Each relative

vorticity map is computed from the ensemble SSH estimation of the 3 networks.

vorticity fields by the Coriolis factor f. Figures 8,9 illustrate an example of the conclu-
sions established in Table 3: the SSH-only reconstruction shows fewer eddies than the

ones using SST, and aggregates small eddies into larger ones (see highlighted eddies).

We also see the effect of regularization, especially in the relative vorticity fields, which

are a lot smoother than the ones in the supervised and regularized inversion. This smooth-
ing effect results in a reduced number of detected eddies, as illustrated by the two high-
lighted eddies that are detected separately when SST is used without regularization.
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4.2.4 Physical properties of detected eddies

To further investigate the performance of the eddy detection methods, we analyze
the detection outcomes based on the physical characteristics of the eddies. For instance,
smaller eddies tend to have shorter lifespans, making them more challenging to detect
due to their decreased likelihood of being observed by satellites. Conversely, high-speed
eddies are derived from important sea surface height (SSH) variations, thus exhibiting
a strong signature in the generated mapping. Figure 10 shows the detection performances
as a function of some key parameters such as maximum radius, lifetime, or maximum
velocity along the final closed current line.

As anticipated, using SST and nSST data contributes to the detection of eddies,
as indicated by the higher F} scores achieved in every loss scenario. However, small and
short-lived eddies are less frequently detected, resulting in lower recall scores. Specifi-
cally, only 17% of the eddies with a radius below 15km are successfully detected in the
best scenario. Nonetheless, except for the unregularized loss function, the precision scores
for the detected eddies remain high, even for small and short-lived ones. This observa-
tion confirms the previously observed phenomenon where the regularization employed
in the inversion process prevents the network from generating false eddy detections but
also stops it from capturing a significant portion of the actual eddies. This regulariza-
tion behavior is expected, as forcing a smoothness constraint on the SSH gradient field
leads to denying some of the small structures.

We also want to assess the model’s accuracy to estimate the eddies’ physical prop-
erties. To this end, we focus on the eddies that were successfully detected by all the meth-
ods (3534 eddies out of the 7908 eddies in the ground truth) and compare the physical
parameters of the estimated eddies to their values in the corresponding true eddy. We
compute the RMSE and bias of the following parameters: maximum radius and veloc-
ity of the characteristic contour of the eddies. Once again, Tables 4 and 5 show that SST
helps to estimate eddies radius, and velocity. Nonetheless, there is a bias of radius and
velocity: the size of the eddy is statistically overestimated compared to its ground truth,
while its speed is systematically underestimated. This is particularly true for the reg-
ularized unsupervised loss because of its smoothness constraint, with a velocity bias ac-
countable for half of the RMSE.

‘ Loss H SSH H SSH+nSST H SSH+SST ‘
‘ H RMSE ‘ bias H RMSE ‘ bias H RMSE ‘ bias ‘
- 167 | 36 || 157 | 42 || 147 | 3.7

L
L 16.6 0.9 16.3 15.5 1.3

unsup
16.6 3.9 16.5 15.7 4.5

unsup-reg

Table 4. Eddies maximum radius RMSE and bias (km). The eddy detection is performed on
geostrophic currents of the ensemble estimation and the bias is computed from the estimated

radius minus ground truth radius.

‘Loss ‘ SSH H SSH+nSST H SSH+SST ‘

| | RMSE | bias || RMSE | bias || RMSE | bias |

Lo 143 | -5.3 || 124 | -3.1 || 11.7 | -2.0
L nsup 144 | -5.7 | 134 |-33 | 125 | -29
152 | 83| 139 | -74 | 132 | -65

unsup-_reg

Table 5. Eddies maximum velocity RMSE and bias (cm/s).
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Figure 10. Detection scores of the different methods on eddies separated by radius (first row),
lifetime (second row), and maximum velocity (last row). The considered scores are F; (first col-
umn), recall (second column), and precision (third column). The recall tells the proportion of
actual positive instances that were correctly identified, the precision gauges the trust that we can

put in the detected eddies, and the Fi score aggregates these two values.

4.3 Comparison with state-of-the-art methods on a NATL60 OSSE

Comparing various SSH interpolation methods requires a common benchmark and
metrics. The Ocean Data Challenge 2020 (CLS/MEOM, 2020) provides an OSSE sim-
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ilar to the one described in Section 2, the state-of-the-art estimations and metrics. The
included data are the ground truth SSH, nadir-pointing observations, and a simulation
of the SWOT (Surface Water and Ocean Topography) observations, a new altimetry tech-
nology (Gaultier et al., 2016). In this study, we have excluded the SWOT measurements
as we do not simulate them in our OSSE and focus on nadir-pointing data. The ground
truth is the NATL60 simulation (Ajayi et al., 2019) which uses the same physical model
(NEMO 3.6) (Madec et al., 2017) but at finer scales than GLORYS12, and without as-
similation. Given that the NATL60 model also outputs SST and ocean currents fields,
we retrieved and used these variables, even though they were not included in the offi-
cial depository of the challenge. The state-of-the-art frameworks presented in this chal-
lenge are the following;:

* DUACS: the operational linear optimal interpolation leveraging covariance matrix
tuned on 25 years of data;

+ DYMOST (Ubelmann et al., 2016; Ballarotta et al., 2020) and M10ST (Ardhuin et
al., 2020): two variants of the linear optimal interpolation where the Gaussian co-
variance model is changed for a non-linear quasi-geostrophic dynamic model (for
DYMOST) or by a wavelet base (MIOST);

« BFN (Le Guillou et al., 2020): a data assimilation method that performs a back
and forward nudging of a quasi-geostrophic model;

+ 4pvarNet (Fablet et al., 2021): a deep learning framework supervised on the Ocean
Data Challenge 2020. In this configuration, it only takes SSH observations as in-
put;

« MUSTI (Archambault et al., 2023): an unsupervised neural network fitting SSH along
tracks observations starting from an SST image. The fact that this method must
be fitted to new observations, limits its operational use.

This benchmark is not complete as the ConvLTSM interpolations introduced by S. A. Mar-
tin et al. (2023) were trained on real satellite observations only, and the 4DvarNet ver-
sions using SST were only computed using SSH observations from nadir pointing satel-
lites and SWOT data (Fablet et al., 2023). Still, we are interested in evaluating the re-
constructions of our networks, trained on our OSSE, on the Ocean Data Challenge 2020
to show the similarity of the two simulated observation systems. To produce our esti-
mation, we regrid the provided data to our resolution (from 0.016° to 0.078°) using tri-
linear interpolation. We use the SSH simulated observations of the data challenge and
the SST of the corresponding NATL60 simulation. The test period includes 42 days of
simulation (between 2012/10/22 and 2012/12/02) as defined in the challenge. As such,
the comparison is not fully fair since regridding and not training on the same data might
bias the scores obtained. It is still a good way to evaluate the similarity of our OSSE to
the Ocean Data Challenge 2020, as our approach obtains comparable performances to
the state-of-the-art. Each method is then evaluated using the following metrics, and we
sum up the results in Table 6:

» 1 and oy (in cm), are respectively the RMSE of the SSH and the temporal stan-
dard deviation of this RMSE. In the data challenge, these two metrics are normal-
ized by the root mean square of the SSH, but we prefer giving it in centimeters
to be coherent with the rest of the work;

« Az (in degrees) and A; (in days) are two spectral metrics, introduced by (Le Guil-
lou et al., 2020). We compute respectively the spatial and temporal power spec-
trum of the error, A\, is then the smallest spatial wavelength where the power spec-
trum of the error is equal to the power spectrum of the signal and \; its tempo-
ral equivalent. For further information, we refer the reader to (Le Guillou et al.,
2020);

* iy, and p, (in cm/s) are the RMSE between the NATL60 currents and the geostrophic
currents of the estimation.
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Method ‘SST‘SUP‘M‘@‘)\I‘&‘,uu‘uv‘

DUACS X X 4.89 | 3.02 | 1.42 | 12.08 | 16.8 | 16.2
DYMOST X X 5.18 | 3.05 | 1.35 | 11.87 | 16.8 | 16.8
MIOST X X 421 | 25 | 1.34 | 10.34 | 149 | 145
BFN X X 4.7 | 273 | 1.23 | 10.64 | 15.1 | 15.3
4DvarNet X 4 3.26 | 1.73 | 0.84 | 795 | 13.1 | 12.8
MUSTI 4 X 312 | 1.32 | 1.23 | 4.14 | 12.2 | 14.2
ABED-SSH Ly, X 4 3.75 | 20 | 1.21 | 874 | 13.3 | 135
ABED-SSH L6 X X 4.06 | 219 | 1.32 | 929 | 13.7 | 15.1
ABED-SSH Lysup reg X X 423 | 2.36 | 1.24 | 998 | 13.8 | 14.2
ABED-SSH-SST L, v v 2.88 | 1.24 | 095 | 451 | 11.4 | 114
ABED-SSH-SST L p6up 4 X 3.08 | 1.41 | 1.18 | 5.18 | 11.8 | 12.8
ABED-SSH-SST Lynsupreg | ¥ X 3.39 | 1.65 | 1.18 5.7 12.4 | 12.3

Table 6. Comparison of the state-of-the-art reconstruction methods on the Ocean Data Chal-
lenge 2020. SST stands for whether or not the reconstruction methods are using SST, and SUP

stands for whether or not the methods are supervised.

We see in the scores a predominance of neural network-based methods (MUSTI, 4DvarNet
and ABED) as the importance of the SST in the reconstruction (MUSTI, and ABED). The
ABED-SSH networks do not perform as well as 4DvarNet, but better than optimal inter-
polations (DUACS, DYMOST, MIOST) and BFN. This analysis further supports using SST
data in deep learning-based methods for these inverse problems. We can expect around
2 cm of error reduction on the operational interpolation scheme DUACS with our best method
(41% of reduction). We also significantly reduce the errors on currents compared to DU-
ACS’s, by 5.7cm/s for u and 5.4 cm/s for v (35% and 34% error reduction).

4.4 Application to real satellite observations

In this section we focus on applying the developed methods to real observations
with two objectives in mind: show the utility and realism of our OSSE compared to the
pre-existing one, and explore transfer learning strategies. To evaluate our method on a
shared benchmark, we use the Ocean Data Challenge 2021 (CLS/MEOM, 2021), which
provides one year of real SSH nadir observations and evaluation metrics. All the eval-
uations presented in this section are computed on the along-track data from the CryoSat-
2 satellite left aside in all the benchmarked methods. The comparison is done on the en-
tire 2017 year, which is the year that we left aside from training on our OSSE to avoid
data leakage. To be coherent with the area covered by all the methods, the evaluation
area is smaller than the one of the OSSE (between 34° to 42° North and -65° to -55° East).
These real-world measurements present instrumental errors that produce much higher
RMSE scores than the ones computed on the OSSE. Also, as we do not have access to
complete SSH maps, the metrics used are u, oy, and A, (in km this time). For methods
requiring SST information, we use satellite SST from (NASA/JPL, 2019) described in
Section 2.3.

4.4.1 OSSE comparison

In this part, we compare the generalization to real satellite data of models trained
on our OSSE with models trained on the Ocean Data Challenge 2020. As this last dataset
provides one year of data it can also be used to fit neural networks, but as shown in Ap-
pendix 6.2, training on a longer dataset drastically improves reconstructions. As the ex-
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isting OSSE does not provide SST data, it is possible to use NATL60 SST, but the lack
of realistic noise leads to a domain gap with real data. To this day, if SSH-only neural
networks have been successfully transferred to real SSH data, this is not the case for SST-
aware ones. We compare ABED trained in a supervised way on our OSSE (SSH-only or
using noisy SST), and on the Ocean Data Challenge 2020 (SSH-only or with NATL60
SST output). To train ABED on NATLG60 data, we regrid the input and target data to
our resolution, and use the data split of the challenge (CLS/MEOM, 2020); validation

of the training between 2012/10/22 and 2012/12/02, and fitting on the remaining days.
We use the same hyperparameters as for the training on our OSSE.

Once networks are trained on the simulation, we perform inferences on real data,
excluding the tracks from the independent satellite. In Table 7, we present the mean and

Method | Training OSSE data | w(em) | oulem) | Ag(km) |
ABED-SSH Ocean Data Challenge 2020 || 8.90 — 8.50 | 3.18 — 3.10 | 148 — 143
ABED-SSH-SST | Ocean Data Challenge 2020 || 10.11 — 9.73 | 3.38 — 3.30 | 142 — 137
ABED-SSH Ours 6.63 —6.35 | 2.02 —1.90 | 122 — 119
ABED-SSH-SST Ours 6.28 —6.06 | 1.77 — 1.73 | 115 — 113

Table 7. Comparison of ABED networks trained on our OSSE to the ones trained on the Ocean
Data Challenge 2020. All the metrics are computed on independent real data of the Ocean Data
Challenge 2021. The left scores are the mean performances on three networks and the right ones

are the ensemble scores.

ensemble scores of the models on the Ocean Data Challenge 2021. As expected, ABED
performs significantly better when trained on our OSSE. Specifically, ABED-SSH-SST trained
on the Ocean Data Challenge leads to higher errors than its SSH-only version, which shows
the domain gap between NATL60 and satellite SST. We conclude that the length of our
OSSE and the addition of SST realistic noise enhanced the reconstructions of the real-
world SSH.

4.4.2 Transfer OSSE learning to real-world data.

Enhancing real-world SSH reconstruction using the information of a simulation is
a typical transfer learning problem, where we have access to ground truth in a source
domain (OSSE) but not in a target domain (satellite data) (Pan & Yang, 2010). Given
the losses described in Section 3.3 and a satellite dataset (see Section 2.3), we can con-
sider three ways to apply our methodology to the Ocean Data Challenge 2021. We par-
tially presented this experiment in (Archambault et al., 2024).

Observation only: Perform an unsupervised training on real-world data, with the loss
function described in Equation 6. The training hyperparameters and dataset split are
the same as the ones used in the OSSE study (see Section 3.4).

Simulation only: Use the networks trained on our OSSE in a supervised way directly
on satellite data. As the test year of our OSSE and one of the Ocean Data Challenge
2021 are the same, we have no issues with data leaking.

Pre-training on OSSE and fine-tuning on satellite data: After the supervised pre-
training on OSSE data we fine-tune the neural network on satellite data for a few epochs
using the unsupervised loss. The fine-tuning is done using a small learning rate of 1.107°
and a decay of 0.9. We use an early stopping with a patience of 8 epochs and we save
the best model on the validation set.
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We present in Table 8 the RMSE on the Ocean Data Challenge 2021 of 3 ABED net-
works trained with the previously mentioned methodologies. One of the first conclusions
we can draw from these reconstruction scores is the interest of our OSSE in the train-
ing process. The networks fitted on the simulation perform better than their equivalent
trained with observations only, except for the network trained using noise-free SST. This
shows that our SST noise is realistic, as introducing SST noise during pre-training is ben-
eficial for generalization to satellite data. Secondly, in every data scenario, the pre-trained
and fine-tuned networks perform significantly better than their version trained on ob-
servation or simulation. In particular, once fine-tuned, the networks pre-trained on nSST
and on SST lead to close performance, whereas without fine-tuning, the network trained
on noise-free SST produces the worst reconstruction. Given an appropriate fine-tuning
strategy, the features learned on noise-free SST that do not apply to satellite data are
effectively modified. From this experiment, we conclude that combining supervised train-
ing on our OSSE with unsupervised re-fitting on satellite data increases performance,
especially if SST is used.

. [nput data SSH SSH-+nSST | SSH4SST
Learning method

Observation 7.07—6.75 | 6.63 — 6.27 —
Simulation 6.63 — 6.35 | 6.28 — 6.06 | 6.89 — 6.68
Pre-training & Fine-tuning 6.49 —6.28 | 6.02 — 5.82 | 6.04 — 5.84

Table 8. Along-track SSH RMSE in centimeters (mean score on the left and ensemble score
on the right) of 3 ABED networks, computed on 1 year of data provided by the Ocean Data Chal-
lenge 2021. The training strategies include observation-only training (with satellite SSH and
SSH+nSST), simulation-only training (SSH, SSH4+nSST, SSH+SST), and fine-tuned networks
(SSH, SSH+nSST, SSH+SST). For the Fine-tuned networks, when a network is pre-trained with
noise-free SST, it is still fine-tuned with noisy satellite SST.

In Table 9, we compare our method to the state-of-the-art interpolation methods
provided in the context of the Ocean Data Challenge 2021. The included methods are
the same as in Table 6, plus the ConvLTSM-SSH and ConvLTSM-SSH-SST (S. A. Martin
et al., 2023). We give ensemble scores of the three pre-trained and fine-tuned ABED net-
works using only SSH, or SSH and the noised SST. The enhanced scores of ABED-SSH-
SST and ConvLTSM-SSH-SST compared to their SSH-only versions emphasize the improve-
ments brought by the SST. ABED, convLTSM and 4DvarNet lead to better SSH gridding
than optimal interpolation-based methods (DUACS, DYMOST, MIOST) both in terms of
RMSE and effective spatial resolution. We also note a significative drop in RMSE score
for the BFN method compared to its OSSE reconstruction, which shows that the ideal-
ized QG model is less applicable to real-world observations.

In Figure 11, we present the SSH maps on the different reconstruction methods with
their associated relative vorticity (see Equation 9). The three first methods (DYMOST,
DUACS, MIOST) present smooth vorticity maps as a consequence of the optimal interpo-
lation. All the vorticity maps from neural network-based methods: 4DvarNet, MUSTTI,
CconvLTSMs, and ABEDs have higher contrast and also some artifacts due to convolution
operations. 4DvarNet in particular, produces very high-frequency variations on which
we can see the input satellite path. We suppose this is a consequence of the U-Net’s skip
connections whereas the other networks have Encoder Decoder architectures, less prompt
to produce high-frequency noise. For the last four methods, ConvLTSM-SSH, ConvLTSM-
SSH-SST, ABED-SSH, and ABED-SSH-SST, we highlights areas where small structures are
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Method | SST | Learning | w(em) | oe(em) | Ag(km) |

DUACS X X 7.66 2.66 149
DYMOST X X 6.75 2.00 131
MIOST X X 6.75 2.00 139
BFN X X 7.46 2.59 119
4DvVarNet X Simulation 6.56 1.84 107
MUSTI v Observation 6.26 1.96 114
ConvLTSM-SSH X Observation 6.82 1.86 114
ConvLTSM-SSH-SST v Observation 6.29 1.60 108
ABED-SSH X Pre-training & Fine-tuning | 6.28 1.82 118
ABED-SSH-SST v | Pre-training & Fine-tuning | 5.82 1.61 108

Table 9. Comparison of the state-of-the-art reconstruction methods on the real satellite data
of the Ocean Data Challenge 2021. SST stands for whether or not the reconstruction methods
are using SST. ABED-SSH and ABED-SSH-SST stands for the ensemble score of our pre-trained and

fine-tuned networks.

visible in the vorticity maps of the SST-using methods but not in their SSH counterparts.
The similar shape of the structures between ConvLTSM-SSH-SST and ABED-SSH-SST sug-
gests that they are linked to the use of SST and not the deep learning method.

5 Conclusion and perspectives
5.1 Summary

In this work, we designed a new OSSE emulating 20 years of satellite observations
of SSH and SST while the previously existing OSSE provided only one year of simulated
SSH observations (CLS/MEOM, 2020). We were able to train an Attention-Based En-
coder Decoder using 3 different loss functions (2 of them learning the reconstruction with-
out ground truth), on three different sets of data (SSH only, SSH and noised SST, SSH,
and SST). We show a systematic interpolation improvement thanks to the use of SST.
Using temperature data (noisy or not), the unsupervised inversion outperforms even the
supervised SSH-only neural network (3.86 cm of RMSE for the unsupervised noisy SST
against 4.18 cm for the supervised SSH-only method). This shows the importance of con-
textual information to constrain this inverse problem, even while learning with obser-
vation only.

Using AMEDA, an automatic eddy detection algorithm, we were able to identify
cyclones and anticyclones in the ground truth and compare them with the eddies detected
in the geostrophic approximation of the different mappings. This allows a deeper phys-
ical interpretation than the SSH reconstruction alone. We conclude that SST aids in cap-
turing finer structures that might be overlooked by SSH-only methods and that SST-
using methods better render the key physical properties of the detected eddies, such as
size, speed, or center position. Furthermore, in unsupervised reconstruction, we show that
the non-regularized and regularized inversions have close detection scores, but their er-
rors are different. The regularized inversions exhibited lower recall scores, indicating that
certain eddies were not detected due to the smoothing effect of the regularization pro-
cess. However, they demonstrated higher precision scores, implying increased confidence
in the successfully detected eddies.

We evaluate ABED trained using the data from our OSSE on the Ocean Data Chal-
lenge 2020 and compare it with state-of-the-art interpolation techniques. We show that
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Figure 11. SSH maps and Relative Vorticity maps (normalized by the Coriolis frequency) of
the methods from Table 9. The SSH maps are used to compute geostrophic currents from which
we derive Relative Vorticity. Due to the different areas covered by the methods, we plot the SSH
and RV on a portion of the training area; from 34.25° to 41.75° North and from -64.75° to -56.75°
East. On the last four relative vorticity maps, we highlight some regions where small structures
are visible in the SST-using interpolations and not visible (or less salient) in their SSH counter-

parts.

the utilization of SST led to a substantial improvement of 41% in terms of RMSE for
SSH compared to the widely used L4 product from DUACS. Moreover, we observed sig-
nificant improvements of 34% and 35% for u and v currents, respectively. These find-
ings present promising perspectives for advancing satellite SSH gridding through the ap-
plication of deep learning methodologies and the fusion of diverse physical information.

Finally, we presented a novel training strategy, using jointly OSSE and real-world
satellite observations. We proposed to perform a transfer from the OSSE to the satel-
lite domain by pre-training the neural network on the OSSE and fine-tuning it on a real-
world dataset in an unsupervised way. Comparing the same network trained following
three strategies: on simulation only, on observations only, or the one introduced here,

-2 5,



we found that using together simulation and satellite data leads to better performances.
Specifically, our transfer method achieves state-of-the-art performances on the Ocean Data
Challenge 2021, on which we report an RMSE improvement of 24% compared to DUACS.

5.2 Perspectives

SSH Forecast. This study focused on a delayed time interpolation of the SSH.
However, near real-time and forecast data are often useful in many operational appli-
cations, such as navigation and meteorology. In future works, we would be interested in
extending the output window in the future compared to the input one. In doing so, the
neural network would be trained to interpolate and forecast the SSH simultaneously. We
would be interested to compare a method doing the two tasks simultaneously to a method
doing it successively.

Global interpolation. Furthermore, many challenges still need to be addressed
to get toward a global gridded SSH product. For instance, as the geostrophic equilib-
rium depends on the Coriolis force surface projection and thus on the latitude consid-
ered, we may require a model to be trained on several areas with different latitudes. Also,
we can wonder which strategy is more efficient between training a global model or sev-
eral local models, each one specialized for a range of latitude or geographical area. Closed
seas and coastal water also have very different physical interactions and might need to
be reconstructed by different methods.

Using different input and output data. We have demonstrated the benefit of
using multi-physical information, specifically SST, to enhance SSH reconstruction through
the implementation of a flexible neural network framework. The integration of data from
diverse physical sources exhibits promising outcomes, yet conventional model-based meth-
ods encounter challenges due to noise and observational difficulties associated with real-
world data. In contrast, machine learning opens doors to augment these methods with
diverse and abundant data sources. For instance, we employed noisy yet complete SST
data in our investigation, but using L3 SST products is also possible. Furthermore, an
intriguing prospect arises as to whether Level 4 (L4) and Level 3 (L3) SST products can
be effectively combined, thereby potentially yielding even more precise and exhaustive
information. Other physical measurements might improve the reconstruction, such as
chlorophyll maps that track plankton advected by currents (Kahru et al., 2012).

Data availability statement

The GLORYS12 data (CMEMS, 2020) that we used as a reference throughout this
study are freely available and distributed by the European Union-Copernicus Marine Ser-
vice (https://doi.org/10.48670/moi-00021). The L3 altimeter (CMEMS, 2021) mea-
surements used to retrieve along tracks coordinates and the L3 SST measurements(CMEMS,
2023) used to compute a realistic cloud cover are distributed by the same service (with
doi:
https://doi.org/10.48670/M0I-00146 and https://doi.org/10.48670/M0I-00164
respectively).

The data of the Ocean Data Challenge 2020 OSSE (ground truth, inputs, and base-
lines) are available at https://doi.org/10.24400/527896/A01-2020.002 and were de-
veloped, validated by CLS and MEOM Team from IGE (CNRS-UGA-IRD-G-INP), France
and distributed by Aviso+. To this benchmark data, we add the SST and the surface
current of the NATL60 simulation available here:
https://github.com/CIA-Oceanix/4dvarnet-james-uv-ssc.
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The Satellite dataset is composed of the L3 altimeter measurements previously de-
scribed (CMEMS, 2021), and the Multiscale Ultra-High Resolution SST dataset(NASA/JPL,
2019), available on the following links:
https://podaac. jpl.nasa.gov/dataset/MUR25-JPL-L4-GLOB-v04. 2.

The Ocean Data Challenge 2021 (CLS/MEOM, 2021), data and baselines are avail-
able here: https://doi.org/10.24400/527896/a01-2021.005. We add to this bench-
mark the estimated maps from (S. A. Martin et al., 2023) and (Archambault et al., 2023),
taken from https://zenodo.org/records/7730739 and
https://gitlab.1lip6.fr/archambault/visapp2023, respectively.

The preprocessed data and the weights of our neural networks are available here:
https://doi.org/10.5281/zenodo.8380280 and our code is hosted on the following
repository: https://gitlab.lip6.fr/archambault/james2024.
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6 Annexes
6.1 Along-track spatial derivatives

We calculate the SSH’s first and second spatial derivatives along the satellite ground
track as described in Equation 10 and 11. Given Y**", the list of SSH measurements from
one satellite (sorted in time), we approximate the derivative by the rate of change of the
SSH:

b ssh _ Y§sh
S Y (10)
Q vy ssh o) ssh
iz ssh %Yiil — %YES (11)
0s2 " As

where Y3$%" is the i-th measurement of SSH, As; is the ground distance between the SSH
measurements, and As} is the ground distance between the two first derivative approx-

. . . . . . 2
imations. The lists of first and second spatial derivatives, 2Y*" and 2;Y**", are re-

centered on new coordinates, corresponding to the dual coordinates of the Y*** and %Y“h,
respectively. We only compute the spatial derivatives from observations coming from the
same satellite and only if the measurements are taken with less than two seconds of de-

lay. This way we estimate spatial derivatives only where the rate of change is a valid ap-

proximation of the derivation.

6.2 Impact of the OSSE temporal length on training

Our OSSE dataset is composed of 7194 days, which leads to 5504 training days once
the partition between train, validation, and test sets is made. To evaluate the interest
in using more data to constrain the neural network, we train ABED network in the op-
timal configuration (supervised and using noise-free SST). We compare the scenario where
all the samples are seen during training with those where only half, a quarter, or a sin-
gle year of the dataset is used. The validation and test sets remain unchanged, while the
training subset is the first consecutive days from the initial training set. Table 10 presents
the RMSE of the reconstructions on the test year of our OSSE. The scores of the net-
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works trained with different dataset sizes clearly show better reconstruction performance
when the size increases.

‘ Size ‘ Full ‘ 1/2 ‘ 1/4 ‘ 1year‘

| Number of training samples | 5504 | 2752 | 1376 | 365 |
| RMSE (cm) | 297 | 3.97 | 4.77 | 7.76 |

Table 10. Mean RMSE score (in cm) of 3 ABED networks trained on our OSSE in a supervised
manner using SSH and noise-free SST. We compare the situation where the full, half, a quarter,

or one year of the dataset is used.

6.3 Impact of the SST deseasonalization on reconstruction

In the results presented in this work, we deseasonalized the SST data in the inputs
of the neural networks. In Table 11, we show the RMSE of the neural network using “na-
tive” SST and the ones using deseasonalized SST. We see that this preprocessing oper-
ation decreases the RMSE in every scenario.

‘ Loss ‘ SSH+SST ‘ SSH+SST (deseasonalized) ‘
Lo 3.19 — 2.88 2.97 — 2.63
L insup 3.50 — 3.09 3.56 — 3.16
L 3.52 — 3.26 3.48 — 3.20

unsup-reg

Table 11. SSH reconstruction RMSE in centimeters (mean score on the left and ensemble
score on the right) of 3 ABED networks. The interpolation is trained using the 3 different losses
described in Section 3.3 with the following settings: SSH + noise-free SST and SSH + deseason-
alized noised-free SST.
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