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ABSTRACT
The recently proposed MA-BBOB function generator provides a

way to create numerical black-box benchmark problems based on

the well-established BBOB suite. Initial studies on this generator

highlighted its ability to smoothly transition between the compo-

nent functions, both from a low-level landscape feature perspective,

as well as with regard to algorithm performance. This suggests that

MA-BBOB-generated functions can be an ideal testbed for auto-

mated machine learning methods, such as automated algorithm

selection (AAS).

In this paper, we generate 11 800 functions in dimensions 𝑑 = 2

and 𝑑 = 5, respectively, and analyze the potential gains from AAS

by studying performance complementarity within a set of eight

algorithms. We combine this performance data with exploratory

landscape features to create an AAS pipeline that we use to inves-

tigate how to efficiently select training sets within this space. We

show that simply using the BBOB component functions for training

yields poor test performance, while the ranking between uniformly

chosen and diversity-based training sets strongly depends on the

distribution of the test set.

CCS CONCEPTS
• Theory of computation→ Bio-inspired optimization.

1 INTRODUCTION
Over the last decades, the number of algorithms which tackle con-

tinuous optimization problems via iterative search procedures has

drastically increased [1]. With this development, the question of

selecting an appropriate algorithm for a given problem has become

harder to answer [32]. Not all algorithms are equally proficient in all

types of optimization problems, resulting in significant complemen-

tarity between different optimizers. As such, algorithm selection

techniques are becoming increasingly popular, since they have the

potential to exploit some of this performance complementarity [12].

At their core, algorithm selectors map information about the

problem to be solved to a specific algorithm instance that is expected

to perform particularly well on this problem. In its simplest form,

this mapping can be based on high-level information, such as the

number, types, and ranges of the decision variables and information

about the available budget [23]. In the strict black-box setting, we

cannot expect to have more information about the problem instance

at hand. However, one can decide to invest a small fraction of the

budget to extract properties of the problem instance, for example

via so-called exploratory landscape analysis (ELA) techniques [22],

which are designed to characterize important properties such as

the ruggedness of a problem, its separability, the fit of linear or

quadratic models, and so on.

ELA-based algorithm selection methods have shown quite some

promise, highlighting that using some samples to collect more

detailed information about the problem is worthwhile compared to

just running a single algorithm, as this allows the selector to exploit

additional layers of performance complementarity [3, 14]. However,

a series of recent works indicate that the good performances that

these selectors achieve within well-known benchmark suites hardly

transfer to other problem collections, even when these are chosen

to be very similar to the original ones [16, 35]. These observations

raise an important question regarding the generalization ability of

the algorithm selectors. In the broader context of benchmarking,

research suggests that careful selection of problems can have a

clear impact on the results of benchmarking [4] and performance

prediction of optimization algorithms [27], suggesting that the same

should be true within an algorithm selection context.

To assess the extent to which the choice of training instances in-

fluences performance on different test sets, we explore the recently

proposed MA-BBOB problem generator [39], which facilitates the

generation of large numbers of problem instances. Precisely, we

collect algorithm performance data for 11 920 MA-BBOB problems

in dimensions 2 and 5, respectively. We then split these sets into

training and test sets. We compare three methods for instance

selection: (1) using the BBOB functions (which are used in the MA-

BBOB framework as components to generate new problems), (2)

random selection, and (3) a greedy selection maximizing diversity

with respect to the ELA features. We observe that, while training

on random instances gives the best performance on the full set of

problems, the greedy selection leads to better performance on more

equally distributed testsets.

2 THE MA-BBOB GENERATOR
Within numerical derivative-free black-box optimization, the BBOB

suite, which has been proposed as part of the COCO platform [9],

has become one of the most used sets of benchmarking problems.
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The single-objective, noiseless version of BBOB consists of 24 scal-

able functions, of which different instances can be created by apply-

ing a set of transformations [10]. These transformations preserve

the high-level structure of the problem and allow for assessing the

presence of certain biases of the algorithms, although it is not guar-

anteed that low-level features are consistent between all instances

of a problem [19, 34].

While the BBOB suite provides a useful setup for benchmarking

optimization algorithms, it is not specifically designed to handle

techniques from (per-instance) Automated Algorithm Selection (AAS)
[12]. AAS methods which use BBOB as a test-suite either use a

train-test split based on functions, where the distance between the

training and test sets can become quite large (leave-one-problem-out
scenario) [33], or based on instances, where the distance becomes

very small (leave-one-instance-out scenario), [27].
Several methods have been proposed in the last years to ob-

tain functions that fill the instance space spanned by the BBOB

functions, using Genetic Programming [18, 26], random function

generation [36], or recombining the BBOB functions via affine com-

binations [7].

Since the latter approach is particularly scalable while preserving

interesting problem properties, we focus on affine combinations

of BBOB functions in this work. More precisely, we consider the

multi-affine BBOB function generator (MA-BBOB) proposed in [40].

Extending the initial concepts by [7] and [41], theMA-BBOB genera-

tor allows to combine an arbitrary number of the 24 BBOB functions

through affine combinations. This generator incorporates a rescal-

ing of the component functions to ensure each component has a

similar impact on the final function value if given equal weight. To

ensure the global optimum is known and unbiased, a uniform sam-

ple inside the domain is picked as the optimum, and the component

functions are translated to have their optimum at this location, with

an optimal function value of 0 to allow for easy comparison. The

MA-BBOB functions are accessible through the IOHexperimenter

environment [6], which facilitates the data generation via the exist-

ing interface to, e.g., the large body of algorithms available in the

Nevergrad platform [30].

3 EXPERIMENTAL SETUP
Function Generation. To explore the range of problems which

can be generated using MA-BBOB, we opt not to use the default

instantiation procedure proposed in [40]. Instead, we cover the

full range of the number of active component functions combined,

from 2 to 24. Since the function combinations with many combined

components are more likely to be similar to each other, we divide

the number of functions generated into two parts. For 2 to 5 active

components, we generate 2 000 functions each, while for 6 to 24

active components, we limit ourselves to 200 functions each. This

results in a total of 11 800 functions per problem dimensionality.

Each function has a uniformly distributed location of the optimum

and uses, for each active component function, an instance that is

chosen uniformly at random among the first 100 instances available

in COCO’s BBOB implementation. The weights used in the affine

combination are also generated independently and uniformly at

random for each active component, before being normalized to sum

up to 1.

In addition to the generated MA-BBOB functions, we also make

use of the component functions. Specifically, this means that we use

the rescaled versions of the original BBOB problems. The rescaling,

proposed in [40], uses scaling factors that ensure each function has

a target of 10
2
which is similarly easy/hard to find. In this study,

we limit ourselves to the first 5 instances of these rescaled BBOB

problems (for a total of 120 problem instances).

ELA calculation and selection. To calculate the ELA-features, we

make use of the Pflacco package [29]. From the set of available

features, we select only those that can be calculated based on a

single sampling of the function space, i.e., those that do not require

adaptive sampling strategies. To extract the features, we use 500𝑑

points obtained from the Sobol’ sequence. To increase the robust-

ness of the feature values, this sampling is repeated 5 times for

each function, and the resulting values are averaged. Using this

selection procedure, we obtain 74 features from the following sets: 9

ela_meta- [22], 4 ela_distr- [22], 10 ela_level- [22], 9 pca- [15],
13 limo- [15], 6 nbc- [13], 17 disp- [20] and 6 ic-features [25].

Since many of these ELA-features are quite similar and have

shown high correlation when calculated on the 24 BBOB func-

tions [31], we apply a subset selection procedure based on feature

correlation, computed using all of the 23 840 functions. First, we

rigorously remove all features which returned an infeasible value

for any of the analyzed functions. This leaves us with 57 features.

For these features, we then determine their pairwise Pearson corre-

lations and we count for every feature to how many other features

the current feature has a Pearson correlation larger than 0.9. We

then eliminate features in an iterative fashion, always removing the

one that has the largest number of features whose pairwise Pearson

correlation exceeds 0.9. This leaves us with a total of 29 features:

8 ela_meta-, 3 ela_distr-, 6 ela_level-, 2 nbc-, 6 disp- and 4

ic-features. Their pairwise correlation for the two-dimensional

problems are illustrated in the upper left part of Fig. 6.

To allow for better comparability of feature value ranges and,

therefore, problem diversity analysis, we perform min-max normal-

ization of all ELA features. The minimum and maximum values of

each feature are determined from all feature values calculated on

the 11 920 functions within one dimensionality.

Training instance selection for AAS. To create the training sets

for our AAS setting, we make use of three separate techniques:

The first, and most commonly used one, is to simply select

the training instances uniformly at random from the full function

set [12]. This selection method preserves the underlying distribu-

tion of the full dataset, which can be advantageous for test perfor-

mance, but might hinder generalizability to more varied testsets,

as discussed in the introduction.

The second instance selection method is aimed at ensuring high

diversity in feature space. We use an iterative greedy approach,

where in each step we add the function whose feature values are

most different to those of the functions that are already selected,

where “different” is measured in terms of Manhattan distance cal-

culated on the 29-dimensional ELA feature vectors.

The third instance selection method is specific to our MA-BBOB

setting: we use the component functions, i.e., the rescaled BBOB

functions, as training instances. Since we have multiple instances

for each BBOB function, the sets can be constructed either using a
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single instance for each BBOB function (resulting in a training set

of size 24) or using all 5 instances for each function (for a training

set of size 120).

We use the above-describedmethods to select training sets of size

𝑠 ∈ {24, 120} (for all three methods) and 𝑠 ∈ {600, 1 200, 1 800, 3 600}
(for the first two methods only).

To make our results more robust, we sample multiple training

sets for each method and set size. Since we will use these same sets

throughout testing scenarios as well, we ensure that different repeti-

tions of the same sampling are fully disjoint. This limits the number

of repetitions of the larger training set sizes. Specifically, we use 𝑟 =

(10, 10, 5, 3, 3, 2) repetitions for 𝑠 = (24, 120, 600, 1 200, 1 800, 3 600).
Note that this process is performed separately for the two differ-

ent problem dimensionalities. While some studies prefer to create

a single model where problem dimensionality is an additional in-

put [33], our focus is on per-dimension models to avoid variations

in ELA-features caused by dimensionality [24].

Finally, it should be noted that another extensive instance selec-

tion procedure has been proposed recently [4]. We do not incorpo-

rate this methodology, as the graph-based approach does not scale

very well to the large number of instances that we consider in this

work and since our scope is different in that we aim at measuring

the interaction between training and test instances.

Performance Data Collection. Our algorithm portfolio consists

of 8 optimizers, of which 6 are taken from the Nevergrad pack-

age [30]: Differential Evolution, RCobyla, ConfiguredPSO, GOMEA,

DiagonalCMA, and MultiBFGS. In addition, we make use of the

default configurations from two modular optimization algorithms:

modDE [38] and modCMA [37]. Each algorithm is run on all 11 920

functions described above. This experiment is performed in both

dimensionalities, 2 and 5. For each function, we collect performance

data (using the IOHexperimenter package [6]) of 15 independent

runs (50 for the rescaled BBOB functions), with a budget of 2 000𝑑

function evaluations per run. We then use the trajectories of these

runs to compute the area over the convergence curve (AOCC) as an

anytime performance measure [21]. To be consistent with existing

work on BBOB, we use a logarithmic scaling between precision

values 10
2
and 10

−8
in the AOCC calculation. With this choice, the

AOCC values are equivalent to the area-under-the-ECDF measure

commonly used in benchmarking of numerical black-box optimiza-

tion algorithms [2, 9].

Reproducibility. To ensure the reproducibility of our results, our

data collection and feature computation setup, as well as the exact

settings used to generate the 11 920 functions, are made available

on our Zenodo repository [8]. In addition to these scripts, it also

contains the processed performance data from all algorithms and

all code used to create, analyze and visualize the results of the

AAS methods. Finally, we have also uploaded additional figures,

including alternative versions of the figures shown throughout the

remainder of this paper, to Figshare [8].

4 RESULTS
4.1 Complementarity analysis
We assess the complementarity of the MA-BBOB functions and the

rescaled BBOB functions in terms of their problem properties and

with respect to the performance achieved by the different solvers.

Problem properties. For the complementarity analysis of the prob-

lem characteristics, we make use of the 29 ELA features selected in

Section 3. In Fig. 1 we plot the feature values of all five instances of

the two-dimensional BBOB functions next to the feature values of

all generated two-dimensional problems with 2 and 24 active com-

ponent functions. Even though we only show the two-dimensional

data here (for reasons of space), the five-dimensional data goes in

accord with the following observations. As already mentioned, we

expect generated problems with a larger number of active compo-

nent functions to be more similar to each other. This is confirmed

by Fig. 1 in the sense that many of the feature value ranges of the

problems with 24 active components are significantly smaller than

the corresponding feature value ranges of the BBOB problems or

the functions with 2 active component problems. The ic.m0 feature
on the very right of Fig. 1 gives a good example of this observation.

The same can also be stated for the 2 active component functions

when comparing them to the BBOB functions but in a much less

pronounced fashion.

Overall, when comparing the generated function subsets to the

BBOB subset, we see that none of the feature ranges are located

on entirely different ends of the scale, suggesting that the com-

posed MA-BBOB functions are not too different from their base

functions. This interpretation is further supported by Fig. 2. Here

we make use of a principal component analysis (PCA) to project

the 29-dimensional ELA feature vectors of all functions to 2d. The

transformation matrices of the PCA projections are determined

based on the normalized ELA vectors of the first five instances of

the two- and five-dimensional BBOB problems individually and

are used to project the generated functions into the so-constructed

two-dimensional feature space. We color-code all instances of the

BBOB functions according to the color bar on the bottom. The color

of the generated functions is chosen according to the number of

active component functions – see color bar on top of Fig. 2.

The last observation for Fig. 2 is that for both analyzed dimen-

sions, the generated functions almost exclusively remain within

the convex hull spanned by the BBOB functions. This confirms the

finding from [7] and expands it by showing the inability of larger

numbers of component functions to traverse past these borders.

We see that functions with a two-digit active component function

number reside along a diagonal in the feature space, suggesting

that more diversity can be expected from single-digit active com-

ponent function numbers. Nevertheless, the generated functions

complement the BBOB set in that they fill large amounts of the

feature space that was left unoccupied by the BBOB functions in

both dimensions.

Solver performance. AAS methods aim to exploit the fact that

different optimization algorithms have their own strengths and

weaknesses, and no single algorithm will perform best over all pos-

sible optimization problems. However, for problem sets of limited
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Figure 1: Boxplots of the selected ELA feature values of the two-dimensional BBOB function set (blue), and the two-dimensional
function subsets with 2 (orange) and 24 (green) active component functions, respectively. Generally, the value ranges of the
subgroups do not appear to be extremely different from each other. Instances with 24 active component functions become very
similar which is resembled by the narrowed feature value ranges.

size or diversity, it might still be the case that the potential improve-

ments from algorithm selection are limited by a single algorithm

performing exceedingly well, or from all algorithms achieving sim-

ilar levels of performance on each problem.

To measure the amount of complementarity between the al-

gorithms described in Section 3, we make use of the difference

between the algorithm which performs best on average, the Single
Best Solver (SBS), and the average performance of the best algorithm

on each instance, the Virtual Best Solver (VBS). The difference in
their performance indicates howmuch can be gained by going from

no algorithm selection at all to a perfect selection method which

selects the ideal solver on each instance. In Fig. 4, we show the

relation in performance between the SBS (which, in this case, is the

modcma) and each individual algorithm. Dots above the diagonal

correspond to instances for which selecting the shown algorithm

would lead to an improvement over the SBS. We notice that all

algorithms have some functions on which they are preferable over

SBS, although for COBYLA this amount is low at only 395 (≈ 3.3%)

of the many-affine functions, even though it outperforms the SBS

on 59 (≈ 50%) of the BBOB problems.

The VBS-SBS gap (computed as the difference in average AOCC

of the respective methods) of the algorithms shown in Fig. 4 is 0.043,

the values are calculated by determining the absolute difference

between SBS and VBS performance for all two-dimensional prob-

lems and averaging it. While this suggests there is some potential

for algorithm selection, modCMA is the top-performing among the

eight algorithms on 6 665 out of the 11 920 instances (≈ 56%). While

this indicates that there is some performance complementarity, in

order to maximize our ability to differentiate between different

algorithm selection settings, we look for subsets of our portfolio

which have higher complementarity. To do this systematically, we

measure the VBS-SBS gap for each possible subset of our algorithm

portfolio. The results of this analysis are shown in Fig. 5, where

the sets are separated by their corresponding SBS. In this figure,

each dot corresponds to one of the items from the powerset, and

the shape of the dot encodes the number of solvers in this set. Since

the y-axis corresponds to the VBS-SBS gap, the higher the dots, the

better the complementarity of the algorithms in the portfolio. By

comparing the height of different color dots in each column, we

observe that reducing the size of a portfolio by removing a non-SBS

solver can only negatively impact the VBS-SBS gap. However, by

removing the SBS from a set, we can achieve significant increases

in complementarity. The subset with the largest complementarity

(triangular dot on the top right of the figure) is a portfolio of 3

algorithms, among which GOMEA performs best. However, since

this set contains only three algorithms (RCobyla, GOMEA, and

MultiBFGS), we opt to use instead the second-most complemen-

tary set, which contains all solvers except for modCMA. With a

portfolio of seven algorithms, this still makes for an interesting

algorithm selection task. While the same analysis has also been

performed for the 5-dimensional functions, suggesting a portfolio

of DifferentialEvolution, RCobyla, GOMEA, and MultiBFGS, we

decided to use the same portfolio of seven algorithms also in the

𝑑 = 5 case. For the latter, the VBS-SBS-gap is 0.083.

4.2 Automated Algorithm Selection
With the feature representation and algorithm portfolio established

in the previous sections, we can now analyze the relation between

these aspects. We start by considering pairwise correlation between

all 29 ELA features and AOCC values of all available algorithms,

visualized in Fig. 6. Here, we can see that while our feature pre-

processing removed the most correlated landscape features, there

are still some rather large correlations between features within the

feature sets. Within the algorithm performance, correlations are

generally smaller, which matches our findings from Fig. 5. Since the

correlation between algorithm performance and individual features

is relatively small, it seems unlikely that a univariate model would
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Figure 2: PCA projection of the ELA feature vectors of the
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stances (larger dots), for 2𝑑 (top) and 5𝑑 (bottom). Projections
are fitted using the BBOB functions. The colorbar on the bot-
tom corresponds to the BBOB function ID, whereas the one on
the top is used to display how many functions were combined
to create the respective MA-BBOB function. The MA-BBOB
functions fill the feature space spanned by the BBOB functions
but mostly remain within its convex hull.
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Figure 3: Visualization of the selected two-dimensional in-
stance sets, using the same PCA projection as in Fig. 2. The
left column shows five of the uniformly sampled sets of size
120 and the right column shows five of the greedily sampled
sets. Colored points are BBOB functions, using the colorbar
from the bottom of Fig. 2. As expected, the greedily sampled
function sets are more evenly spread in feature space while
the uniform randomly sampled sets are more likely to occupy
the area with the highest function density.

be sufficient to predict algorithm performance, and we should in-

stead aim to exploit relations between features to build an accurate

algorithm selector.

Our algorithm selection task boils down to predicting the cor-

rect algorithm from our portfolio of 7 algorithms, given the 29-

dimensional ELA-vector representing the given problem. We opt to

use a classification algorithm directly, rather than regression-based

selection. The classification model we use is the XGBClassifier [5],

with default parameter settings for multi-class classification. These

choices are made to keep our pipeline simple [17].

Impact of sampling strategy. To analyze the effect of different

sampling strategies of training and testing data, we focus on data

set sizes of 120. The reasoning for this choice is twofold – on one

hand this allows us to directly compare to the first five instances

of the BBOB functions as one training data set while on the other

hand comparable AAS studies often only relied on similar sizes

when it comes to training data (e.g. [14] with training data size

of 95). In Fig. 3 we show the distribution of problem instances in

the 2𝑑 feature space that was constructed on the two-dimensional

BBOB functions for Fig. 2. The left column of the figure shows repe-

titions 1-5 of uniform randomly sampling our set of 11 920 problem

instances. In the right column we find the first five repetitions of

data sets which were sampled using the greedy selection approach

(maximizing ELA diversity). All black dots are generated functions

and colored dots are BBOB functions, re-using the color bar from

the bottom of Fig. 2. It is clearly visible that the greedily sampled

sets are more evenly spread across the feature space while the uni-

formly sampled sets resemble the general problem distribution by

including more problems in the feature space area with the high-

est overall problem density. The greedily selected instances, thus,

contain a more diverse set of problems which might be expected
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Table 1: Average pairwise Manhattan distance between the
functions across all subsets of the indicated data set size.

data set size greedily selected randomly selected

24 6.81 4.22

120 5.78 4.35

600 5.18 4.51

1 200 5.04 4.62

1 800 4.82 4.55

3 600 4.60 4.53

to benefit the ability of a model to generalize to unseen functions.

Note that with increasing data set size the greedily selected data

sets differ less from the randomly selected ones. To illustrate this

effect, we report in Tab. 1 the average pairwise Manhattan distance

across all subsets generated with the same data set sizes. We see that

with increasing data set size, the values for the greedily selected

data sets converge to those of the randomly selected data sets.

In Fig. 7 we show the performance of all models that were trained

on a dataset size of 120 two-dimensional functions. Each row of
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Figure 5: Potential of algorithm selection to improve over
the SBS, measured in average AOCC improvement of the
VBS over the SBS, for all portfolios using at least 3 of the 8
algorithms for which we have collected performance data.
Data points are grouped by SBS (columns) and by portfolio
size (symbol). The modCMA algorithm is very dominant in
our portfolio, leaving little room for algorithm selection.
When removed from the portfolio, the average VBS-SBS gap
is 0.111, the second largest value obtained across subsets.

the heatmaps represents one training scenario as annotated in the

figure. The performance is measured in percentage of average SBS-

VBS gap closed on the data set given by the column annotation.

Blue cells therefore correspond to scenarios where the AAS does

not manage to outperform the SBS, whereas the dark red ones are

the settings that benefit most from the selector.

The column "unseen" refers to all two-dimensional problems

out of the 11 920 that have not been part of the 120 problems which

the respective model was trained on. As visible in the diagonal, all

trained models are able to close the average VBS-SBS gap entirely

on their respective training data set. This could be a warning sign of

over-fitting on the training data. With the exception of three scenar-

ios with randomly selected training and test sets, all models manage

to outperform the SBS for training sets that were constructed by the

same approach. We can, therefore, say with some certainty that the

models have learned relationships between features and algorithm

performances that enable them to make helpful decisions even for

unseen data.

Overall, the models trained on greedily selected data sets show

a more heterogeneous performance, e.g., the model trained on the

greedily selected data set number 7 performs particularly poorly on

randomly selected data sets and the unseen data. When looking at

the performances of models that were trained on either the greedily

or randomly selected data and evaluated on sets constructed by

the other method, we find that models trained on greedily selected

data perform worse on the randomly selected subsets than vice

versa. This is surprising since, as stated above, our expectations

were that models trained on more diverse data would outperform

models trained on randomly selected data. Generally, the randomly

selected data sets seem to pose a harder challenge to our learner
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of choice since even the models trained on randomly selected data

sets have more difficulties to perform well on those data sets than

on the greedily selected data sets.
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Figure 8: Mean percentage of VBS-SBS gap closed for the
two-dimensional case. The performance is averaged over
all models trained on all repetitions of subsets given by the
rows and evaluated on all evaluation data set repetitions
(with the exception of the training data set). Even with rather
small training data set sizes, the VBS-SBS gap can be closed
to a certain degree, as long as the training set distribution
matches the test set distribution. It is possible to mitigate
the disadvantage of non-matching training and test data set
distributions by increasing the training data set size.

When evaluating both types of models on the first five instances

of the BBOB functions, we find that for this scenario, on average,

the models trained on greedily selected data come out on top. This

could be due to the fact that greedily selected data sets tend to

contain more BBOB functions than randomly selected data sets, as

partly visible in Fig. 3. If we instead consider the performances on

all unseen data per model, models trained on randomly selected

data sets are the better choice. These results are an indication that

not the feature-space diversity but rather matching distributions of

training and testing data sets are the decisive factor that drive the

performance on the test sets.

Finally, looking at the model trained on the first five instances

of the BBOB functions, we see that it is not able to outperform the

SBS in any of the evaluation scenarios – confirming our belief that

training AAS models only on BBOB does not generalize.

Impact of training data set size. Lastly, we look at the effect of

different training data set sizes on the performance of the models.

This is a particularly interesting analysis since it is expensive to

evaluate new solvers on large sets of benchmark functions to re-

train an AAS model. Fig. 8 again shows the percentage of average

VBS-SBS gap closed, but this time the performances are aggregated

by taking the mean over all repetitions of data sets with a certain

size both as training and evaluation data sets. The ticks on the y-

axis with labels ’b’, ’g’ and ’r’ represent the different data selection

methods ’bbob’, ’greedy’, and ’random’. To bring this into context

with Fig. 7 and make it a little bit easier to understand – the value

in Fig. 8 that is declared as trained on randomly selected data sets

with size 120 and evaluated on randomly selected data sets with

size 120 corresponds to the average of all values shown in the top

left heat map in Fig. 7, putting aside the value of the diagonal (we
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ignore this scenario because it corresponds to identical training

and evaluation data).

We observe that a training data set size of 24 is not sufficient

to achieve satisfying performances of the AAS models. Still, there

already are observable differences in performance between the dif-

ferently selected training data sets. A random selection is favorable

for all evaluation scenarios with the exception of the BBOB func-

tions. However, since using the BBOB functions as training set is

primed to be better and the models trained on greedily selected

functions are also not able to improve upon the SBS performance,

this scenario does not carry much weight.

Throughout all training data set sizes, we find that models,

trained on a data set with matching sampling strategy to the respec-

tive evaluation data set, are able to close the VBS-SBS gap further

than models trained on data with a different sampling strategy.

Values that are consistently slightly smaller within one evaluation

and training category correspond to evaluation instances where

the data set sizes and selection strategies of evaluation and training

data sets match. In these cases we have entirely disjoint training

and evaluation data sets. Thus, for the models trained on randomly

selected data sets these values are similar to the performances these

models achieve on the unseen data sets since both subsets share

the same distribution. For models trained on greedily selected data

sets these specific values are also consistently a little lower, but still

higher than their performance on unseen data because greedily

selected evaluation data sets do not share a distribution with the

unseen data. For greedily trained models we lose performance with

increasing evaluation data set size since the distribution becomes

closer and closer to the overall distribution and, thus, starts to differ

from the training set distribution. Within one training data set size

the models trained on randomly selected data always outperform

the other models when evaluating on unseen data. We take this

as another sign for the importance of training data set distribu-

tion for AAS. We also find that when increasing the training set

size to the next higher level, the performance on unseen data of

models trained on the greedily selected data catches up to the per-

formance of models that were trained on randomly sampled data

with a smaller training size. Thus, by increasing the size of the

training data set we can mitigate the effects of non-matching train-

ing and evaluation data distributions. The effect of non-matching

distribution becomes stronger, the smaller the training data set size

is. For example, models that were trained on greedily sampled data

sets need at least a training data set size of 120 to achieve any gap

closure on unseen data. This is not the case for models trained on

randomly selected data sets which have a matching distribution

with the unseen data. These models are able to achieve a mean

gap closure of 4% with a training data set size of 24. For models

trained on the BBOB functions, Fig. 8 confirms that they are unable

to generalize well.

5 CONCLUSIONS
Using the MA-BBOB function suite as an environment, we have

analyzed in this work the impact of training set selection on the

generalization ability of feature-based algorithm selectors. As has

possibly been expected, selectors trained on instances whose distri-

bution matches the one of the testing sets tend to perform much

better than those trained on instances that follow different dis-

tributions. The results highlight an important bottleneck for the

application of automated algorithm selection techniques in practi-

cal optimization scenarios: unlike the settings typically considered

in theMachine Learning literature [11], in our applications we often

lack knowledge of the distribution of the problem instances that

we are faced with at execution time. It is not even uncommon that

we are asked to help optimizing a single problem instance. We are

therefore interested in algorithm selection models that are trained

to make good recommendations across broad ranges of possible

applications, without a priori knowledge of their nature.

We also observed (cf. Fig. 8) that the negative effects of non-

matching distributions of training and test instances can be miti-

gated by increasing the size of the training sets. However, the more

training instances we consider, the more computational effort is

required to gather the data needed for training the selector. This

trade-off between accuracy and consumption of resources should

be carefully balanced in future development of algorithm selection

approaches, especially when the goal is to develop toolboxes that

can be extended by adding more algorithms or new feature sets.

We considered three different training instance selection meth-

ods in this work. Different ways to select instances are well conceiv-

able, e.g., making use of algorithm performances, of the weights

used to generate the MA-BBOB functions, or using hybridization be-

tween these options. In addition, we do not need to limit ourselves to

data sets for which algorithm performance data is homogeneously

available for all training instances. In fact, it is very well possible

that heterogeneous training sets, possibly even non-overlapping

ones, are favorable for training algorithm selection methods. We

conjecture such approaches to be particularly interesting when cou-

pled with multi-target regression or classification approaches. The

algorithm-specific instances could be wisely selected, e.g., using

algorithm footprint techniques as proposed in [28], or – this may

be the more relevant case for practical applications – simply using

whatever data is already available.

We consider theMA-BBOB problem generator ameaningful envi-

ronment to obtain first insights into the above-mentioned questions.

However, we are also aware that the real challenge in practice is

the generalization ability beyond “academic” benchmarking suites.
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