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Quantifying Individual and Joint Module Impact in
Modular Optimization Frameworks

Ana Nikolikj, Ana Kostovska, Diederick Vermetten, Carola Doerr and Tome Eftimov

Abstract—This study explores the influence of modules on the
performance of modular optimization frameworks for continuous
single-objective black-box optimization. There is an extensive
variety of modules to choose from when designing algorithm
variants, however, there is a rather limited understanding of how
each module individually influences the algorithm performance
and how the modules interact with each other when combined.
We use the functional ANOVA (f-ANOVA) framework to quantify
the influence of individual modules and module combinations
for two algorithms, the modular Covariance Matrix Adaptation
(modCMA) and the modular Differential Evolution (modDE).
We analyze the performance data from 324 modCMA and 576
modDE variants on the BBOB benchmark collection, for two
problem dimensions, and three computational budgets. Note-
worthy findings include the identification of important modules
that strongly influence the performance of modCMA, such as
the weights option and mirrored modules for low dimensional
problems, and the base sampler for high dimensional problems.
The large individual influence of the lpsr module makes it very
important for the performance of modDE, regardless of the
problem dimensionality and the computational budget. When
comparing modCMA and modDE, modDE undergoes a shift
from individual modules being more influential, to module
combinations being more influential, while modCMA follows the
opposite pattern, with an increase in problem dimensionality and
computational budget.

Index Terms—meta-learning, single-objective optimization,
module importance

I. INTRODUCTION

A core application of evolutionary algorithms is the opti-
mization of continuous single-objective black-box problems.
A plethora of algorithms already exist [1], [2], and as the
field matures researchers are increasingly focusing on refining
existing algorithms rather than developing new algorithmic
paradigms [3]–[6]. For example, in the data from the BBOB
workshops [7] we can find more than 50 variants of the CMA-
ES algorithm [8].
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Rather than studying algorithm variants in isolation, it
was proposed in [4], [5] to consider a standardized modular
optimization framework where various algorithm variants can
be systematically assessed, ensuring uniformity in implemen-
tation details across all variants. The main idea behind mod-
ular optimization frameworks is to break down an algorithm
into smaller components called modules, which can then be
configured by taking on different options that influence the al-
gorithm’s behavior. The modules can be seamlessly integrated
to form new algorithm variants. Additionally, each module
operates independently, so it can be removed without affecting
the functionality of the rest. The above-mentioned studies
emphasize the advantages of modular algorithms, both in terms
of fair comparisons from an implementation perspective and
also the possibility of examining the interactions between
different modules.

The challenge that remains is how to quantify the influence
of individual modules and the influence of module interactions
on the algorithm performance. Often, algorithm designers
manually assess module influence by investigating the local
neighborhood of a given algorithm variant, for example, a
common approach is to alter one module at a time and
to then observe the changes in performance. Probably even
more common is to simply compare the performance of an
algorithm variant to a default implementation of the same
algorithm, or compare it to a limited set of other variants.
The only information obtained with this analysis is how the
different module options perform in the context of a few other
variants, analyzing only the individual influence of a module
and ignoring the interaction influence that results from the
combination with the other modules.

Our contribution: In this study, we employ the f-ANOVA
framework proposed in [9] to quantify individual and inter-
action module effects in modular optimization frameworks.
Our study involves the performance data of the modCMA [4]
and modDE [5] frameworks, evaluated on the 24 problems
from the BBOB benchmark suite, in dimensions 5 and 30,
for three different computational budgets. By analyzing 324
variants of modCMA and 576 variants of modDE, we assess
individual and interaction module effects through two scenar-
ios: one evaluating the module’s effects on the level of an
entire benchmark suite and another examining their effects
on a problem-specific level. The analysis reveals important
modules and combinations of modules, such as weights option
and mirrorred in modCMA for dimension 5 and base sampler
for dimension 30. Additionally, it highlights the importance of



individual modules such as lpsr, over module combinations in
modDE, particularly for lower budgets. Overall, the findings
provide valuable insights for algorithm designers and suggest
potential applications for problems where module combina-
tions contribute to algorithm performance.

Outline: Section II reviews relevant research on module
importance in modCMA and modDE, together with stud-
ies from related domains that utilize f-ANOVA to estimate
the importance of hyperparameters. Section III outlines the
functional ANOVA methodology. The experimental design is
explained in Section IV, followed by a discussion of key
results in Section V. Section VI concludes the paper.

Data and code availability: The data and the code involved
in this study are available at [10].

II. RELATED WORK

Initial work in this direction [11] involves conducting a
comprehensive assessment of the importance of modules in
CMA-ES. This was achieved by utilizing data from a complete
enumeration of all module options to analyze the performance
contribution of each module. However, this method proves
unfeasible when dealing with an increasing set of modules.

Both [4] and [5] utilize an algorithm tuning tool
called irace [12] to explore a wide space of possible algorithm
variants, with the goal to identify a set of elite configura-
tions that perform best over a set of optimization problems.
Then, the module importance is represented as the module’s
frequency in the set of elite configurations. This process is
repeated by iteratively adding modules to the space irace
explores. The outcomes emphasize that by integrating mod-
ules, the dynamics between the modules underwent changes,
which became apparent through visualization of the results
from their frequencies in the elite configurations. Nevertheless,
a comprehensive quantitative analysis isolating all effects of
the modules (i.e., including individual, pairwise, triple effects,
etc.) is missing.

Assessing the importance of various modules for the per-
formance of modular optimization algorithms is analogous
to evaluating the importance of hyperparameters in Machine
Learning (ML) models. A seminal work in this domain is [9].
Their approach is built on top of the classic technique of
functional analysis of variance, previously introduced for high-
dimensional functions of dependent variables [13]. To quantify
the influence of hyperparameters and their interactions in ML
algorithms, [9] expands the concept of the functional-ANOVA
(f-ANOVA) framework as an efficient linear-time algorithm
for calculating the interaction effects of hyperparameters.
The efficacy of this approach was then used to investigate
highly parametric ML frameworks and combinatorial solvers
designed to optimize NP-hard problems.

III. ASSESSING MODULE IMPORTANCE WITH F-ANOVA

f-ANOVA decomposes the observed variance V of a re-
sponse variable f : Θ1×· · ·×Θn → R (in our case: algorithm
performance) into additive components VU , attributing each
component to a corresponding subset of the inputs U ⊆

{1, . . . , n} (in our case: algorithm modules), and guarantees
that the components add up the total variance of f in the end:

V =
∑

U⊆{1,...,n}

VU (1)

Fully decomposed, we can represent the variance in algorithm
performance as:

V = V1 + · · ·+ Vn

+ V1,2 + · · ·+ V1,n + · · ·+ Vn−1,n

+ · · ·
+ V1,...,n

(2)

The components VU for |U | = 1 are called individual effects
and represent the variance in the algorithm performance caused
by varying a single module’s options. The components for
|U | > 1 capture the interaction effects between all modules in
U . They represent the variance in the algorithm performance
caused by varying the options for all the modules in U .

To obtain this decomposition, we must be able to effi-
ciently compute the effects over arbitrary sets of modules.
In [9] the authors provide an efficient and exact method
for calculating the individual, pairwise, and triple interaction
effect of algorithm hyperparameters by performing variance
decomposition using a random forest model [14]. In our case,
the hyperparameters are analogous to the modules.

IV. EXPERIMENTAL DESIGN

In this section, we provide details on the experimental setup.
We first describe our data including the algorithm portfolio, the
problem portfolio, and the algorithm performance data. Next,
the datasets used by the f-ANOVA approach for quantifying
module efefcts are presented in more detail.

A. Experimental data

We use publicly available data from the study presented
in [15]. This repository contains performance data of 324
modCMA variants and 576 modDE variants, generated with
the modular frameworks from [4] and [5], respectively. See
Tables I and II for a summary of the six modCMA modules,
and Tables IV and III for the seven modDE modules consid-
ered in our study. Using the IOHexperimenter platform [16],
each variant is run 10 independent times on the first five in-
stances of each of the 24 single-objective, noiseless black-box
optimization problems from the BBOB benchmark suite [17]
on the COCO platform [18], in dimension d ∈ {5, 30}. For
each run on each problem instance, we calculate the target
precision defined as the difference between the best-obtained
solution and the global optimum. We consider the median
target precision of the ten runs obtained after a budget of 100d,
500d, and 1500d function evaluations, respectively. Next, we
transform the median target precision for each variant and each
problem instance into logarithmic space, which is further used
in our experiment referred to as the solution precision.



TABLE I: Short description of the role of modules in modCMA.

Module Description
1. base sampler The mechanism for sampling new candidate solutions around the current estimate of the optimum.
2. elitism The mechanism ensures that the best individual/s from the current population is preserved into the next generations.
3. local restart If the optimization process stagnates, a ”restart” is performed from a different point in the search space.
4. mirrored sampling For every new sampled solution its mirrored image is added to the population.
5. weights option Recombination weights control how solutions from the current population are merged to create new individuals.
6. step size adaptation Strategy for adapting the algorithm’s parameters which control the search process.

TABLE II: Available options for the six modCMA modules
evaluated in our experiments (324 combinations in total).

Module Options
1. base sampler Gaussian, Sobol, Halton
2. elitist off, on
3. local restart off, IPOP, BIPOP
4. mirrored sampling off, mirrored, mirrored pairwise
5. weights option default, equal, (1/2)ˆλ
6. step size adaptation csa, psr

TABLE III: Available options for the seven modDE modules
evaluated in our experiments (576 combinations in total).

Module Options
1. adaptation method off, shade, jDE
2. crossover bin, exp
3. lpsr off, on
4. mutation base rand, best, target
5. mutation n comps 1, 2
6. mutation reference off, pbest, best, rand
7. use archive off, on

B. f-ANOVA datasets

To quantify the individual and combined importance of
modules in modular frameworks, we perform two distinct use-
cases: one across the entire benchmark suite and another at the
problem-specific level.

Benchmark suite-level: We compute the average solution
precision for each variant across all 120 problem instances.
This average solution precision serves as an estimation of
the variant’s performance across the entire BBOB benchmark
suite. Subsequently, for modCMA, each variant is represented
using six features (refer to the modules in Table II) and
associated with the achieved mean solution precision. Like-
wise, for modDE, each variant is represented through seven
features (refer to the modules in Table III) and linked to the
achieved mean solution precision across the complete bench-
mark suite. Following these transformations, we generate 12
datasets, two modular frameworks × two problem dimensions
(d = 5, 30) × three different budgets of function evaluations
(100d, 500d, 1500d), encompassing 324 variants for modCMA
and 576 variants for modDE.

Problem-level: For this experiment we calculate the median
solution precision of each variant, considering all five prob-
lem instances within each problem class. Following this, we
generate distinct datasets for each problem by isolating the
performance outcomes specific to that particular problem in
two distinct problem dimensions (d = 5, 30). Consequently,
we obtain 24×2 datasets for each modular framework in-
dividually. Next, we repeat this for three different budgets
(288 datasets in total). Similar to the benchmark suite-level

approach, in the modCMA datasets, variants are characterized
by six features associated with the module options, correlating
with the median solution precision achieved on that specific
problem. Conversely, in the case of modDE, seven features
are utilized.

C. f-ANOVA

For variance decomposition analysis with a random for-
est model, we employed the implementation from [9]. This
method involves utilizing a random forest model as a regres-
sion tree predictor to forecast the performance of a variant
using different module options. The complete dataset serves
as the training data, upon which variance decomposition is
directly applied using the trees within these forests. For a
comprehensive understanding of why the training scenarios
(such as cross-fold validation, or train-validation-test split) of
the RF model are excluded, please refer to the original paper
where detailed explanations are provided [9].

V. RESULTS AND DISCUSSION

Here, the findings are categorized into two use cases:
benchmark suite-level and problem-level. Within each use
case, we display the outcomes of individual module effects,
pairwise interaction effects, and triple interaction effects, for
modCMA and modDE respectively, spanning two distinct
problem dimensions and three different budgets.

A. Benchmark suite-level

Table V displays the cumulative fraction of variance in the
algorithm performance explained by the individual, pairwise,
and triple module effects separately and provides information
about how different types of module effects contribute to
the total explained variance shown by the column “total”
in the table. The cumulative individual effect results from
summing the individual effects of six modules for modCMA
and seven modules for modDE, the cumulative pairwise effect
is summed over

(
6
2

)
= 15 module pairs of modCMA and(

7
2

)
= 21 of modDE, and finally, the cumulative triplet effect

is calculated over
(
6
3

)
= 20 module triples for modCMA

and
(
7
3

)
= 35 for modDE. The table contains the results for

both algorithms modCMA and modDE, when considering two
problem dimensions d = 5 and d = 30 and three different
budgets 100d, 500d, and 1500d. The columns in the table are
named correspondingly to the different effect types and the
values denote % of the total variance explained.

Focusing on how the cumulative individual, pairwise, and
triple effects vary across the different scenarios for modCMA,
in d = 5, the individual and pairwise effects are relatively



TABLE IV: Short description of the role of modules in modDE.

Module Description
1. adaptation method The strategy for adapting the algorithms’ parameters which control the search process.
2. crossover Defines how the offspring solutions are generated from the parent solutions.
3. lpsr Strategy to gradually decrease the size of the population as the algorithm progresses.
4. mutation base This determines the base solution used in the mutation process, affecting the diversity of the population.
5. mutation n comps This parameter specifies the number of components (difference vectors) used in the mutation step.
6. mutation reference Determines which individuals are used as references in the mutation process.
7. use archive Controls whether past solutions are used in the evolution process.

balanced, while the triplet effect is smaller, for all budgets. In
higher dimensionality (d = 30) the individual effects tend to
amplify.

Next, we will look at how the cumulative individual,
pairwise, and triple effects vary for modDE. As the budget
increases, the cumulative individual effect tends to decrease
gradually, while the pairwise and triple effects increase cor-
respondingly. This trend is consistent across both dimensions.
Furthermore, comparing the same type of effects at different
dimensions (5 vs. 30) for the same budget, there is a noticeable
decrease in the individual effects and an increase in the
pairwise and triple effects as the dimensionality increases. For
the largest budget, the individual and pairwise effects even
become balanced. Overall, for modDE, these observations
indicate that the interactions between the modules (pairwise
and triple effects) play a more significant role in the algo-
rithm’s performance as both the problem dimensionality and
the budget for the algorithm increase.

Comparing modCMA and modDE, while both algorithms
exhibit different shifts in the importance of individual, pair-
wise, and triple effects with changes in both dimensionality
and budget, modDE experiences a more pronounced transition
from individual to interaction effects. In contrast, modCMA
maintains a stronger emphasis on individual effects, particu-
larly in higher dimensions, even as the budget increases.

By summing all computed effects (cumulative individual,
pairwise, and triplet) we get the total explained variance in the
algorithm performance (presented in Table V, the “total” col-
umn). From this data, we can conclude that the total explained
variance for both problem dimensions, all budgets, and the
two investigated frameworks, is over 91%, meaning that the
results capture a comprehensive picture of how the modules
and their interactions influence the algorithm performance. The

TABLE V: Cumulative fraction of variance (in %) in the
algorithm performance explained by the individual, pairwise,
and triple interaction effects.

algorithm dim budget individual pairwise triple total
modCMA 5 100d 41.63 37.72 16.16 95.51

500d 42.05 38.89 15.94 96.88
1500d 43.88 34.87 16.34 95.09

30 100d 60.28 26.66 10.21 97.15
500d 51.16 30.40 13.70 95.26
1500d 54.31 28.95 12.43 95.69

modDE 5 100d 80.88 13.12 4.45 98.45
500d 67.67 20.41 8.52 96.60
1500d 40.26 34.04 18.15 92.45

30 100d 68.76 19.26 8.13 96.15
500d 55.88 26.07 11.99 93.94
1500d 42.05 32.61 16.35 91.01

rest of the variance in the algorithm performance is due to the
complex interaction of more than three modules.

Next, we perform a more detailed analysis to understand
the individual, pairwise, and triplet effects.

(a) dim=5, modCMA (b) dim=5, modDE

(c) dim=30, modCMA (d) dim=30, modDE

Fig. 1: Variance in the algorithm performance explained by
the individual effects of the algorithm modules of modCMA
and modDE, in problem dimension d = 5 and d = 30 and for
budgets of 100d, 500d, and 1500d function evaluations.

1) Individual module effects: Figures 1a and 1c illustrate
the portion of variance explained in the performance of
modCMA by the individual effects of each of its modules,
at two different problem dimensions (5 and 30) respectively,
across three different budget (100d, 500d, 1500d). The same
information for modDE is presented in Figures 1b and 1d.
The y-axis presents the percentage of explained variance in
algorithm performance, while the x-axis presents the budget
used for evaluating the algorithm performance. The colored
lines distinguish between the different modules. The legend is
displayed below the plots, for each algorithm correspondingly.
A summary of the key findings about how the effects are
distributed among the modules is presented through the bullet
points below:

modCMA - In the low dimensional case for the lower
budgets we can observe that weights option and mirrored are
the most important modules individually, explaining around



15% of the variance in the algorithm performance each, where
for the other the modules the explained variance varies be-
tween 1% and 5%. The relative importance of weights option
suggests that the recombination procedure which is impacted
by this module is rather important early in the search. Upon
examining the larger budget of 1500d the individual impor-
tance of elitism becomes more noticeable, as the algorithm
has had time to converge, and potentially get stuck in lo-
cal optima on the multi-modal functions. The importance
of mirrored remains relatively consistent, suggesting that its
variance-reduction effects are beneficial throughout the search.
In the higher dimensional case (d=30), irrespective of the
budget allocated for evaluating the algorithm performance,
consistent patterns emerge for the modules’ importance. The
base sampler module accounts for a large fraction of the
variance in algorithm performance on its own, while the
remaining modules remain negligible. The reason for this is
the instability of the Halton sampling procedure which when
employed within this version of modCMA, causes biases in the
sampling directions when the search dimensionality increases.

modDE - The primary module attributing to the variance
in the algorithm performance is lpsr. At the lower budgets,
it explains a substantial part of the algorithm’s performance
variance (approximately 60%). As the budget increases, this
percentage diminishes to approximately 20% for the largest
budget. As noted in [5], the reason for the large impact of lpsr
on modDE’s performance is related to the default setting for
population size, which is rather small in the wider context of
DE. As such, enabling lpsr changes the starting population size
to be consistent with the popular L-SHADE variant [19] and
leads to significant improvements in performance. For high
dimensions, comparable trends are observed mirroring those
in the low dimensionality scenario.

2) Pairwise module effects: Let us assume that we have a
pair of modules (Θ1,Θ2). The total percentage of variance this
pair explains can be calculated as Vpair total = V1+V2+V1,2.
The initial two terms denote the individual importance of the
modules, previously examined in the analysis of individual
module effects. The last term, the pairwise importance, offers
insight into the portion of the explained variance stemming
from their interaction effect. The results are presented for
one budget (500d) due to the page limit, while for the other
budgets, the results are available in our repository.

Figures 2a and 2c depict the percentage of explained vari-
ance attributed to each module pair of modCMA for d = 5
and d = 30, respectively. The heatmap row headers display
the module names involved in each pair, while the columns
represent: the explained variance resulting from their interac-
tion (the pairwise column), the individual module explained
variances (individual - module 1 and individual - module 2
columns), and the total explained variance summing all three
(the pair total column). The pairs are sorted in decreasing order
based on the pairwise column. The results suggest an interac-
tion between the mirrored and weights option module pair for
d = 5, contributing 15.3% of the overall explained variance.
The explained variance of the interaction is almost equal to

each individual module’s explained variance. Examining the
rest of the interactions, we can note that involving the elitist
module, which by itself is not very important, with either
mirrored or weights option in combination, their interaction
contributes an additional 9.2% and 6.8% in the explained
variance, respectively. All other pairwise interactions among
the modules fall within similar ranges of explained variance,
up to 1%. For d = 30, the most impactful pair interaction
emerges from the elitist and base sampler modules, account-
ing for 10.8% of the overall explained variance. Next, mirrored
and step size adaptation explain a very small fraction of the
variance on their own (their individual effect), while there is
some additional value when combined with the base sampler.
It is noteworthy that pairs involving base sampler yield the
highest total explained variance, a result directly influenced
by this module’s notably high individual explained variance.
Meanwhile, the remaining module pairs exhibit contributions
ranging from 0% to 3% toward explaining the algorithm’s
performance variance.

The analyses for modDE are displayed in Figures 2b
and 2d for d = 5 and d = 30, respectively. Across problem
dimensions, it is evident that the variance explained by pairs
of module interactions ranges between 0% and 3.3% for d = 5
and between 0% and 4.6% for d = 30. Notably, concerning
the total explained variances for both problem dimensions,
pairs involving lpsr yield higher total explained variances due
to this module’s notably higher individual explained variance.
While the module pairs without lpsr explain relatively low
amounts of variance overall, it is interesting to note that
the combinations with the highest explanatory power are
all modules that impact the mutation process. This suggests
that picking the right combinations of mutation modules is
important in DE, especially in low dimensions. In higher
dimensions, the differences between binomial and exponential
crossover become more significant, which is also reflected
in the fact that combinations involving this module become
relatively more impactful in the d=30 case.

3) Triplet module effects: Here the percentage of the vari-
ance in the algorithm performance that is explained by the
interaction of three modules is presented. Let us assume
that we have a triplet of modules (Θ1,Θ2,Θ3). The total
percentage of variance a triplet explains can be calculated as
Vtotal triplet = V1 + V2 + V3 + V1,2 + V1,3 + V2,3 + V1,2,3.
The terms excluding the last one denote the portion of the
explained variance stemming from the modules’ individual and
pairwise interactions, previously examined in the analysis of
the individual and pairwise effects, while the last term is the
portion of the explained variance stemming from the triplet
interactions of the modules and is investigated next.

Table VI displays the top five triplets, ranked according to
the total percentage of explained variance associated with each
module triplet. Additionally, it provides the contributions of
the triplet interaction (V1,2,3) in isolation. The results show
that the highest-ranked triplet for modCMA, d = 5, and 500d
budget consists of mirrored, weights option, and elitist, which
also is the triplet with the highest triplet effect. From the



(a) dim=5, modCMA (b) dim=5, modDE

(c) dim=30, modCMA (d) dim=30, modDE

Fig. 2: Variance (%) in the algorithm performance explained by the pairwise effects of the algorithm modules for a,c) modCMA
and b,d) modDE in 5 and 30 dimensions respectively, for a budget of 500d.

previous analysis, it is clear that mirrored and weights option
have relatively large individual effects, meaning they are key
drivers of the algorithm’s success on their own. Further, their
combination with the elitist module which is not impactful on
its own (refer to individual effects results), adds a lot of value
to the total triplet explained variance, visible from the “triplet”
column and the pairwise interaction heatmaps in Figure 2a.
For higher dimensions, the best triplet is highly influenced by
the high individual importance of the base sampler individual
importance, while mirrored and elitist are not so impactful
on their own retain their presence in the top triplet through
interactions with base sampler.

In the case of modDE, the primary influence on the op-
timal triplet comes from one module, namely lpsr. In lower
dimensions, mutation base and mutation reference also play
a contributing role through their interaction with lpsr. In the
higher dimensional case mutation base and lpsr remain in the

best triplet, while crossover replaces the mutation reference
module.

B. Problem-level

The previous experiment yielded insights into the signifi-
cance of modules and their interactions in explaining algorithm
performance across the entire BBOB benchmark suite. Here,
we are showcasing their importance at a problem-specific
level. For this purpose, three problems from the BBOB bench-
mark suite are randomly selected: the 5th (linear slope), 15th
(Rastrigin), and 23rd (Katsuuras). Table VII illustrates the
combinations of modules with the highest triplet-total effect
on the performance, achieved on the 5th, 15th, and 23rd
BBOB problems, across dimensions d = 5 and d = 30 and
a budget of 500d. The outcomes are delineated individually
for modCMA and modDE. For example, looking into the 5th
problem in d = 30, we can see that the interaction between the



TABLE VI: Fraction of variance (in %) in the algorithm
performance explained by triple interaction effects of the
algorithm modules. Only the five module combinations with
the largest total importance are displayed.

d module1, module 2, module 3 triplet triplet
total

CMA 5 elitist, mirrored, weights option 8.19 77.54
mirrored, weights option, step size adaptation 1.19 52.43
mirrored, weights option, local restart 0.95 52.35
mirrored, base sampler, weights option 1.16 51.93
elitist, mirrored, step size adaptation 0.64 34.04

30 elitist, mirrored, base sampler 2.96 66.27
elitist, base sampler, weights option 1.71 64.55
elitist, base sampler, step size adaptation 2.98 63.74
elitist, base sampler, local restart 0.26 55.34
mirrored, base sampler, weights option 1.03 55.31

DE 5 mutation base, mutation reference, lpsr 0.89 67.74
mutation base, mutation n comps, lpsr 0.56 66.25
mutation reference, mutation n comps, lpsr 0.34 65.31
mutation reference, use archive, lpsr 0.79 62.55
mutation base, use archive, lpsr 0.40 61.08

30 mutation base, crossover, lpsr 1.18 58.10
crossover, adaptation method, lpsr 0.63 51.46
mutation base, adaptation method, lpsr 0.73 51.09
mutation base, mutation n comps, lpsr 0.69 49.46
mutation n comps, crossover, lpsr 0.34 49.22

three modules elitis, base sampler, and step size adaptation
explains 81.0% of the variance of the algorithm performance
achieved on that problem. This variance is a sum of the
individual effects (45.2% (elitist -M1), 13.7% (base sampler -
M2), and 8.0% (weights option) - M3), pairwise effects (5.6%
(M1, M3), 3.8% (M1, M2), and 2.9% (M2,M3)), and the triple
effect (1.5% (M1, M2, M3)). For the same problem in d = 5,
it appears that the optimal combination of modules elucidates
roughly 30% of the variance, underscoring the critical role
of interactions among multiple modules (more than three) in
achieving higher explained variances. Additionally, the com-
bination of modules yielding the highest explained variance
varies among different problems, which shows that different
module interactions are important for solving different prob-
lems. We omit to present detailed results for each individual,
pairwise, and triplet effects on each problem, however, they
are publicly available on our GitHub repository.

Given that we can compute individual (six for mod-
CMA; seven for modDE), pairwise (15 for modCMA; 21
for modDE), and triplet effects (20 for modCMA; 35 for
modDE) for each problem-level dataset, we can represent
each problem using all quantified effects, 41 in the case of
modCMA and 63 for modDE. By analyzing the similarity
between problems based on these representations, we can
explore which problems exhibit similar module interactions.
To show this, we calculate the cosine similarity between
the representations of the 5th, 15th, and 23rd problems in
the case of modCMA separately for both dimensions (see
Figures 3a and 3c) and for modDE (see Figures 3b and 3d). For
modCMA in d = 5, the module interactions show similarities
(≥ 0.9) between the 15th and 23rd problems, whereas for
d = 30, similar module interactions are observed between
the 5th and 23rd problems. For modDE, in d = 5, 30, the
module interactions provide different patterns for the analyzed
problems, achieving similarity up to 0.6.

(a) dim=5, modCMA (b) dim=5, modDE

(c) dim=30, modCMA (d) dim=30, modDE

Fig. 3: Cosine similarity between three BBOB problems
represented by the individual, pairwise, and triplet module
effects for a,c) modCMA and b,d) modDE for a budget of
500d.

VI. CONCLUSIONS

A wide range of modules is available for creating different
variants of modular optimization algorithms designed for
addressing single-objective black-box numerical optimization
problems, but knowledge about the individual impact of each
module on the algorithm’s effectiveness, as well as how these
modules interplay when integrated, is relatively insufficient.
We employed the f-ANOVA framework [9] to investigate the
influence of modules and their interactions. Our focus was on
two modular frameworks, namely modular Covariance Matrix
Adaptation - Evolutionary Strategy (modCMA) and modular
Differential Evolution (modDE), applied to 24 problems from
the BBOB benchmark suite in dimensions 5 and 30. With 324
variants for modCMA and 576 for modDE, our goal was to
assess individual and interaction module effects in two distinct
scenarios: one evaluating the modules’ impact on solving the
entire benchmark suite (encompassing all problem instances),
and the other examining their influence on a problem-specific
level.

We have shown that for a problem dimension of 5 and
modCMA, weights option and mirrorred play a substantial
role in explaining most of the variance, albeit not significantly
larger than other modules. Conversely, in the context of a
problem dimension of 30, base sampler exhibits the highest
individual effect, contributing to half of the explained vari-
ance in algorithm performance. For modDE, lpsr emerges
as the primary factor explaining most of the variance for
both problem dimensions. When comparing modCMA and
modDE, both algorithms exhibit changes in the importance
of individual modules and their interactions with variations



TABLE VII: The combinations of modules with the largest total importance for the 5th, 15th, and 23rd BBOB problems in
d = 5 and d = 30 for a budget of 500d. The results are presented separately for modCMA and modDE.

modCMA modDE
dim f id module 1, module 2, module 3 triplet-total module 1, module 2, module 3 triplet-total
5 5 elitist, weights option, step size adaptation 29.52 mutation base, mutation n comps, use archive 23.73

15 elitist, base sampler, local restart 62.4 mutation base, mutation reference, lpsr 67.44
23 elitist, mirrored, weights option 78.99 mutation reference, use archive, lpsr 39.03

30 5 elitist, base sampler, weights option 81.08 mutation base, mutation reference, lpsr 46.07
15 elitist, mirrored, base sampler 69.93 crossover, adaptation method, lpsr 57.71
23 elitist, mirrored, step size adaptation 84.73 mutation base, crossover, lpsr 57.59

in dimensionality and budget. Notably, modDE experiences
a more noticeable transition from individual to interaction
effects, whereas modCMA follows the opposite trend. The
problem-level findings suggest a positive indication for identi-
fying problems where module interactions contribute equally
to algorithm performance.

Some limitations of the approach are that the calculation of
module interactions requires an exponential amount of time,
thus we are not able to calculate interactions beyond three
modules in a reasonable amount of time.

A practical use case of the proposed approach can be the
post-hoc analysis of algorithm configuration (AC) where the
most important algorithm parameters are identified. Another
example is the reduction of the module space as we can select
the sub-space of the most influential algorithm modules and
perform AC, which may lead to more promising results.

In future work, we plan to investigate another modular
framework, PSO-X [6]. We also aim to identify problems
exhibiting analogous modular interactions and establish con-
nections between these findings and the inherent landscape
properties of the problems under consideration together with
the algorithm behavior (i.e., trajectories). This approach will
offer additional assistance to designers of modular frame-
works, providing them with deeper insights into the specific
modules and the nature of interactions required for addressing
certain landscape properties. We are also planning to test an-
other approach for assessing module importance, the Pearson
divergence ANOVA (PED-ANOVA) to calculate cross-form
hyperparameter importance in arbitrary spaces [20].
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