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Abstract. We present Elevator, a novel algorithm for hub sampling
in peer-to-peer networks, enabling the construction of overlays with a
topology between a random graph and a star network, and networks
that have both hubs and are resilient to failures. Our approach emerges
from principles of preferential attachment, forming hubs spontaneously,
offering an innovative solution for decentralized networks that can benefit
use cases requiring a network with both low diameter and resilience to
failures. Our protocol is designed to be fully decentralized, asynchronous,
and reliant solely on local data. Nodes evolve into hubs in an organic
fashion and remain indistinguishable from other nodes (except in terms
of the number of incoming links). The quantity of hubs that emerge can
be predetermined by the application as a network parameter.

Keywords: Peer-to-peer networks · Peer sampling service · Hub sampling
· Resilient networks · System design · Algorithms · Simulations.

1 Introduction

In recent years, the rise of decentralized systems such as blockchain [3] and
federated learning [14] has spurred considerable interest in peer-to-peer (P2P)
communication protocols. While existing P2P protocols have demonstrated
significant utility across various applications, emerging demands for enhanced
performance, scalability, and robustness necessitate the development of innovative
solutions.

Peer-to-peer (P2P) protocols have undergone extensive research and devel-
opment to facilitate efficient decentralized communication among networked
devices. Foundational P2P protocols like Napster, Gnutella [7], and BitTorrent
paved the way for distributed file sharing and content distribution across the
Internet. Typically, P2P overlay networks are categorized as either structured
(e.g. CAN [20], Chord [23], or Kademlia [13]) or unstructured (e.g. Gnutella [7]).
More comprehensive details about peer-to-peer overlays can be found in recent
surveys [12, 17].

Structured overlays come with a maintenance cost [12], and are more suscepti-
ble to Byzantine attacks (that is, attacks performed by the peers themselves) [17]
and churn [12] (that is, the unexpected departure and arrival process of the
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peers). Unstructured networks exhibit advantages in resilience to node failures
and adaptability to shifting network conditions [10], rendering them well-suited
for dynamic and heterogeneous environments when compared to their structured
counterparts. Their shortcomings are that the quality of services built on top of
the network is difficult to assess.

Peer sampling. Peers within an unstructured overlay maintain a dynamic set of
neighbors, often discovered through mechanisms like peer sampling [10], which
enables nodes to gather and exchange information about other nodes in the
network, and thus dictates the network topology. Existing peer sampling algo-
rithms in the literature yield two types of topologies (random and power-law)
that demonstrate favorable networking characteristics. Random graphs are built
from gossip peer sampling algorithms and are known to be resilient to churn [10].
Power-law (or scale-free) networks are built from algorithms that use the concept
of preferential attachment and are known to have ultra-small diameter [5], which
helps scalability. However, when considering the specific use case of federated
learning, certain limitations emerge:(i) Gossip learning, based on gossip peer
sampling, exhibits a slower convergence rate compared to centralized federated
learning methodologies [9], and (ii) while power-law topologies theoretically
offer improved convergence efficiency, prior research has predominantly focused
on constructing networks adhering strictly to power-law distributions [26, 4],
implementing algorithms to restrict the proliferation of hubs [8, 6] (that is, peers
that are extremely well connected), or leveraging other metrics to construct
node connections, like the distance in terms of Internet hops [21] or an initial
attractiveness [19].

Yet, for federated learning, the presence of hubs is advantageous, as these hubs
facilitate rapid relay of machine learning models across the network, accelerating
convergence rates. Nonetheless, conventional approaches relying on predefined
hubs (e.g., super-peer-based topologies) are susceptible to attacks targeting static
and well-defined hub nodes [15].

Hence, there exists a pressing need for a protocol that fosters the organic
emergence of hubs within networks. The service outlined in this article is designed
precisely for this purpose, allowing selected nodes to naturally ascend to hub status
through a process we term "hub sampling". By enabling nodes to organically
assume the role of hubs, our protocol aims to strike a balance between leveraging
the efficiency of hub-based networks for applications like federated learning, while
mitigating vulnerabilities associated with static hub designations.

Our contribution. Our primary goal is to develop a protocol that autonomously
promotes nodes to act as hubs within unstructured peer-to-peer networks. To
achieve this goal, we hybridize two fundamental concepts: preferential attach-
ment, and random attachment. By integrating these two concepts, our protocol
promotes a balanced network structure, where hubs emerge organically based on
connectivity patterns and yet adapt to dynamic network changes. This approach
not only fosters robustness against failures and disruptions but also maintains
a low network diameter, facilitating efficient communication and information
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propagation. The parameter h, representing the desired number of hubs, allows
for flexibility and control over the network’s topology, enabling tailored configu-
rations to suit specific application requirements and network environments. The
rationale behind this initiative is rooted in the benefits of having hub nodes,
particularly in applications such as federated learning, where efficient information
dissemination is crucial. The existence of hubs facilitates faster network-wide
communication compared to overlay networks structured in a random graph
topology.

The structure of this article is organized as follows: Section 2 presents the hub
sampling service altogether with its properties, its programming interface (API),
and its implementation, the Elevator algorithm. Section 3 presents a theoretical
analysis of the properties of the algorithm. Section 4 presents extensive simulations
of Elevator, compared against three classical algorithms from the literature [10,
22, 25].

2 Hub sampling service

The key desired properties we expect from our protocol are connectivity (the over-
lay remains connected), low-diameter (for efficient communication), convergence
(properties are obtained in an autonomous manner), stability (structural over-
lay properties are maintained throughout execution), and robustness (resilience
to churn and targeted attacks). They will serve as metrics during simulation
experiments to ascertain the efficacy of our algorithm.

2.1 Service API

The API of the hub sampling service mirrors that of classical peer sampling
service [10], comprising two key methods: (i) init() that initializes the service on
a given node, i.e., initializes the list of outgoing connections of a node (Indeed,
we assume that a given node starts connected to a random subset of nodes in the
network, the actual initialization procedure being implementation-dependent),
and (ii) getPeer() that returns a random peer address from the node list of peers.

The focus of this work is to present an implementation of the getPeer()
method, Elevator, as a gossip-based algorithm, and to study the performance of
its implementation. In addition to these two methods, we add a third method
to the API called getHub() that returns a random hub. The getHub() method
can be easily derived from getPeer() by filtering the output of getPeer() to only
select the h nodes acting as hubs in the network. This method can be useful for
applications that only need to contact a hub.

2.2 Preliminaries

In the context of our study, we consider an overlay network of interconnected
nodes modeled as a directed graph. Communication within this network is
bidirectional, corresponding to an underlying undirected graph that represents
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the physical network. Each node in this network possesses a unique address, akin
to an IP address in the context of the Internet, serving as an abstract identifier
of its identity. Nodes maintain a local list called cache, which contains addresses
of other nodes, and represents their partial knowledge of the network’s node
set. The maximum size of this cache, denoted by parameter c, is uniform across
all nodes. The cache is pivotal for peer sampling, as it serves as the basis for
neighbor selection and information exchange. At the network’s inception, nodes
are initially connected to a random subset of nodes, forming what is known as a
random k -out graph. Subsequently, new nodes joining the network also establish
connections with a random subset of existing nodes, a process that populates
their cache and integrates them into the network. Given the decentralized nature
of the network, peer sampling algorithms are designed to operate asynchronously,
as it is the case for Elevator, and all algorithms presented in this paper, but to
help the evaluation of protocols during simulations, we can refer to the idea of
cycles of the protocol. During each cycle, every node initiates one execution of
the peer sampling protocol, potentially updating its cache based on interactions
with neighboring nodes. By leveraging cycles, we can analyze the convergence,
performance, and robustness of peer sampling protocols under varying conditions
and scenarios within the decentralized network environment.

2.3 Elevator core concepts

To achieve both robustness and a low network diameter, we integrate two funda-
mental concepts: preferential attachment and random attachment, each serving
distinct yet complementary roles in shaping the network topology.

Preferential Attachment. Drawing from the concept pioneered by Barabási
and Albert [2], preferential attachment dictates that new connections in the
network are established preferentially with nodes possessing a higher number of
existing connections. In our adaptation, we modify this concept to elevate certain
nodes to the status of hubs without requiring the network to continuously grow.
Instead of new nodes joining and preferentially connecting to highly connected
nodes, each existing node leverages information from its neighbors to identify
and connect to the most frequently connected nodes (up to a predefined number
h). This mechanism enables the organic emergence of hubs within the network,
with selected nodes naturally assuming central roles based on their connectivity
without any explicit distinction other than their number of incoming links.

Random Attachment. Inspired by gossip-based peer sampling algorithms [10,
22], random attachment ensures that nodes maintain connections with a rep-
resentative and diverse subset of the network. This strategy promotes network
robustness by preventing excessive clustering and dependency on specific nodes
(hubs). When existing hubs disappear (e.g., due to failures or departure), other
nodes within the network are opportunistically elevated to hub status, ensuring
continuity and adaptability of the network topology over time.

Our target is to obtain a topology of the network that has the following
properties: (i) There are h defined hubs, with h a parameter defined before the
start of the network and common to all nodes, (ii) ignoring hubs, the distribution
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of the remaining connections is random, and (iii) each node has c connections,
consisting of h connections to hubs and c-h connections to random nodes.

Through simulation evaluation, we demonstrate in the sequel the effectiveness
and advantages of our protocol with respect to state-of-the-art algorithms.

2.4 Elevator detailed description

The algorithm uses the following parameters and data structures:

– Parameter c: The maximum number of outgoing connections (its default
value for all nodes is 20).

– Parameter h: The number of preferential attachment connections (its default
value for all nodes is c/2 ).

– Parameter maxsize_buffer_backward : The maximum number of backward
connections to send (its default value for all nodes is 100).

– Structure cache: The list of outgoing connections. The list is implemented
as an array of size c. The list is initialized with random existing addresses
(random connections to other nodes of the network).

– Structure backward_peers : The list of other nodes that have tried to connect
to the node. The list is implemented as a linked list (initially empty).

Additionally, we have three temporary structures: (i) frequency_map holds the
frequency of occurrences for all neighbors of neighbors, implemented as a map
(node → integer), (ii) preferred holds the list of preferred nodes, implemented as
a linked list, and (iii) preferred_backward holds the list of backward connections
of the preferred nodes, implemented as a linked list.

The proposed protocol executes the following actions at each run: Each node
retrieves the neighbor’s list of their neighbors (i.e., the neighbors at distance two).
The node then builds an ordered list of the most frequent peers (the frequency
map) and contacts the c most frequent nodes (called preferred). Each contacted
node sends back to the contacting node a maximum of maxsize_buffer_backward
addresses from its backward list, maintained in the structure backward_peers,
and adds the contacting node to its backward list. The cache of the contacting
node is then reset as an empty array. Then the node selects the h most frequent
peers and c-h random peers from the list of backward peers of all preferred peers
to fill its cache. If the cache is not full, the node adds random peers from the
frequency map to the cache until the size of the cache is c (see Algorithm 1 and
Algorithm 2 for detailed pseudocode of the algorithm).

3 Theoretical analysis

Assume the network initially adopts a random regular graph topology with a total
of n nodes, where each node has outgoing connections to c other nodes. Following
each iteration of the Elevator algorithm, the network, with high probability,
establishes preferential attachment links.
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Algorithm 1: Elevator Algorithm (active thread)
Data: initial peer list: cache
Data: cache size: c
Data: number of hubs desired: h
Data: initial backward list: backward_peers (empty)

1 Loop
2 for peer ∈ backward_peers do
3 if peer not responding then
4 backward_peers.remove(peer)

5 for peer ∈ cache do
6 if peer not responding then
7 cache.remove(peer)

8 frequency_map ← {}
9 for peer ∈ cache do

10 peer_cache ← send(CACHE_REQUEST , peer)
11 frequency_map ← frequency_map ∪ peer_cache

12 preferred ← frequency_map.sortByFrequency().select(number = c)
13 frequency_map.remove(preferred)
14 preferred_backward ← {}
15 for peer ∈ preferred do
16 peer_backward_peers ← send(BACKWARD_REQUEST , peer)
17 preferred_backward ← preferred_backward ∪ peer_backward_peers

18 preferred .shuffle()
19 preferred_backward .shuffle()
20 cache ← {}
21 cache ← preferred [1..h] + preferred_backward [1..c− h]
22 while cache.size() < c do
23 peer ← frequency_map.selectRandom()
24 cache.append(peer)

Algorithm 2: Elevator Algorithm (background thread)
Data: max number of backward connections to send:

maxsize_buffer_backward
1 Loop
2 request , peer ← receive()
3 if request = CACHE_REQUEST then
4 send(cache, peer)
5 backward_peers.add(peer)

6 if request = BACKWARD_REQUEST then
7 backward_peers.shuffle()
8 send(backward_peers[: maxsize_buffer_backward ], peer)
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For a node to establish preferential attachment links, it must have at least two
neighbors that share at least one common neighbor. If all neighbors of a node have
distinct sets of neighbors, the node cannot select the most frequent 2-distance
neighbors as preferred nodes. The probability that a node does not share any
neighbors with another node is 1− c

n . Given that each node has c neighbors, the
probability that none of its neighbors share neighbors is approximately equal
to (1− c

n )
(c2). Even if preferential links are not created during the first iteration

of the algorithm for a given node, the algorithm still establishes random links.
When the algorithm is run a second time on the node, the probability of not
creating preferential links remains the same. Therefore, for a single node, the
probability of not creating preferential links after t iterations of the algorithm is
approximately equal to ((1− c

n )
(c2))t, assuming stochastic independence between

iterations.
This gives us a reasonable approximation of the creation of preferential links.

For n = 1000 and c = 20, this probability is (1 − 20
1000 )

(202 ) ≈ 2.5%. After 20
iterations of the algorithm, the probability becomes (2.5%)20 ≈ 10−34.

Let S be a configuration of the system with h defined hubs (each with an in-
degree equal to n−1). The analysis of the convergence towards such configurations
is outside the scope of this article, but our simulations practically show that
they are indeed reached. Furthermore, it has been shown in the literature that
power-law networks (with hubs) can be formed using the principle of preferential
attachment [11].

Now, starting from a configuration satisfying S, the network maintains this
property after each iteration of the Elevator algorithm (on one node) with high
probability. Indeed, when a node i executes the Elevator algorithm, it selects
h nodes that are 2-distance neighbors and have the highest in-degree. Since we
start with h defined hubs, with all other nodes connected to them, node i always
chooses these hubs as preferred nodes, and maintains connections to them. The
only way for another node to be selected as a preferred node is for it to have all
neighbors of node i connected to it.

Assuming that each node maintains h connections to the hubs and c − h
random connections, the probability of a node being a (random-connected)
neighbor of another node is c−h

n , so the probability for each neighbor of node i to
share the same (random-connected) neighbor is ( c−h

n )c. If we suppose that node
i selects h nodes to connect to using preferential attachment, the probability
of the node connecting to this newly selected node is h

h+1 . Therefore, the final

probability that the network remains in a configuration satisfying S is 1− h·( c−h
n )c

h+1 .

For n = 1000, c = 20, and h = 10, this probability is 1− 10·( 1
100 )

20

11 ≈ 1− 10−39.
To enforce a probability of 1 for maintaining the same hubs, we can adapt our
algorithm to avoid selecting any new hubs if the previous hubs are still connected.

When the network is in a configuration satisfying S, and assuming there are
no failures, the network remains connected (in an undirected manner) with high
probability after each run of the algorithm. This is because each node running the
Elevator algorithm, with high probability, remains in a configuration satisfying S
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(with the same hubs). Since the hubs are connected to all the nodes, the network
remains connected. Furthermore, even if the risk of disconnection is exponentially
low, we can incorporate a disconnection detection mechanism and allow a node to
re-initiate its connection to the network using the init method if a disconnection
is detected.

4 Experimental evaluation

We evaluate our proposal by carrying out a simulation campaign. All simulations
use the Java PeerSim simulator [16]. We have modified the simulator to add
parallelism to accelerate computations. With Peersim, we implemented our
algorithm Elevator, and state-of-the-art PROOFS [22] and Phenix [25] algorithms.
Also, we used the implementation of Newscast provided by PeerSim. A detailed
description of these algorithms can be found in Appendix A. We compared
the performance of Elevator with these 3 algorithms. We chose to compare our
proposed algorithm to these three algorithms as they are widely used in the
literature. Newscast is used for gossip learning[18], PROOFS is a foundational
algorithm, as Secure Cyclon[1], one of the latest peer sampling algorithm in the
literature, is based on Cyclon[24], itself based on PROOFS. Phenix is interesting
as it has especially been conceived to be resilient to failures and Byzantine attacks
and also to construct networks that have a low diameter. We did not include
recent algorithms [26, 4, 11] that primarily focus on improving the power law
distribution of the in-degrees [26, 4, 11], as they are expected to behave similarly
to Phenix [25].

All simulations were run with a network of size n=1000. As the Phenix
network needs a growing network to work, we started the Phenix algorithm with
a network size of 20 and capped the size of the network to 1000. The simulations
were run during 1000 cycles, and we repeated each simulation 100 times. All
simulations were started with a network initialized as a k-out random graph,
with k=c=20. All simulations were run on 16 vCPU, using 64G of memory, on a
cluster composed of 10 servers of the following type:

Machine Memory Processors Cores
DELL PowerEdge XE8545 2 To 2 x AMD EPYC 7543 128 threads @ 2.80 GHz
DELL PowerEdge R750xa 2 To 2 x Intel Xeon Gold 6330 112 threads @ 2.00 GHz

We evaluated the following metrics: in-degree distribution, clustering coef-
ficient, average shortest path length, and diameter. More details about those
classical graph metrics can be found in Appendix B.

The degree distributions of Newscast and PROOFS exhibit patterns akin to
a normal distribution. We see similar results for Elevator, except for a distinct
group of 10 hubs with an in-degree of 999. By contrast, the Phenix protocol’s
degree distribution conforms to a power-law distribution. PROOFS and Newscast
maintain a low clustering coefficient during all simulations, as seen in Figure 1a.
On the contrary, Phenix and Elevator have both a clustering coefficient of around
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0.55. For Phenix, the value is related to the power-law distribution of in-degree,
and for Elevator, the value is linked to the presence of hubs, that are connected
to everyone, and this automatically increases the value of the coefficient. As we
can see in Figure 1b, Elevator has a very low average path length, with a value
below 2. This value is due to the presence of hubs in the network, that permit to
have a maximum distance of 2 between 2 nodes. Phenix is a bit better, with a
value slightly above 1.9. PROOFS is very close, with a value around 2.15 and
Newscast is a bit below 2.6. All these values are very good and thus we need to
compute the diameter to discriminate between algorithms. In Figure 1c, we see
that Elevator gives a network with a diameter almost equal to the average path
length, with a value almost equal to 2. Again, this value is due to the presence of
hubs in the network. The Phenix algorithm yields similar results. This is better
than PROOFS and Newscast, which output respectively 3 and 4 for this metric.

We also compared the algorithms according to their resilience to crashes, churn,
and attacks on hubs, as shown below. Additional results and the accompanying
figures are included in the Appendix C.

4.1 Resilience to crashes

We analyze the performance of the four algorithms when the network suffers
crashes. To simulate a brutal failure we disconnected 50% of the nodes in the
middle of the simulation, i.e., in this case, we have disconnected 500 nodes at
cycle 500 (as there are 1000 nodes in total and 1000 cycles). The performance
of Elevator is not affected, as the in-degree distribution is still the same, and
we have 10 hubs with an in-degree of 499. The degree distribution is also the
same for Newscast and PROOFS. For Phenix, the degree distribution remains
the same, with values going to a max of 999, even if there are only 500 nodes in
the network. It’s because the nodes have kept in their cache the addresses of (old)
nodes who are no longer in the network. In Figure 2a, the clustering coefficient
evolution shows that it is not affected by the crashes, as we have almost the same
results as those obtained without a crash. The same observation holds for the
average path length and the diameter, as we can see in Figures 3a and 4a.

4.2 Resilience to churn

We now analyze the performance of the four algorithms when the network is
subject to churn. To simulate churn, we disconnected 10% of the nodes at each
cycle and replaced them with the same amount of new nodes, each connected
to 20 nodes uniformly at random. The churn occurs during 500 cycles, between
cycle n°250 and cycle n°750. As the Phenix algorithm needs a growing network
to work, the way we implement churn differs. Following previous work [25], in
the case of Phenix, we implement churn having the number of removed nodes
less than the number of added nodes at each cycle, assuming nodes are removed
following a normal distribution N (0, 1), for all cycles of the simulation.

The in-degree distribution of Elevator remains the same, with 10 hubs.
PROOFS seems affected by churn, as the mean degree distribution goes to
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10 instead of 20 without churn. In Figure 2b we can observe that we have almost
the same results as the results obtained without churn for the clustering coeffi-
cient, except Phenix which seems affected by churn, as its clustering coefficient
varies greatly, which is probably because the coefficient decreases a lot if the
nodes affected by churn are the ones with a high in-degree. For the average path
length, PROOFS is the most affected, with a value going from 2.25 without churn
to a value of 2.5 with churn, as we can see in Figure 3b. In Figure 4b, we can see
that the diameter varies with churn, with a mean going up to 2.5 instead of 2.0,
but the values for Phenix and Elevator remain below the ones of Newscast and
PROOFS.

4.3 Resilience to hub-targeted attacks

We hereby analyze the performance of the four algorithms after a targeted attack
on the hubs during the execution of the simulation. To simulate a hub-targeted
attack, we disconnected 10 nodes that have the highest in-degree in the middle
of the simulated scenario.

Logically, Newscast and PROOFS are not affected by the attack, as there are
no hubs in the networks built by these algorithms. For Elevator, the in-degree
distribution remains similar, with 10 high-in-degree peers that have each an in-
degree of 989. We are thus confident in the capacity of our algorithm to promote
new nodes to the position of hubs if the previous hubs were disconnected. In
Figure 2c we can see that we have almost the same results as the results obtained
without crashes for the clustering coefficient, except for the clustering coefficient
dropping from 0.55 to 0.3 in the middle of the simulation for Elevator, which
is logical as the 10 hubs are disconnected. The drop is only temporary, as the
value goes back to 0.55 almost immediately. For the average path length and the
diameter there is no impact, as we can see in Figure 3c and 4c.

Summary. In Figure 5 we compare the in-degree distribution of the network
after the run of the Elevator algorithm for a various number of hubs 5a, and also
for each context of simulation 5b. The shape of the degree distribution remains
consistent across different hub counts, except for a scenario with 20 hubs where
nodes exclusively connect to these hubs (resulting in a multi-star topology). This
phenomenon aligns with the prescribed number of preferred connections (h =
c = 20), where nodes exclusively link to elevated hub nodes, omitting random
connections entirely. The shape of distribution also remains consistent across
failure contexts. In Figure 6, we compare Elevator across all contexts for the
different metrics, and we can see that there are not many variations in values, as
expected from the definition of our protocol and as seen in previous comparative
analyses presented above. Another notable feature is that Elevator seems more
stable than Phenix. This is because once the hubs are in place they do not change
(except in the event of failures), which provides stability in terms of network
diameter or average path length.



Elevator: Hub Sampling Service 11

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

SimpleNewscast
Proofs
Phenix
Elevator

(a) Clustering coefficient

0 20 40 60 80 100
1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

SimpleNewscast
Proofs
Phenix
Elevator

(b) Average path length

0 20 40 60 80 100

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

SimpleNewscast
Proofs
Phenix
Elevator

(c) Diameter

Fig. 1: Metrics computed during the simulation (no failures), for each algorithm,
every 10 cycles.
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Fig. 2: Clustering coefficient for each algorithm, every 10 cycles.

0 20 40 60 80 100
1.9

2.0

2.1

2.2

2.3

2.4

SimpleNewscast
Proofs
Phenix
Elevator

(a) With a 50% crash

0 20 40 60 80 100
1.9

2.0

2.1

2.2

2.3

2.4

2.5

SimpleNewscast
Proofs
Phenix
Elevator

(b) With churn

0 20 40 60 80 100
1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

SimpleNewscast
Proofs
Phenix
Elevator

(c) With a crash of all hubs

Fig. 3: Average path length for each algorithm, every 10 cycles.
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Fig. 4: Diameter of the graph, for each algorithm, every 10 cycles.
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Fig. 5: In-degree distribution of the network, after the run of the Elevator algo-
rithm for 1000 cycles.
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Fig. 6: Metrics computed during the simulation, after the run of the Elevator
algorithm, for all contexts (normal, churn, 50% crash, hub-targeted attack), every
10 cycles.

5 Conclusion

We proposed a novel peer sampling algorithm, Elevator, designed for unstructured
P2P networks, which facilitates the organic promotion of specific nodes to serve as
hubs. Our simulations confirm that the Elevator algorithm successfully maintains
network connectivity, constructs networks with low diameters, achieves stability
with a defined number of hubs (denoted as h), and demonstrates resilience against
crashes, churn, and targeted attacks on hubs. The distinctive aspect of our work
lies in our pursuit of developing an unstructured network model with inherent
hub nodes. We anticipate that this work will pave the way for a new category of
algorithms known as "hub sampling algorithms", which could hold significant
relevance for specific decentralized applications. For instance, such algorithms
may accelerate the transmission of machine learning models in federated learning
scenarios or automate the selection of validators in blockchain networks, thus
potentially replacing the need for traditional proof-of-work protocols. While
our current study does not delve into these specific use cases, we envision
exploring federated learning applications within this network paradigm in future
investigations.

References

[1] Alexandros Antonov and Spyros Voulgaris. “SecureCyclon: Dependable Peer
Sampling”. In: 2023 IEEE 43rd International Conference on Distributed
Computing Systems (ICDCS). IEEE. 2023, pp. 1–12.

[2] Albert-Laszlo Barabâsi et al. “Evolution of the social network of scientific
collaborations”. In: Physica A: Statistical mechanics and its applications
311.3-4 (2002), pp. 590–614.

[3] Nakamoto S Bitcoin. Bitcoin: A peer-to-peer electronic cash system. 2008.



14 Authors Suppressed Due to Excessive Length

[4] Eyuphan Bulut and Boleslaw K Szymanski. “Constructing limited scale-free
topologies over peer-to-peer networks”. In: IEEE Transactions on Parallel
and Distributed Systems 25.4 (2013), pp. 919–928.

[5] Reuven Cohen and Shlomo Havlin. “Scale-free networks are ultrasmall”. In:
Physical review letters 90.5 (2003), p. 058701.

[6] Suyong Eum, Shin’ichi Arakawa, and Masayuki Murata. “Self-organizing
scale free topology for peer-to-peer networks”. In: 2009 IEEE Globecom
Workshops. IEEE. 2009, pp. 1–6.

[7] Justin Frankel. “The Gnutella protocol specification v0. 4”. In: http://www.
clip2. com/gnutellaprotocol04. pdf (2003).

[8] Hasan Guclu and Murat Yuksel. “Limited scale-free overlay topologies for
unstructured peer-to-peer networks”. In: IEEE Transactions on Parallel
and Distributed Systems 20.5 (2008), pp. 667–679.

[9] István Hegedűs, Gábor Danner, and Márk Jelasity. “Decentralized learning
works: An empirical comparison of gossip learning and federated learning”.
In: Journal of Parallel and Distributed Computing 148 (2021), pp. 109–124.

[10] Márk Jelasity et al. “Gossip-based peer sampling”. In: ACM Transactions
on Computer Systems (TOCS) 25.3 (2007), 8–es.

[11] Christopher W Lynn, Caroline M Holmes, and Stephanie E Palmer. “Emer-
gent scale-free networks”. In: PNAS Nexus (2024), pgae236.

[12] Apostolos Malatras. “State-of-the-art survey on P2P overlay networks in
pervasive computing environments”. In: Journal of Network and Computer
Applications 55 (2015), pp. 1–23.

[13] Petar Maymounkov and David Mazieres. “Kademlia: A peer-to-peer infor-
mation system based on the xor metric”. In: International Workshop on
Peer-to-Peer Systems. Springer. 2002, pp. 53–65.

[14] Brendan McMahan et al. “Communication-efficient learning of deep net-
works from decentralized data”. In: Artificial intelligence and statistics.
PMLR. 2017, pp. 1273–1282.

[15] Alberto Montresor. “A robust protocol for building superpeer overlay topolo-
gies”. In: Proceedings. Fourth International Conference on Peer-to-Peer
Computing, 2004. Proceedings. IEEE. 2004, pp. 202–209.

[16] Alberto Montresor and Márk Jelasity. “PeerSim: A Scalable P2P Simulator”.
In: Proc. of the 9th Int. Conference on Peer-to-Peer (P2P’09). Seattle, WA,
Sept. 2009, pp. 99–100.

[17] Ashika R Naik and Bettahally N Keshavamurthy. “Next level peer-to-peer
overlay networks under high churns: a survey”. In: Peer-to-Peer Networking
and Applications 13.3 (2020), pp. 905–931.

[18] Róbert Ormándi, István Hegedűs, and Márk Jelasity. “Gossip learning with
linear models on fully distributed data”. In: Concurrency and Computation:
Practice and Experience 25.4 (2013), pp. 556–571.

[19] Jae-Hyun Park. “Distributed algorithm for making scale-free network by
preferential rewiring without growth”. In: IEEE Transactions on Industrial
Informatics 15.6 (2018), pp. 3125–3132.



Elevator: Hub Sampling Service 15

[20] Sylvia Ratnasamy et al. “A scalable content-addressable network”. In: Pro-
ceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications. 2001, pp. 161–172.

[21] Masahiro Sasabe, Naoki Wakamiya, and Masayuki Murata. “LLR: A con-
struction scheme of a low-diameter, location-aware, and resilient p2p net-
work”. In: 2006 International Conference on Collaborative Computing:
Networking, Applications and Worksharing. IEEE. 2006, pp. 1–8.

[22] Angelos Stavrou, Dan Rubenstein, and Sambit Sahu. “A lightweight, robust
P2P system to handle flash crowds”. In: IEEE Journal on Selected Areas
in Communications 22.1 (2004), pp. 6–17.

[23] Ion Stoica et al. “Chord: a scalable peer-to-peer lookup protocol for internet
applications”. In: IEEE/ACM Transactions on networking 11.1 (2003),
pp. 17–32.

[24] Spyros Voulgaris, Daniela Gavidia, and Maarten Van Steen. “Cyclon: In-
expensive membership management for unstructured p2p overlays”. In:
Journal of Network and systems Management 13 (2005), pp. 197–217.

[25] Rita H Wouhaybi and Andrew T Campbell. “Phenix: Supporting resilient
low-diameter peer-to-peer topologies”. In: IEEE INFOCOM 2004. Vol. 1.
IEEE. 2004.

[26] Yan-Bo Xie, Tao Zhou, and Bing-Hong Wang. “Scale-free networks without
growth”. In: Physica A: Statistical Mechanics and its Applications 387.7
(2008), pp. 1683–1688.



16 Authors Suppressed Due to Excessive Length

A Description of PROOFS, Newscast and Phenix
algorithms

As our goal is to present our new hub sampling algorithm and compare it to
previous peer sampling algorithms, we will (briefly) present three peer sampling
algorithms (PROOFS, Newscast, and Phenix).

The PROOFS algorithm: The PROOFS algorithm, as presented in [22] is a
very simple algorithm used to create a peer sampling service. At each cycle, each
node initiates a neighbor exchange (or shuffling) with another peer q chosen at
random. The peer selects a random subset of size l (the shuffle length, a global
parameter) and sends this subset to q. Upon reception of the subset, the node q
also selects a random subset and sends it to p. When the node receives the subset
of q, it replaces the previous entry in its cache, starting with the empty cache
slots (if any) and then replacing entries previously sent to q. The parameters of
the algorithm are c, the size of the list of outgoing connections, and l, the shuffle
length, i.e. the number of outgoing connections exchanged with a peer during
a neighbor exchange. The cache list is implemented as an array of size c. The
list is initialized with random values (random connections to other nodes of the
network).

Algorithm 3: PROOFS algorithm (active thread)
Data: initial peer list: cache
Data: cache size: c
Data: shuffle length: l
Data: node address: p

1 Loop
2 subset ← selectRandomSubset(cache, l)
3 q ← selectRandom(subset)
4 subset .remove(q)
5 subset .add(p)
6 send(q , subset)
7 subsetq ← receive(q)
8 subsetq.remove(p)
9 subsetq.removeAll(cache)

10 cache ← subsetq
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Algorithm 4: PROOFS algorithm (background thread)
Data: peer list: cache
Data: shuffle length: l
Data: node address: p

1 Loop
2 q, subsetq ← receive()
3 subset ← selectRandomSubset(cache, l)
4 send(q , subset)
5 subsetq.remove(p)
6 subsetq.removeAll(cache)
7 cache ← subsetq

1

2

3

4

5

7

8 6

1

2

3

4

5

7

8 6

Fig. 7: Before and after the execution of the PROOFS algorithm. The node 1
sends its address alongside the address of 2 and 3 to the node 4. Node 4 sends
back the addresses of nodes 5,6 and 8. Node 1 replaces the connection to 2, 3,
and 4 with connections to 5,6 and 8. Node 4 drops connection to 5,6, and 8 and
connect to nodes 2 and 1 (it is already connected to 3).

The goal of the algorithm is to produce a network that is “well-mixed”, in the
sense that after enough shuffling operations, the node’s neighbors are essentially
drawn at random from the set of all peers.

The Newscast algorithm: The Newscast algorithm[10] is similar to PROOFS
but is more generic and adds the idea of "age" for the node descriptors. The
age of the node descriptors is incremented at each cycle. The goal is to create
a peer sampling service that allows each node of the network to connect to a
random subset of the nodes in the network. The parameters of the algorithm
are c, the size of the list of outgoing connections, the mode of the peer selection
(random or tail, but for simulations we only used random), and the mode of view
propagation. The mode of view propagation can be push, pull, or push-pull, as
described below:

– Push strategy: At each cycle, a node will send its knowledge to the selected
node
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– Pull strategy: At each cycle, a node will ask for knowledge from the selected
node and wait for the answer.

– Push-Pull strategy: At each cycle, a node will both use a Push and a Pull
strategy.

As the push-pull mode is the most efficient[10], this is the mode we will present
and the one that we used in our simulations. The cache list is implemented as an
array of 2-tuple of size c. The two elements of the tuple are the node descriptor
and the associated age of the descriptor. The list is initialized with random values
for the node descriptors (random connections to other nodes of the network) and
with 0s for the age of the node descriptors. At each cycle, each node initiates
an exchange of membership information with a neighbor chosen at random. The
node sends a buffer that contains c

2 − 1 random node descriptors from its cache
to the other node, with c the parameter representing the size of the cache. The
other node replies to the message with a similar message also containing a buffer
with c

2 − 1 nodes descriptors. The node then merges the received buffer with its
cache and filters the elements (removing the duplicates, the older elements, and
finally removing the sent elements) to achieve a cache of the same size as before.
If there are still too many elements, the algorithm removes elements of the cache
at random until the length of the cache is c.

Algorithm 5: Newscast algorithm (active thread)
Data: initial peer list: cache
Data: cache size: c
Data: node address: p

1 Loop
2 q ← selectRandom(cache)
3 buffer =← {}
4 buffer .append(address = p, age = 0)
5 cache.permute()
6 buffer .append(view .head(c/2− 1))
7 send(q , buffer)
8 bufferq ← receive(q)

9 cache.append(bufferq)

10 cache.removeDuplicates()
11 cache.removeOldItems()
12 cache.removeHead()
13 cache.removeRandom()
14 cache.IncrementAllItemsAge()
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Algorithm 6: Newscast algorithm (background thread)
Data: peer list: cache
Data: node address: p

1 Loop
2 q, bufferq ← receive()

3 buffer = newbuffer()
4 buffer .append(address = p, age = 0)
5 cache.permute()
6 buffer .append(view .head(c/2− 1))
7 send(q , buffer)
8 cache.append(bufferq)
9 cache.removeDuplicates()

10 cache.removeOldItems()
11 cache.removeHead()
12 cache.removeRandom()
13 cache.IncrementAllItemsAge()

As with PROOFS, the Newscast algorithm allows the creation of a network
that has the same behavior as a random graph. In particular, this allows the
network to be very resilient to failures and churn, as explained in [10].

The Phenix algorithm: The Phenix algorithm[25] is a peer sampling algorithm
that differs from PROOFS and Newscast in the sense that the goal of the authors
is to create an algorithm that is both resilient to failures and with a low-diameter.
The algorithm is inspired by the concept of preferential attachment[2] and
constructs a network with a topology that is close to a power-law. Contrary
to the two previous algorithms, the Phenix algorithm only executes once for
each node, when the node enters the network. The node splits its cache in 2
parts Grandom and Gfriends. Then it connects directly to the nodes in Grandom

and asks for the list of neighbors for each node in Gfriend and adds them
to the list Gcandidates. Each node in Gfriend also sends a ping message to all
its neighbors and all neighbors add the new node to their Γ list, to prevent
crawling from malicious nodes. The new node then sorts this list of distance two
neighbors (Gcandidates) and selects the s more frequent nodes and connects to
them (Gpreferred). When a node receives a connection request from a new node,
it will increment its internal counter and create a backward connection with this
node if its counter’s value is greater than the γ constant. The parameters of the
algorithm are c, the number of outgoing connections, τ , the number of cycles a
node is kept in the gamma list (fixed at 10), γ, the constant limiting the number
of backward connections (fixed to 20, thus a backward connection is created for
20 in-going connections) and s, the number of preferential connections, chosen to
the value of c/2 for our simulations. The cache list is implemented as an array
of size c. The list is initialized with random values (random connections to other
nodes of the network). The Γ list is implemented as a linked list and initialized
as an empty list.
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Algorithm 7: Phenix algorithm (active thread)
Data: cache size: c
Data: initial peer list: cache
Data: initial backward list: backward_peers (empty)
Data: number of preferential connections: s

1 Grandom , Gfriend ← split(cache)
2 cache ← {}
3 cache.append(Grandom)
4 Gcandidates ← {}
5 for peer ∈ Gfriend do
6 neighbor_list ← send(peer ,CACHE_REQUEST )
7 Gcandidates ← Gcandidates ∪ neighbor_list

8 sort(Gcandidates)
9 Gpreferred ← Gcandidates [0..(s− 1)]

10 for peer ∈ Gprefered do
11 send(peer ,CONNEXION_REQUEST )

12 cache.append(Gpreferred)

Algorithm 8: Phenix algorithm (background thread)
Data: peer list: cache
Data: gamma list: Γ
Data: initial backward list: backward_peers (empty)
Data: number of preferential connections: s (fixed at c/2)
Data: internal counter for backward connections: cm (start at 0)
Data: backward connections constant: γ (fixed at 20)

1 Loop
2 Γ.removeOldItems()
3 request , peer ← receive()
4 if request = CACHE_REQUEST then
5 send(cache, peer)
6 for node ∈ cache do
7 send(node,PING_REQUEST )

8 if request = PING_REQUEST then
9 Γ.add(peer)

10 if request = CONNEXION_REQUEST then
11 cm ++
12 if cm >= γ then
13 backward_peers.add(peer)
14 cm ← cm − γ

To allow for the idea of preferential attachment to work, the network needs
to be initialized with a small number of nodes (the number is set to 20 in [25]
and we have chosen the same value for our simulations) and nodes are added
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progressively, with the number of nodes added at each cycle is drawn from a
normal distribution N (2, 1). The constructed network is a scale-free network,
with a topology following a power law.

B Metrics used: Degree Distribution, Clustering, Average
Path Length and Diameter

B.1 Degree distribution

The indegree (resp outdegree) distribution of a network represents the probability
distribution of these indegrees (resp outdegrees) over the whole network.

– A network that follows a random graph distribution (Erdős–Rényi model)
should have a degree distribution that follows the probability P (k) =(
n−1
k

)
pk(1− p)n−1−k

– A network that follows a power law (Barabási-Albert model) should have a
degree distribution that follows the following probability P (k) = Ck−γ

Indeed, observing the degree distribution should tell us if our algorithm creates a
network with a topology closer to a random graph or one closer to a power-law.

B.2 Clustering coefficient

A random graph tends to have a low clustering coefficient, and a network with a
lot of hubs will have a higher clustering coefficient. The clustering coefficient of
a node is the number of edges between the neighbors of the node divided by the
number of all possible edges between those neighbors. Intuitively, we can think
of this coefficient as the measure of the degree to which nodes in a graph tend to
cluster together (neighbors of the node are also neighbors of each other).

Ci =
2ei

ki(ki − 1)

Where:

– ei is the number of closed triangles containing node i.
– ki is the degree of node i, which is the number of links (edges) connected to

that node.

C =
1

n

n∑
i=1

Ci
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B.3 Average Path Length

As our goal is to have an algorithm that constructs a network that disseminates
information in the network, our algorithm must produce a network topology with
a low average path length. The average path length of each node was computed
using the Floyd–Warshall algorithm.

The average path length is the average of the shortest path lengths over all
pairs of nodes in the graph.

a =
∑
s,t∈V
s̸=t

d(s, t)

n(n− 1)

B.4 Diameter

The diameter of a graph is a measure of the longest distance between any two
vertices (nodes) in the graph, measured in terms of the number of edges. In other
words, the diameter of a graph is the maximum shortest path between any pair
of nodes in the network.

diam(G) = max
u,v∈V

d(u, v)

While the average path length provides a basic measure of information
dissemination efficiency in algorithms, it may overlook disparities in dissemination
speed across different nodes within the network. An algorithm could potentially
have a favorable average path length but still exhibit uneven dissemination
speeds among nodes due to varying distances. Calculating the network’s diameter,
however, offers a more comprehensive assessment.

C Additional results from simulations
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Fig. 8: In-degree distribution of the network, after the run of the algorithm for
1000 cycles, for each algorithm.
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Fig. 9: In-degree distribution of the network, after the run of the algorithm for
1000 cycles, for each algorithm, zoom on the beginning of distribution.
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Fig. 10: In-degree distribution of the network, after the run of the algorithm for
1000 cycles.
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Fig. 11: Out-degree distribution of the network, after the run of the algorithm for
1000 cycles, for each algorithm.
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Fig. 12: Analysis of the removal of all the nodes of the network one by one, and
observing the number of nodes outside the biggest weakly connected cluster.
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Fig. 13: Analysis of the removal of all the nodes of the network one by one, and
observing the number of nodes outside the biggest strongly connected cluster.
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Fig. 14: Analysis of the removal of all the nodes of the network one by one, and
observing the number of nodes outside the biggest weakly connected cluster, with
a 50% crash.
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Fig. 15: Analysis of the removal of all the nodes of the network one by one, and
observing the number of nodes outside the biggest strongly connected cluster,
with a 50% crash.
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Fig. 16: Analysis of the removal of all the nodes of the network one by one, and
observing the number of nodes outside the biggest weakly connected cluster, with
churn.
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Fig. 17: Analysis of the removal of all the nodes of the network one by one, and
observing the number of nodes outside the biggest strongly connected cluster,
with churn.
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(b) Zoom on the last 20%

Fig. 18: Analysis of the removal of all the nodes of the network one by one, and
observing the number of nodes outside the biggest weakly connected cluster, with
a hub-targeted attack.
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(b) Zoom on the last 20%

Fig. 19: Analysis of the removal of all the nodes of the network one by one, and
observing the number of nodes outside the biggest strongly connected cluster,
with a hub-targeted attack.
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