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Abstract

Previous works (Devaux et al., 1997; Cheng et al., 2017) have emphasized the effects of strain
hardening and elasticity upon ductile rupture of metals under cyclic loading conditions. This
work pursues the study and modelling of these two effects by distinct theoretical methods, each
coupled with micromechanical finite element simulations of the behaviour of some “representative
cell”. For the effect of strain hardening, we employ Morin et al. (2017)’s approach, based on the
theory of sequential limit-analysis (Yang, 1993; Leu, 2007; Leblond et al., 2018). This approach is
applied to various types of hardening of the metallic matrix: isotropic, linear kinematic, nonlinear
kinematic with one or two kinematic variables (Armstrong and Frederick, 2007), and even a
simplified version of Chaboche (1991)’s model accounting for complex cyclic effects. Numerical
micromechanical simulations of a hollow sphere made of elastic-plastic materials obeying the
various hardening laws considered, and subjected to cyclic loadings at high triaxiality, fully
confirm the predictions of the model developed, provided elasticity is made negligible by using
an artificially high value of Young’s modulus. When a realistic value is employed, however, the
agreement between theoretical predictions and numerical results is degraded, thus emphasizing
again the importance of the effect of elasticity in cyclic ductile rupture. To deal with this effect
we derive, apparently for the first time, an evolution equation of the porosity accounting for
(compressible) elasticity. However, numerical micromechanical simulations reveal that simply
using this new evolution law, while keeping all other aspects of the model unchanged, remains
insufficient to get a good match of theoretical and numerical results. Such a match is achieved by
introducing the ad hoc hypothesis that the yield criterion and flow rule derived from sequential
analysis still apply in the presence of elasticity, but with some “effective porosity” slightly
differing from the true one through some heuristic, adjustable factor.
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1 Introduction

It is a well established experimental fact that the ductility (strain to fracture) of duc-
tile metals and alloys is notably lower under cyclic loadings than under monotonic ones
(Schmidt et al., 1991; Kobayashi et al., 1992). The study and modelling of this phe-
nomenon are obviously of major importance for the prediction of the risks of ductile
rupture in metallic structures subjected to cyclic loading conditions. On the basis of mi-
cromechanical finite element simulations of the behaviour of hollow plastic cells loaded
cyclically, Gilles et al. (1992) tentatively ascribed the effect to some ratcheting of the poros-
ity under such conditions (gradual increase, with the number of cycles, of the maximum
porosity reached during each one). This interpretation was duly confirmed by Devaux et
al. (1997), through more accurate numerical simulations. Many works on the topic, mostly
based again on micromechanical simulations, followed (Besson and Guillemer-Neel, 2003;
Brocks and Steglich, 2003; Rabold and Kuna, 2005; Steglich et al., 2005; Mbiakop et al.,
2015; Lacroix et al., 2016; Cheng et al., 2017; Nielsen et al., 2018).

With regard to theoretical aspects, two fundamental remarks were made by Devaux et al.
(1997) and elaborated by Lacroix et al. (2016):

(1) The ratcheting of the porosity, and more generally the asymmetry of successive half-
cycles in tension and compression, basically arises from two distinct aspects of the
mechanical behaviour: strain hardening and/or elasticity. In other words, for rigid-
ideal-plastic materials devoid of both elasticity and hardening, successive half-cycles
are perfectly symmetrical, and the evolution of the porosity during one cycle instantly
stabilized. 1

(2) Gurson (1977)’s classical model for the overall behaviour of porous plastic materials
fails - even in its extended form known as the GTN model (Tvergaard, 1981; Tver-
gaard and Needleman, 1984) - to predict any ratcheting of the porosity, although it
does include elasticity and strain hardening. By Remark (1), this failure can only be
ascribed to shortcomings in the way elasticity and/or strain hardening are accounted
for in this model.

In view of the popularity of Gurson (1977)’s model for the description of the ductile
behaviour of metals and alloys, it seems worth trying and improving it with respect to
those two aspects, so as to adapt it better to the prediction of ductile rupture under cyclic
loading conditions.

With respect to strain hardening, a first step in this direction was made by Leblond et
al. (1995). Their work was based on the observation that as a result of Gurson (1977)’s
overly simplified modelling of strain hardening, his model yielded predictions of the poros-
ity evolution contradicting, to some extent, the results of micromechanical simulations.
They proposed to improve the model by better accounting for the heterogeneous distri-
bution of hardening within the hollow sphere considered (typical representative cell in a
porous plastic material). The most notable change introduced consisted in introducing

1 This is due to a somewhat paradoxical effect of reversibility of plastic flows in such materials,
analogous to the reversibility of Stokes (extremely viscous) flows in fluid mechanics.
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two (scalar) parameters characterizing (isotropic) hardening, instead of one like in Gur-
son (1977)’s original model; this revealed essential for the correct reproduction of some
features of the porosity evolution.

Although Leblond et al. (1995)’s work was not directly concerned with cyclic loadings,
their improved variant of Gurson (1977)’s model was tentatively applied by Devaux et
al. (1997) to the prediction of the porosity evolution under such conditions. The results
were mitigated: the improved Gurson-like model revealed free of the drawback of Gurson
(1977)’s original version evidenced by Devaux et al. (1997) and mentioned in Point (2)
above, but did not accurately predict the ratcheting of the porosity observed in microme-
chanical simulations. Lacroix et al. (2016) ascribed this somewhat disappointing result
to some hypothesis of positively proportional straining made in Devaux et al. (1997)’s
model, obviously quite unfit to cyclic loadings for which the components of the overall
strain rate change sign every half-cycle. They proposed a further improvement of the
model by dropping this hypothesis, at the expense of introduction, at each “macroscopic
material point”, of some underlying hollow sphere (typical elementary cell) discretized
into a number of spherical layers; each layer having its own (isotropic) hardening variable,
updated and stored at each time-step. The agreement between theoretical and numerical
porosity evolutions then became much better, provided micromechanical simulations used
a very high value of Young’s modulus aimed at almost suppressing the effect of elasticity.

A new avenue to the modelling of strain hardening effects in porous plastic materials
was recently opened by Morin et al. (2017). These authors’ work was based on use of
the so-called theory of sequential limit-analysis, as introduced from a purely numerical
point of view by Yang (1993), then applied to various problems by Corradi and Panzeri
(2004); Leu (2007); Leu and Li (2012); Kong et al. (2017); Yuan et al. (2017), among
others, and finally analyzed theoretically by Leblond et al. (2018). This theory permit-
ted to extend the methods and results of classical limit-analysis (Hill, 1951; Drucker et
al., 1952) by accounting for strain hardening and geometry changes, at the expense of
neglect of elasticity. 2 Its application in the work of Morin et al. (2017) permitted to (i)
justify (with the hypothesis of negligible elasticity) Lacroix et al. (2016)’s “spherical layer
model”; and (ii) extend it to more complex hardening rules involving kinematic harden-
ing. The quality of the instantaneous overall yield surfaces predicted were compared to
those obtained through numerical limit-analyses of hollow spheres with prescribed dis-
tributions of pre-hardening, with favorable results. However, Morin et al. (2017) did not
consider complex kinematic hardening rules including cyclic effects; nor did they perform
micromechanical simulations of the evolution in time of hollow cells, as is necessary to
assess the applicability of the model to cyclic loadings.

Much less has been done on the study and modelling of the influence of elasticity upon
cyclic ductile rupture. From the point of view of micromechanical simulations, although
this influence was noted some 25 years ago by Devaux et al. (1997), it was somewhat
forgotten until Mbiakop et al. (2015), and even more Cheng et al. (2017), stressed its
importance again. From the theoretical point of view, the situation is more difficult than

2 The situation is different from that in classical limit-analysis (in the absence of strain harden-
ing and within a geometrically linearized context), where the disregard of elasticity at limit-loads
is rigorously justified; see (Drucker et al., 1952).
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for the influence of strain hardening, since the theory of sequential limit-analysis willfully
ignores elasticity (Leblond et al., 2018), and thus cannot be used to study or model its
effect. However an interesting proposal to account for this effect, apparently the first of its
kind, was recently made by Cheng et al. (2017). It consisted of “decoupling” elasticity and
(visco)plasticity, by using linear and nonlinear homogenization theories to approximately
evaluate the overall elastic and (visco)plastic potentials, separately and independently.
This basically amounted to simply adding (within a Eulerian context) the (hypo)elastic
and (visco)plastic deformation rates, without accounting for their possible interactions.
Although appealing in principle, and indeed able to reproduce the results of some mi-
cromechanical simulations (Cheng et al., 2017), this proposal by definition ignores the
impact of the elastic deformation upon the plastic strain rate, which we shall try and
show here to be, in all probability, the major factor governing the impact of elasticity
upon the ratcheting of the porosity under cyclic loadings.

The aim of this paper is to pursue the study and modelling of the effects of strain hardening
and elasticity upon cyclic ductile rupture of porous plastic materials. Distinct, unrelated
methods will be used to deal with these two aspects of the material behaviour - both in
conjunction with micromechanical simulations:

• for the effect of hardening, Morin et al. (2017)’s approach based on sequential limit-
analysis, coupled with micromechanical simulations with an artificially high value of
Young’s modulus so as to make elasticity negligible;

• for the effect of elasticity, an evolution equation of the porosity incorporating - appar-
ently for the first time - elasticity, coupled with micromechanical simulations with a
“normal” value of Young’s modulus.

The organization of the paper follows this programme in a natural way:

• Section 2 first presents the microscopic hardening laws studied in the paper, including a
complex one incorporating cyclic effects, not considered in Morin et al. (2017)’s previous
work. Then, disregarding elasticity in a first step, it expounds the macroscopic model
resulting from application of Morin et al. (2017)’s approach to the hardening laws
considered.

• Section 3 expounds the results of micromechanical simulations of hollow spheres made
of quasi-rigid-plastic materials obeying various hardening laws, and subjected to various
cyclic loading conditions. The aim here is to assess the validity of the model developed
in the preceding Section.

• As a prerequisite to the modelling of the effect of elasticity, Section 4 is devoted to the
derivation of an evolution equation for the porosity including the effect of elasticity.
This is done first within a geometrically linearized context, then within a fully general
geometric framework, at the expense of some slight modification of the usual microscopic
and macroscopic hypoelasticity laws.

• Section 5 finally develops a macroscopic constitutive model accounting for the influ-
ence of elasticity upon the porosity evolution through the equation derived in Section
4. Comparisons of the model predictions with results of micromechanical simulations
performed for elastic-plastic materials are made; they reveal the necessity of use, in the
overall yield criterion and plastic flow rule, of some “effective” porosity slightly differing
from the true one through some heuristic parameter.
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2 Microscopic and macroscopic constitutive laws

Throughout the paper, a large displacement / large strain formulation (no geometric
linearization) will be employed, unless otherwise stated. Use will be made of the Eulerian
strain rate d (symmetric part of the velocity gradient) and the Cauchy stress tensor σ

(true, actual force divided by true, actual surface).

2.1 Local yield criterion, plastic flow rule and evolution of hardening parameters

The material considered is elastic-plastic and exhibits a mixed (isotropic+kinematic) hard-
ening. Its yield criterion, of von Mises type, reads:

φ(σ) ≡ (σ −α)2eq − σ2 ≤ 0 , (σ −α)eq ≡
[

3

2
(σ′ −α) : (σ′ −α)

]1/2

, (1)

where σ is the current yield stress, σ
′ ≡ σ − 1

3
(trσ) 1 (1: second-order unit tensor)

the deviator of σ, and α a traceless symmetric “backstress” tensor. The flow rule is
“associated” to the criterion via the normality property adapted to metal plasticity:

dp = λ̇
∂φ

∂σ
(σ) = 3λ̇(σ′ −α), (2)

where dp is the plastic strain rate and λ̇ the plastic multiplier, obeying the Kuhn-Tucker
conditions λ̇ ≥ 0, λ̇φ = 0.

Isotropic hardening. This type of hardening is governed by the current value of the
yield stress σ. The simplest hypothesis consists of assuming it to be a given, increasing
function of the cumulated plastic strain p :

σ ≡ σ(p) , p(t) ≡
∫ t

0
dpeq(τ)dτ , dpeq ≡

(

2

3
dp : dp

)1/2

. (3)

This simple law does not account for complex cyclic effects. A more elaborate one - a
simplified version of Chaboche (1991)’s classical model - is presented in Appendix A.

Kinematic hardening. The simplest model of kinematic hardening involves a linear
evolution law for the backstress α:

ᾰ =
2

3
Cdp (4)

where ᾰ denotes some objective time-derivative of α - the usual choice being Jaumann’s
derivative - and C some constant homogeneous to a stress, representing the “hardening
slope” in simple tension.

This model is crude since it involves a constant hardening slope. In order to account for the
different slopes at the end of loading and the beginning of the plastic phase of unloading,
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Armstrong and Frederick (2007) proposed a more elaborate evolution equation:

ᾰ =
2

3
Cdp − γα ṗ (5)

where γ is a positive, dimensionless “relaxation parameter”. At constant plastic strain
rate dp, this equation describes an exponential evolution of α toward the stationary
value 2

3
C
γ

dp

ṗ
; so that the stress-strain curve in simple tension is concave and goes to some

horizontal asymptote for large strains.

More complex and realistic behaviours may be obtained by taking the backstress α as
a sum of kinematic variables αk obeying distinct Armstrong and Frederick (2007)-type
evolution laws:

α =
∑

k=1,K

αk ; ᾰk =
2

3
Ckd

p − γkαk ṗ (k = 1, ..., K). (6)

For instance, if one considers two kinematic variables α1 and α2, the first obeying a
simple linear evolution rule (C1 6= 0, γ1 = 0) and the second a rule including relaxation
(C2 6= 0, γ2 6= 0), one gets a more realistic stress-strain curve in simple tension going to
some inclined asymptote.

2.2 Principle of Morin et al. (2017)’s homogenization method

Morin et al. (2017) consider, as a typical “representative cell” in a porous material, a
hollow sphere of internal radius a, external radius b, defining a porosity (void volume
fraction) f ≡ a3/b3, subjected to conditions of homogeneous boundary strain rate (Man-
del, 1964; Hill, 1967). The constitutive material is momentarily assumed to be plastic but
devoid of elasticity, with local yield criterion and flow rule given by equations (1) and
(2). For a given and fixed distribution of (isotropic and kinematic) hardening parameters,
Morin et al. (2017) use the theory of sequential limit-analysis to derive an instantaneous
overall yield criterion and flow rule.

In order to simplify the calculations required and the resulting model, Morin et al. (2017)
introduce - following Lacroix et al. (2016) who themselves drew inspiration from a work
of Hervé and Zaoui (1993) - a radial discretization of the hollow sphere defined by the
N + 1 radii

a = r1 < r2 < ... < rN+1 = b (7)

(Fig. 1). The thin spherical layer lying between radii ri and ri+1 is denoted Li. Use is
made of the following notation:

fi ≡
r3i
b3

(i = 1, ..., N + 1). (8)

The following approximations pertaining to the distributions of the isotropic and kine-
matic hardening variables are then introduced:
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Fig. 1. Radial discretization of a hollow sphere.

(1) the yield stress σ is uniform within each layer Li, and denoted σi there;
(2) the distribution within layer Li of the backstress α ≡ α

i is of the form

α
i = Ai

1 + Ai
2 (−2er ⊗ er + eθ ⊗ eθ + eφ ⊗ eφ) (9)

where Ai
1 is a traceless symmetric tensor and Ai

2 a scalar, both uniform within the
layer, and er, eθ, eφ are the vectors of the orthonormal basis naturally associated to
the spherical coordinates r, θ, φ. 3

With these approximations, Morin et al. (2017) show that the overall plastic dissipation
may be decomposed into two terms pertaining to the isotropic and kinematic parts of
hardening respectively, both of which can be expressed as discrete sums over the layers
Li. Then, from the expression of the overall dissipation, they deduce those of the overall
yield criterion and flow rule.

It may be remarked here incidentally that Morin et al. (2017)’s method permits, among
other things, to incorporate kinematic hardening into porous plasticity models in a much
simpler and more natural way than previous heuristic approaches, proposed for instance
by Mear and Hutchinson (1985) and Leblond et al. (1995).

2.3 Overall yield criterion and flow rule

The Gurson (1977)-type overall criterion derived by Morin et al. (2017) is of the form

Φ(Σ) ≡
(Σ−A1)

2
eq

Σ2
1

+ 2qf cosh
(

3

2

Σm − A2

Σ2

)

− 1− q2f 2 ≤ 0 ,

(Σ−A1)eq ≡
[

3

2
(Σ′ −A1) : (Σ

′ −A1)
]1/2

.

(10)

3 The form (9) of the α
i’s is compatible, via the evolution law (5) or (6) of these variables,

with the form of Gurson (1977)’s trial velocity fields used in the limit-analysis: see Morin et al.
(2017) and Subsection 2.4 below.

7



In this equation Σ denotes the macroscopic stress tensor, Σm ≡ 1
3
trΣ its mean part,

Σ′ ≡ Σ − Σm 1 its deviator; Σ1 and Σ2 are scalars together representing the isotropic
part of macroscopic hardening; A1 and A2 are a traceless symmetric tensor and a scalar,
respectively, together defining some overall “backstress” representing the kinematic part
of macroscopic hardening; and finally q denotes some heuristic dimensionless parameter
of order unity, the introduction and value of which will be discussed in Subsection 3.2
below.

The macroscopic hardening parameters are given by the following discrete sums:

• for the isotropic part:


























Σ1 =
1

1− f

N
∑

i=1

σi (fi+1 − fi)

Σ2 = −
1

ln f

N
∑

i=1

σi ln

(

fi+1

fi

)

;

(11)

• for the kinematic part:


























A1 =
N
∑

i=1

Ai
1 (fi+1 − fi)

A2 = 2
N
∑

i=1

Ai
2 ln

(

fi+1

fi

)

.

(12)

Also, the normality property being preserved in the sequential-limit-analysis-based ho-
mogenization (Leblond et al., 2018), the overall flow rule reads

Dp = Λ̇
∂Φ

∂Σ
(Σ) = Λ̇

[

3
Σ′ −A1

Σ2
1

+
qf

Σ2
sinh

(

3

2

Σm −A2

Σ2

)

1

]

(13)

whereDp is the macroscopic plastic strain rate and Λ̇ the overall plastic multiplier, obeying
the Kuhn-Tucker conditions Λ̇ ≥ 0, Λ̇Φ = 0.

2.4 Evolution of overall internal parameters

With the approximation of negligible elasticity made by sequential limit-analysis, the
evolution of the porosity f is governed by the classical equation resulting from matrix
incompressibility:

ḟ = 3(1− f)Dp
m (14)

where Dp
m ≡ 1

3
trDp denotes the macroscopic mean plastic strain rate.

Also, following Leblond et al. (1995), Lacroix et al. (2016) and Morin et al. (2017), in the
evolution of the geometry, we account only for the hydrostatic part of the overall strain
rate - a logical approximation insofar as the model developed is intended to be applied
essentially to high triaxiality situations, for which void shape effects are negligible. With
this approximation the initially spherical layers Li remain spherical at all times, and
the evolution equations of the radii ri defining them read (accounting again for matrix
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incompressibility):

ṙi =
ri
fi

Dp
m (i = 1, ..., N + 1). (15)

Following Morin et al. (2017), the evolution equations of the hardening parameters are
deduced from Gurson (1977)’s trial velocity fields used in the sequential limit-analysis
and read, for every i = 1, ..., N :

• For the isotropic part:

pi(t) =
∫ t

0
ṗi(τ)dτ , ṗi =

(

Dp 2
eq + 4

b6

r6i
Dp 2

m

)1/2

,

Dp
eq ≡

(

2

3
Dp′ : Dp′

)1/2

, ri ≡
1

2
(ri + ri+1)

(16)

where Dp′ ≡ Dp −Dp
m1 denotes the deviator of Dp;

· for the simple “monotonic model” defined by equation (3):

σi = σ(pi); (17)

· for the variant of Chaboche (1991)’s “cyclic model” presented in Appendix A:































































ǫi(t) ≡
∫ t

0
sgn[trD(τ)]ṗi(τ)dτ

ǫimax(t) ≡ max
0≤τ≤t

ǫi(τ)

ǫimin(t) ≡ min
0≤τ≤t

ǫi(τ)

qi ≡ 1
2
(ǫimax − ǫimin)

dσi

dt
= B

[

Q(qi)− σi
]

ṗi

(18)

with the initial condition σi(t = 0) = σ0; the symbol D in equation (18)1 represents
the macroscopic total strain rate.

• For the kinematic part:























Ai
1 =

∑

k=1,K

Ai
1k , Ăi

1k = 2
3
CkD

p′ − γkA
i
1k ṗ

i

Ai
2 =

∑

k=1,K

Ai
2k , Ȧi

2k = 2
3
Ck

b3

r3
i

Dp
m − γkA

i
2k ṗ

i
, (k = 1, ..., K); (19)

note that for every value of k, the kinematic variable αk is assumed here to evolve
according to Armstrong and Frederick (2007)’s law (6)2; however a simpler linear evo-
lution law may be recovered by merely setting γk = 0.
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3 Micromechanical simulations disregarding elasticity

3.1 Principle of the simulations

The finite element simulations presented in this paper stand as extensions of those per-
formed by Lacroix et al. (2016) for isotropic hardening to other, more complex types of
hardening. They are all based on consideration of a hollow representative cell Ω initially
assuming the shape of a thick spherical shell (Fig. 2). The ratio of the initial inner to
outer radii is 0.1 so that the initial porosity is f0 = 10−3.

.

a
bO

x

y

z

(a) Principle of simulations (b) Mesh in the initial configuration

Fig. 2. Principle of finite element micromechanical simulations and mesh of the initial hollow
sphere.

All calculations are performed with a large displacement/large strain option, the cell being
subjected to conditions of homogeneous boundary strain rate (Mandel, 1964; Hill, 1967)
with an axisymmetric loading of axis Oy:

v(x) = D.x ∀x ∈ ∂Ω , Dxx = Dzz 6= Dyy , other Dij = 0 (20)

where v denotes the velocity and x the current position-vector. The ratio of the nonzero
components Dxx = Dzz and Dyy of the overall strain rate D is adjusted at each time-step
so as to achieve a constant absolute value of the triaxiality

T ≡
Σm

Σeq
, Σeq ≡

(

3

2
Σ′ : Σ′

)1/2

. (21)

(Note that T changes sign from one half-cycle to the next one, since Σm changes sign
whereas Σeq remains positive; thus the loading is proportional but not positively propor-
tional).

We shall study the evolution of the porosity as a function of the algebraic overall equivalent
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strain Eeq defined by the formula

Eeq(t) ≡
∫ t

0
sgn [Σm(τ)]Deq(τ)dτ , Deq ≡

(

2

3
D′ : D′

)1/2

(22)

where D′ ≡ D− 1
3
(trD)1 is the deviator of the total strain rateD. Each cycle is composed

of a “tensile” half-cycle (Σm > 0, T > 0) during which Eeq increases from 0 to some
prescribed, fixed value E

max
eq , followed by a “compressive” half-cycle (Σm < 0, T < 0)

during which Eeq decreases back from E
max
eq to 0.

In practice, the values of the loading parameters considered are |T | = 2 and 3, and
E

max
eq = 0.1. Four cycles are simulated in each case considered.

The values of the elastic constants used are E (Young’s modulus) = 1, 500GPa and ν
(Poisson’s ratio) = 0.3. The artificially enhanced value of Young’s modulus is intended to
reduce the effect of elasticity as far as possible, so as to match the hypothesis of negligible
elasticity made by sequential limit-analysis, the basis of the model presented above. The
values of the plastic parameters differ from one case to another and will be given below.

All calculations are performed using the SYSTUS© commercial finite element code de-
veloped by ESI Group.

3.2 Choice of macroscopic model parameters

• Choice of Tvergaard (1981)’s parameter q. The heuristic parameter q in the
macroscopic yield criterion (10) and flow rule (13) was introduced by Tvergaard (1981)
in order to improve the agreement of model predictions and results of various microme-
chanical numerical simulations. He interpreted the non-unity value of q found (of the
order of 1.5) as resulting from the use, in these simulations, of cell geometries differing
from, and physically more realistic than, the spherical geometry considered by Gurson
(1977). But the simulations presented here also precisely use a spherical cell geometry;
hence it would seem logical to discard the parameter q, or equivalently set it to unity,
in the model predictions to be compared to the simulation results.
However, even taking for granted Gurson (1977)’s trial velocity fields for the spherical

geometry, his treatment involved an additional approximation which induced further
errors. This approximation was discussed and refined by Leblond and Morin (2014),
with the conclusion that even for a spherical cell, a value of q slightly greater than
unity, and depending upon the triaxiality, should be used. The values q = 1.08 for
|T | = 2 and q = 1 for |T | = 3 were proposed by Lacroix et al. (2016) on the basis of
Leblond and Morin (2014)’s results, and will be used in the comparisons to follow.

• Choice of the number N of layers. The number of spherical layers in the model is
set to the value N = 40 (there are thus N+1 = 41 radii ri). This choice is not arbitrary
but precisely corresponds to the radial discretization adopted in the micromechanical
simulations (see Fig. 2(b)).
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3.3 Comparison of numerical results and model predictions for isotropic hardening

In this Subsection, like in (Lacroix et al., 2016), we assume strain hardening to be of purely
isotropic nature. (Note that the model discussed here then becomes exactly equivalent
to that proposed by these authors). Hardening is assumed to correspond, again like in
Lacroix et al. (2016)’s simulations, to the uniaxial stress-strain curve of the A508 Cl.3
steel used in the nuclear industry; see Fig. 3 in these authors’ work. Figure 3 compares,
for the triaxiality |T | = 3, the curves (f/f0 vs. Eeq) obtained numerically during the first
four cycles to those predicted by the model. In this figure the symbol MM stands for
“MicroMechanical simulation”, and “q = 1” refers to the model predictions obtained with
this value of Tvergaard (1981)’s parameter.

Fig. 3. Comparison of theoretical and numerical porosity evolutions - No elasticity - Isotropic
hardening - |T | = 3.

Two points are noteworthy here:

• The numerical results are in excellent agreement with those of Lacroix et al. (2016), and
in particular fully confirm the strong ratcheting of the porosity under cyclic loadings
at high triaxialities.

• The close agreement of numerical and theoretical values of the porosity illustrates, again
in line with Lacroix et al. (2016)’s findings, the quality of the “spherical layer model”
for the type of hardening considered.

Figure 4 illustrates the corresponding mechanical behavior during the four cycles simu-
lated: it provides the curves (Σyy−Σxx vs. Eeq), obtained numerically and predicted by the
model. Note that Σyy−Σxx is a kind of “algebraic equivalent stress” since |Σyy−Σxx| = Σeq.

The following points are noteworthy here:
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Fig. 4. (Algebraic equivalent stress)-(algebraic equivalent strain) - No elasticity - Isotropic hard-
ening - |T | = 3.

• During the tensile phase of the first cycle, the algebraic equivalent stress first increases,
obviously because of strain hardening, then decreases due to the increase of the porosity.
During the tensile phase of later cycles, the algebraic equivalent stress only decreases,
because the increase of the porosity takes precedence over strain hardening.

• In contrast, during the compressive phase of all cycles, the algebraic equivalent stress
always decreases (increases in absolute value), because of the combined effects of strain
hardening and the decrease of the porosity.

• From one cycle to the next, the material globally hardens (be it in tension or com-
pression), which indicates that strain hardening is more globally important than the
average increase of the porosity. It is clear, however, that the converse would become
true for later cycles (not simulated here).

• The model makes a very good job of reproducing the numerical results.

We shall concentrate hereafter on the curves (f/f0 vs. Eeq), which provide the most
important insights about the micromechanical simulations and the comparison of their
results and model predictions.

3.4 Comparison of numerical results and model predictions for linear kinematic harden-
ing

We now assume hardening to be of purely kinematic, linear type, with one variable α1

having C1 = 1, 500MPa and γ1 = 0. Figure 5 shows the results obtained for |T | = 2.

The essential novelty here, apparent in both numerical results and model predictions
(themselves in reasonable agreement), is the replacement of the ratcheting of the porosity
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Fig. 5. Comparison of theoretical and numerical porosity evolutions - No elasticity - Linear
kinematic hardening - |T | = 2.

by some almost instantaneous stabilization of the cyclic (F/f0 vs. Eeq) curve; the porosity
decreases more in compression than it increases in tension, giving rise to “belly-shaped”
cycles. This shows that the evolution of the porosity under cyclic loadings is a highly
non-trivial feature that depends upon the type (isotropic/kinematic) of hardening.

It might be argued that the asymmetry found here between the “tension” and “compres-
sion” phases of the cyclic (F/f0 vs. Eeq) curve is of little practical importance, since the
maximum value of the porosity is the same for all cycles. But this argument applies only to
the “perfect” cycles considered here, for which the algebraic equivalent strain Eeq always
oscillates between the same values 0 and E

max

eq ; if the minimum and maximum values of

Eeq varied with the cycle number, as is bound to frequently occur in practical cases, the
presence of the “belly” in the stabilized cyclic (F/f0 vs. Eeq) curve would clearly have an
important influence upon the succession of maximum values of f/f0.

3.5 Comparison of numerical results and model predictions for kinematic hardening of
Armstrong and Frederick (2007)’s type

We now consider the case of some kinematic Armstrong and Frederick (2007)-type hard-
ening, with one variable α1 having C1 = 1, 500MPa and γ1 = 100. Figure 6 illustrates
the results obtained for |T | = 2.

One again observes a ratcheting of the porosity like in Fig. 3 for a purely isotropic harden-
ing, although more modest here. (But the triaxiality is lower; note also that the agreement
between numerical results and model predictions is less good). Comparison between the
results presented in Subsection 3.4 and here, for the same value of C1 but different values
of γ1, clearly shows that the qualitative behaviour of the porosity under cyclic loadings
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Fig. 6. Comparison of theoretical and numerical porosity evolutions - No elasticity - Nonlinear
kinematic hardening - |T | = 2.

does not depend only on the type of hardening but also on the values of the hardening
parameters.

3.6 Comparison of numerical results and model predictions for mixed isotropic/kinematic
hardening

We finally consider a complex hardening model of the “simplified-Chaboche (1991)-type”
involving cyclic effects, as described in Appendix A. The kinematic part of hardening is
depicted with two variables, the first one, α1, having C1 = 15, 315MPa and γ1 = 1, 965,
the second one, α2, having C2 = 1, 875MPa and γ2 = 0 (linear hardening). These values
are deduced from the first (unstabilized) cycles of cyclic stress-strain curves of the A508
Cl.3 steel. The function Q(q), providing the stress amplitude Q of the stabilized cyclic
stress-strain curves versus the strain amplitude, is approximately identified using the
monotonic stress-strain curve of the same steel. 4 Note that the dependence of Q upon
q, characteristic of the model envisaged, does play a role in both numerical results and
theoretical predictions, since the strain amplitudes qi in the various spherical layers Li

are different.

Figure 7 shows the results obtained for |T | = 3. A strong ratcheting of the porosity,
reasonably well predicted by the model, may again be observed.

4 This procedure involves some approximation since the set of “maximum points” of the stabi-
lized cyclic curves differs from the monotonic stress-strain curve. This approximation is deemed
acceptable insofar as our aim here is merely to provide an illustrative example, not to precisely
reproduce the behaviour of a specific material.
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Fig. 7. Comparison of theoretical and numerical porosity evolutions - No elasticity - Mixed
isotropic/kinematic hardening - |T | = 3.

4 An evolution equation of the porosity including elasticity

4.1 Preliminary considerations

All the micromechanical simulations presented in Section 3 used a value of Young’s mod-
ulus of 1, 500GPa, about 10 times larger than the standard value for a typical steel. This
permitted to greatly reduce, if not completely eliminate, the effect of elasticity. But as
mentioned in the Introduction, the existence of this effect was noted more than 25 years
ago by Devaux et al. (1997), and emphasized again recently by Mbiakop et al. (2015) and
Cheng et al. (2017). The simplest way of illustrating it is to consider an ideal-plastic mate-
rial, so as to eliminate the effect of strain hardening, and compare simulations performed
with standard and enhanced values of Young’s modulus. Such a comparison is provided
in Fig. 8, for the values E = 1, 500GPa and 150GPa, and σ0 (yield stress) = 366MPa.

For the material having E = 1, 500GPa, almost devoid of elasticity, the ratcheting of
the porosity is marginal. On the other hand, the ratcheting is clearly observable for the
material having a standard value of Young’s modulus, E = 150GPa. This fully confirms
the observations of Devaux et al. (1997), Mbiakop et al. (2015) and Cheng et al. (2017).

As mentioned in the Introduction, the work of Cheng et al. (2017) represents the sole pre-
vious attempt to incorporate such an effect into some macroscopic model. The procedure
used, which consisted of evaluating separately and independently the overall elastic and
(visco)plastic potentials, fundamentally meant neglecting elastic-plastic interactions.

Our interpretation is different. In our view, the effect of elasticity upon the ratcheting
of the porosity precisely arises from the elastic-plastic coupling. Indeed this effect does
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Fig. 8. Effect of elasticity upon the ratcheting of the porosity - |T | = 3.

not only occur during the purely elastic phase at the very beginning of each half-cycle,
but during the entire subsequent plastic phase; indeed in Fig. 8, the gap between arcs
of the (F/f0 vs. Eeq) curve corresponding to successive half-cycles continuously increases
with time. Our idea is as follows: elasticity tends to slightly (and reversibly) enhance the
porosity in tension, and reduce it in compression; since for a given mechanical state, the
porosity rate is an increasing function of the porosity itself, 5 the slight (elastic) gap of
porosity between tension and compression generates a slightly higher |ḟ | in tension than
in compression, whence the asymmetry between successive half-cycles.

Clearly, the only way to deal with such an effect in a rigorous manner would be to use
a homogenization theory fully accounting for the elastic-plastic coupling. But, although
such a theory is currently under development - see notably (Lahellec and Suquet, 2007;
Idiart and Lahellec, 2016) - it is not mature enough today to provide explicit and simple
results, usable in the present context. We shall therefore use a different approach basically
relying upon a more precise evolution equation of the porosity accounting for the effect
of elasticity.

4.2 Overall compressibility modulus of a hollow elastic sphere

The first task is to provide the overall elastic compressibility coefficient of a hollow sphere.
We thus consider, within a geometrically linearized context, a hollow sphere of internal
and external radii a and b defining a porosity f ≡ a3/b3, made of some purely elastic
material with Young’s modulus E and Poisson’s ratio ν (see for instance Fig. 1, forgetting

5 The expression of ḟ is easily deduced by eliminating the plastic multiplier Λ̇ between the mean
and deviatoric parts of the flow rule (13), and using equation (14).

17



about the internal layers). This sphere is subjected to some purely hydrostatic loading so
that the values of the radial stress and displacement on the outer boundary r = b amount
to σrr(r = b) = Σm and ur(r = b) = Em b respectively, where Σm ≡ 1

3
trΣ and Em ≡ 1

3
trE

denote the mean parts of the overall stress and strain tensors, Σ and E.

The solution of this problem is classical and may be found in any textbook on elasticity;
it leads to the following relation between Σm and Em, or equivalently trΣ and trE:

Σm = α
E

1− 2ν
Em ⇔ trΣ = α

E

1− 2ν
trE , α ≡

1− f

1 + 1+ν
2(1−2ν)

f
. (23)

4.3 Evolution equation of the porosity including elasticity - Geometrically linearized
framework

In order to facilitate the understanding of the reasoning, we first present it within a
linearized geometric framework. We thus consider, within such a context, a representative
volume element (RVE) Ω made of some elastic-plastic material with Young’s modulus
E and Poisson’s ratio ν, containing some voids collectively denoted ω, and defining a
porosity f . To lighten the notation, we denote a domain and its volume with the same
symbol. Then, whatever the loading and its evolution in time, the rate of the total volume
is given by

Ω̇ = ω̇ +
d

dt
(Ω− ω) = ω̇ +

∫

Ω−ω
tr ǫ̇ dΩ = ω̇ +

∫

Ω−ω
tr ǫ̇e dΩ = ω̇ +

∫

Ω−ω

1− 2ν

E
tr σ̇ dΩ

= ω̇ +
1− 2ν

E

∫

Ω
tr σ̇ dΩ = ω̇ +

1− 2ν

E
Ω 〈 tr σ̇ 〉Ω = ω̇ +

1− 2ν

E
Ω tr Σ̇

where the incompressibility of plastic flow and the elasticity law have been used. Now
assuming the overall elasticity law (23) to be valid for the RVE considered, we get from
there

Ω̇ = ω̇ + αΩ tr Ėe (24)

where Ee denotes the overall elastic strain.

Using the definition of the porosity, f ≡ ω/Ω, we get from equation (24):

ḟ =
ω̇

Ω
−

ω

Ω2
Ω̇ =

Ω̇

Ω
− α tr Ėe −

ω

Ω2
Ω̇ = (1− f)

Ω̇

Ω
− α tr Ėe = (1− f) tr Ė− α tr Ėe,

that is finally since Ė = Ėe + Ėp where Ep denotes the overall plastic strain:

ḟ = (1− f) tr Ėp + (1− f − α) tr Ėe. (25)

4.4 Evolution equation of the porosity including elasticity - General geometric framework

We now consider a general geometric context more appropriate for problems of ductile
rupture. This implies replacing linearized strains, denoted with symbols ǫ and E, by
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Eulerian strain rates, denoted with symbols d or D.

• Position of the problem. Except for the change of notations just mentioned, the
beginning of the reasoning is exactly the same as within a geometrically linearized
framework:

Ω̇ = ω̇ +
d

dt
(Ω− ω) = ω̇ +

∫

Ω−ω
trd dΩ = ω̇ +

∫

Ω−ω
trde dΩ. (26)

Now use of the microscopic hypoelasticity law yields

de =
1 + ν

E
σ̆ −

ν

E
(tr σ̆)1 ⇒ trde =

1− 2ν

E
tr σ̆ =

1− 2ν

E
tr σ̇

where we have assumed that the objective derivative ˘ “respects the trace” (X̆ = Ẋ;
such is the case notably for Jaumann’s derivative). Equation (26) then becomes

Ω̇ = ω̇ +
∫

Ω−ω

1− 2ν

E
tr σ̇ dΩ = ω̇ +

1− 2ν

E

∫

Ω
tr σ̇ dΩ = ω̇ +

1− 2ν

E
Ω 〈 tr σ̇ 〉Ω.

But at this stage we are stuck, because although the macroscopic stress is simply the
average of the microscopic stress, the same is not true of the corresponding stress rates,
within the geometrically general context considered.

• Relation between microscopic and macroscopic stress rates. The first step in the
search for a solution to this problem is to derive the exact relation between microscopic
and macroscopic stress rates. We follow here the same lines as in Stolz (1987)’s thesis.
Since d

dt
(dΩ) = trd dΩ,

d

dt

(
∫

Ω
σ dΩ

)

=
∫

Ω
(σ̇ + σ trd) dΩ

so that

Σ̇ =
d

dt
〈σ 〉Ω =

d

dt

(

1

Ω

∫

Ω
σ dΩ

)

=
1

Ω

∫

Ω
(σ̇ + σ trd) dΩ−

Ω̇

Ω2

∫

Ω
σ dΩ

= 〈 σ̇ + σ trd〉Ω − (trD)〈σ 〉Ω

or equivalently
Σ̇ +Σ trD = 〈 σ̇ + σ trd〉Ω. (27)

In particular, taking the trace of this equation yields

tr Σ̇+ (trΣ)(trD) = 〈 tr σ̇ + (trσ)(trd)〉Ω. (28)

• Solution of the problem. Equation (27) suggests to introduce new objective deriva-
tives of the stress tensors, defined by the formulae



















Dσ

Dt
≡ σ̆ + σ trd

DΣ

Dt
≡ Σ̆+Σ trD.

(29)
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We now assume that the microscopic hypoelasticity law does not involve Jaumann’s
usual derivative but the new derivative D

Dt
, so that it now reads

de =
1 + ν

E

Dσ

Dt
−

ν

E

(

tr
Dσ

Dt

)

1. (30)

Two remarks are in order here:
· The hypothesis made is permissible since the choice of an objective derivative of the
stress tensor in a hypoelasticity law is essentially a matter of taste and convenience, in
the absence of any compelling theoretical argument favouring one or another. (Note
also that the difference between the derivatives˘ and D

Dt
is small, since trD is always

small in practice).
· Such a hypothesis is equivalent to assuming that the standard hypoelasticity law
involving Jaumann’s derivative does apply, but to the tensor σ/ρ where ρ denotes
the volumic mass, rather than the tensor σ itself: see Stolz (1987).

Taking the trace of equation (30)and using the definition (29)1 of the derivative
Dσ

Dt
, we

get

trde =
1− 2ν

E
tr

Dσ

Dt
=

1− 2ν

E
[tr σ̆ + (trσ)(trd)] =

1− 2ν

E
[tr σ̇ + (trσ)(trd)] (31)

where use has been made again of the assumption that the derivative ˘ respects the
trace. With this relation, equation (26) becomes

Ω̇ = ω̇ +
1− 2ν

E

∫

Ω
[tr σ̇ + (trσ)(trd)] dΩ = ω̇ +

1− 2ν

E
Ω 〈 tr σ̇ + (trσ)(trd) 〉Ω

= ω̇ +
1− 2ν

E
Ω
[

tr Σ̇+ (trΣ)(trD)
]

where equation (28) has been used.
We finally introduce the reasonable assumption 6 that equation (23), valid within a

linearized geometric context, becomes in the general framework considered here:

tr
DΣ

Dt
= tr Σ̆+ (trΣ)(trD) = tr Σ̇+ (trΣ)(trD) = α

E

1− 2ν
trDe . (32)

Insertion of equation (32) into the preceding expression of Ω̇ yields

Ω̇ = ω̇ + αΩ trDe (33)

which is analogous to equation (24). From this point, the reasoning is the same as
within a geometrically linearized context and leads to an analogous result:

ḟ = (1− f) trDp + (1− f − α) trDe. (34)

Equation (34) calls for some comments:

6 Assumption because a rigorous homogenization theory for hypoelasticity does not seem to
exist at present.
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• To the best of our knowledge, the reasonings above and the final result (34) represent
the first attempt, within the context of the modelling of ductile rupture, to derive a more
accurate evolution equation of the porosity accounting for the influence of elasticity.

• Equation (34) may look a bit strange at first sight, because it seems to imply that in a
sound, purely elastic material (f = 0, Dp = 0), elasticity will generate some porosity;
this is not so however, because α is unity in such a case (see equation (23)3).

• In the limit of an elastically incompressible material (ν = 1/2), α is zero (see equation
(23)3) so that equation (34) reduces to ḟ = (1−f) trD where D = De+Dp is the total
strain rate. The meaning of this result is that in the absence of any compressibility
(elastic or plastic) of the material, the entire volumetric strain rate “goes” into void
growth. In this specific case, the expression of the porosity rate may be obtained from a
purely kinematic argument, without any reference to the constitutive law: indeed equa-
tion (33) simply becomes Ω̇ = ω̇, and the expression of ḟ results from there following
the same lines as above.

• For an elastically compressible material (ν < 1/2), the presence of the positive coeffi-
cient α, in the multiplicative factor (1 − f − α) of trDe in equation (34), reduces the
impact of the elastic strain rate upon the porosity rate. This is obviously because part
of the total volumetric strain rate trD “goes” into the elastic volumetric strain rate of
the material. In such a case the expression (34) of ḟ cannot be obtained from a purely
kinematic argument, as is clear from the presence of the elasticity-dependent coefficient
α in this expression.

• The value of the coefficient α does not only depend upon the porosity and Poisson’s
ratio, but also on the geometry of the RVE used to evaluate it. The value given by
equation (23)3 corresponds to a hollow sphere, and would be different for instance for
a macroscopically isotropic distribution of voids of arbitrary shape.

A question which naturally arises about the exact evolution equation (34) of the porosity
pertains to the importance of the term proportional to De in the right-hand side: what
kind of error does one make when neglecting it? This issue is best addressed by considering
the special case of an ideal-plastic material, like in Subsection 4.1. If one neglects the term
proportional to De in equation (34), it becomes identical to (14), and the whole model of
Section 2 becomes equivalent to that of Gurson (1977) (without hardening). It is therefore
prone to the same shortcoming (Remark (2) of the Introduction): it does not predict any
ratcheting of the porosity under cyclic loadings at fixed (absolute value of the) triaxiality.
But Figure 8 above clearly evidences the inadequacy of this prediction.

5 A model for the ratcheting of the porosity including elasticity

5.1 Introduction of some effective porosity into the model

We ascribed, in Subsection 4.1, the influence of elasticity upon cyclic ductile rupture to
the elastic (reversible) enlargement or shrinkage of voids. Hence, in order to incorporate
such an influence into some macroscopic model, the first, most natural idea is simply
to replace the evolution equation (14) of the porosity disregarding elasticity through the
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more accurate equation (34), all other elements of the model (expounded in Section 2)
remaining unchanged.

The “improved” model thus defined was applied to the prediction of the porosity evolution
for the same material (with E = 150GPa, meaning non-negligible elasticity) and under the
same cyclic loading conditions as in Fig. 8. The results - not shown here for space reasons -
were qualitatively, but not quantitatively, in agreement with the results of micromechanical
simulations shown in this figure: they did display some ratcheting of the porosity but
underestimated it.

This mitigated result is perhaps less surprising that it may seem at first sight. Indeed,
simply adopting a more refined evolution of the porosity incorporating elasticity, basically
means accepting the overall yield criterion and flow rule derived from sequential limit-
analysis, using merely a more accurate estimate of the porosity. But, as mentioned in the
Introduction, the theory and methods of sequential limit-analysis are precisely entirely
based on the neglect of elasticity. Hence there is no reason why its results should be
applicable in the presence of elasticity, with only such a minor adjustment.

In the absence, as of today, of some rigorous and practically usable homogenization method
for elastic-(visco)plastic materials fully incorporating the elastic-plastic coupling, the only
possibility left is to adopt a heuristic approach. Our proposal here is to accept, even in
the presence of elasticity, the overall yield criterion (10) and plastic flow rule (13) derived
from sequential limit-analysis, but with some “effective” porosity f̄ slightly differing from
the true one, f ; this criterion and flow rule thus become:























Φ(Σ) ≡
(Σ−A1)

2
eq

Σ2
1

+ 2qf̄ cosh
(

3

2

Σm −A2

Σ2

)

− 1− q2f̄ 2 ≤ 0

Dp = Λ̇
∂Φ

∂Σ
(Σ) = Λ̇

[

3
Σ′ −A1

Σ2
1

+
qf̄

Σ2
sinh

(

3

2

Σm − A2

Σ2

)

1

]

.

(35)

All other equations defining the model are unchanged, including those involving the poros-
ity which remains the true one, f .

The effective porosity f̄ is defined as follows. First, the true porosity f is decomposed into
plastic and elastic contributions, as suggested by the evolution equation (34):

f ≡ f p + f e (36)

where the plastic part f p and elastic part f e of the porosity obey the following evolution
equations and initial conditions:











ḟ p = (1− f) trDp with f p(t = 0) = f0

ḟ e = (1− f − α) trDe with f e(t = 0) = 0.
(37)

(The initial condition for f e is logical insofar as the material is assumed to be stress-free
initially). The effective porosity f̄ is then defined as

f̄ ≡ f p + βf e (38)
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where β is an empirical parameter which may depend upon the (true) porosity.

A final remark about the model just defined is that it includes the effect of elasticity during
all phases of the mechanical history - as is necessary to properly account for interactions
between elasticity and plasticity - including the purely elastic phase at the very beginning
of each semi-cycle. Note however that the approximation is made that all points of the
RVE are simultaneously elastic or plastic (since we use a “global” yield criterion for the
entire RVE), thus disregarding the gradual expansion of the plastic zone within it.

5.2 Comparison of model predictions and results of micromechanical simulations incor-
porating elasticity

Upon comparison of model predictions and results of micromechanical simulations for
various types of hardening, it is found that these results are best reproduced using the
following heuristic formula for the parameter β:

β = 1 + 11.5 exp

(

−
1

4

f

f0

)

. (39)

Figures 9, 10 and 11 illustrate the comparison between model predictions (with formula
(39) for β) and results of micromechanical simulations, in the presence of elasticity (E =
150GPa), for three types of hardening: in Fig. 9, ideal plasticity with σ0 (yield stress)
= 366MPa like in Figure 8; (b) in Fig. 10, isotropic hardening with the same uniaxial
stress-strain curve as in Figure 3; (c) in Fig. 11, Armstrong and Frederick (2007)-type
kinematic hardening, with two variables having C1 = 15, 315MPa and γ1 = 1, 965, and
C2 = 1, 875MPa and γ2 = 0 (same parameters as in Figure 7, but without Chaboche
(1991)’s modelling of complex cyclic effects). (In the last case it revealed difficult to
perform micromechanical simulations for |T | = 3 so the slightly lower value |T | = 2.5
was adopted; Tvergaard (1981)’s parameter q was nevertheless set to unity like for the
value |T | = 3). The agreement between model predictions and numerical results is quite
acceptable in all three cases.

A final remark is in order here. It may seem tempting to use the numerical results presented
to propose a classification of the effects of elasticity, isotropic and kinematic hardening,
according to the importance of their impact upon the ratcheting of the porosity under
cyclic loadings. In the authors’ view, this temptation should be resisted for the following
reasons: (i) our numerical results were not all obtained for the same (absolute value of
the) triaxiality; (ii) the relative importance of the various effects totally depends upon
the values of the constitutive parameters (elasticity coefficients, hardening parameters).
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Fig. 9. Comparison of theoretical and numerical porosity evolutions - With elasticity - Ideal
plasticity - |T | = 3.

Fig. 10. Comparison of theoretical and numerical porosity evolutions - With elasticity - Isotropic
hardening - |T | = 3.

6 Conclusion

This paper was devoted to the theoretical and numerical study of cyclic ductile rupture,
with special emphasis upon the two features of the microscopic mechanical behaviour
responsible for the so-called ratcheting of the porosity: namely strain hardening and elas-
ticity. Distinct theoretical approaches were used to deal with these two phenomena.

In order to incorporate the influence of strain hardening upon the behaviour of ductile
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Fig. 11. Comparison of theoretical and numerical porosity evolutions - With elasticity - Nonlinear
kinematic hardening - |T | = 2.5.

solids under cyclic loadings, we used the so-called theory of sequential analysis. This new
kind of limit-analysis was introduced by Yang (1993), applied to homogenization of porous
plastic solids by Morin et al. (2017), and finally analyzed and justified theoretically by
Leblond et al. (2018). It extends the classical theory of limit-analysis of Hill (1951) and
Drucker et al. (1952) by accounting for strain hardening and geometry changes; but it is
fundamentally based - as demonstrated in detail by Leblond et al. (2018) - upon neglect
of elasticity, and thus cannot account for this aspect of the mechanical behaviour.

We first recalled, in Section 2, Morin et al. (2017)’s results obtained through combina-
tion of sequential limit-analysis and homogenization of porous plastic (hardenable) solids.
These results were then applied to more complex hardening laws. The types of hardening
considered included (i) isotropic hardening; (ii) linear kinematic hardening; (iii) Arm-
strong and Frederick (2007)-type nonlinear kinematic hardening; and (iv) some simplified
version of Chaboche (1991)’s mixed (isotropic+kinematic) hardening model including
complex cyclic effects.

Section 3 was then devoted to the comparison of model predictions and results of some mi-
cromechanical simulations of hollow spheres, made of rigid-plastic materials with various
hardening laws, and subjected to cyclic loadings under conditions of high and constant
absolute value of the triaxiality. The (quasi-)absence of elasticity was accounted for in the
simulations by using a very high (unrealistic) value for Young’s modulus. The agreement
of model predictions and numerical results for the evolution of the porosity was found to
be acceptable in all cases investigated, and quite good in most of them. Also, an inter-
esting finding was that a ratcheting of the porosity is not the only possibility for ductile
solids subjected to cyclic loadings: depending upon the type of hardening and the values of
hardening parameters, one may observe either such a ratcheting, or some “belly-shaped”
aspect of the cycles in the cyclic porosity/overall strain curve.

The treatment of the effect of elasticity upon the cyclic ductile behaviour was based
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on a quite different approach, making use of some more accurate evolution law of the
porosity incorporating - apparently for the first time - the (reversible) influence of elastic
deformations. In Section 4, such a law was first derived on fully rigorous grounds within a
geometrically linearized framework. It was then extended to some fully general geometric
context, using a few (unfortunately unavoidable but reasonable) hypotheses.

The results derived in Section 4 were finally used in Section 5 to define a refined model for
porous ductile solids incorporating the influence of elasticity upon the cyclic behaviour.
The first and most natural idea, consisting of simply replacing the usual evolution law of
the porosity disregarding the effect of elasticity through the more accurate one including
it, was found to yield qualitatively acceptable, but quantitatively unacceptable predictions
for the ratcheting of the porosity under cyclic loadings. This was interpreted as a conse-
quence of the basic inapplicability of sequential limit-analysis in the presence of elasticity.
The heuristic remedy adopted consisted of using, in the overall yield criterion and plastic
flow rule obtained through sequential limit-analysis, some “effective” porosity slightly dif-
fering from the true one through some phenomenological, adjustable parameter. With this
modification, the agreement between model predictions and results of micromechanical
simulations performed with a standard value of Young’s modulus were found to be quite
acceptable in all cases considered.

Apart from numerical applications to prediction of ductile rupture in actual structures
loaded cyclically (as initiated in Remmal (2021)’s thesis), future developments will essen-
tially focus on the case of cyclic loadings at lower triaxialities. Under such conditions void
shape effects - completely disregarded in the present work - are bound to become impor-
tant. Developing a model for the cyclic ductile behaviour under such general loadings will
require combining the methods and results of the present paper with those used in earlier
works (Madou and Leblond, 2012a,b, 2013; Madou et al., 2013) to account for ellipsoidal,
instead of spherical voids.
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pecially Drs. Stéphane Chapuliot and Gilles Perrin, for their continued moral and financial
support of this work.

References

Armstrong P. and Frederick C. (2007). A mathematical representation of the multiaxial
Bauschinger effect, Mater. High Temper., 24, 11-26.

Besson J. and Guillemer-Neel C. (2003). An extension of the Green and Gurson models
to kinematic hardening, Mech. Mater., 35, 1-18.

Brocks W. and Steglich D. (2003). Damage models for cyclic plasticity, in: Key Engineering
Materials, vols. 251-252, pp. 389-398.

Chaboche J.L. (1991). On some modifications of kinematic hardening to improve the
description of ratcheting effects, Int. J. Plast., 7, 661-678.

Cheng L., Danas K., Constantinescu A. and Kondo D. (2017). A homogenization model

26



for porous ductile solids under cyclic loads comprising a matrix with isotropic and linear
kinematic hardening, Int. J. Solids Structures, 121, 174-190.

Corradi L. and Panzeri N. (2004). A triangular finite element for sequential limit analysis
of shells, Adv. Engng. Software, 35, 633-643.

Devaux J., Gologanu M., Leblond J.B. and Perrin G. (1997). On continued void growth in
ductile metals subjected to cyclic loadings, in: Proceedings of the IUTAM Symposium
on Nonlinear Analysis of Fracture, Cambridge, GB, J. Willis, ed., Kluwer, pp. 299-310.

Drucker D.C., Prager W. and Greenberg M.J. (1952). Extended limit-analysis theorems
for continuous media, Quart. Appl. Math., 9, 381-389.

Gilles Ph., Jullien B. and Mottet G. (1992). Analysis of cyclic effects on ductile tearing
strength by a local approach of fracture, in: Advances in Fracture/Damage Models for
the Analysis of Engineering Problems, ASME Publication AMD - Vol. 137, pp. 269-284.

Gurson A.L. (1977). Continuum theory of ductile rupture by void nucleation and growth:
Part I - Yield criteria and flow rules for porous ductile media, ASME J. Engng. Mater.
Technol., 99, 2-15.
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A Appendix : A simplified version of Chaboche (1991)’s cyclic plasticity
model

The simple hardening rule (3) predicts a “saturation” of the yield limit σ for large plastic
strains, once the ultimate stress is reached. Therefore, under cyclic loadings with fixed
strain amplitude, once both the isotropic and kinematic hardening variables have reached
their stationary values, the cyclic stress-strain curve stabilizes; and the stress amplitude
of the stabilized curve, depending only on the saturated value of σ, is independent of the
strain amplitude.

However this prediction is incorrect in practice: it is well-known experimentally that in
stainless steels for instance, the stabilized cyclic curve depends on the previous mechanical
history. To fix this problem, Chaboche (1991) proposed to make σ a function of the
“maximum strain amplitude” q of the previous cycles. To measure this “amplitude”, he
introduced a 6-dimensional strain domain within the space of strain tensors, spanned in
time by the actual plastic strain tensor, analogous to the reversibility domain in the space
of stress tensors. The radius of this strain domain defined the amplitude q.

Chaboche (1991)’s model is complex and numerically cumbersome, because of the 6D
nature of the strain domain. We therefore use here a simplified variant of this model,
sufficient for most practical purposes, wherein Chaboche (1991)’s 6D strain domain is
replaced by a mere segment on the real line. The original and simplified versions of the
model yield strictly identical predictions for proportional strain loadings (that is, for which
dp retains a constant direction in the strain space). To define the 1D strain domain, we
introduce the quantities

ǫ(t) ≡
∫ t

0
sgn[trd(τ)]dpeq(τ)dτ ,











ǫmax(t) ≡ max0≤τ≤t ǫ(τ)

ǫmin(t) ≡ min0≤τ≤t ǫ(τ)
, q ≡

1

2
(ǫmax − ǫmin) .

(A.1)
The quantity ǫ is a kind of “algebraic cumulated plastic strain”, which increases in “ten-
sion” (trd > 0) but decreases in “compression” (trd < 0); ǫmax(t) and ǫmin(t) are the
maximum and minimum values of ǫ reached until time t, so that [ǫmin(t), ǫmax(t)] is the
interval spanned by ǫ during the previous mechanical history; and q is the “radius” (half-
length) of this interval.

The yield limit σ is then defined by Chaboche (1991)’s evolution equation:

dσ

dt
= B [Q(q)− σ]

dp

dt
(A.2)

with the initial value σ(t = 0) = σ0 where σ0 is the initial yield stress (in the absence
of hardening). In equation (A.2) B is a positive dimensionless constant which governs
the evolution of σ toward its asymptotic value (at fixed q) Q(q); and the function Q(q)
itself represents the set of “maximum points” of the stabilized cyclic curves, for gradually
increasing strain amplitudes q (with, conventionally, Q(q = 0) = σ0).
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