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Abstract 
The brain transforms nociceptive input into a complex pain experience comprised of 

sensory, affective, motivational, and cognitive components. However, it is still unclear how pain 
arises from nociceptive input, and which brain networks coordinate to generate pain 
experiences. We introduce a new high-dimensional mediation analysis technique to estimate 
distributed, network-level patterns that formally mediate the relationship between stimulus 
intensity and pain. We applied the model to a large-scale analysis of functional magnetic 
resonance imaging data (N=284), focusing on brain mediators of the relationship between 
noxious stimulus intensity and trial-to-trial variation in pain reports. We identify mediators in both 
traditional nociceptive pathways and in prefrontal, midbrain, striatal, and default-mode regions 
unrelated to nociception in standard analyses. The whole-brain mediators are specific for pain 
vs. aversive sounds and are organized into five functional networks. Brain mediators predicted 
pain ratings better than previous brain measures, including the Neurologic Pain Signature (Wager 
et al. 2013). Our results provide a broader view of the networks underlying pain experience, as 
well as novel brain targets for interventions. 

leonie.koban
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Introduction 
The brain is central to the generation of pain; it transforms sensory input into a complex 

set of pain-related responses, including subjective experience, autonomic responses, avoidance 
behavior, and activation of linked memories and concepts. However, the boundaries of the brain 
systems that mediate this series of transformations have been inconsistent across studies. 
Traditionally, pain processing has been associated with a discrete set of brain regions targeted 
by spinal nociceptive afferents, including primary (S1) and secondary (S2) somatosensory, and 
anterior midcingulate cortices (aMCC), medial and lateral thalamus, and posterior and mid-
insular cortices (Apkarian et al. 2005; Dum et al. 2009; Jensen et al. 2016). These have been 
referred to as the ‘pain matrix’, and often treated as a unitary system, though this concept has 
been largely abandoned as its specificity to pain has been called into question. Other studies 
have found that additional regions are also involved in encoding the intensity of noxious stimuli 
and/or correlate with pain experience under some circumstances (Bingel et al. 2002; Büchel et 
al. 2002; Becerra et al. 2013), making the boundaries of the ‘pain matrix’ elusive and context-
dependent. And, though this set of regions have been grouped into subsystems (Craig et al. 
2000)—for example, lateral and medial subsystems more closely related to sensory-
discriminative and affective-motivational aspects of pain, respectively (Villemure et al. 2003)—
empirical studies have shown that the division between sensory encoding and pain affect is not 
straightforward (Baliki et al. 2009; Atlas et al. 2010, 2014).  

One source of complexity lies in the fact that ‘pain matrix’ or ‘pain-processing’ regions 
have been defined in multiple ways. Some studies identify regions based on stimulus intensity 
encoding, the tendency for a region to be activated by more vs. less intense noxious stimuli 
(Peyron et al. 2002; Wager et al. 2004). Others identify regions based on correlations with pain 
reports (Coghill et al. 1999; Lindquist et al. 2017). Both are relevant: A region involved in pain 
generation should both encode stimulus intensity and correlate with reported subjective 
experience, even when intensity is matched. Accordingly, one step forward lies in characterizing 
formal brain mediators of the relationship between stimulus intensity and pain report (Atlas et al. 
2010, 2014). Mediation is a statistical test that links experimentally manipulated variables, brain 
measures, and behavioral outcome variables in a single path model. It requires both an effect of 
an initial (often experimentally manipulated) variable and association with an outcome (e.g., pain) 
controlling for stimulus intensity.  Applied to pain, it can be used to identify brain regions that 
both encode experimental manipulations in noxious stimulus intensity and correlate with pain 
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experience controlling for intensity, with sufficient effect sizes in both tests to pass the more 
stringent test of mediation. 

Previous studies have identified brain mediators of pain (Atlas et al. 2010, 2014) testing 
voxels one at a time. However, this kind of univariate approach can miss brain regions whose 
contributions to pain perception are conditional on other regions. More broadly, it is increasingly 
clear that much of the functional information encoded in the brain is encoded in distributed 
patterns across neural ensembles and systems (Pouget et al. 2000; Haxby et al. 2014), which 
requires brain information to be treated in a multivariate fashion (Kriegeskorte 2011; Woo et al. 
2017). Mediation models with multivariate brain mediators are required to characterize these 
patterns, but have not been available until now. Here, we provide the first analysis of multivariate 
brain mediators of pain, using a novel statistical method called principal directions of mediation 
(PDM) (Chén et al. 2017). PDM decomposes activity across the brain into multiple networks that 
independently mediate stimulation effects on outcomes (Figure 1A-B). This can help identify 
which brain systems mediate stimulus intensity effects on pain, taking the distributed nature of 
information encoding in the brain into account. 

Another source of complexity lies in the fact that most pain studies have been necessarily 
limited in sample size (typical N < 50). Results from small studies are increasingly recognized as 
variable and prone to high levels of both false positives and false negative results (Button et al. 
2013). We address this issue by analyzing within-person, single-trial pain data aggregated across 
8 individual studies (N=284). In addition, the test study not only included heat pain stimuli, but 
also two distinct types of  

sounds: Physically aversive sounds (a ‘knife on plate’) and emotionally aversive sounds 
(gunshots, screams, etc.) This provides one of the first tests of specificity of multivariate pain-
related patterns against sounds (cf. Horing et al. 2019; Liang et al. 2019), and the first test of 
functional specificity of brain mediators of pain. 
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Figure 1. Mediation analysis. (A) Schematic of the mediation analysis framework. Brain activity is an 

intermediate, mediating variable (M) between a manipulated noxious stimulus intensity (X) and perceived 
pain (Y). In the high-dimensional Principal Directions of Mediation (PDM) approach, a linear combination 
of all brain voxels act as mediators. Multiple, orthogonal mediators can be estimated. The weight vectors 
!" (or PDMs) represent the contribution of individual voxels to the #$% mediation pathway. Voxel weights 
(!") are fit so that the indirect, mediated effect is maximized. (B) Mediation path coefficients for all 30 
PDMs are shown with signs of path & coefficients set to be positive. Path & indicates the temperature to 
brain (PDM) relationship, path ' the PDM to pain rating relationship, and path &' the indirect, mediated 
effect. Positive coefficients indicate that voxels with positive weights in a given PDM are positively related 
with temperature and/or rating. The first 10 PDMs explain more 99% of the total indirect effect. We focus 
on these PDMs in the following analyses (shaded area in right panel). (C) PDMs are estimated on the 
training data comprising a total of 284 participants from 7 pain studies. PDM validation is done on an 
independent 8th data set with 75 participants. (D) Individual PDMs can be combined into a single, 
combined PDM (cPDM) by weighting and summing the individual, orthogonal PDMs. cPDM voxel weights 
are shown on the brain rendering and in key regions in the right panel.
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Materials and Methods 

Participants 
The analysis included data from a total of 284 healthy participants from 8 independent 

studies, with sample sizes ranging from N = 17 to N = 75 per study. Descriptive statistics on the 
age, sex, and other features of the subjects in each individual study are provided in 
Supplementary Tables S1-S3. Further details on Studies 1-7, which were used to estimate the 
PDMs are provided in Lindquist et al. (Lindquist et al. 2017). Participants were recruited from 
New York City and Boulder/Denver Metro Areas. The institutional review board of Columbia 
University and the University of Colorado Boulder approved all the studies, and all participants 
provided written informed consent. Preliminary eligibility of participants was determined through 
an online questionnaire, a pain safety screening form, and a functional Magnetic Resonance 
Imaging (fMRI) safety screening form. 

We applied several exclusion criteria for analysis purposes. Participants with psychiatric, 
physiological or pain disorders, neurological conditions, and MRI contraindications were 
excluded prior to enrollment. In addition, participants were required to have at least 30 trials with 
low variance inflation factors (see below), non-missing rating, and stimulation intensity data. 
Based on these criteria, 18 participants from Study 8 were excluded, resulting in a total of 209 
participants for the primary PDM analysis and 75 participants for the validation sample. 

Procedures 
Overview. Participants in all studies underwent fMRI scanning while being exposed to varying 
levels of heat pain within-person and rating the perceived pain intensity (Supplementary Tables 
S1-S3). For each participant, we recorded the temperature applied, the pain rating for each trial 
and estimated single-trial maps of brain activity. These three variables were used in the primary 
mediation analysis with temperature as the initial variable, brain activity as the mediator, and 
pain rating as the outcome variable (Figure 1).  

Using the high-dimensional mediation analysis model, we first estimated 30 whole-brain 
mediation patterns (PDMs). Each PDM specifies a linear combination of voxels across the brain 
maximizing the mediated effect from temperature to pain rating, while being orthogonal to other 
PDMs (Figure 1A). Each PDM (or !() thus represents a formal, whole brain mediator for pain. 

The voxel weights of each PDM inform us about the contribution of individual brain regions to 
the generation of a painful experience following noxious stimulation.  
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Furthermore, as the PDM model is linear, independent PDMs can readily be fused into a 
single, combined PDM that can be prospectively applied to new datasets as a predictive model. 
We fused the individual brain mediator maps into a combined PDM (cPDM) by estimating the 
weighted combination of individual PDMs that best predicted pain in the training sample (see 
PDM Section below and Figure 1D). Prediction performance can then be evaluated against 
independent test data  

 
Thermal and aversive sound stimulation. The number of noxious stimulation trials, stimulation 
sites, inter-trial intervals, rating scales, and stimulus intensities and durations varied across 
studies, but were comparable; these variables are summarized in Tables S2 and S3. Each study 
also comprised a specific psychological manipulation (except Study 8), such as placebo 
treatment, which will be or has been reported elsewhere (Table S1).  

In Studies 1-6, thermal stimulation was delivered to multiple skin sites using a TSA-II 
Neurosensory Analyzer (Medoc Ltd., Chapel Hill, NC) with a 16 mm Peltier thermode endplate. 
A PATHWAY system (Medoc Ltd., Chapel Hill, NC) was used in Studies 7 and 8. Participants 
rated the perceived magnitude of warmth or pain during or after each trial. Most studies applied 
heat to the left volar forearm. See Supplement and Lindquist et al. (2017) for details. 

Study 8, which was used for validation purposes (see below), also presented aversive 
sounds to participants. Trials with aversive sounds were used to test the specificity of the pain 
PDMs. Sounds included were a physically aversive recording of nails on a chalkboard and a set 
of emotionally aversive sounds (attacks, screaming, and crying) from the International Affective 
Digital Sounds database (IADS) (Bradley and Lang 2007). Aside from these sound trials, we focus 
on brain mediation of pain across all trials in the present paper, irrespective of the study-specific 
psychological and physical manipulations that influenced pain.  

fMRI data processing 

Preprocessing and subject level models. We chose to retain the original preprocessing used 
in each published paper for two reasons: (1) to establish, and test, robustness across minor 
variations in processing pipelines; and (2) because study-specific analysis choices are 
appropriate in some cases, depending on the distribution of the data and study design. For 
details see Supplementary Methods and Lindquist et al. (2017). Briefly, structural, T1-weighted 
images were co-registered to the functional mean image, then normalized to MNI space using 
SPM. For each study, a single trial, or single epoch model was estimated (Koyama et al. 2003; 
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Rissman et al. 2010; Mumford et al. 2012). The single-trial brain activation estimates served as 
the basis for the subsequent analysis.  

PDM validation. The high-dimensional brain mediators (PDMs, see below) were estimated on 
the training data comprised of Studies 1-7 (Lindquist et al. 2017). Even though this data set is 
large (N=209) and diverse, the possibility of overfitting in the training data might reduce the 
generalizability of the PDMs. To test for the generalizability of the PDMs, we validated the PDMS 
on independent test data (Study 8, N=75). Computing the inner product of each PDM with each 
single-trial beta image from Study 8 resulted in 10 potential mediator variables. Each of these 
potential mediators was then subjected to a multi-level mediation analysis (Wager et al. 2009) 
with p-values determined by a bootstrap procedure with 5,000 iterations each. If the PDMs 
generalize to the new dataset, paths )*, +*, and the indirect effect )+* should be significant for 
all * = -,… , -0 PDMs.  

We also tested whether the PDMs specifically mediate the relationship between 
temperature and pain intensity. To this end, we also tested the original PDMs on the aversive 
sound trials from Study 8. If the PDMs reflect specific patterns of brain activity involved in pain 
processing, they should not mediate the relationship between sound stimulation level and 
intensity ratings. We thus expect no significant indirect effect for the sound trials. 

A further test to validate the stability of PDM estimation was conducted by switching 
training and test data. That is, pain PDMs were estimated on Study 8 and tested on the original 
training data from Studies 1-7 as described above.  

Dimension reduction. The training data set consisted of a total of 13,372 single-trial beta 
images (i.e., activation estimate images), each consisting of 229,519 voxels, from 209 
participants. To reduce the dimensionality of the data to a computationally tractable size, a 
generalized version of population value decomposition (PVD) (Caffo et al. 2010; Crainiceanu et 
al. 2011; Chén et al. 2017) was applied (using PVD.m, included in the M3 mediation toolbox 
available at https://github.com/canlab/MediationToolbox). This procedure is similar to singular 
value decomposition (SVD) but decomposes the data matrix into both participant specific and 
population specific components. We chose a dimensionality of 1 = 20 based on a tradeoff 
between variance explained and the number of trials available for each participant. The beta 
images were z-scored within each participant before PVD application. The reduced data matrix 
used for Principal Directions of Mediation (PDM) estimation consisted of a matrix with 
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dimensions -2,234	 × 	20. 

Principal Directions of Mediation (PDM) Model 

Let 78 be the temperature, 98 the reported pain, and :8 = (<8
(1), <8

(2),…<8
(()) the brain 

activity over > voxels (i.e., the beta maps) measured between the application of the thermal 
stimuli and the pain report for observation (i.e., trial) ? = 1, … @. We are interested in determining 
how brain activation mediates the relationship between temperature and pain report. We can 
estimate the parameters of this model using the following set of equations: 

 

   <8
(A) = B0,A + BA78 + D8A											for							H = 1, … >	

   98 = I0 + J′78 + I1<8
(1) + I2<8

(2) + ⋯+ I(<8
(() + L8	    (1) 

 
Once the parameters have been estimated we can express the total effect J as the sum of the 
direct and indirect effects as follows: 

 

  J = J′ +∑ BAIA
(
ANO .      (2) 

 
If p is relatively small the series of regressions described in (1) can be used to estimate the 

pertinent mediation effects. However, in our setting there are too many mediators to allow 
reasonable interpretation (unless the model coefficients are highly structured) and there are many 
more mediators than subjects, precluding estimation using standard procedures. To overcome 
these problems, we introduce a transformation of the space of mediators, determined by finding 
linear combinations of the original mediators that (i) are orthogonal; and (ii) are chosen to 
maximize the indirect effect. The first constraint allows us to fit a separate linear model for each 
transformed variable. The second constraint allows us to limit our analysis to only those 
directions that contain the most information about the indirect effect. Here, we improve and 
extend the approach proposed by Chén et al. (2017) by choosing a different cost function, 
computing a combined PDM, and analyzing an almost 10-times larger data set.  

This new model, called the principal directions of mediation (PDM), linearly combines 
activity in different voxels into a smaller number of orthogonal components, with components 
ranked based upon the proportion of the indirect effect that each accounts for. Ideally, the 
components form a small number of uncorrelated mediators that represent interpretable 
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networks of voxels.  

To illustrate, let  <P8
(") = ∑ !"

(A)<8
(A)(

AN1  for # = 1, … Q be a set of linear transformations of the 

mediators with !" = (!"
(1), !"

(2), …!"
(()). Placing these new variables into our mediation model 

we obtain: 

 <PA
(") = &0," + &"7A + DA"																	for							# = 1, … Q	

	98 = '0," + R′78 + '"<P8
(") + L8"     (3) 

 
Now, we can decompose the total effect into direct and indirect effects as follows: 
 

   R = R′ +∑ &"'"
S
"N1       (4) 

  
The difference between this model and the standard mediation model described in (1) is 

that the !" are unknown. In our approach !1	is chosen so that it maximizes the amount of the 
indirect effect that is explained (i.e., &1'1 is maximized). We refer to !1	as the first principal 

direction of mediation (PDM). Note the first PDM corresponds to voxel-specific weights that can 
be mapped onto the brain, and thus provides interpretable maps of brain networks in the same 
manner as independent component analysis (ICA) and principal component analysis (PCA). 
Subsequent directions !"	, # = 1, … Q, can be found that maximize the remaining indirect effect 
conditional on being orthogonal to previous PDMs. As the transformed mediators are ranked 
based upon the proportion of the indirect effect explained, one could potentially limit the number 
of PDMs computed to achieve dimension reduction. Hence, our approach is philosophically 
similar to PCA, but addresses a fundamentally different problem.  

The individual, orthogonal PDMs can be fused into a combined PDM (cPDM) by computing 
the following weighted sum: 

 

!combined = ∑ ["
S
"N1 !"             (5) 

 
The scalar weights [" are estimated from the training sample using a linear model with the 
individual PDMs as regressors and reported pain as the response.  

According to the model formulation the signs of the PDMs are not identifiable, as any 

change in the sign of <P8
(") can be offset by a change in sign of both &" and '". We fix the signs 
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of &" to be positive for easier interpretation, i.e., positive voxel weights indicate higher brain 
activity for higher stimulus intensities. This is a similar constraint to the ICA approach often used 
in neuroimaging to detect networks. The orthogonality constraint does not reduce the total 
amount of variance explained by all PDMs. 

The problem of finding the #$% PDM involves finding the vector !"	that maximizes &"'" 

based on the constraint that !"\!" = 1	and !"\!A = 0	for all H = 1, … , # − 1. This problem can be 

solved using a nonlinear programming solver such as the interior-point algorithm. Inference is 
performed using a bootstrap procedure with 5,000 iterations, as described in Chén et al. (2017). 
PDM maps are thresholded at a false discovery rate (FDR) of Q < 0.05. The cPDM map in Figure 
2 displays the top 5% of voxels based on their weight parameters, yielding a more conservative 
display than FDR. We present results of 10 PDMs accounting for more than 99% of the total 
indirect effect. A software implementation is available at 
https://github.com/canlab/MediationToolbox (multivariateMediation.m).  

In summary, we obtain scalar coefficients for paths &", '", and R′", as well as the indirect 
effect &"'" for each PDM as in a standard, univariate mediation analysis. In addition, we obtain 
the voxel weight vector !" that maximizes the indirect effect &"'".  

 

Cluster analysis 
The voxel weight maps for the mutually independent 10 PDMs span a high-dimensional 

space of brain mediators of pain perception. In order to reduce the dimensionality of that space 
and identify brain regions with similar activation profiles, we conducted a two-stage cluster 
analysis. The procedure is described in detail in (Kober et al. 2008) and (Atlas et al. 2014). Briefly, 
for significant voxels from the 10 PDMs we extracted single-trial activity estimates, resulting in a 
13,372 trials × 25,469 voxels matrix. We then used singular value decomposition (SVD) to reduce 
the dimensionality of the voxel space. We kept 364 components that explained 95% of the 
variance. Next, we clustered voxels into 250 spatial parcels using hierarchical clustering. We 
then computed average single-trial activity within each parcel and used non-metric 
multidimensional scaling (NMDS) and hierarchical clustering to further reduce the dimensionality 
of the data. Inspection of the Shepard plot suggested a NMDS dimensionality of 15 with stress 
indices below 0.05. Stress indices (`) are computed according to Shepard (1980) with 
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` = a
∑ (bcdebfcd)gc,d

∑ bcd
g

c,d
      (6) 

 

Here, [%8 is the pairwise empirical dissimilarity and [h%8 is the distance implied by the current 
solution between two brain regions ℎ and	?. Hierarchical clustering was then used to cluster the 
250 parcels into 33 regions that co-activate across trials. These regions were not necessarily 
contiguous and some spanned multiple anatomical regions, e.g., covering right mid-, and dorsal 
insula plus operculum. Since we used voxel-wise FDR correction on the 10 PDMs, we expect 
some false positive values. Accordingly, some of the functional regions were located in the 
cerebrospinal fluid or outside the gray matter. We thus removed 7 smaller functional clusters 
that were considered highly unlikely to be true gray matter region. We then averaged brain 
activity within the remaining 26 functional regions or nodes. NMDS was used to reduce the 
dimensionality again to 10 dimensions based on stress values. Applying hierarchical clustering 
again on the regions identified in the previous step identified large-scale functional brain 
networks. Permutation tests indicated that 5 networks provided the best clustering solution in 
terms of improvement over solutions on permuted data. Similarity of those 5 networks with the 
binarized PDM maps was assessed by Dice coefficients, which represents the true positive rate 
of the intersection between two maps.  

Local pattern expression analyses 
To summarize the cPDM pattern weights as a function of known regions or networks, we 

calculated the pattern energy within three sets of pre-defined regions. The first was a set of 
regions identified as contributing to nociceptive pain pathways based on prior work. We 
identified regions in the cortex using the atlas of Glasser et al. (2016), the thalamus using the 
atlas of Morel et al. (1997), and key brainstem regions based on previous papers: For 
parabrachial nucleus (PBN), Fairhurst et al. (2007); rostral ventral medulla (RVM), Brooks et al. 
(2017). For the PAG, we (T.D.W.) hand-drew a region on the 7T high-resolution group T1 of 
Keuken et al. (2014) and segmented out the cerebral aqueduct to exclude it.  Nociceptive 
thalamic zones were included as defined below. 

The second set of regions was based on Morel et al. (1997). We grouped the 80 or so 
thalamic/epithalamic regions into 17 functional zones likely to be detectable using fMRI (see 
Figure 3 for a complete list). Nociceptive thalamic zones included the ventral-posterior-lateral 
(VPL) and –medial (VPM) zone, the intralaminar group, and the mediodorsal ‘association nucleus’ 
(MD).  
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The third set of regions was a set of cortical networks defined based on resting-state 
connectivity, which we used to map cPDM weights onto established large-scale networks. We 
extracted loadings from 16 unique networks described in Schaefer et al. (2018) and manually 
separated them into left and right hemisphere components to examine lateralization. See Figure 
4 for a complete list.  

To summarize pattern weights in each local region or network, we calculated a measure of 
‘pattern energy’, related to the absolute magnitude of predictive weights:  

jk =
√!\!
m + 1

 

Er is the root-mean-square of weights in region (or network mask) r per cubic cm of brain 
tissue. w denotes the vector of weights for in-region voxels, and V the volume of the region in 
cm3. As the variance of Er varies inversely with region volume, the constant 1 is added to 
regularize the volume and thus avoid noise-driven, large-magnitude estimates for small regions. 
The area of the wedges in Figures 3 and 4 is proportional to Er.  

We also defined a measure of ‘pattern valence’ in pre-defined regions, which is the degree 
to which voxel weights are uniformly positive or negative. Pattern valence is defined as the cosine 
similarity of the pattern weights with the unit vector across in-region voxels. It is bounded at 1 
and -1, where 1 indicates uniform positive weights across voxels, and -1 indicates uniform 
negative weights. The color of the wedges in Figures 3 and 4 are proportional to the pattern 
valence; red colors indicate homogenous positive weights, blue homogenous negative weights, 
and purple mixed, variable weights across in-region voxels.  

 

Comparison to other multivariate models 
To compare the PDM approach to other multivariate models of pain processing, we 

compared PDM1 and cPDM to the Neurological Pain Signature (NPS; Wager et al. 2013), to the 
Stimulus Intensity Independent Pain Signature 1 (SIIPS1, Woo et al. 2017), and the combination 
of NPS and SIIPS1. Furthermore, we compared the PDM approach against pain prediction by 
the Neurosynth reverse inference map for the term “pain” 
(https://neurosynth.org/analyses/terms/pain/). For each map, we correlated the predicted pain 
outcomes with the actual pain ratings on a single-trial level. In addition, we correlated the 
predictive brain maps with each other to evaluate similarities and differences in spatial pattern 
weights. Prediction outcome correlations were compared using paired t-tests of Fisher-z 
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transformed correlation values. 

Univariate mediation analysis 
In univariate mediation analyses, a mediation model is estimated separately for every brain 

voxel (Wager et al. 2008; Atlas et al. 2010, 2014). Univariate mediation analysis produces three 
sets of brain maps – one for each path – in contrast to the PDM approach, which estimates only 
one set of paths for each PDM map. Previous studies also used smaller sample sizes available 
than the present study and had thus less statistical power than the present study. We ran a 
univariate mediation analyses on the training data set to directly compare the univariate results 
to the PDM approach. Univariate multilevel mediation analysis was conducted using the 
Multilevel Mediation and Moderation (M3) Toolbox for Matlab 
(https://github.com/canlab/MediationToolbox). Voxel-wise significance was determined using a 
bootstrap procedure with 5,000 iterations. A false discovery rate (FDR) of Q < 0.05 was used to 
control for multiple comparisons. 
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Results 

Principal Directions of Mediation (PDM) 
For each individual PDM, we estimated Path ! (stimulus intensity to brain), Path " (brain to 

pain report), and mediation (! ∗ ") effects as in a standard mediation model (Figure 1-2). A 
positive path ! indicates that higher temperatures lead to more activity in voxels with positive 
PDM weights (yellow in brain figures) and less activity in voxels with negative PDM weights (blue 
in brain figures). A positive path " indicates that voxels with positive weights contribute positively 
to the pain rating after controlling for temperature. This pattern would be expected for regions 
that receive spinothalamic input, for example the dorsal posterior insula or S2 (Willis and 
Westlund 1997; Dum et al. 2009), and possibly other mediating regions as well.  

The absolute coefficient values for the indirect !" path assess how much of the effect of 
the manipulated temperature on pain ratings is explained by the brain mediator, i.e., individual 
PDM pattern. Here, the first 10 PDMs accounted for 99.1% of the total mediation effect (Figure 
1B, Figure S1). We thus focus on the first 10 PDMs in all subsequent analyses with minimal loss 
of information. In order to analyze the contribution of individual brain regions to the mediation of 
pain, the signs of both paths ! and " and the sign of the voxel weights have to be considered: 
Voxel weights are multiplied by the respective path coefficients to determine a region’s 
relationship to stimulation intensity and pain rating.  

When considering the signs of the voxels weights, four different kinds of relationship are 
possible: (i) positive to temperature, positive to pain; (ii) negative to temperature, negative to 
pain; (iii) positive to temperature, negative to pain; and (iv) negative to temperature, positive to 
pain. Here, type (i) is the standard, positive mediator case expected from nociceptive coding 
regions and type (ii) represents a negative mediator, in which greater deactivation to the stimulus 
mediates increased pain (MacKinnon et al. 2000). Types (iii) and (iv) are suppressor effects 
(MacKinnon et al. 2000), e.g., for type (iii), brain activity increases with stimulus intensity that 
suppress pain, and may thus be involved in stimulus-engaged regulatory processes and other 
negative feedback loops. Note that the values of path coefficients shown in Figure 1 depend on 
the scaling of the predictor ($), mediator (%), and outcome (&). The fact that path ! coefficients 
are an order of magnitude larger than path " is solely related to differences in scaling and does 
not relate to their relevance. Please note that mixing of signals from distinct neural populations 
within fMRI voxels is common in similar types of analysis such as Independent Component 
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Analysis (ICA) and manifests itself in different weight patterns across PDMs, eg. for left S1. 
PDM 1 has both positive path ! and " coefficients. Brain regions with positive weights 

(representing positive mediators, type (i) with positive paths ! and ") are shown in warm colors 
in Figure 2. These include brain regions commonly associated with pain processing, such as the 
dorsal posterior and mid-insula, S1, S2, MCC, and the PAG (Figure 2). Significant voxels in MCC 
stretch into the supplementary motor area (SMA), dorsal of the cingulate sulcus. In addition, PDM 
1 contains negative, type (ii), mediators, including the medial prefrontal cortex (mPFC) and left 
S1/M1. The negative weights indicate that these regions show less activation with increasing 
temperatures and lower regional activation is related to higher pain ratings. Such relationships 
are to be expected for brain regions whose function is inhibited by nociceptive input or that are 
deactivated with increased pain-related processing.  

Brain regions positively mediating the relationship between temperature and pain rating 
(type (i)) in other PDMs are S1, M1, superior frontal gyrus (SFG), fronto-temporal operculum, 
temporal poles, temporal operculum, ventral insula, pons, and cerebellum (Figure 2; yellow 
regions in, e.g., PDMs 1, 2, 4, and 6 in particular). These positive mediators include regions, like 
the temporal regions, that are traditionally not considered to be pain-processing regions. Brain 
regions acting as negative mediators (type (ii)) in other PDMs include medial orbitofrontal cortex 
(mOFC), dorso-medial prefrontal cortex (dmPFC), superior parietal lobule (SPL), retrosplenial 
cortex (RSC), precuneus, and cuneus (blue regions in PDMs 1, 2, 4, and 6). Those regions belong 
to systems that are deactivated consequent to pain or nociception (e.g., systems mediating 
competing functions). 

A more complex function is indicated by positive path ! coefficients, but negative path " 
coefficients (types (iii) and (iv), PDMs 3, 5, 7, and 9). In type (iii), regions with positive voxel 
weights show a positive relationship with temperature, i.e., higher temperatures lead to more 
activity. However, the negative path " indicates that these regions are negatively related to pain 
ratings controlling for temperature, i.e., more activity is related to lower pain ratings. Regions 
with such a profile fit a pain-inhibitory role, as they are activated by painful stimulation but serve 
to dampen pain—a negative feedback loop. Parts of the mOFC/vmPFC, the cerebellum, 
precuneus, S1, temporal-parietal junction, and the left dlPFC fit this pain inhibitory profile (see 
yellow areas in PDMs 3, 5, and 7 in particular). 

A final set of regions shows a negative relationship with temperature (positive path !, but 
negative weights; blue in PDMs 3, 5, and 7) and a positive relationship with pain ratings, 
controlling for temperature (negative voxel weights and negative path " resulting in a net positive 
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relationship; type (iv)). Such regions show stimulus intensity-dependent deactivation, with larger 
de-activation mediating decreased pain, consistent with regulatory negative feedback 
mechanisms.  Regions with this profile include parts of the mOFC, the parahippocampal gyrus, 
visual cortices, and the NAc. For example, NAc shows decreased activation for high 
temperatures, which may relate to punishment or negative reinforcement signals. At the same 
time, controlling for temperature, stronger NAc de-activation is related to lower pain ratings, 
potentially signaling reduced motivational relevance. 

In the individual PDMs, each voxel is assigned a weight value—as in Independent 
Components Analysis (ICA), a voxel can thus participate in multiple components or ‘networks’, 
potentially revealing multiple functional roles of a voxel.  Some regions participated in multiple 
PDMs in this fashion—most notably, mOFC appears to play roles as a type (ii), (iii), and (iv) 
mediator in PDMs 2, 5, and 7. This may reveal a complex function of the mOFC in pain and a 
mixing together of signal from multiple distinguishable neural populations.  
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Figure 2. Principal Directions of Mediation. Voxel maps for PDMs with individually significant voxels at 
FDR ' < 0.05. Tan backgrounds indicate PDMs with positive paths ! and ". Blue backgrounds indicate 
PDMs with positive path ! and negative path ". Brain activity increases in voxels with positive weights 
(warm colors) with higher temperatures. Higher brain activity in these voxels is related to higher pain ratings 
in PDMs with positive path " (tan panels) and negatively with negative path " (blue panels). No voxels are 
individually significant in PDM 8. Bottom panel shows the combined PDM, a weighted linear combination 
of the above 10 PDMs. The top 5% of voxels based on voxel weights are shown since almost all voxels 
survived the significance testing. All brain figures are displayed in neurological convention (left is left) and 
thresholded at FDR ' < 0.05. MCC=midcingulate cortex, SMA=supplementary motor area, mPFC=medial 
prefrontal cortex, PAG=periaqueductal gray, midIns=mid-insula, dpIns=dorsal posterior insula, 
S2=secondary somatosensory cortex, S1=primary somatosensory cortex, M1=primary motor cortex, 
mOFC=medial orbitofrontal cortex, RSC=retrosplenial cortex, SFG=superior frontal gyrus, vIns=ventral 
insula, dmPFC=dorsomedial prefrontal cortex, V1=primary visual cortex, V2=secondary visual cortex, 
vStriatum=ventral striatum, NAc=nucleus accumbens, mThal=medial thalamus, aIns= anterior insula, 
SPL=superior parietal lobule. 
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Combined PDM 
The individual PDMs can be fused into a single, combined PDM since the individual PDMs 

are orthogonal to each other. The weights are estimated from the training sample using a linear 
model with the individual PDMs as regressors and reported pain as the response. Summing the 
weighted PDMs results in a combined PDM (cPDM) map (see Figure 1D and Methods). In doing 
so, we lose information about multiple functional roles played by each voxel or region, but we 
obtain a single overall characterization of each voxel and a map that can be applied as a 
predictive model. Voxel weights may be both positive and negative in different PDMs, because 
voxels may include neural ensembles participating in different distributed circuits related to either 
more or less pain. Thus, the individual PDMs represent a decomposition of voxels’ activity into 
different distributed components, while the combined PDM reflects each voxel’s net contribution 
(controlling for other voxels). Computing and analyzing the cPDM can thus help to clarify overall 
relationships between regional activity and the predictor and outcome variables. 

Within the cPDM, individually significant clusters of positive mediators included S2, MCC, 
SMA, PAG, insula (including anterior and dorsal-posterior parts), and the medial thalamus (Figure 
1D, Figure 2). Negative mediators (stimulus-induced deactivations mediating increased pain) 
included mPFC, SPL, S1, and M1.  

To further characterize the weights of the cPDM in nociception- and pain-related regions 
of interest, we identified 24 distinct anatomical regions that encode pain in human and animal 
literature, and examined the cPDM weights in each of these regions (Figure 1D, right and Figure 
3). The regions were divided according to the thalamic atlas of Morel et al. (1997) and cortical 
atlas of Glasser et al. (2016).  Positive weights were found in elements of the spinothalamic tract 
(bilateral VPL thalamus and dorsal posterior insula [dpINS], and also S1), spino-parabrachial tract 
(bilateral parabrachial nucleus and amygdala), spinoreticular tract (rostral ventral medulla [RVM] 
and PAG), spinohypothalamic tract (posterior hypothalamus), and spinolimbic tract (mediodorsal 
[MD] and intralaminar [IL] nuclei of the thalamus, and aMCC). Many of these subcortical regions 
have not been consistently identified in human studies, but are crucial mediators of pain in animal 
models. These results do not tell us that the activity in question is due to direct spinal input, but 
they robustly identify a set of targets in areas containing known pathways. Activity was bilateral 
in most regions, though the amygdala and spinothalamic regions (S1, S2, dpINS) showed right-
hemisphere dominance (most studies involved left-sided stimulation).  

Figure 3 shows the pattern energy (root-mean-square weights per cubic cm of tissue) for 
positive and negative weights in yellow and blue, respectively. It shows that weights are mixed 
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in the hypothalamus, RVM, amygdala, and S1, suggesting that the local pattern weights in these 
regions are particularly important, as they make the pattern response different from the average 
across the anatomic region. Figure 3B shows the pattern energy for all subdivisions of the 
thalamus, not only those related to nociception. The pattern energy is high (large wedge area) 
and weights fairly uniformly positive (red color) in thalamic nuclei known to have nociceptive 
inputs: VPL, VPM, IL, and MD nuclei, and the habenula (Hb). Roles for all of these in pain are well 
documented (Willis and Westlund 1997; Shelton et al. 2012). Pattern energy is low and with 
mixed signs on weights (purple color) in other sensory nuclei, including lateral/medial geniculate 
and pulvinar nuclei, along with other nuclei. Though a perfect match between any anatomical 
atlas and functional imaging data cannot be guaranteed, these findings suggest that the 
distribution of weights even across the relatively small volume of the thalamus is meaningful. 
They also confirm specific nuclei known mainly from animal and invasive human studies as pain-
related in human fMRI data, and suggest new potential pain-related nuclei to be confirmed and 
further characterized, such as ventrolateral (VL), ventromedial (VM), and anterior medial (AM) 
nuclei.  

Examining the cPDM weights in established resting-state cortical networks also yielded a 
selective profile across networks, with weights concentrated in a few networks (Figure 4). cPDM 
weights were high and relatively uniformly positive (red wedges in Figure 4) in ‘Somatomotor B’, 
‘Ventral Attention A’, and ‘Control C’ networks. (We adopt these names are by convention only, 
and do not suggest that the networks’ functions map onto these labels). The first two broadly 
match previous analyses of nociceptive activity, though they provide additional information on 
mapping to sub-networks. The latter is more surprising, as it includes regions that are not 
typically nociceptive such as precuneus and parts of posterior cingulate. ‘Somatomotor’ and 
‘Ventral Attention’ weights were left-lateralized, and ‘Somatomotor’ most strongly so. ‘Control 
C’ weights were right-lateralized.   
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Figure 3. Combined PDM weights in nociceptive pathways. (A) Pattern weights in 24 cerebral targets of 

nociceptive pathways. The results show strong contributions from nociceptive subregions in the thalamus 
and brainstem, including both ventrolateral (sensory) and medial (affective) thalamic zones, and the 
parabrachial complex (PBN). These are critical pathways in animal models, but have been seldom 
identified in human pain studies. (B) Pattern weights across thalamic regions as defined by the Morel atlas. 

Predictive weights are distributed unevenly across the thalamus, and positive weights (red) are 
concentrated in sensory (VPM/VPL) and medial nociceptive targets (MD and intralaminar), and anterior 
nuclei (VA, VM, VL).  They are also positive in the habenula (Hb). By contrast, they are absent in 
visual/auditory regions (MGN, LGN, Pulvinar). This demonstrates selectivity for expected pain-related 
nuclei. 
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Figure 4. Cortical network profile for the cPDM. Pattern energy in cortical resting state networks are 
distributed unevenly with strong, positive weights (red wedges) present in Somatomotor B, Ventral 
attention A, and Control C networks. The first two match broadly on known nociceptive processing areas, 
while parts of Control C (e.g., precuneus) are less known for pain processing. 
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Clustering PDMs into functional networks 
While the previous analyses examined the relationship of cPDM weights with independently 

defined anatomical regions and functional brain networks, in the next step we analyzed the 
spatial clustering arising from the individual PDMs themselves. The PDMs provide a dimensional 
view of coherent distributed processes, with each PDM a distinct dimension; clustering the 
PDMs can reveal the network structure of the inter-regional relationships. To do this, we used 
an iterative clustering procedure to group regions based on inter-regional correlations in 
stimulus-evoked responses across trials without considering stimulation temperatures or pain 
ratings (Kober et al. 2008; Atlas et al. 2014). The cluster analysis of single-trial activity from 
significant voxels of all 10 PDMs revealed 26 functional regions organized into 5 different 
functional networks (Figure 5A,B). Though somewhat limited, for exploratory purposes a 
functional description of these networks was determined by computing the similarity of each 
network with feature maps generated by the meta-analytic tools on neurosynth.org (Yarkoni et 
al. 2011). The top ten features for each network are shown in Table 1. Network names were 
chosen based on the functional associations with neurosynth.org terms. For example, the top 
three feature associations for network 1 were somatosensory, motor, and stimulation. Based on 
these associations we labeled network 1 as ‘sensorimotor network’. 

Network 1 (‘sensorimotor’) included somatosensory regions like dpIns, mid-insula, S2, S1, 
but also the PAG, MCC, SMA, M1, and cerebellum. The second network (‘value learning’) 
included the NAc, ventral anterior insula, frontal operculum, and temporal poles. Network 3 
consisted of regions that are part of the default mode network (DMN), including mPFC, mOFC, 
and retrosplenial cortex. The fourth network (‘executive function’) included precuneus, inferior 
parietal lobule (IPL), superior parietal lobule (SPL), dorsal lateral occipital cortex (dLOC), 
temporal-parietal junction (TPJ), superior frontal gyrus (SFG), and dlPFC. Finally, network 5 
(‘visual’) included mostly occipital, visual areas and parts of the parahippocampal gyrus. The 
variety of functions ascribed to the five networks mediating pain indicate that pain processing 
involves multiple, distinct brain networks in addition to somatosensory systems. 

We next investigated with which functional networks the individual PDMs are associated 
by computing pairwise Dice similarity coefficients across voxels, estimating the spatial similarity 
of the PDMs and network maps (Figure 5B). By contrast, PDM 1 (type (i)/(ii) mediators) had the 
greatest overall similarity with any single network, namely with the sensorimotor network (, =
0.7). No other network was substantially associated to PDM 1 (all , < 0.05). PDMs 2, 5, and 6 
were also spatial similarity to the sensorimotor network (PDMs 2 and 6 are type (i)/(ii) mediators). 
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The value learning network was related to PDMs 3, 6, and 9, with the highest similarity to PDM 
9 (, = 0.16)—thus, mainly components with type (iii)/(iv) mediation (PDM 3 and 9). Similarity 
between the default mode network and PDM 4 was highest (, = 0.24, mainly type (ii) mediators). 
Parts of the DMN also overlapped with PDMs 3, 5, and 7. The executive function network was 
associated with PDM 2 (, = 0.22) and PDM 3 (, = 0.23), and, to a lesser degree, with PDMs 4 
and 7. Finally, the visual network was related to PDM 3 (, = 0.38) and to a lesser degree to PDMs 
5, 7, and 9. The overall similarity pattern between functional networks and PDMs shows that in 
contrast to PDM1, few of the remaining PDMs are dominated by a single network. More often 
PDMs were comprised of a mix of 2 or 3 networks that together act as a pain mediator, reflecting 
the complexity of the transformation from nociception into pain experience. 
 
 

 
Figure 5. Functional networks mediating pain processing. (A) Five functional networks based on the 
clustering of brain activity in significant voxels from the PDM analysis. Labels for colors are shown in B. 

(B) Associations between functional networks and PDMs. Ribbon width represents Dice-coefficient 
similarity between networks and PDMs. 
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Table 1. Neurosynth.org network associations 

Sensorimotor Value-learning Default mode Executive function Visual 

r features r features r features r features r features 

0.369 somatosensory 0.313 reward 0.207 self-referential 0.139 mental 0.223 visual 
0.304 motor 0.255 money 0.202 person 0.124 intention 0.152 eye 

0.301 stimulation 0.252 anticipation 0.201 self 0.117 stories 0.141 eyes 
0.272 sensorimotor 0.252 rewards 0.197 default 0.115 attention 0.137 color 

0.266 muscle 0.251 incentive 0.176 autobiographical 0.115 visuospatial 0.126 shape 
0.257 sensory 0.240 monetary 0.157 resting state 0.114 story 0.108 shapes 

0.256 pain 0.236 outcome 0.149 social 0.108 reasoning 0.105 spatial 
0.245 movements 0.196 outcomes 0.149 mentalizing 0.107 default 0.102 development 

0.245 production 0.185 dopamine 0.148 personal 0.106 calculation 0.097 distractor 
0.240 painful 0.179 reinforcement 0.135 thought 0.106 retrieval 0.097 target 

Note: Top ten features from neurosynth.org showing the highest Pearson’s correlation (r) with each network.
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Validation on an independent cohort 
Although we estimated PDMs on a large and diverse data set, there is a risk that the PDMs 

may over-fit noise inherent in the training data, potentially preventing generalization to other data 
sets. We thus applied the PDMs to an independent test data set, without re-estimating any model 

parameters. The resulting vectors of potential mediators (!"#
(%)) were then entered into standard 

multi-level mediation models. If the PDMs generalize to the new data, the indirect '( effects 
should be significant on the test data.  

Applying the PDMs to independent pain test data (N = 75, an independent community 
sample cohort of mixed races and sex), revealed significant paths ' and ( for all 10 PDMs and 
the cPDM (Figure 6A). The indirect path '( was also significant for the cPDM and all individual 
PDMs, suggesting that all PDMs are reliably related to pain and generalize across cohorts. The 
magnitude of the indirect effects (path '() are monotonically decreasing for the training data 
(Figure 1B). On the test data, indirect path coefficients were not strictly monotonically decreasing 
from PDM 1 to PDM 10 (Figure 6A, Figure S2), indicating some variability of the PDM order 
across data sets, as expected. The cPDM and the first two individual PDMs had the strongest 
effect in both data sets, suggesting that they capture the most important brain activity for pain 
across data sets. Figure 6C shows the predicted pain from the cPDM plotted against the 
empirical pain ratings for pain training and test data.  

To further corroborate the generalizability and robustness of the PDMs, we also estimated 
10 PDMs on the original test data set (Study 8) and cross-validated the new PDMs on the original 
training data set (Studies 1-7). The results were similar to the main results presented here. Six 
out of ten indirect paths were significant when PDM estimation was done on the smaller sample. 
The indirect '( path coefficients for the first four PDMs were highest when applying the new 
PDMs to the original training data (Figure S3). Generalization thus does not depend strongly on 
the choice of the training data.  

In order to test whether PDMs are mediators specifically for somatic pain, we also applied 
the original PDMs to other, non-painful aversive stimuli in Study 8—physically (knife on plate) 
and emotionally (screaming, crying, etc.) aversive sounds with three pre-defined intensity levels 
of each stimulus type. Study 8 was designed to test specificity vs. generalizability to aversive 
sounds and matched in duration and approximate aversiveness ratings based on pilot studies; 
trials were randomly intermixed with heat pain trials. Application of the original PDMs on the 
sound data revealed no significant indirect effects (Figure 6B, Figure S4) and only nine significant 
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paths ' or ( in total. Thus, pain-derived PDMs do not mediate the relationship between sound 
intensity and intensity ratings for ether type of sound. However, they are not perfectly selective 
as the expression of some PDMs correlates positively with ratings of sound unpleasantness 
(Path (). In summary, these results nevertheless indicate some degree of specificity to somatic 
pain vs. sound. 
 

Comparison to other multivariate models 
Previous studies have investigated the direct relationship between brain responses and 

pain reports, both using univariate (Coghill et al. 1999; Bornhövd et al. 2002; Ploner et al. 2010) 
and multivariate approaches (Marquand et al. 2010; Brodersen et al. 2012; Wager et al. 2013; 
Geuter et al. 2014; Woo et al. 2017). One study trained a multivariate pattern, termed the 
Neurological Pain Signature (NPS), which predicts pain reports from brain activity that can be 
easily applied to new data sets (Wager et al. 2013). In contrast to the present approach, the 
estimation of the NPS did not account for temperature-brain relationships; its goal was rather to 
predict pain intensity without demonstrating mediation. In addition, we compared it to the 
Stimulus Intensity Independent Pain Signature (SIIPS1), which was trained to predict pain ratings 
after removing linear effects of stimulus intensity on brain activity and ratings (Woo et al. 2017). 
Additionally, the combination of NPS and SIIPS1 as well as the Neurosynth reverse inference 
map for the term “pain” were compared. 

To examine relationships among the PDM models and other established models, we 
compared prediction-outcome correlations (see Fig. 6D) Correlations were calculated across 
individual differences in response values for each model. The first PDM performed best (mean 
r=0.53), followed by the cPDM (mean r=0.50). The NPS, the combination of NPS and SIIPS1, 
and the Neurosynth reverse inference map performed roughly equivalently (mean r=0.26, 0.28, 
and 0.25, respectively). Finally, SIIPS1 performed the worst (mean r=0.13). Prediction 
performance between PDM1 and cPDM did not differ significantly, while both PDM-based 
models significantly outperformed the remaining models (qFDR<0.05, all p<0.2e-11, all t(74)>8.4). 

The cPDM was highly correlated with PDM1 (r=0.95), but only moderately correlated with 
NPS (r=0.64) and NeuroSynth (r=0.66). The NPS, by contrast, was more strongly correlated with 
Neurosynth (r=0.82) than the PDM models. The SIIPS1 pattern was distinct, and essentially 
uncorrelated with either the PDM models, NPS, or NeuroSynth (r<=0.15). This is expected, as 
the SIIPS was designed to be independent of stimulus intensity. 
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Figure 6. Validation on independent data (N=75). (A) The cPDM (dark circle) and all 10 individual PDMs 

(lighter circles) are significant mediators for independent pain test data. (B) PDMs show specificity with 

respect to aversive sounds because no indirect effect is significant here. (C) Scatter plots of pain predicted 

from the cPDM against empirical pain ratings for training (left) and test (right) pain data. Individual trials from 
all subjects are shown. Colors indicate different subjects. (D) The prediction-outcome correlations between 

reported pain and pattern responses for the first PDM (PDM1), the cPDM, the Neurological Pain Signature 
(NPS), the Stimulus Intensity Independent Pain Signature 1 (SIIPS1), the combination of NPS and SIIPS1, 
and the Neurosynth reverse inference map for the term “pain”. 
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Comparison to univariate mediation analysis 
In contrast to the present multivariate PDM approach, mass-univariate mediation analyses 

of fMRI data estimate independent mediation models for each voxel (Wager et al. 2008; Atlas et 
al. 2014). The intersection of voxels with significant paths ', (, and '( is then interpreted as a 
set of mediating brain regions.  In order to compare the novel high-dimensional PDM approach 
to the univariate mediation analysis, we first computed a mass-univariate mediation analysis on 
the training data set (Studies 1-7).  

This analysis identified the MCC, cerebellum, posterior and mid-insula, S2, and S1 as brain 
mediators defined as the intersection of the coefficient maps for paths ', (, and '( at FDR ) <
0.05	(Figure 7). Comparing these results to the cPDM revealed both similarities and some notable 
differences (Figure 2,7). Both maps include somatosensory regions in aMCC, insula, and S2, as 
well as cerebellum. Additional regions with positive weights in the cPDM included thalamus, 
PAG, and other midbrain regions like the PBN not included in the univariate model. Furthermore, 
negative contributions in SPL and S1 were not identified in the univariate model. Such results 
are expected if some brain regions make detectable contributions only after controlling for the 
influences of other brain regions; this is an advantage of multivariate predictive approaches to 
neuroimaging analysis.  
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Figure 7. Comparison to univariate mediation analysis. Top three panels show individually significant 

voxels for paths ' (blue), ( (green), and '( (purple) from a univariate mediation analysis at FDR ) < 0.05. 
Panel 4 shows voxels mediating the relationship between temperature and pain, i.e., the overlap between 
the three paths (red).  
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Discussion 
In brief, our analyses identified brain mediators of pain that extend substantially beyond 

the boundaries of traditional ‘pain matrix’ regions, including prefrontal and midbrain regions 
previously thought to play an ‘extra-nociceptive’ or modulatory role (Kucyi et al. 2012; Geuter et 
al. 2013; Seminowicz and Moayedi 2017). Integrated activity across these pathways, as reflected 
in the Combined PDM, predict human pain intensity more accurately than previous pain 
predictive models. 

Brain regions primarily associated with motivational, learning, or executive functions have 
been considered to modulate activity in a pain processing brain system. The involvement of 
those brain regions in pain processing has been shown in a multitude of studies (eg. Bushnell et 
al. 2013; Seminowicz and Moayedi 2017). Here, we show that many of these regions, including 
NAc, dlPFC, mPFC, and mOFC, are formal mediators of the stimulus-pain relationship. Their 
activity is directly related to stimulus intensity and at the same time to pain when controlling for 
stimulus intensity. The broad range of psychological functions associated with the regions 
serving as formal pain mediators is in line with the idea that brain regions related to motivational, 
learning, and executive functions are much more directly involved in the generation of pain. Their 
mediating role suggests that they are not necessarily external modulators to a distinct pain 
system but that primarily non-pain processing brain regions play more a direct role in generating 
the pain experience, further blurring the boundaries of a so-called ‘pain-matrix’. 

One of the most prominent functions of pain is its motivational drive since it is associated 
with tissue damage (Navratilova and Porreca 2014; Geuter et al. 2016). Learning about painful 
stimuli is thus important to learn to minimize future harm. Pain stimulation relates to activity in 
the NAc, a brain region associated with motivational learning (Becerra et al. 2013; Woo et al. 
2015). In line with the NAc’s role in pain in humans (Baliki et al. 2010, 2012) and animal models 
(Chang et al. 2014; Navratilova and Porreca 2014; Schwartz et al. 2014; Ren et al. 2016), NAc 
also acts as a formal mediator between nociceptive stimuli and pain. Furthermore, we show that 
NAc function for pain is based on opposing relationships of NAc activity with stimulus intensity 
(negative) and pain (positive) – NAc shows stimulus intensity-dependent deactivation, with larger 
de-activation mediating decreased pain, consistent with regulatory negative feedback 
mechanisms. The NAc might exert its control in this feedback loop indirectly via its connections 
with the hypothalamus or mPFC as indicated by studies in humans and animals (Baliki et al. 
2012; Schwartz et al. 2014; Lee et al. 2015; Woo et al. 2015). However, the exact contribution of 
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the NAc to pain perception might rely on more complex temporal dynamics that cannot be 
resolved in the current data set and are still a matter of debate (Baliki et al. 2010; Becerra et al. 
2013) as is its role in aversive learning more generally (Roy et al. 2014; Matsumoto et al. 2016).  

Notably, another novel feature of the present cPDM map is that it contains positive weights 
in the bilateral PBN and specific parts of the amygdala, as well as RVM and PAG. Though 
definitive localization to these nuclei is difficult with any human method, activation is consistent 
with their locations in atlases and previous studies, and identifying them robustly in humans 
could provide an important step forward in the ability to study both bottom-up and top-down 
effects on crucial nociceptive and pain-modulatory pathways.  

 The PAG and RVM receive nociceptive afferents and form a major descending bulbospinal 
that which controls the balance of descending pain-inhibitory and facilitatory projections to the 
spinal dorsal horn  (Fields 2004; De Felice et al. 2011; Wager and Atlas 2015; Geuter, Koban, et 
al. 2017). Imaging studies have identified PAG and RVM activation during both evoked pain and 
pain-modulatory conditions like placebo analgesia (Tracey et al. 2002; Eippert, Bingel, et al. 
2009; Tinnermann et al. 2017). But these regions have not, to our knowledge, been identified as 
mediators of human stimulus-pain relationships.  

The PBN has rarely been reported in neuroimaging studies, but is an emerging target of 
great importance in representing danger signals related to pain and other bodily input. The PBN 
is a major center for pain and other forms of interoception and chemical sensation, including 
taste, itch, dyspnea, and vagally mediated immune surveillance and sickness behavior (Goehler 
et al. 2000; Kelley et al. 2003). A major pathway composed of CGRP neurons projects from the 
PBN to the central nucleus of the amygdala. This pathway is activated in response to danger 
signals across multiple sensory modalities, including visceral and cutaneous pain (chemical, 
mechanical, thermal and electrical) and itch, across ascending trigeminal, spinal and vagal 
sensory pathways(Han et al. 2015; Campos et al. 2018). It is crucial for representing danger 
signals that produce avoidance behavior, including joint control of learned pain avoidance and 
food intake, which is strongly inhibited by its activation (Han et al. 2015; Sato et al. 2015; Campos 
et al. 2018). PBN also plays a role in pain regulation by sending non-CGRP projections to the 
rostral ventral medulla (RVM) (Roeder et al. 2016). PBN stimulation in humans can reduce chronic 
pain (Katayama et al. 1985). FMRI activation consistent with human PBN has been found to 
respond to noxious stimulation, correlate with human parasympathetic activity (Napadow et al. 
2008), and respond to vagal stimulation (Frangos et al. 2015) and acupuncture (Napadow et al. 
2009).  Our results suggest it may be possible to measure activity in human PBN-central 
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amygdala and other rubrospinal pathways. 
Among regions commonly associated with pain in neuroimaging studies, including the 

medial thalamus, PAG, S2, insula, MCC, SMA, and S1 (Dum et al. 2009), activity increased due 
to increasing temperatures and higher activity was related to stronger pain, controlling for 
temperature. This set of pain associated regions (Apkarian et al. 2005; Bushnell et al. 2013; 
Duerden and Albanese 2013; Jensen et al. 2016) was complemented by anterior temporal 
regions and the cerebellum, which share the same functional response profile. A positive 
relationship with both temperature and pain rating is in line with a traditional, feed-forward 
encoding view of nociception (Bushnell et al. 2013; Atlas et al. 2014; cf. Geuter, Boll, et al. 2017).  

By contrast, the mPFC, SPL, RSC, precuneus, and parts of S1 and M1 were negatively 
related to both temperature and pain. The mPFC, RSC, and precuneus are part of the DMN, 
which has been associated with mind-wandering and internal thoughts (Andrews-Hanna et al. 
2010; Kucyi and Davis 2015). The negative mediating role of the DMN regions could be related 
to the disruption of ongoing thought processes by the painful stimulation or attentional 
refocusing from internal to external sensations. The observation that some regions, like S1, 
participate in both, positive and negative, mediation relationships, may indicating the mixing of 
signals from distinct neuronal populations within single fMRI voxels. Such mixing of activity 
patterns is also observed across components from ICA.  

In addition, there are multiple sources of endogenous variation in drivers of pain beyond 
stimulus intensity, including attention, arousal, and endogenous variation in ascending spinal 
afferents due to processing within the spinal cord (Eippert, Finsterbusch, et al. 2009; Geuter and 
Büchel 2013; Tinnermann et al. 2017). Because each study included a different psychological 
manipulation to modulate pain, our approach will only identify brain mediators common to all 
studies. Differences across studies thus increase the robustness of the identified brain 
mediators, but also reduce the amount of variance that will be explained in each single study. 
Additional factors introducing variance across studies include context-effects (Leknes et al. 
2013), temporal effects within and across trials (Jepma et al. 2014), and pre-stimulus fluctuations 
in brain activity (Ploner et al. 2010). Variation in pain related to variation in afferent input, e.g., 
endogenous trial-to-trial variation in spinal cord processing, will be captured in path b in the 
mediation model. Other endogenous sources of variation unrelated to afferent input may be 
captured in the direct effect (path /′) and will not be reflected in a brain mediation model that 
seeks to connect noxious stimulus intensity with pain. Similarly, potential non-linear relationships 
between stimulus intensity and pain or differences across participants might not be adequately 
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represented by linear brain mediators. However, using linear models instead of non-linear 
models offers better interpretability.  

In summary, the new high-dimensional mediation analysis revealed a comprehensive 
picture of brain responses underlying the complex, multi-faceted pain experience. Several brain 
regions, such as the mPFC, thalamus, NAc, and PBN are shown to directly and formally mediate 
stimulus-to-pain relationships. The functional diversity of the brain mediators observed here 
offers a better understanding of the brain responses underlying the complexity of the pain 
experience. 
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Supplementary Materials and Methods 

Procedures 
Thermal and aversive sound stimulation. The number of noxious stimulation trials, stimulation 
sites, inter-trial intervals, rating scales, and stimulus intensities and durations varied across 
studies, but were comparable; these variables are summarized in Tables S2 and S3. Each study 
also comprised a specific psychological manipulation (except Study 8), such as placebo 
treatment, which will be or has been reported elsewhere (Table S1).  

In each study, except Studies 7 and 8, thermal stimulation was delivered to multiple skin 
sites using a TSA-II Neurosensory Analyzer (Medoc Ltd., Chapel Hill, NC) with a 16 mm Peltier 
thermode endplate. A PATHWAY system (Medoc Ltd., Chapel Hill, NC) was used in Studies 7 
and 8. Study 7 used a circular CHEPS Peltier endplate (diameter: 32 mm) and study 8 used a 16 
mm ATS Peltier endplate. On every trial, after the offset of stimulation, participants rated the 
magnitude of the warmth or pain they had felt during the trial on a visual analog scale. 
Participants in Study 8 rated their pain continuously during stimulation. The maximum rating of 
each trial was used in the following analyses. Other thermal stimulation parameters varied across 
studies, with stimulation temperatures ranging from 40.8 °C to 50 °C and stimulation durations 
from 1.85 to 12.5 s. Most studies applied thermal stimulation to the forearm. See Table S2 for 
stimulation intensity levels, mean temperature for each intensity level, and details of the rating 
scales. See Table S3 for stimulation duration, duration of inter-stimulus interval, number and 
location of stimulation sites, and number of trials per subject. 

fMRI data processing 

Preprocessing. Structural T1-weighted images were co-registered to the mean functional image 
for each subject using the iterative mutual information-based algorithm implemented in SPM 
(Ashburner and Friston 2005), and then normalized to MNI space using SPM. The version of 
SPM used varied across studies (Studies 1 and 6 used SPM5; while all other studies used SPM8; 
http://www.fil.ion.ucl.ac.uk/spm/). Following normalization, Studies 1 and 6 included an 
additional step of normalization to the group mean using a genetic algorithm-based 
normalization (Wager and Nichols 2003). We chose to retain the original preprocessing used in 
each published paper for two reasons: (1) to establish, and test, robustness across minor 
variations in processing pipelines; and (2) because study-specific analysis choices are 
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appropriate in some cases, depending on the distribution of the data and study design. 
For each functional dataset, initial volumes were removed to allow for image intensity 

stabilization (see Lindquist et al. (2017) for details). In addition, volumes with signal values that 
were outliers within the time series (i.e., “spikes”) were removed. To identify outliers, both the 
mean and the standard deviation of intensity values across each slice were computed for each 
image. The Mahalanobis distances for the matrix of (concatenated) slice-wise mean and 
standard deviation values by functional volumes (over time) were computed, and values with a 
significant !2 value (corrected for multiple comparisons based false discovery rate) were 
considered outliers. In practice, less than 1% of images were deemed outliers. The output of this 
procedure was later included as nuisance covariates in the subject level models. Next, functional 
images were corrected for differences in the acquisition timing of each slice (except for multiband 
data with a short TR of 480 ms in Study 8) and were motion-corrected (realigned) using SPM. 
The functional images were warped to SPM's normative atlas (warping parameters estimated 
from co-registered, high-resolution structural images), interpolated to 2	 × 	2	 × 	2	%%& voxels, 
and smoothed with an 8 mm FWHM Gaussian kernel. 

Single trial analysis (Except Studies 3 and 6). For each study, a single trial, or “single-epoch”, 
design and analysis approach was used to model the data. Quantification of single-trial response 
magnitudes was done by constructing a GLM design matrix with separate regressors for each 
trial (Koyama et al. 2003; Rissman et al. 2010; Mumford et al. 2012). First, boxcar regressors, 
convolved with the canonical hemodynamic response function (HRF), were constructed to model 
cue and rating periods in each study. Regressors for each trial, as well as several types of 
nuisance covariates were also included. Because each trial consisted of relatively few volumes, 
trial estimates could be strongly affected by acquisition artifacts that occur during that trial (e.g. 
sudden motion, scanner pulse artifacts, etc.). Therefore, trial-by-trial variance inflation factors 
(VIFs; a measure of design-induced uncertainty due, in this case, to collinearity with nuisance 
regressors) were calculated, and any trials with VIFs exceeding 2.5 were excluded from the 
analyses (VIF threshold for Study 8 was 3.5 as in the primary publication). For Study 1, global 
outliers (trials that exceeded three standard deviations (SDs) above the mean) were also 
excluded, and a principal component based denoising step was employed during preprocessing 
to minimize artifacts. This generated single trial estimates that reflect the amplitude of the fitted 
HRF on each trial and refer to the magnitude pain-period activity for each trial in each voxel.  

Single trial analysis (Studies 3 and 6).  For Studies 3 and 6, single trial analyses were based 
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on fitting a set of three basis functions, rather than the standard canonical HRF used in the other 
studies. This flexible strategy allowed the shape of the modeled hemodynamic response function 
(HRF) to vary across trials and voxels. This procedure differed from that used in other studies 
because it maintains consistency with the procedures used in the original publications. For both 
Study 3 and Study 6, the pain period basis set consisted of three curves shifted in time and was 
customized for thermal pain responses based on previous studies (Lindquist et al. 2009; Atlas 

et al. 2010). To estimate cue-evoked responses for Study 6, the pain anticipation period was 
modeled using a boxcar epoch convolved with a canonical HRF. This epoch was truncated at 8 
s to ensure that fitted anticipatory responses were not affected by noxious stimulus-evoked 
activity. As in the other studies, nuisance covariates were included and trials with VIFs larger 
than 2.5 were excluded. In Study 6 trials that were global outliers (those that exceeded 3 SDs 
above the mean) were also excluded. The fitted basis functions from the flexible single trial 
approach were used to reconstruct the HRF and compute the area under the curve (AUC) for 
each trial and in each voxel. These trial-by-trial AUC values were used as estimates of trial-level 
pain-period activity.  
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Supplementary Figures 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Bivariate relationships between temperatures, mediators (PDM expression), and pain ratings for the training data 

(studies 1-7). Data are adjusted according to the mediation equations, i.e., ratings in path ! plots are adjusted for temperatures and 

PDMs, ratings in path "’ plots are adjusted for PDMs, and PDMs in path b plots are adjusted for temperatures. PDMs are estimated 

on the training data. 
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Figure S2. Bivariate relationships between temperatures, mediators (PDM expression), and pain ratings for the pain test data (Study 

8, N = 75). Data are adjusted according to the mediation equations, i.e. ratings in path ! plots are adjusted for temperatures and 

PDMs, ratings in path "’ plots are adjusted for PDMs, and PDMs in path ! plots are adjusted for temperatures. PDMs are estimated 

on the pain training data (studies 1-7). 
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Figure S3. Generalization of pain PDMs from small sample to large sample. Here, test and training data sets were switched. Ten pain 

PDMs were estimated on the original test data set (study 8, N=75) and used as mediators in the original training data (studies 1-7, 

N=209). PDM 1-4, 6, and 10 are significant mediators for the larger set when trained on the smaller set. 
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Figure S4. Bivariate relationships between sound intensity levels, mediators (PDM expression), and intensity ratings for the training 

data (studies 1-7). Data are adjusted according to the mediation equations, i.e. ratings in path b plots are adjusted for stimulus levels 

and PDM, ratings in path c’ plots are adjusted for PDMs, and PDMs in path b plots are adjusted for stimulus levels. PDMs are estimated 

on the pain training data (studies 1-7). 
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Supplementary Tables 
 

Supplementary Table S1. Demographics 

 

Study§ Sample 
Size 

Sex Mean age in 
Years (Std. 
Deviation) 

Prior publications 

PDM Training Data 
Study 1 (NSF) 26 9 F / 17 M 27.8 Atlas et al. (2014), Pain 

Wager et al. (2013) NEJM 
Study 2 (BMRK3) 33 22 F / 11 M 

 
27.9 (9.0) Woo et al. (2015), PLoS Biology 

Wager et al. (2013) NEJM 
Study 3 (BMRK4) 28 10 F / 18 M 25.2 (7.4) Krishnan et al. (2016) eLife 
Study 4 (IE) 50 27 F / 23 M 25.1 (6.9) Roy et al. (2014), Nat. Neurosci. 
Study 5 (ILCP) 29 16 F* / 12 

M 
20.4 (3.3)** Woo et al. (2017) Nat. Comms. 

Study 6 (EXP) 17 9 F / 8 M 25.5 Atlas et al. (2010), J. Neurosci. 
Study 7 (SCEBL) 26 11 F / 15 M 28 (9.3) Koban et al. (2019), Nat. Comms. 

PDM Test Data 
Study 8 (BMRK5) 75 39 F / 36 M 28.2 (5.6) Losin et al. (in press, Nat. Hum. Beh.) 

Note. §Internal study codes to facilitate tracking of datasets; *Gender of one participant is unknown; **Age of one participant is 
unknown. Studies 1-7 have been reported on in Lindquist et al., 2017. 
 
  



High-dimensional mediation analysis of pain 

Supplement - 11 
 

Supplementary Table S2. Stimulation Parameters 
 

Study Intensities Mean Temperature by  
Intensity Level 
(Within Subject S.E.) 

Rating scale Mean Ratings by Intensity Level 
(Within Subject S.E.M.) 

PDM Training Data 
Study 1 
(NSF) 

N, L, M, H 
(Calibrated) 

40.8, 43.1, 45.1, 47.0 
(0.16) 

0-8 VAS (0, no sensation; 1,  
non-painful warmth; 2, low pain; 5, 
moderate pain; 8, maximum tolerable 
pain) 

2.0, 2.8, 4.2, 6.6 
(0.14) 

Study 2 
(BMRK3) 

6 levels 
(Fixed) 

44.3, 45.3, 46.3, 47.3, 
48.3, 49.3 

0-100 VAS 49.1, 56.6, 74.3, 99.4, 133.0, 159.3 
(3.12) 

Study 3 
(BMRK4) 

L, M, H 
(Fixed) 

46.0, 47.0, 48.0 0-100 VAS (0, no sensation; 1.4, barely 
detectable; 6.1, weak; 17.2, moderate; 
35.4, strong; 53.3, very strong; 100, 
strongest imaginable sensation) 

UL: 31.7, 40.5, 53.6 
(0.9787) 
LL: 31.5, 40.2, 53.3 
(0.96) 

Study 4 
(IE) 

L, M, H 
(Fixed) 

46.0, 47.0, 48.0 0-100 VAS (0, no pain; 100, worst 
imaginable pain) 

29.4, 38.9, 51.9 
(0.64) 

Study 5 
(ILCP) 

L, H 
(Calibrated) 

44.7, 46.7 
(0) 

0-8 VAS (no pain to worst pain 
imaginable) 

24.3, 46.7 
(1.14) 

Study 6 
(EXP) 

L, M, H 
(Calibrated) 

41.2, 44.4, 47.2 
(0.21) 

0-8 VAS (0, no sensation; 1, non-painful 
warmth; 2, low pain; 5, moderate pain; 
8, maximum tolerable pain) 

2.5, 4.3, 7.4 
(0.13) 

Study 7 
(SCEBL) 

L, M, H 
(Fixed) 

48, 49, 50 0-100 VAS (0, no pain; 100, worst 
imaginable pain) 

26.0, 33.3, 40.4 
(1.12) 

PDM Test Data 
Study 8 
(BMRK5) 

L, M, H 
(Fixed) 

47, 48, 49 0-100 gVAS (0, no experience; 100, 
strongest imaginable experience) 

30.6, 39.9, 48.2 
(1.64) 

Note: Heat /pain levels: N = Nonpainful, L = Low, M = Medium, H = High. VAS = visual analogue scale. gVAS = generalized visual 
analogue scale. 
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Supplementary Table S3. Task Characteristics 

 

Study Duration 
(seconds) 

Inter-heat 
interval 
(seconds) 

Locations 
(number of 
sites) 

Range of 
Number of Trials 
Per Subject 

Mean proportion of 
trials excluded  
(Std. Deviation) 

Other experimental 
manipulations 

PDM Training Data 
Study 1 
(NSF) 

10 38 Left arm (3) 35-48 0.08 (0.07) Masked emotional faces evenly 
crossed with temperature 

Study 2 
(BMRK3) 

12.5 20.5-28.5 Left arm (2) 97 0.1 (0.04) Cognitive self-regulation up and 
down 

Study 3 
(BMRK4) 

11 25-27 Left arm (4), 
left foot (4) 

81 0.08 (0.06) Heat-predictive visual cues (low, 
medium, or high) 

Study 4 
(IE) 

11 36-38 Left arm (6) 48 N/A Heat-predictive visual cues; 
placebo manipulation 

Study 5 
(ILCP) 

10 17-25 Left arm (2) 64 0.05 (0.03) Agency (make choice, observe 
choice), Certainty (80% low pain, 
50% low pain) 

Study 6 
(EXP) 

10 38 Left arm (4) 61-64 0.03 (0.04) 
 

Heat-predictive auditory cues 

Study 7 
(SCEBL) 

1.85 26-37 Right leg (6) 96 0.04 (0.03) Heat-predictive visual cues (low or 
high) and unreinforced social 
information 

PDM Test Data 
Study 8 
(BMRK5) 

8, 11 11.5-
32.75 

Left arm (4) 30-36 0.04 (0.04) Aversive sounds, modality-
predictive cues (sound vs. heat) 

 
 
 
 
 


