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 Supplementary Text and Tables 

 Supplementary Text 1: Comparison between normative estimates and subjects’ estimates. 

 Linear regression. 
 To  see  how  subjects’  estimates  compared  to  normative  estimates,  we  performed  a  linear  regression  between  the  two 
 at  the  subject  level,  and  then  summarized  the  results  at  the  group  level.  We  collected  two  measures  derived  from  the 
 regression:  the  Pearson  correlation  coefficient  and  the  slope  of  the  linear  regression.  The  results  are  reported  in  Tables 
 S1 and S2 below. 

 The  Pearson  correlation  coefficient  results  (Table  S1)  had  already  been  reported  in  the  main  text.  This  coefficient 
 measures  the  strength  of  the  linear  relationship  between  normative  estimates  and  subjects’  estimates.  The  fact  that 
 the  coefficient  is  significantly  greater  than  0  shows  that  subjects’  estimates  covary  with  the  optimal  estimates, 
 indicating that subjects perform the task adequately. 

 The  slope  of  the  linear  regression  indicates  by  how  much  the  subject’s  estimate  changes  on  average  when  the 
 normative  estimate  changes  by  one  unit.  Many  studies  on  human  estimates,  especially  for  probability  judgments,  have 
 observed  that  the  slope  of  the  regression  was  less  than  1  (Costello  &  Watts,  2014;  Erev  et  al.,  1994;  Hilbert,  2012; 
 Phillips  &  Edwards,  1966;  Zhu  et  al.,  2020)  .  Consistent  with  these  studies,  we  also  observed  in  our  study  that  the  slope 
 was  less  than  1,  in  both  tasks  (see  Table  S2  for  descriptive  and  inferential  statistics).  In  the  literature,  this  phenomenon 
 has  been  referred  to  as  "conservatism  bias"  (Costello  &  Watts,  2014;  Erev  et  al.,  1994;  Hilbert,  2012;  Phillips  & 
 Edwards,  1966;  Zhu  et  al.,  2020)  ,  because  a  regression  with  a  slope  less  than  1  predicts  that,  for  a  given  level  of 
 normative  estimate,  the  subject’s  estimate  will  be  on  average  less  close  to  the  extremes  (0  or  1,  hence  the 
 ‘conservatism’  label),  i.e.  closer  to  0.5,  than  the  normative  estimate.  Here,  we  do  not  attach  any  particular  mechanistic 
 interpretation  to  the  slope  and  treat  it  as  a  descriptive  measure.  For  possible  explanations  of  this  phenomenon,  see 
 (Costello & Watts, 2014; Erev et al., 1994; Hilbert, 2012; Zhu et al., 2020)  . 

 Table S1. Pearson correlation coefficient between normative estimates and subjects’ estimates. 

 Task  Mean  S.e.m.  Standard 
 deviation 

 T-test against 0 

 t statistic  p value 

 Magnitude 
 learning  0.96  0.01  0.09  106.20  2E-100 

 Probability 
 learning  0.80  0.01  0.14  55.79  2E-74 

 Table S2. Slope of the linear regression between normative estimates and subjects’ estimates. 

 Task  Mean  S.e.m.  Standard 
 deviation 

 T-test against 0  T-test against 1 

 t statistic  p value  t statistic  p value 

 Magnitude 
 learning  0.95  0.01  0.10  88.63  4E-93  4.79  6E-06 

 Probability 
 learning  0.88  0.02  0.23  37.03  3E-58  4.96  3E-06 
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 Decomposition of the mean squared error. 

 As  presented  in  the  main  text,  we  performed  a  decomposition  of  the  mean  squared  error  between  the  subjects' 
 estimates  and  the  normative  estimates  to  quantify  the  proportion  of  the  error  that  was  attributable  to  systematic  biases 
 in their estimates rather than to their variance (see Results). 

 We  also  conducted  an  additional  analysis  to  investigate  the  bias:  Since  we  observed  a  regression  slope  less  than  1 
 consistent  with  a  "conservatism  bias"  (Table  S2),  we  investigated  the  extent  to  which  such  a  conservatism  bias  could 
 explain  the  subjects’  bias.  Specifically,  we  quantified  the  amount  of  bias  explained  by  a  linear  regression  model  fitted  to 
 the  subjects,  which  applies  a  linear  transformation  to  the  normative  estimates,  and  models  a  conservatism  bias  when 
 its  slope  is  less  than  1.  We  performed  a  linear  regression  between  the  normative  estimates  and  the  subjects’  estimates 
 averaged  across  the  group,  took  the  predictions  of  this  regression  as  a  model  of  the  biased  estimates,  and  then 
 calculated  the  mean  squared  error  obtained  by  replacing  the  normative  estimates  with  the  biased  estimates.  The 
 proportion  of  the  mean  squared  error  that  was  reduced  by  using  the  biased  estimates  (i.e.  the  obtained  reduction  of 
 the  error  in  proportion  to  the  original  error)  measures  the  amount  of  bias  explained  by  the  conservatism  bias  in 
 subjects. 

 The  full  results  of  the  decomposition  (proportion  of  bias,  variance,  and  of  conservatism  bias)  are  reported  in  Table  S3 
 below. 

 Table  S3.  Decomposition  of  mean  squared  error  between  subjects’  estimates  and  the  normative  estimates.  MSE:  mean 
 squared error. 

 Task  Proportion  of  MSE 
 due to bias 

 Proportion  of  MSE 
 due to variance 

 Standard  error  of 
 the  proportion  of 
 bias/variance 

 Proportion  of  MSE 
 explained  by  the 
 conservatism bias 

 Standard  error  of 
 the  proportion  of 
 conservatism bias 

 Magnitude learning  23.48%  76.52%  1.12%  3.14%  0.63% 

 Probability learning  17.27%  82.73%  0.72%  3.23%  0.53% 

 Supplementary  Text  2:  Regression  on  subject’s  learning  rate  in  the  magnitude  learning  task 
 performed as in a previous study. 

 For  comparison  with  previous  studies  on  magnitude  learning,  we  additionally  performed  a  regression  analysis  on  the 
 subject’s  learning  rate  as  it  was  done  in  (McGuire  et  al.,  2014)  ,  that  is,  without  z-scoring  regressors  as  we  did  in  the 
 regression  reported  in  the  main  text,  and  replacing  our  prior  uncertainty  regressor  by  the  RU*(1-CPP)  regressor.  We 
 obtained  regression  weights  similar  to  but  slightly  higher  than  those  reported  in  (McGuire  et  al.,  2014)  :  The  median  and 
 interquartile  range  of  the  regression  weights  in  this  analysis  are  0.83  [0.56–0.92]  and  0.51  [0.24–0.73]  in  our  data  for 
 change-point  probability  and  RU*(1-CPP)  respectively  (all  two-tailed  signed-rank  p<0.001),  vs.  0.53  [0.40–0.76]  and 
 0.32 [0.11–0.44] in  (McGuire et al., 2014)  . 

 Supplementary Text 3: Noisy delta-rule simulations 

 To  examine  the  possibility  that  the  learning  rate  adjustments  observed  in  subjects  could  emerge  from  learning  noise, 
 we  conducted  simulations  of  a  noisy  delta  rule  model,  with  noise  in  the  update  similar  to  (Drugowitsch  et  al.,  2016; 
 Findling et al., 2019)  . The model is described by the following update equation: 

 v  t  = v  t-1  + η (x  t  - v  t-1  ) + ε  t 

 where  v  t  is  the  model’s  estimate  following  observation  x  t  ,  η  is  the  delta-rule  parameter,  and  ε  t  is  the  noise  in  the  update, 
 which is sampled from a zero-mean Gaussian distribution whose standard deviation corresponds to the noise level 

 We  tested  two  variants  for  the  noise  level  in  the  model:  one  (version  a)  where,  as  in  (Drugowitsch  et  al.,  2016)  ,  it  is  a 
 constant  parameter  of  the  model,  σ  ε  ,  and  another  (version  b)  where,  as  in  (Findling  et  al.,  2019)  ,  it  is  scaled  to  the 
 prediction  error,  with  a  scaling  factor  parameter  ζ  .  Thus,  the  noise  sampling  is  ε  t  ~  𝒩(0,  σ  ε  )  in  version  (a)  and  ε  t  ~  𝒩(0, 
 ζ |x  t  - v  t-1  |)  in version (b). 



 To  compute  the  parameter  values,  we  leveraged  the  following  properties  of  the  model  (E  denotes  the  expectation,  SD 
 the standard deviation): 

 η = E[(v  t  - v  t-1  ) / (x  t  - v  t-1  )]  ,  since  E[ε  t  / (x  t  - v  t-1  )] = 0  . 

 σ  ε  = SD[(v  t  - v  t-1  ) - η (x  t  - v  t-1  )]  ,  for version (a). 

 ζ = SD[((v  t  - v  t-1  ) - η (x  t  - v  t-1  )) / |x  t  - v  t-1  |]  ,  for version (b). 

 By  computing  the  means  and  standard  deviations  described  above  across  time  and  sequences,  we  obtained,  for  each 
 subject and task, the parameter values that best match the subject’s estimates (Fig. S5B). 

 For the results obtained with this model regarding learning rate adjustments, see Fig. S5C. 

 Supplementary  Text  4:  Correlations  across  subjects  between  the  magnitude  learning  task  and  the 
 probability learning task. 

 We  correlated  the  regression  weights  obtained  in  the  magnitude  learning  task  with  those  obtained  in  the  probability 
 learning  task  across  subjects  (the  weights  were  obtained  using  the  same  regression  as  in  Fig.  5).  The  weight  of 
 change-point  probability  was  not  significantly  correlated  between  the  two  tasks  (  r  =-0.01,  p=0.92),  and  that  of  prior 
 uncertainty  was  weakly  though  significantly  correlated  (  r  =0.26,  p=0.012)  (partial  Pearson  correlation  controlling  for  the 
 individual's  average  update  frequency,  two-tailed  p  values).  This  is  indeed  due  to  differences  between  the  two  tasks: 
 within  each  task,  when  performing  the  same  correlation  analysis  on  two  halves  of  the  data  (even  and  odd  sessions), 
 we  obtained  strong  correlations  (these  were,  in  the  magnitude  and  probability  task  respectively,  r  =0.64  and  0.95  for 
 change-point-probability,  r  =0.38  and  0.74  for  prior  uncertainty,  all  p<0.001,  two-tailed).  For  comparison,  another 
 behavioral  measure,  the  average  update  frequency  of  the  subject,  was  more  strongly  correlated  across  subjects 
 between the two tasks:  r  =0.63, p<0.001 (Pearson correlation, two-tailed). 
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 Fig.  S1.  Information  gain  provided  by  a  single  observation  about  the  quantity  to  be  learned  in  magnitude  learning  and 
 probability  learning.  We  computed  the  information  gain  as  the  KL  divergence  between  the  prior  (uniform)  distribution  before 
 having  received  any  observation,  and  the  posterior  distribution  about  the  underlying  quantity  after  having  received  the  observation, 
 using  the  prior  as  reference  distribution  (i.e.  D  KL  [posterior||prior]),  on  average  over  the  possible  observations.  The  posterior  is 
 obtained  from  the  prior  and  the  likelihood  function  relating  the  observation  to  the  underlying  quantity  using  Bayes  rule.  In  probability 
 learning,  the  information  gain  is  minimal.  This  is  due  to  the  binary  nature  of  the  observation.  In  magnitude  learning,  the  information 
 gain  is  larger  because  the  observation  is  quantitative  and  typically  fairly  representative  of  the  underlying  magnitude.  Although  the 
 latter  depends  on  the  experimenter’s  choice  of  standard  deviation  with  which  observations  are  generated,  we  computed  the 
 information  gain  for  numerous  experiments  previously  conducted  and  each  condition  of  these  experiments,  and  as  shown  above,  in 
 all  cases  it  was  substantially  higher  than  that  obtained  in  probability  learning  (McGuire  et  al.,  2014;  Nassar  et  al.,  2010,  2012; 
 Prat-Carrabin et al., 2021; Vaghi et al., 2017)  . 



 Fig.  S2.  Dynamics  of  the  normative  model’s  learning  rate  after  a  change  point,  in  the  magnitude  (A)  and  probability  (B) 
 learning  tasks.  The  plots  were  obtained  as  in  Fig.  2,  but  rather  than  using  the  subjects’  learning  rate,  we  used  the  normative 
 model’s learning rate instead, which we obtained by running the normative model on the same sequences as the subject. 



 Fig.  S3.  Distribution  of  the  number  of  observations  elapsed  between  two  report  updates  made  by  subjects.  A  log  scale  was 
 used  for  the  number  of  observations  as  in  (Gallistel  et  al.,  2014)  for  comparison  (the  equivalent  distribution  in  Gallistel  et  al.  is 
 shown  in  their  Fig.  11).  In  contrast  to  (Gallistel  et  al.,  2014),  in  our  study,  updates  were  made  on  each  observation  most  of  the  time 
 (84% in the above distribution; mean of the distribution: 1.4 observation). 



 Fig.  S4.  The  main  results  are  similar  and  remain  significant  when  excluding  all  data  where  the  subject  did  not  make  an 
 overt  update.  After  excluding  all  data  points  where  this  was  the  case  (i.e.  learning  rate  =  0),  we  performed  the  same  analyses  as  in 
 previous  figures  and  obtained  the  above  plots:  (A  and  B)  Equivalent  to  Fig.  2  A  and  B;  (C–H)  Equivalent  to  Fig.  5  (A–F).  Stars 
 denote statistical significance as in the main figures (see legends of those figures for further details). 



 Fig.  S5.  The  subjects’  dynamic  adjustments  of  the  learning  rate  are  not  explained  by  learning  noise.  (A)  Model  of  a  delta-rule 
 with  learning  noise.  A  noise  sample  is  injected  at  each  update  of  the  model,  otherwise  governed  by  a  delta-rule  with  parameter  η. 
 Two  versions  were  tested  for  the  noise  level:  (a)  constant  (parameter  σ  ε  ),  (b)  scaled  to  the  magnitude  of  the  prediction  error  (scaling 
 factor  parameter  ζ).  (B)  Values  of  the  model  parameters  for  each  subject,  for  each  version  of  the  model  and  each  task.  Each  dot 
 represents  one  subject.  (C)  Results  obtained  by  simulating  the  model  with  the  subject’s  parameters  on  the  subject’s  sequences  and 
 performing  the  same  learning  rate  analyses  as  those  reported  in  the  main  results  for  subjects.  Top  plots  are  the  results  for  the 
 analysis corresponding to Fig. 2, bottom plots to Fig. 5. 



 Fig.  S6.  Subjects'  performance  was  stable  over  the  course  of  the  task.  Performance  is  measured  by  the  accuracy  of  the 
 estimates,  quantified  by  the  mean  absolute  error  between  the  subject's  estimate  and  the  true  value  of  the  hidden  quantity  (the 
 negative  of  the  error  was  used  so  that  higher  values  correspond  to  higher  performance).  Thin  dots  and  lines  connecting  them  each 
 denote one subject; large circles denote the mean across subjects. 


