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ABSTRACT

Motivational interviewing (MI) is a client-centered counseling style
that addresses (the client) user’s motivation for behavior change.
In this paper, we present a behavior generation model for Socially
Interactive Agents (SIA) and apply it to an SIA acting as a virtual
therapist in (MI). MI defines different types of dialogue acts for
therapist and client. It has been shown that therapist builds rapport
with their client by adapting their verbal and nonverbal behaviors.
Based on the analysis of a human-human MI dataset (AnnoMI), we
found co-occurrences between facial expressions and dialogue acts
for both therapist and client. Moreover, the therapist adapts their
behavior to their client’s behavior to favor rapport. Our behavior
generation model embeds these co-occurrences as well as such
behavior adaptation. To this aim, we build an observation-to-action
framework based on a conditional diffusion approach trained on
the AnnoMI corpus. Our model learns to generate the virtual thera-
pist’s facial expressions conditioned by MI dialogue acts and the
client’s nonverbal behaviors. We aim to make SIAs more effective
in therapy-like interactions, by using user’s behaviors in addition to
contextual information (i.e. dialogue acts and nonverbal behaviors
of both user and agent) to drive the SIA behavior.
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1 INTRODUCTION

Adaptation in human-human interactions is a multimodal process
that manifests through different levels of communication [10]. In-
terlocutors adjust their behaviors to each other, creating a smooth
exchange that can be observed in terms of verbal behaviors [11],
but also non-verbal ones [2, 24, 27]. These behavioral adjustments
occur both consciously and unconsciously, serving to enhance the
quality of the interaction and achieve common goals [10]. This
complex interaction of verbal and non-verbal signals is essential for
facilitating effective and high-quality communication. In the field
of human-agent interaction, the goal is to emulate these adaptive
behaviors in interactions between humans and Socially Interactive
Agents (SIAs), whether they are physical (such as social robots) or
virtual. Adjusting verbal and non-verbal signals in real time, similar
to that observed in humans, is crucial for developing SIAs capable
of facilitating natural and high-quality exchanges [1]. This adapta-
tion goes beyond merely replicating human behaviors; it aims to
enhance the interaction quality [6]. Our study specifically focuses
on the generation of adaptive facial expressions for SIAs, by devel-
oping a generative model based on machine learning to produce
relevant facial expressions of virtual therapists during motivational
interviewing sessions with human clients.

Motivational interviewing (MI) is a client-centered communi-
cation approach designed to facilitate their motivation to change
behavior [22]. By establishing an interpersonal relationship, thera-
pists seek to optimize the quality of sessions [28][4] [12]. To mea-
sure adherence to clients’ behavior changes, the Motivational In-
terviewing Skill Code (MISC) schema [21] is frequently used. It
categorizes different aspects of therapist-client interactions, empha-
sizing strategies that allow therapists to effectively support clients
in their change process.

We aim to base our virtual MI therapist model on the behavior
of human therapists. To this end, we first analyzed the AnnoMI
corpus [31], a collection of therapist-client interview videos with
dialogue acts annotated according to the specific MI MISC code
[22]. We then analyzed the dynamics of facial expressions between
the therapist and the client, according to the behaviors annotated
by MI. Following this, we constructed an architecture based on a
conditional diffusion model with the goal of learning to reproduce
the dynamics of the virtual therapist’s facial expressions, taking MI
dialogue acts and human client facial expressions as conditions.

2 RELATED WORKS

Numerous approaches and models have been designed to adapt the
behaviors of SIAs to those of human interlocutors. Social signals
(such as gaze, laughter, or even the impression conveyed by the
agent) are considered as rewards for reinforcement learning models
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Figure 1: Interaction setup between a virtual therapist and a
human user

to adjust the behaviors of agents [1, 8, 23, 29]. Supervised learning
approaches such as neural networks, Transformers, and BI-LSTMs
have also been used [13, 17, 26, 30], as well as generative models
like Generative Adversarial Networks (GANs) or Variational Au-
toEncoders (VAEs) to produce behaviors in new situations, often
conditioning one behavioral modality on others [7, 15, 16]. Diffu-
sion models, which have recently shown performance surpassing
that of their predecessors in many areas (Image Generation [18],
Computer Vision [9], Multimodal Modeling [3]) have also been
applied to human-machine interaction [20, 25, 33], to clone human
behavior or generate communicative gestures conditioned through
multimodality. The results obtained by these architectures have
motivated the use of a conditional diffusion model to simulate in-
terpersonal adaptation during motivational interviews, using an
Observation-Action approach to generate the agent’s facial expres-
sions in response to user behaviors.

3 HUMAN-HUMAN CORPUS ANALYSIS

The AnnoMI corpus includes 133 videos of therapist-client interac-
tions [31], annotated according to the Motivational Interviewing
Skill Code (MISC) [21] which describes specific dialogue acts for MI,
including Change talk, Sustain talk, Neutral for the client and Infor-
mation, Question, Reflection, Advice for the therapist. After the ex-
traction and synchronization of Facial Action Units (AUs) [14] using
OpenFace [5] with the MI annotations, an initial analysis revealed
co-occurrences between certain AUs specific to each interlocu-
tor. This led us to group the AUs into facial expression categories:
Mouth up (AU12, AU06, and AU25), Mouth down (AU14 and AU15),
Nose wrinkle (AU10 and AU09), and Neutral, corresponding to no
activation or low intensity [32]. Then, we conducted a sequence
extraction analysis that allowed us to identify co-occurrences be-
tween these facial expression categories of therapists and clients
and the specific dialogue acts of MI. Notably, therapists tend to
express ‘mouth up’ expressions, emphasizing their active role in
positive support for clients during the interview. These results mo-
tivated the development of a generative model for therapist facial
expressions, conditioned on the client’s facial expressions and MI
dialogue acts. For this purpose, the database had to be restructured
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into an Observation-Action format representing each speaking turn;
the Observation (condition of the generative model) includes the
client’s facial expressions and dialogue acts, and the Action includes
the therapist’s facial expression categories.

4 CONDITIONAL DIFFUSION MODEL

The generative model architecture is composed of three compo-
nents. The DDPM (Denoising Diffusion Probabilistic Model) sched-
uler [18]., the Noise estimation Model, and the conditional diffusion
model. This latter encapsulates both of the two first components,
to achieve the diffusion process (Noising phase) and the sampling
phase (Denoising phase) that is responsible for the generation of the
corresponding action given an observation as a condition. These
three components are assembled following a pipeline that goes
from transforming data into a latent space and then reverses the
process to generate new data samples given unseen conditions.

4.0.1 Noise estimator: The noise estimator is the core module of
the reverse Diffusion process responsible for the data generation.
It learns to estimate the noise added by the DDPM scheduler to the
target. Usually, the noise estimator in the image generation case, is
a U-net architecture model, composed of successive Convolutional
networks, that takes as input a noisy image, the noising time step,
and outputs the noise added to the image at this corresponding
noise time step. Since we are working with temporal sequences,
using the U-net architecture is not appropriate. Our Noise estimator
model employs transformers to process the observation sequences
X, effectively capturing the complex temporal relationships and
dependencies within the data. This includes multi-head attention
mechanisms and positional encoding to maintain the order of events
in the sequences. To predict the noise added to the target action
Y, the model also takes as input the noising time step n and the
observation sequence (the conditional inputs). Before inputting
these contextual elements into the noise estimator, we proceed to
an embedding step.

Observation sequence embedding: The observation sequence
is first split into three elements, the observation sequence, the previ-
ous action target, and the turn descriptor. The observation sequence
is then processed through the embedding architecture presented in
2. Every tuple of the observation is processed as follows. We have
42 possible behavior types in the dataset. Initially, behavior types
undergo one-hot encoding, followed by transformation through
a feed-forward neural network into 16-dimensional vectors. The
starting time and duration, which are continuous values, are first
standardized and normalized relative to the length of the speaking
turn; they are then embedded into 16 dimension vectors via another
forward network. To maintain temporal consistency among the
behavior tuples that represent a speaking turn, these embedded
vectors are fed into a Long Short-Term Memory (LSTM) network.
This step is crucial for capturing the intra speaking turn tempo-
ral relationships between the behaviors within an observation se-
quence. Finally, the entire observation sequence is represented in a
latent space, resulting of vectors of 32 dimensions. This representa-
tion serves as a compact and information-rich embedding of the
speaking turn, ready to be processed by the next component of the
pipeline. The past action is separately processed through the same
embedding pipeline, with a skip on the LSTM module. The turn
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Figure 2: Observation tuple embedding architecture

descriptor is embedded using a simple feed-forward network into
a 16 dimensions vector. The three embedded components are then
processed using a Sequence Transformers encoder to extract key
features from the observation sequence, crucial for noise estimation
in diffusion modeling (see 3) . Temporal context is added through
sinusoidal positional encoding. The transformer encoder then re-
fines the sequence through layers of self-attention and feed-forward
networks. Finally, the full contextual sequence is condensed into a
single vector by averaging then adding a linear projection layer as
presented in 3.

Noise Estimation Transformer: This component is designed
to integrate and process three vectors: the single vector representa-
tion of the observation sequence, the Noisy target, and the Noise
time step into a coherent noise estimate (see 3). The architecture of
this transformer is composed of specialized 2 successive transformer
encoder block modules. Each module is composed of a multihead
attention mechanism with 16 heads, enabling the model to focus
on different parts of the input sequence simultaneously, to capture
a large spectrum of patterns and dependencies. First, the inputs
pass through the linear layers that project them into a transformer
embedding dimension, set at 64 times the number of heads (16 x
64), to match the model’s internal dimensionality. This step ensures
that the data is properly formatted for the self-attention operations.
The self-attention mechanism within the Transformer Blocks takes
the query, the key, and the value inputs that have been transformed
through a linear layer. For each input, the self-attention mechanism
generates three separate vectors and computes attention scores
that indicate the relevance of different parts of the input data. Then,
the output data of the self-attention mechanism flow through a
fully connected feed-forward network. The final stage of the noise
estimation process involves a linear layer that projects the multi-
dimensional output from the transformer blocks into the action
target dimension space. This represents the model’s final output,
providing a precise estimate of the noise distribution required for
the reverse diffusion steps.

The training process of the conditional diffusion model is mainly
centered on this two transformers pipeline. Once the model learns
to properly estimate the added noise on a target depending on the

observation sequence and the n noise steps, the reverse diffusion
step responsible for the generation process can then be tested.

4.1 Sampling and generation

The sampling phase is the core of the reverse diffusion process re-
sponsible for the generation task. It uses the trained noise estimator
model to gradually generate a target action starting from Gaussian
noise, given an observation in the conditional case. To build our
sampling architecture we draw inspiration from the sampling algo-
rithm proposed in [18]. The algorithm starts with pure Gaussian
noise, shaped in the same dimension as the target action. Then it
iteratively calls the noise estimator model to estimate the noise
given the denoising step, and the associated observation.

The sampling phase in diffusion models is indeed crucial, and
various techniques have been developed to optimize it. We decided
to use Kernel density estimation (KDE). A method where the model
generates N samples given one generation condition. After, it fits a
kernel-density estimator over all samples, and score the likelihood
of each. Then it selects the action with the highest likelihood. This
allows avoiding hallucinations and outlier generation by filtering
the best likelihood samples from the bad ones.

5 MODEL TRAINING AND EVALUATION

5.1 Noise estimator Training

After restructuring and balancing our dataset, we compiled a data-
base of 20,224 data points, each representing one Observation/Action
tuple. Through extensive testing, we organized the dataset into 79
shuffled batches, each containing 256 data points. After adjustments
of various hyperparameters (batch size = 128, cyclic learning rate
[0.0001, 0.01], number of noise steps = 500), we recorded an MSE
loss function of 0.07 on the validation dataset after 1000 training
cycles.

The total number of noising steps N, is essential in diffusion
models, impacting the transition from original data to Gaussian
noise. Initially, with N = 500 we saw a loss plateau at 0.20 after 1000
epochs. Increasing this parameter showed diminishing returns in
loss reduction beyond 5000 steps, where loss stabilized aroud 0.06.
However, more steps mean higher computational costs, crucial for
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Figure 3: Noise estimation architecture

our goal of real-time deployment for a virtual therapist’s behav-
ior. Opting for a balanced approach, we set N= 2500 on trials that
showed a promising compromise between low loss (training and
validation losses of 0.07 and 0.08, respectively, after 1000 epochs)
and computational efficiency, essential for real-time adaptive be-
havior generation.

5.2 Sampling and generation evaluation

In the sampling phase, we utilized the diffusion model with Kernel
Density Estimation (KDE) to improve output accuracy by selecting
the best sample for each data point. Testing revealed a trade-off
between KDE'’s precision and computational efficiency. Generat-
ing 20 samples per data point balanced KDE’s precision benefits
with manageable computational resources and time, similar to our
approach with noising steps.

Evaluating the sampling phase of a generative model can be
challenging. In fields like image generation, subjective measures,
including human feedback, are often used to assess the quality of
generated outputs. However, in our context, where the generated
targets are action vectors comprising facial expression categories,
relative starting time, and duration, the evaluation needs a different
approach. The first component of these action vectors is categorical,
while the other two are continuous. To evaluate the model’s perfor-
mance, we used distinct methods for different components of the
action vector. For assessing the accuracy of the facial expression
category, we employed categorical model objectives measures (see
1. This allowed us determine how well the model could identify
the appropriate facial expression given the observation condition.
For the relative starting time and duration, which are continuous
variables, we used the Root Mean Square Error (RMSE) to evaluate
the model’s precision in predicting these aspects.

The results, despite a relatively high validation loss of 0.08, show
promising outcomes, particularly in predicting the starting time
and duration of facial expression categories. The model achieved a
relative average MSE of 0.012 for starting time predictions and 0.005
for duration predictions. In terms of categorizing facial expressions,
the model shows a relatively strong predictive power for the neutral
expression categories, outperforming its predictions for the three
other categories.

Two main factors contribute to these results. First, the data im-
balance between the mouth up and neutral categories and the other
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Table 1: Facial expression categories prediction metrics

Class Acc (%) Precision (%) Recall (%) F1(%)
Mouth up 60.42 41.27 38.22 39.69
Neutral 85.87 61.44 88.24 72.44
Nose wrinkle | 74.21 31.54 19.03 23.74
Mouth down 69.51 36.85 39.50 38.13

categories, a trend already observed in our previous study described
in section 2, affects the model’s predictive capability. Second, the
model’s sampling and generation method involves repeatedly call-
ing the noise estimation over N steps (here 2500) to gradually
construct the data from pure noise based on the observation condi-
tion. This process suggests that prediction errors might accumulate
over these steps. Therefore, maintaining a relatively small number
of noising steps while striving for a significantly low loss becomes
critical for enhancing model performance.

Our ongoing efforts to reduce validation loss and improve model
performance include exploring techniques such as Classifier-Free
Guidance [19]. In addition, our current evaluation method, which
assesses each action vector component separately, provides valu-
able insights into what the model is learning about each element.
However, it does not provide a complete picture of whether the
model is effectively capturing the correlations among these com-
ponents. Addressing these aspects is essential to our future work,
as we aim to develop a better understanding of the model’s learn-
ing process and its ability to understand the correlation between
categorical components and their timings, to better replicate the
intricate dynamics of facial expression changes during motivational
interviewing sessions.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented a conditional diffusion model architec-
ture designed to equip virtual agents with the ability to generate
adaptive facial expressions, specifically for their role as virtual
therapists in motivational interviewing contexts. This work builds
upon upon the analysis of the AnnoMI corpus, utilizing a machine
learning approach to create a more dynamic and responsive virtual
agent. We have outlined the initial results and preliminary offline
architecture of our model, highlighting its real time potential in
enhancing virtual counseling sessions. However, several challenges
and limitations remain to be addressed. These include achieving
a lower loss target, currently aimed at 0.01, resolving the lack of
data and imbalance issues, reducing the number of noising time
steps to facilitate real-time application, and finding more relevant
evaluation techniques regarding the sampling phase. Each of these
aspects is crucial for the refinement and practical deployment of
our model.

Furthermore, our work represents a step toward integrating
adaptive facial expressions into virtual therapists, aligning with
motivational interviewing techniques and responding to user be-
haviors. After addressing the architecture limitations, the next step
in this research is to evaluate the model’s effectiveness in realistic
user interaction scenarios. Testing the model in real-life scenarios
will not only help validate its efficacy but also ensure its relevance
and applicability in therapeutic settings.
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