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Abstract. Per-instance automated algorithm selection (AAS) aims at
leveraging the complementarity of optimization algorithms with respect
to different problem types. State-of-the-art AAS methods for numerical
black-box optimization rely on supervised learning techniques that are
supported by exploratory landscape analysis (ELA) feature sets. Recent
works question the generalization ability of popular AAS approaches,
which motivated the design of alternative feature sets.

In this work, we take a closer look at the recently proposed set of Deep
ELA features and investigate the ways in which Deep ELA complements
the classical ELA feature sets. To this end, we first study the correlation
between the two feature collections, both through pairwise classification
and through regression models. The complementarity observed in these
analyses is confirmed by an AAS study, where models combining deep
and classical features outperform those that are restricted to selecting
from only of the two collections.

Keywords: Black-box Optimization - Exploratory Landscape Analysis
- Automated Algorithm Selection - Deep Learning - Self-Supervised
Learning - Feature Selection

1 Introduction

Automated Algorithm Selection (AAS) [24], aimed at automatically selecting the
best performing algorithm for a given problem, as well as the closely related
task of Automated Algorithm Configuration (AAC), which similarly aims at se-
lecting the best performing configuration of a single algorithm, have long been
of interest to the optimization community [2, [13]. This interest stems from the
fact that both AAS and AAC can drastically reduce the runtime needed to
solve a given optimization problem and simultaneously substantially improve
optimization performance. As the algorithm performance is closely tied to the
landscape of the optimization problem being solved, the task of selecting the
best-performing algorithm or configuration requires some low-level information
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about the optimization landscape which are usually described as numerical val-
ues, referred to as (instance-)features.

In continuous single-objective black-box optimization, AAS and AAC have
recently seen a growth in popularity, fueled in large parts by the availability
of dedicated feature sets such as Fzploratory Landscape Analysis (ELA) [I5],
which allow for the transformation of problem samples into landscape features
without requiring prior domain-expert knowledge of the problems. ELA features
can be conveniently calculated using programming libraries such as flacco [13]
and pflacco [22]. This has led to a large amount of research in this area [5l [10,
111, 12}, [16], 19}, 20, 27]. In these works, the authors utilize landscape features and
algorithm selection or configuration to demonstrate an overall reduced runtime
in comparison to relying solely on the Single-Best Solver (SBS). In other words,
the algorithm selection model is capable of selecting specific algorithms for each
problem in a problem suite to improve performance compared to only using a
single overall best-performing algorithm.

Despite the benefits provided by ELA, the features it produces are not with-
out flaws. Commonly criticized drawbacks include (1) a large correlation between
features, (2) concerns over the expressiveness and robustness of the features [23],
(3) additional computational costs to compute the features, and (4) a lack of gen-
eralizability of the features to problems sets outside of the one that they were
developed for [14} [17, [30].

As a result, there is currently a large research interest in developing al-
ternative approaches for automatically representing a problem landscape. For
example, the authors of [3] 25, 28] proposed learned features for continuous
optimization problems. Rather than relying on experts to design feature sets
manually, those authors used different training tasks to automatically extract
instance features. While van Stein et al. [28] used a simple multi-layered au-
toencoder architecture including an unsupervised training task, Cenikj et al. [3]
used a deep transformer architecture [29] trained on the Black-Box Optimiza-
tion Benchmarking suite [BBOB, [9] by predicting the function identifier. Seiler
et al. [25] also utilized a transformer architecture but relied on a self-supervised
learning strategy that does not require any labeling.

However, when developing such learned features, it is important to ensure
that these features are not simply novel, but that they also complement each
other, as well as the original ELA features. Without complementarity, such newly
developed features would only restate the knowledge that is already contained
in the traditional ELA features, without necessarily improving the overall un-
derstanding of a problem’s landscape. Nevertheless, we must also ensure that
these newly developed features do not just contain novel information, but also
still capture existing knowledge. This ensures that the newly developed features
can be used on their own, and applied to domains for which no current feature
sets exist.

Another benefit of performing complementarity analysis is that, particularly
in the case of approaches based on deep learning, interpreting their results can be
difficult. Comparing these newly developed features to ELA features, which are
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designed to correspond to a set of well-understood high-level problem properties,
such as modality, global-to-local optima contrast, or separability, can help us
better understand the behavior of the newly developed features.

Our contribution: In this paper, we will focus on the recently proposed
Deep ELA feature set proposed in [25]. Deep ELA was shown to combine the
benefits of both traditional ELA features (their ease of computation and lack
of overfitting) with those of deep-learning-based feature-free approaches (in par-
ticular, their invariance to common problem transformations and their low cor-
relation). Deep ELA has already shown promising results, drawing level with
or even outperforming both traditional ELA and feature-free approaches in a
single-objective AAS study [25]. However, the complementarity of the newly de-
veloped Deep ELA features and the original ELA features (which we will refer to
as classical ELA features in the rest of the paper) is yet to be examined. Using
correlation and regression analyses, we first observe that there is some overlap
in the information captured by the classical ELA features and the Deep ELA
ones. However, we also show that the sets complement each other, in that some
features of the ELA set are difficult to predict by the Deep ones. We further
verify this complementarity with an AAS study, which shows that combining
the two approaches improves the performance over the stand-alone feature sets.

Paper organization: This paper is structured as follows. In general, we aim
to analyze the complementarity and supplementarity of these two approaches,
classical ELA and Deep ELA, in multiple ways. First, we provide the background
necessary for the understanding of this paper, including an overview of classical
ELA and Deep ELA (see Chapter [2). In Chapter [3] we compare the pairwise
correlation of the Deep and classical ELA features. In Chapter [] we train a
Support Vector Machine (SVM) model to predict the classical ELA features
using the Deep ELA features. Finally, we perform a study on AAS and compare
the performance of models trained using the classical and Deep ELA features,
as well as a model that uses the combination of both the classical and the
Deep ELA features (see Chapter [5)). If the classical and Deep ELA features are
complementary, we would expect that the performance of the model increases
when both types of features are used. On the other hand, we expect that Deep
ELA features provide comparable performance if they mostly substitute classical
ELA features. Last, we discuss in Chapter [6] the obtained results as well as their
implications, summarize our results, and present avenues for future work.

2 Background and Methodology

To perform AAS using machine-learning models, we require some way of describ-
ing the landscape of an optimization problem that can be used by the model. One
of the most common ways to do so in state-of-the-art research is the extraction
of Ezploratory Landscape Analysis (ELA) features. This approach, introduced
by Mersmann et al. [I5], allows for the automatic extraction of low-level ELA
(instance-) features that correspond to specific high-level problem properties,
such as the problem’s modality or the ruggedness of its landscape. Further, the
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Fig. 1. Explainable Variance of classical (labeled as ELA 25d/50d) and Deep ELA
features (labeled as Medium/Large 25d/50d). 25d and 50d correspond to the sample
size while medium/large describes the model size of the Deep ELA models. Deep ELA
features contain less redundant information as their principal components explain less
of the overall variance.

ELA features can be calculated purely from a small amount of problem samples.
Usually, a sample size of 50d or for improved robustness 250d are commonly
chosen sample sizes that scale linearly with the dimensionality d of the decision
space.

In the following, we will focus on a subset of these features, omitting cat-
egories that require additional samples (sampled iteratively) or the transfor-
mation from set-based into graph-based representation. These approaches differ
substantially from Deep ELA which requires only a single set of samples and,
hence, inhibit a fair comparison. In addition, the features that rely on graph-
based representation are computationally expensive when applied to problems
with a larger dimensionality. The used feature categories are:

Meta-Model features, which fit either a linear or a quadratic model to the
provided problem samples, and use the metrics of this mode (such as the
model’s R? score) for the features.

PCA features, which compute the Principal Components of the sample, and
use metrics such as the number of components required to explain 90% of
the variance of the original samples as the features.

Nearest Better Clustering features, which examine the samples based on
the distance between their nearest neighbors versus their better neighbors,
where a better neighbor is a neighbor with better fitness.

Dispersion features, which compare the distribution of a subset of samples
with the best fitness values against the distribution of the entire sample set.

Information Content features, based on a method for approximating the rugged-
ness of the problem landscape.
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y-Distribution features, which represent descriptive statistics of the distribu-
tion of the fitness values, such as their skewness or kurtosis.

Linear model features, which divide the sample space into cells, and fit a linear
model on each of the cells separately, then compare the various statistics of
these models.

Fitness Distance Correlation features, which calculate the distances between
samples in objective and in decision space, and compare various statistics
between the two.

Specifically, in this paper, we consider the normalized variants of these fea-
tures by min-max normalizing the objective space prior to the feature computa-
tion as proposed by [21].

However, as already noted in the introduction (see Chapter , ELA land-
scape features are not without flaws, and recent research has proposed several
alternative methods. Hence, we will focus on an approach named Deep ELA
[25], which proposed four pre-trained deep-learning models that were trained on
200 million randomly generated single- and multi-objective continuous optimiza-
tion problems. Two of these models accept up to six input dimensions (medium
models) while the other two accept up to twelve dimensions (large models). In
addition, the authors experimented with input sizes of 25d and 50d for each
medium and large architecture. The pre-trained models are transformer-based
[29] and were trained using a self-supervised training task, closely following the
idea proposed by [4].

Both ELA features and feature-free approaches have shown very promising
results when applied to AAS and AAC. Kerschke et al. [T1] provide an overview
of AAS in the field of optimization, and note the success of using ELA to ad-
dress the algorithm selection problem. In the field of single-objective continuous
optimization, AAS has primarily focused on the 24 BBOB problems [9] of the
COCO [8 benchmarking platform, a set of popular and well-known problems
for benchmarking continuous optimization algorithms. Kerschke and Trautmann
have shown that it is possible to reduce the expected running time on the set of
24 problems by half compared to a single best solver [12]. Prager et al. achieved
only slightly worse results using a feature-free approach [20]. Finally, Deep ELA
[25] consistently outperformed the feature-free approach described in [20], and
in some cases outperformed the ELA-based approach described in [12]. Further,
Deep ELA can be applied to AAS of multi-objective optimization problems (see
Seiler et al. [25]) out of the box and have shown promise in combinatorial opti-
mization [I]. Yet, we limit the scope of this paper to single-objective optimization
problems.

3 Correlation Between Deep and Classical ELA

We begin our analysis with the comparison of the correlation between the Deep
and classical ELA. In all that follows, we label the Deep ELA features as either
‘Medium 25d°, ‘Medium 50d’, ‘Large 25d° or ‘Large 50d’, depending on the size of
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Fig. 2. Strongest correlation between the classical ELA features (rows) and the features
of the Deep ELA models, for each of the four Deep ELA models (columns). The color
scheme is based on absolute values; the darker the color, the stronger the (positive or
negative) correlation.

the Deep learning model and the number of evaluated solutions per function that
were used to train it, to which we refer to as ‘sample size’ in the following. In this
and all of the following experiments, both the classical and Deep ELA features
are calculated on the 24 noiseless single objective BBOB problems, specifically
on the first 20 instances of each function in dimensions 2, 3, 5 for the medium-
sized model and, in addition, for dimension 10 for the large models. Following
the recommendations made in [I9] [20] [26], we base our feature computations
on 50d and, in addition, also 25d samples, taken from the search space by Latin
Hypercube Sampling (LHS). The Deep ELA features were computed by following
closely the procedure described in [25].

Figure [1] shows the cumulative variance of the features calculated using the
two approaches after performing Principal Component Analysis (PCA). We can
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Fig. 3. Correlation heatmap between classical and Deep ELA features. In (a) the cor-
relation between the Medium 50d model and the classical ELA features while in (b)
the Large 50d model is depicted.

see that there is a distinct difference in the explained variance between the Deep
and classical ELA. For the classical features, the first few components alone
already explain about 60% of the variance, while the Deep features require a
larger amount of components to reach this level. This indicates that the Deep
ELA features contain less redundant information as PCA is efficient in reducing
redundancy as well as noise. Hence, a low number of PCs that explain a large
proportion of the original variance indicates that the original data contains many
redundant and noisy information.

Further, Figure [3]shows the pairwise Spearman correlation between the clas-
sical and Deep ELA features using a sample size of 50d and the medium and large
ELA models. We omit the comparison for the models with a sampling size of
25d as this produced similar results. Further, we can see that most classical ELA
features have a weak to medium correlation to Deep ELA, which indicates that
Deep ELA is somewhat representative of the characteristics of classical ELA. An
exception to these are the pca and to an extent the 1limo feature groups, which
are only weakly correlated with the Deep ELA features.

Finally, despite the fact that Deep ELA features are not comparable between
different models as the training routine does not enforce any specific feature to
be learned, we still see similar patterns emerge in both of the models. Further, as
it is evident in Figure[2] the maximal correlation values between any Deep ELA
feature and every classical ELA feature have similar absolute values across the
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different models. This is particularly interesting as (again) the training routine
of the Deep ELA models does not enforce any specific and pre-defined feature to
be learned. Instead, it lets the models learn any meaningful representation given
an optimization problem as input. Yet, we can see in Figure[3|and Figure [2, that
all four models learn similar features as these features have a similar correlation
to the expert-designed classical ELA features. Yet, pairwise correlations are only
a weak method to verify that certain feature sets contain similar information.

4 Classical ELA Feature Prediction

In this chapter, we conduct an additional experiment to determine whether the
information contained in the entire set of Deep ELA features matches up with
the information provided by the classical ELA features. To achieve this, the
Deep ELA features are used to train a linear SVM model that predicts the
classical ELA features. Further, we use Recursive Feature Elimination [RFE, [7]
to select the most relevant Deep ELA features for predicting the classical ones,
which allows us to see which Deep ELA features are most closely related to the
classical features. RFE removes the least relevant feature based on the SVM’s
coefficients, iteratively.

Figure [4] shows the result of the feature prediction experiment. Here, the
labels on the side of the figure show the standardized root Mean Square Er-
ror (rMSE) between the predicted and the target feature. Individual cells show
us which Deep ELA features were considered important by the model to predict
each classical ELA feature, after performing recursive feature elimination accord-
ing to the coefficients of the trained SVM model. One can see that most of the
features can be well predicted using an SVM model, which reinforces the findings
from the correlation analysis, i.e. that the Deep ELA features mostly capture
the information provided by the classical ELA features. In addition, one can also
see that the pca feature category is predicted well, despite the low correlation
with individual Deep ELA features, which shows the importance of this type of
analysis, as it is important to consider the interactions between individual ELA
features.

Predicting the feature ela_meta.lin_simple.coef .max achieves somewhat
worse performance than the rest of the features in both models. This indicates
that, despite most classical ELA features can be well substituted, Deep ELA
features still do not capture all classical ELA features. On the other hand, we
can also identify Deep ELA features that are somewhat irrelevant for predicting
classical ELA features. An example is the X7, feature of the Large 50d model
depicted in Figure 4| (b). This deep feature may be unrelated to classical ELA
features and may capture certain information that is not captured by classical
ELA features at all. Again, we find similar TMSE values between the Medium
50d and Large 50d models, which strengthens our finding that the Deep ELA
models learn similar representations although their training routine does not
enforce learning to encode anything specific structures or information of a given
optimization problem.
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Fig. 4. Feature importance of the Deep ELA features used to predict classical ELA
ones using a Linear SVM in combination with recursive feature elimination. Selected
Deep ELA features are indicated by a black dot, with the color of its surrounding box
indicating the feature’s importance. In some cases, ELA features contained missing
values (which is within the definition of classical ELA features, e.g. limo features
require a certain number of candidate solutions which is not always given in our setup)
and, hence, no prediction was performed.

5 Automated Algorithm Selection Study

Finally, we examine the performance of the classical and Deep ELA features
for the task of Automated Algorithm Selection (AAS). These experiments are
performed using two different machine learning techniques to train the algorithm
selectors: k Nearest Neighbors (kNN) and Random Forests (RF), using the same
methodology as described in [12, 20, 25]. In addition, we applied Sequential
Forward Feature Selection (SFFS) in combination with 5-fold cross-validation.
The process of feature selection is in the outer loop. Therefore, the selected
features are the same across the five folds and the five trained models. For both
learners, kNN and RF, and for each of the two sampling sizes (25d and 50d)
three different models are trained: (1) using classical ELA features (ELA), (2)
using Deep ELA features (Deep), and (3) using a combination of both classical
and Deep features (Comb.). The last model starts with the best set of Deep ELA
features and sequentially adds classical ELA features. Other than that, we used
the same setup as described in Kerschke et al. [12] 20, 25].

Table [1] lists classical ELA features that are often selected by either the
classical ELA or the combined selectors. To be more precise, it lists all ELA
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Fig. 5. Visualization of all trained AAS models based on the achieved performance
(rERT) and the total number of features used. Non-dominated selectors are highlighted
by a red circle.

features that were at least two times more often selected by one over the other.
On the other hand, the dimensionality features as well as the PCA-based features
are significantly less required by the combined selectors. This indicates again
that the Deep ELA features represent similar meanings. On the other hand, the
dispersion features are more often utilized by the combined selectors, noticeably.
This indicates that the Deep ELA features do not substitute this information
well.

Subfigures (a) and (b) in Figure [6] show how the performance of the models
changes with the number of features selected. One can see that in the case of
using just the classical or the Deep ELA features individually, only 20% —40% of
all available features produces close to optimal results. We also see that the kNN
models work well even with a very small amount of features, while the random
forests require a certain amount of features to reach performance better than the
SBS. Subfigure (c) visualizes the improvements of a selector that utilizes only
Deep ELA by the gradual addition of classical ELA features. We see that, for
most models, an addition of only a few classical features results in a noticeable
performance improvement, with the best-performing model achieving a further
increase once around 30% of the features have been added. For most models,
using all of the available landscape features produces a sharp decrease in perfor-
mance. Figure |§| (c) also depicts a clear separation between 25d and 50d sample
sizes, indicating that smaller sample sizes outperform larger ones. Selecting a
sample size is always a trade-off between the accuracy of the computed features
and additional costs. Larger sample sizes provide more (redundant) information
which leads to higher stability of the compute features but also increases costs as
more candidate solutions must be evaluated. In our case, we found that smaller
costs (25d) outperform the higher feature quality (50d), indicating that ELA
features (both Deep and classical) are even stable enough for small sample sizes.
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Fig. 6. Figures (a) and (b) show how the AAS model’s rERT score changes with the
number of features used, with Figure (b) showing only the rERT range of [4.0, 10.0] to
allow for a more detailed examination once the rERT score starts to converge. Figure
(c) depicts the impact of adding classical ELA features to the best set of Deep ELA
features. Overall models, the best performance is achieved by a combined RF model
18 Deep ELA and 36 classical ELA features., for a total of 54 features.

Finally, Table [2| shows the full results of the algorithm selection study after
the feature selection has been performed. Only a single model is trained for each
column, with the rows representing the single model’s performance separately by
dimension and BBOB feature group. The selectors’ performance is assessed by
using the relative Expected Running Time (rERT), which measures the average
time needed to reach a target precision (the found optimal solution is within a
e = 0.01 distance to the true global optima), normalized by the best-achieved
average across the entire table. The rERT values also include the feature-costs
which are in this case the number of sampled and evaluated candidate solutions.

One can see that all machine learning models mostly outperform the SBS
baseline, with some exceptions in dimensions and feature groups where the SBS
performance is close to the VBS. The final row presents the overall performance
of each algorithm, with all algorithms that are stochastically tied to the best
selector marked with a star using Robust Ranking with an o = 0.05 [6]. Examples
are (1) RF-based selector trained on classical ELA features and a sample size of
25d as well as (2) all models (kNN and RF as well as their Deep and Combined
variants) trained on the Medium 25d features. The stochastic approach does not
produce a clear winner in terms of the methodology used. However, in terms
of pure performance, we can see that in all cases, the combined model using
both classical and Deep ELA features outperforms the other two models. This
indicates that neither Deep ELA nor classical ELA are complete substitutes for
one another. In fact, both feature types encode some information that the other
does not.

Overall, all types of models performed impressively compared to the SBS,
outperforming it by a large margin both overall and in the majority of feature
categories and dimensionalities. This matches prior work which has shown that
ELA can be effectively used for automated algorithm selection on the BBOB
problems, and also shows that Deep ELA achieves results competitive with the
current state-of-the-art on this problem.
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Table 1. List of the classical ELA features that are selected frequently by the classical
ELA-based algorithm selectors and rarely by the Deep ELA-based selectors and vv.

Feature ELA Comb. || Feature ELA Comb.
d 2 7 ic.eps_max 6

d_3 6 ic.cps_ratio 3
disp.diff_median_02 0 iceps_s 7
disp.diff_median_05 ich_max 1
disp.diff_median_10 limo.avg_length
limo.length_mean

: nbe.dist_ratio.coeff_var
pea.expl_var.cor_init
pea.expl_var.cor_x
pea.expl_var.cov_init
pea.expl_var.cov_x
pea.expl_var_PCl.cov_init

1
1
disp.diff_median_25 4
disp.ratio_mean_25 5
ela_distr.number_of _peaks 4
ela_distr.skewness 7
0
2
4

[CRSNCEFECRERTE RN

-

ela_meta.lin_simple.coef.max
fitness_distance.fd_correlation
fitness_distance.fitness_std :

WO W W N O

EY

Figure[5]plots all of the models based on their performance versus the number
of features used. We can see a set of non-dominated models consisting of five
AAS models: ‘RF Deep (Medium 50d)’, kNN Deep (Large 25d)’, ‘RF Deep
(Medium 25d)’, ‘RF (ELA 25d)’, and ‘RF Comb. (Large 25d)’. From this, we see
that the deep features provide us both with a model that achieves the absolute
best performance, as well as the one with the fewest features. However, the
‘RF (ELA 25d)’ model still achieves performance close to the best algorithm
with only a small decrease in performance. We find those two models the most
interesting: kNN Deep (Large 25d)” and ‘RF Comb. (Large 25d)’. For the first
one, the performance is still exceptionally good but only requires a minimal
amount of features. On the other hand, ‘RF Comb. (Large 25d)’ provides the best
performance but requires multiple times more features — especially a mixture
of classical and Deep ELA features. Nonetheless, a sample size of 25d and the
large Deep ELA model seem to be (generally speaking) superior and will be our
main focus for future work.

6 Discussion & Conclusion

In this paper, we have analyzed the complementarity between classical and Deep
ELA features as well as the substitutability of classical ELA by Deep ELA fea-
tures. We additionally analyzed their performance for the task of automated
algorithm selection, both when used individually and when the two are com-
bined and used in a single model. Our experiments have shown that there is
some amount of complementarity between Deep and classical ELA. While there
is a certain degree of overlap, we have shown that the Deep ELA features pro-
vide additional information not captured by the classical ELA features and vice
versa. This can be seen both in the complementarity analysis, as well as in
the consistent improvement in algorithm selection performance when using a
combined model of both classical and Deep ELA features. In general, all of
the examined models achieved impressive algorithm selection results, consistent
with prior work which shows great promise in algorithm selection on the BBOB
problem set. Of the examined models, the combined model using classical ELA
and the Large Deep ELA model trained on a sample size of 25d achieved the
absolute best performance, this performance was not significantly better than
some of its competitors. Especially, all models trained on the Medium 25d Deep
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Table 2. Results of the AAS study. The numbers of selected features are in brackets;
* indicates a result that is stochastically tied to the best selector with o = 0.05 using
the robust ranking technique as proposed by [6]. The first column (D) indicates the
dimensionality of the problem while the second column (FGrp) indicates the function
groups as defined in BBOB.

Classical ELA Large (25d) Large (50d) Medium (25d) Medium (50d)

SBS ((23) kNN (14)|(17) RF (23)||(10) kNN (85)|(18) RF (54)||(28) kNN (39)|(14) RF (25)||(11) kNN (57)|(16) RF (19)||(18) kNN (23)|(10) RF (47)

D FGrp|[(HCMA)|| 254 50d] 25d  50d|Deep Comb.|Deep Comb.|[Deecp Comb.|Deep Comb.|| Deep Comb.| Deep Comb.||Deep Comb.|Deep Comb.
21 3.71 912 12.37) 961 14.00|[ 9.03 881 935  8.49|[14.98 1441|1459  12.71][10.35 841 7.93  831|[16.77 1444|1435  11.92
2 5.80( 3 361) 326 352|326  2.63) 278 265| 354 354|442 353| 301 3.11| 265 345 351 353 468  3.73
3 6.29 438 308 412 451 332 3.06  2.73|| 426 428 468 4.14|| 3.87 325 385  3.23| 462 85) 4. 434
1 2534 674 685 6.63 681 731 7.04| 711 572|| 436 4.48) 504 6.21)| 476 599 592 578 400 447|535  3.83
5 4495 491 482 320 286 428 399 415 3.46|| 404 282|465 321]| 422 407 372 269)| 3.69  323] 628 254
all 17.69]] 550  6.52] 523  6.38]| 5.7 5.26) 540 4.69]| 635  6.00] 6.77  6.06| 533 5.05] 490 474 664  6.21] 713 533
31 356.10[[10.98  15.53[10.16  15.07|[10.79 11431111  10.36[[15.96  15.75[16.08  14.68]| 10.88 10.75 10.97 11.09]|16.00  16.04[15.77  15.40
2 446( 265 3.34) 249  331) 261 279 252 255( 345  3.44| 346 3.18| 259 262 283 3.41
3 498( 255 405 259 372 388 272( 256 2.43|| 375 3.76| 385  3.80| 288 260 317 3.88
4 2.63( 658  6.71] 543  498|| 566 599 631  6.32|| 5.72 544|546 524|| 593 602 4.02 429
5 6681 256 271] 200  202) 253 264] 233 239)] 192 216|486 1.69| 277 262 2.12 2.86
all || 9043|| 516  6.60] 4.64 5.92|| 520  5.21] 507 490 627  6.22] 688  5.82|] 511 502 4.70 6.07
51 11.99(17.59 2295 1679 22.01(|19.06  17.42[17.52  16.72||23.19 23252350  21.97|| 17.52 17.40| 17.81 17.27||]24.40 23 23.04
2 390 307  330] 285 419|365 354 361 411 258 277|328 336/ 249 249 246 247 371 370 338 298

3 421|| 372 491| 317 480 4. 3.52( 4.85  3.48|| 5.06  4.87| 556  4.95| 3.70  3.52| 3.67  3.64|| 447 447|391  4.40
4 429( 486 415 4.00  3.86| 4.2 4170 409 3951 3.95 389 450  3.44|| 296 378 370 309 400 389|288  2.61

5 767 608 211 160 233 239 261 138 117 1.16| 148 1.75|| 218 171] 145 190 147 179 1.25 210
all || 6.52) 7.23  7.66] 5.80  7.57|| 6. 6.32] 666 6.00]| 7.38  7.37] 7.84  7.25 591 592 596 581 777 761 7.56 719
101 2.74| 954 16.34] 8.63 15.42| 9.60[ 950  8.60[|16.76  16.58[16.20  15.41|| -/ A AN -/-
2 271) 240 270\ 2.4 2410 269 2.69) 263 261|| -/ /| -/ - -/-
3 4200 279 3.72 . 283 488 4.56) 406 3.67| -/ A /| - -/

1 195 1.86  1.93 204| 206 1.85( 205 206|208 201 -/ A - -/-
5 L78] 168 1.76]| 2 L77) 476 1.40[] 215 207 249 150 -/ /| -/ | -/ -/
all || 685) 394 551 352 5.20]| 4. 3.95| 455  3.46| 583 571 5.61  5.14]] -/- - /- -/ -/ -/-
all 1 93.63|11.81  16.80| 11.30  16.62]12. 11821187 1104|1772 17.49[1759  16.20(| 12.92 1219 12.24  12.22/[19.06  17.97[1856  16.79
2 108|| 284 3.24) 275 3.43 284 283 2.93|| 306 311|345  317|| 270 274 2.65  2.84|| 3.53  3.51) 3.93 337
3 456( 324 438 291 4.09| 42 320 351  2.87|| 449 437 454 414|| 349 312 357 326|427 432 409 420

4 857|| 5.06  4.91| 448  4.40| 4.83 481 489  446|| 402 397 427  4.22|| 455 527 455  4.19|| 465 475 415  3.57

5 35.77)) 382 286] 214 224 26 270] 346 26| 232 205|337 2.04| 306  280] 243  221]| 263 2.60[ 349 250
all || 30.37|| 546  6.57) 480"  6.27|| 546  5.19] 542 476%|| 646  6.33| 6.78  6.07| 545" 533" 519" 5.08°|| 696  6.76| 6.97  6.20

ELA models are stochastically tied to the Large 25d model, indicating superior
performance of the 25d models versus the 50d ones.

The models trained using only the Deep ELA features also performed well,
with some achieving performance that is stochastically tied to the best-performing
model, and with one particular model achieving such performance using only 11
features total. The fact that the Deep ELA features were able to match the
performance of the classical features makes them an important candidate for
research into domains that cannot be tackled yet by classical ELA, such as
multi-objective optimization, opening doors to a large amount of potential fu-
ture research.

Another area that still needs to be assessed is the generalizability of Deep
ELA to problems outside of the BBOB benchmark suite, where classical ELA
features have been shown to struggle. In addition, Prager et al. [20] have demon-
strated the successful application of cost-sensitive learning. In future work, we
will investigate this approach more closely — especially in combination with
Deep ELA features.

Finally, it will also be important to assess the complementarity of Deep ELA
with other recently developed approaches for describing problem landscapes,
such as TransOPT [3] and Topological Landscape Analysis [I8]. However, the
methods presented in this paper should be easily applicable to such a comparison,
and we plan to conduct such an analysis in the future.
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