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Abstract

We establish new connections between the local and global polyhedral zeta functions associated
with a fractal — in our present context, the Weierstrass (fractal) Curve — and differential operators.
First, we exhibit Lie brackets (or commutators), associated with this global polyhedral zeta func-
tion.

We then introduce a (natural) transfer operator, which acts on the underlying fractal cohomol-
ogy, and we extend, to our fractal setting, the classical Lefschetz operator. This new operator, a
bigraded operator, of bigrading (1, 1), induces a Hodge Star relation on the functions defined on
the Weierstrass Curve and on all the higher-order differential forms.

Moreover, we obtain an analog, in our fractal context, of the classical Hodge theory — and of
the associated (orthogonal) decomposition of the fractal cohomology groups. This decomposition
is presently obtained by means of an inner product involving the (specifically constructed for frac-
tals) polyhedral measure introduced in our previous work [DL24b]. This inner product is a fractal
counterpart of the classical polarization operator, in the sense of Deligne. These results enable
us, in particular, to obtain fractal analogs of Poincaré Duality, the Hard Lefschetz Theorem, and
the Hodge-Riemann (Bilinear) Relations, that are key to classical Hodge theory in algebraic and
arithmetic geometry.

Finally, we introduce and study the (differential) operator induced by the global zeta function,
which enables us to obtain the functional equation satisfied by this zeta function and its dual zeta
function.

*The research of M. L. L. was supported by the Burton Jones Endowed Chair in Pure Mathematics, as well as by
grants from the U. S. National Science Foundation.



We also show that the global zeta function — viewed as a differential operator acting on the
fractal cohomology — enables us to obtain the operator which acts as the Frobenius operator in this
context, since the spectrum of this operator essentially coincides with the Complex Codimensions.
In fact, the spectrum of a small modification of this operator precisely coincides with the underlying
Complex Dimensions.

Our work provides convincing strong evidence for a future unification between key aspects of
fractal and arithmetic geometries.
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Keywords: Weierstrass Curve, iterated fractal drum (IFD), fractal zeta functions, Complex Dimen-
sions of an IFD, box-counting (or Minkowski) dimension, cohomology infinitesimal, intrinsic scale,
Toda-like system, Hodge Diamond Star relation, Poincaré duality, polyhedral measure, polyhedral (or
polygonal) neighborhoods, effective local and global polyhedral zeta functions, prefractal cohomology,
fractal cohomology, transfer operator, Lefschetz operator, Hodge decomposition, functional equation,
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1 Introduction

This is a story of two mathematicians, who lived nearly at the same time, in the same country. We
can say that the work of Bernhard Riemann was among the ones that inspired a lot Karl Weierstrass.
For instance, we could wonder how the pathological, continuous everywhere, while nowhere differ-
entiable, Weierstrass function [Wei75], came to Weierstrass’s mind. As is mentioned in [Dav22|, we
note that some mathematicians, like J.-P. Kahane [Kah64], suggest that it could be attributed to the
Riemann function, for which Karl Weierstrass did not know how to prove the non-differentiable feature.

Eventually, it was claimed by Godfrey Harold Hardy and John E. Littlewood in [HLI14] that
Riemann’s function, defined, for all z € R, by

= sin n2 T
Rz) =y ——,
n=1 n
was nowhere differentiable. Later, Joseph Gerver, in [Ger70], proved this was false and determined
the precise points at which it is differentiable.

A priori, no connection can be established between nowhere differentiable functions, and the Rie-
mann Hypothesis. None. Unless we take into account the fractality of the corresponding curves. Then,
things change drastically. Indeed, building on the theory of Complex Dimensions, developed for many
years now by M. L. Lapidus and his collaborators, for example in [Lap91|, [Lap92], [Lap93], [LP93], [LM95],
[LP06], [Lap08], [LPWTI], [LvF06], [LvF13], [LRZ17a], [LRZ17b|, [LRZ18]|, [Lap19], [HL21], [Lap24],
[LR24], which makes the connection between the fractality of an object and its differentiability proper-
ties, we have at our disposal those geometric (or fractal) zeta functions — which stand for the trace of
a differential operator at a complex order s. Thus far, however, this differential operator had not yet
been identified. We hereafter propose two different, but convergent methods in order to characterize
and study it.

The poles of those fractal (or geometric) zeta functions — i.e., the (fractal) Complex Dimensions —
are of the highest interest, since they provide us with a range of specific informations, which enable us
to characterize fractality. Recall that, for a long time, mathematicians have avoided defining fractality,
after failed attempts (see [Fal97]), especially the wrong one by Benoit Mandelbrot himself, who claimed
that a geometric object was fractal if its fractal dimension exceeded its topological dimension, which is
not correct, since many actual fractals have the same fractal and topological dimension, including, for
example, the Devil’s staircase (the graph of the Cantor-Lebesgue function) and all plane (or space)
filling curves (including the Peano and the Hilbert Curves). In this light, and for a long time, the
consensus — among mathematicians (see again [Fal97]) — was that a set was fractal “if it has almost all
or most of the following features: “it has a fine structure, that is, irregular details at arbitrarily small
scales 7 ; or/and “it is too irregular to be described by calculus or traditional geometric language,
either locally or globally”; or/and it has some self-similarity or self-affinity, perhaps in a statistical or
approximate sense” ; “often” it has “ a natural appearance” (the quotes are in loc. cit.). Each of these
definitions attempts to convey the concept of a fractal, but only informally. A fractal for instance,
while having details appearing at arbitrary scales, is not always self-similar. One had to wait until the
work of the second author (see, among other references, [LvF13], [LRZ17b], [Lap19]) for a proper and
sound definition of fractality: a geometric object is said to be fractal if it admits at least one nonreal
Complex Dimension.

If our recent work provides the exact values of the Complex Dimensions of the Weierstrass Curve —
via new (local and global) fractal zeta functions and the new concept of iterated fractal drums (IFDs)
associated with the underlying prefractal (polygonal or graph) approximations (see [DL23b] — things
become even more complicated when the zeros are concerned. A natural question is the existence of
an underlying functional equation, which would enable us to obtain (or, at least, to better understand)



the zeros of those (fractal) zeta functions, as well as the poles.

In this light, the Weierstrass Curve appears as an incredibly rich source of results and inspiration.
For instance, in our previous works [DL22b], [DI.24a], [DL24b], [DL23b], [DL23a], a natural symmetry
— s — 2 — s — interchanges the abscissa of convergence D)y of the global fractal effective zeta func-
tion E{j\;(s) and Dy, = 2 — Dyy. It was then natural to expect the corresponding functional equation
to be, for all s € C,

e x -
G (s) = Gw(2 =),
which is the case, as will be shown in this paper, since the associated residues are the same. This

functional equation connects the fractal zeta functions of W and of its dual W*, where W* is a Weier-
strass function which is both smooth and fractal, which is another novel feature of the theory.

To our knowledge, it is he first time that a functional equation is obtained for any kind of non-
trivial fractal zeta function. Furthermore — especially in the self-dual case, when W = W* and
hence, E{i\; = Ef;v* — this functional equation is eerily similar to the one satisfied by the (completed
or global) Riemann zeta function £(s), namely, {(s) = (1 —s), for all s € C.

At the same time, as is also shown in this paper, building on [DL22a], [DL22b], [DL23b], that the
Weierstrass function W has a fractal power series, Taylor-like expansion, taken over its Complex Di-
mensions. Indeed, even though W is not differentiable, we can define associated fractional derivatives,
by connecting each term of the aforementioned Taylor-like expansion to a differential operator. Inso-
far as our fractal is approximated by a sequence of finite discrete graphs — the prefractal graphs, the
so-called Weierstrass Iterated Fractal Drums (in short, Weierstrass IFDs) — an interesting analogy was
to seach for an equivalent lattice model. The Toda-like system, introduced by the Japanese physicist
Morikazu Toda (see, for instance, [Tod89]), appeared as a good candidate. Indeed, the Toda model,
initially used in the case of a one-dimensional crystal, enables us to describe the motion of chains of
particles, taking into account neighbor interactions. In our present context, we already highlighted
(in our work on fractal cohomology [DL22b]), a quasiperiodic geometric property (reminiscent of, but
not identical to the one established in Chapter 3 of [LvE13] for nonlattice self-similar strings), which
could possibly be connected to the structure of a (generalized) quasicrystal (see [LvE13], Problem 3.22,
page 89, and [Lap08], especially, Chapter 5 and Appendix F).

At this stage, it is interesting to make a few comments about fractals and their mathematical
representation. Often, fractals are apprehended as the limits of the aforementioned sequences of pre-
fractal graphs. Those graphs are considered as static graphs, meaning that they do not evolve with
time. Bear in mind that, since their first introduction by Benoit Mandelbrot in [Man83]|, fractals were
meant to model and represent “the irregular and fragmented patterns around us” (the quote is in
loc. cit.). To name a few, ferns, cauliflowers (see the recent work of the biomathematician Christophe
Godin, the biologist Frangois Parcy and their collaborators in [ATM+21J), trees, clouds, mountains,
coastlines, rivers, lungs, networks of blood vessels, etc. .. In this light, things take a different direction.
Indeed, in nature, growth is a continuous process — which means that fractal-shaped living forms
cannot, reasonably, be modelled without taking into account the underlying dynamical expansions.

By relying on the aforementioned analogy — with quasicrystals — we thus exhibit a differential
operator — in the form of a Lie bracket (or commutator), associated with our sequence of prefractal
graphs. This enables us to make preliminary steps in the understanding of fractal dynamics, in terms
of the connection with the Taylor-like expansions of functions belonging to the cohomology groups;
see [DL22b]. Moreover, we provide an equivalent — but even much more meaningful — result, which
concerns the fractal zeta functions introduced in [DL23b], since we prove that the Taylor-like expan-
sions obtained in [DL22b] can also be obtained as the sums of traces of differentiable operators, and



thus involve fractional derivatives.

This is not all. The aforementioned quasiperiodic geometric property suggests the existence of a
natural transfer operator (as well as of a Frobenius operator), under the action of which our fractal —
the Weierstrass Curve — along with its cohomology, both remain invariant. More precisely, our quest
is to determine, given m € N, this operator which enables us to switch from each m' graph approxi-
mation Iy, to the (m + l)th graph approximation I'yy, . At the same time, we also aim at tracking
the evolution of the family of (fractal) differential operators when switching from a scale to the next
or the previous one. If we, again, make an analogy with nature and fractal shaped living forms, this
is in direct connection with the growth or the retraction phenomena; recall that there exists fractal-
shaped living organisms which both expand and contract, as is the case for slime molds; see [TGE+17 ].

Back to a purely mathematical point of view, we aim at a better understanding of the fractal coho-
mology obtained in our previous work [DL22b|. For this purpose, we first introduce our own (fractal,
natural) transfer operator, which acts on the fractal cohomology; more precisely, given m € N, this
transfer operator enables us to switch from the m" cohomology group to the (m + 1)th one. Going
further, we extend, to our fractal setting, the classical Lefschetz operator which enables us to go di-
rectly from the m'" cohomology group to the (m + 2)th one. This new operator, a bigraded operator
of bigrading (1,1), is defined in terms of the aforementioned transfer operator. A very interesting
feature is that the Lefschetz operator induces a Hodge Star relation on the functions defined on the
Weierstrass Curve and on all the higher-order differential forms.

The next step was to obtain an analog, in our fractal context, of the classical Hodge theory —
and the associated (orthogonal) decomposition of the cohomology groups. This decomposition is ob-
tained here by means of an inner product involving the polyhedral measure introduced in our previous
work [DL24b] (and specifically associated to fractals). This inner product is an extension of the clas-
sical polarization operator, in the sense of Deligne, within the context of pure Hodge theory. We
thereby obtain a fractal counterpart of many of the key classical theorems from Hodge theory in al-
gebraic geometry (see, e.g., [Voi02], [Voi07], [Kon08]), including Poincaré Duality, the Hard Lefschetz
Theorem and the Riemann-Hodge (Bilinear) Relations, along with various geometric and analytic
forms of Hodge’s Orthogonal Decompositions.

Things go even deeper if we envision the (differential) operator induced by the global zeta function.
In an echo to the functional equation also unveiled in this paper, the Hodge star relation induced by
our (fractal) Lefschetz operator enables us to recover, in a completely different manner, the same
functional equation, thereby going further in the understanding of the connections between the zeros
and the poles of the global zeta function.

The global zeta function — viewed as an operator acting on the underlying fractal cohomology —
can be seen in our present context as a suitable counterpart of the Frobenius operator, which plays
a key role in several aspects of number theory, algebraic geometry and arithmetic geometry, whose
spectrum (when it acts on the underlying fractal cohomology) yields the zeros and the poles of the
corresponding zeta functions. Consistent with this philosophy, we show that the spectrum of our ver-
sion of the Frobenius operator essentially coincides with the Complex Codimensions of the Weierstrass
Curve. We also define a slight modification of this operator whose spectrum precisely coincides with
the set of Complex Codimensions.

Recall that the Frobenius operator, at least in the context of curves — or, more generally, varieties
over finite fields — was used in a successful manner by André Weil [Weid0], [Weidl], [Weid6], [WeiS]
and Pierre Deligne [Del74], [Del80] in order to establish the analog of the Riemann Hypothesis. In the
case of number fields (and associated L-functions), however, it was — and still is — a great challenge
to achieve such a goal and prove the associated Riemann hypothesis (including the celebrated 1859



original Riemann hypothesis [Rie60] which corresponds to the number field Q of rational numbers and
to the completion ¢ of the classic Riemann zeta function).

Along these lines, Alexander Grothendieck [Gro60], [Gro66], [Gro69], proposed a set of conjectures
and a possible plan of attack which, thus far, has remained unfulfilled. His then conjectural motivic
cohomology, along with its associated and partly mythical notion of motive, has remained to this day
an unrealized, although quite attractive, dream.

More recently, Christopher Deninger has proposed a largely heuristic but quite interesting coho-
mological approach to number theory (see, e.g., [Den92], [Den93], [Den94]).

Within the context of fractal geometry, M. L. Lapidus and Machiel van Frankenhuisjen [LvF00],
[LvF06], [LvE13], suggested a possible analogy between aspects of fractal geometry and arithmetic
geometry, via in particular, the use of a Frobenius operator — viewed as a differential operator acting
on a suitable Hilbert space — and a yet to be constructed fractal cohomology associated with the
Complex Dimensions of the underlying fractal space. Part of this program was further extended by
the second author in his book [Lap08§|, by means of a conjectural fractal flow acting on a moduli space
of fractal strings and of its quantization, the moduli space of fractal membranes. In particular, a
conjectural functional equation connecting a fractal membrane and its dual membrane, played a key
role in that fractal setting.

In the recent book of Hafedh Herichi and the second author on quantized number theory [HL21],
the real version of the differentiation operator (or infinitesimal shift) proposed in [LvF06], [LvE13], was
made precise and studied in detail, while a complex version (based, in particular, on suitable weighted
Bergman spaces) enabled Tim Cobler and the second author [CL17] to develop a first rigorous version
of fractal cohomology and of a Frobenius operator acting on it, the spectrum of which coincides with
the zeros and the poles of any given (appropriate) meromorphic function — including the Riemann
zeta function and other L-functions. (See also the second author’s forthcoming book, [Lap24].)

What was missing, however, in this analytic approach, was a direct connection with an underlying
geometric space. Building on the new h-cohomology developed by the first author and Gilles Lebeau
in [DL23d], along with an extension of the theory of Complex Dimensions introduced in [DL22a] (and
later completed in [DL23b], see also [DL24al, [DL24b]), the authors of the present paper proposed for
the first time in [DL22b] a geometric fractal cohomology theory, which they applied to the Weierstrass
Curve in order to explicitly calculate the corresponding local and global (i.e., total) fractal cohomology
groups and the associated sets of potential Complex Dimensions, which turn out to be subsets of their
counterparts obtained in [DL22a] and [DL23b].

In the present work, we will show that the resulting local and global fractal cohomology spaces and
their orthogonal decompositions provide a very useful geometric map of the Weierstrass Curve and
its prefractal graph approximations (as well as of the vertices of its associated polygons), respectively,
and that the corresponding decompositions of the Frobenius operator (viewed as a specific operator
defined by means of the local and global zeta functions and acting on the corresponding fractal coho-
mology spaces) yield a significant amount of new information — including finite and infinite products
of the characteristic determinants of Frobenius.

In the process, we obtain entirely new connections between fractal geometry, complex differential
geometry, Kéhler geometry and Hodge theory, as well as algebraic and arithmetic geometry. Conse-
quently, those developments constitute an important step towards a future unification of many aspects
of fractal geometry, algebraic topology and geometry, differential geometry, number theory and arith-
metic geometry.



Our main results in the present paper can be found in the following places:

1. In Theorem on page along with Theorem on page where we establish the con-
nection between the Weierstrass function, our fractal zeta functions and suitable differential
operators. Note that the first result also makes the connection with the sequence of prefractal
graphs which approximate the Weierstrass Curve, because the coordinates of the vertices are, of
course, obtained by means of the values taken by the Weierstrass function.

it. In Definition [4.14] on page and Theorem |4.10, on page where we introduce the natural

transfer operator, Lyy, and its dual Ly, respectively associated with the Weierstrass Curve I'yy,
and defined in terms of the underlying iterated function system (IFS) (or of the dual IFS).

141. In Theorem on page [59, where we give the generators of the C-tensored (i.e., complex)
prefractal (or local) cohomology.

1. In Theorem [4.30, on page where we obtain a fractal analog of Hodge’s orthogonal decompo-
sition for the total (or global) cohomology space.

v. In Theorem on page where we obtain a fractal analog of Poincaré Duality, the Hard
Lefschetz Theorem (with respect to our (fractal) Lefschetz Operator, also introduced in Propo-

sition on page , respectively, and in Theorem on page for the Hodge—Riemann
Relations.

vi. In Theorem on page where we give the explicit expression of the resolvent of the (differ-
ential) operator induced by the global zeta function, thereby going further in the understanding
of the connections between the zeros and the poles of the global zeta function.

vii. In Theorem [£.36] on page [78 where we unveil the Frobenius operator and determine its spec-
trum, which essentially consists of the underlying Complex Dimensions of the Weierstrass Curve.

viti. In Theorem [4.37] on page [19) where we obtain the functional equation satisfied by the global

fractal effective zeta function (yy, associated with the Weierstrass function W, and by the global
fractal effective zeta function C)e/\’,* associated with the dual Weierstrass function W*.

2 Preliminaries: Geometry of the Weierstrass Curve and Fractal
Zeta Functions

We begin by reviewing the main geometric properties of the Weierstrass Curve (and of the associ-
ated IFD; i.e., the sequence of prefractal graphs, the so-called Weierstrass Iterated Fractal Drums (in
short, Weierstrass IFDs)), which will be needed in this paper.

We point out that this discussion of the geometric properties of the Weierstrass largely overlaps
with its counterparts in [DL22al, [DL22b], [DL23b], [DL24b], but is essential for understanding and
laying out the ground for the results obtained in the remainder of this paper.



2.1 Geometry of the Weierstrass Curve

Henceforth, we place ourselves in the Euclidean plane, equipped with a direct orthonormal frame.
The usual Cartesian coordinates are denoted by (x,y). The horizontal and vertical axes will be
respectively referred to as (z'z) and (y'y).

Notation 1 (Set of all Natural Numbers, and Intervals).

As in Bourbaki [Bou04] (Appendix E. 143), we denote by N = {0, 1, 2, ...} the set of all natural
numbers, and set N* = N'\ {0}.

Given a, b with —o0o < a < b < 00, Ja,b[ = (a,b) denotes an open interval, while, for example,
la,b] = (a, b] denotes a half-open, half-closed interval.

Notation 2 (Wave Inequality Symbol (see [Tao06], Preface, page xiv)).

Given two positive-valued functions f and g, defined on a subset Z of R, we use the following
notation, for all x € Z: f(x) < g(x) when there exists a strictly positive constant C' such that, for
all x € Z, f(x) < C g(x), which is equivalent to f = O (g). Note that in our forthcoming context, we
will often use O (1) to denote terms which depend on m € N, but are bounded away from 0 and oo,
uniformly in m € N; more precisely, those terms will always satisfy bounds of the following form,

0 < Constant;, s < O (1) < Constant,,, < 00, (R1)

where Constant;,, f and Constant,, denote strictly positive and finite constants (independent of m € N).

Notation 3 (Weierstrass Parameters).
In the sequel, A and N, are two real numbers such that

0<A<1l , N, €N and AN, >1- (&) (R2)
Note that this implies that N, > 1; i.e., Ny = 2, if N, € N*, as will be the case in this paper.

As is explained in [Dav19], we deliberately made the choice to introduce the notation N, which
replaces the initial number b, in so far as, in Hardy’s paper [Harl6] (in contrast to Weierstrass’ original
article [Wei75]), b is any positive real number satisfying Ab > 1, whereas we deal here with the specific
case of a nonnegative integer, which accounts for the natural notation N,.

Definition 2.1 (Weierstrass Function, Weierstrass Curve).

We consider the Weierstrass function VW (also called, in short, the W-function) defined, for any
real number z, by

W(z) = Z A" cos (27 Ny, ) - (R 3)
n=0

We call the associated graph the Weierstrass Curve, and denote it by I'yy.



Due to the one-periodicity of the Weierstrass function (since N, € N*), from now on, and without
loss of generality, we restrict our study to the interval [0, 1[= [0,1). Note that W is continuous, and
hence, bounded on all of R. In particular, I'y,, — which can equivalently be defined as the graph of the
restriction of W to [0, 1[ or to [0,1] — is a (nonempty) compact and connected subset of R

Definition 2.2 (Complexified Weierstrass Function).

We introduce the Complexified Weierstrass function Weomy, defined, for any real number x, by

00

n 2im Ny x

Weomp(z) = ) A'e .
n=0

Clearly, Weomyp is also a continuous and 1-periodic function on R.

Notation 4 (Logarithm).

Iny

denotes
Ina

Given y > 0, Iny denotes the natural logarithm of y, while, given a >0, a # 1, In, y =
the logarithm of y in base a; so that, in particular, In = In,.

Notation 5 (Minkowski Dimension and Hélder Exponent).

For the parameters A and N, satisfying condition (#) (see Notation |3 on page , we denote by

In A 1
DW=2+m=2_lanX S ]1,2[

the box-counting dimension (or Minkowski dimension) of the Weierstrass Curve I'yy, which happens
to be equal to its Hausdorff dimension [KMPYS84], [BBR14], [Shel§|, [Kell7]. We point out that,
in [DL23Db] (announced in [DL23a]), and in [DL22a] respectively, is provided a direct geometric and
fully rigorous proof of the fact that D)y, the Minkowski dimension (or box-counting dimension) of T'y,
exists and takes the above values, as well as of the fact that W is Holder continuous with optimal
Holder exponent

Convention (The Weierstrass Curve as a Cyclic Curve).

In the sequel, we identify the points (0, W(0)) and (1, W(1)) = (1, W(0)). This is justified by the
fact that the Weierstrass function W is 1-periodic, since Ny is an integer.

Remark 2.1. The above convention makes sense, because, in addition to the periodicity property of
the W-function, the points (0,/(0)) and (1, W(1)) have the same vertical coordinate.



).

N =

Property 2.1 (Symmetry with Respect to the Vertical Line x =

Since, for any x € [0,1],
o0
Wl -z) = Z N cos(27 Ny =27 Ny @) = W(x),
n=0
the Weierstrass Curve is symmetric with respect to the vertical straight line x = 5

In the sequel, we will denote by S the symmetry with respect to the vertical straight line x© = 5

Proposition 2.2 (Nonlinear and Noncontractive Iterated Function System (IFS)).

Following our previous work [Davi8|, we approxzimate the restriction Ty to [0,1[XR, of the
Weierstrass Curve, by a sequence of finite graphs, built via an iterative process. For this purpose, we
use the nonlinear iterated function system (IFS) consisting of a finite family of C™ bijective maps

2 2
from R” to R™ and denoted by

TW = {TO>"'7TN;,—1} )

where, for any integer i belonging to {0, ..., Ny — 1} and any point (x,y) of R?,

+i +i
Ti(x,y) = (beZ,)\y+cos<27r (beZ>>) .

Note that unlike in the classical situation, these maps are not contractions. Nevertheless, 'y can
be recovered from this IFS in the usual way, as we next explain.

Property 2.3 (Attractor of the IFS [Dav18], [Dav19]).

The Weierstrass Curve I'yy, is the attractor of the IFS Ty, and hence, is the unique nonempty

Ny-1 Ny—-1
compact subset K of RQSatz'sfymg K= U T;(K); in particular, we have that Tyy = |J T;(Tyy).
i=0 i=0

Notation 6 (Fixed Points).

For any integer i belonging to {0, ..., N, — 1}, we denote by

1 1 2m1i
P = (z3,y;) = (m,m COS(Nb— 1))

the unique fixed point of the map T;; see [Dav19].

Definition 2.3 (Sets of Vertices, Prefractals).

We denote by Vj the ordered set (according to increasing abscissae) of the points
{Po,....Pn,-1} -
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The set of points Vi) — where, for any integer ¢ in {0,..., N, — 2}, the point P; is linked to the
point P;,q — constitutes an oriented finite graph, ordered according to increasing abscissae, which we
will denote by T'yy,. Then, Vj is called the set of vertices of the graph T'yy,.

Ny—1
For any nonnegative integer m, i.e., for any m € N, we set V,,, = |J T; (Vyuo1)-
i=0
The set of points V,,,, where two consecutive points are linked (to form an edge), is an oriented finite

graph, ordered according to increasing abscissae, called the m'™ order W-prefractal. Then, V,, is
called the set of vertices of the prefractal I'yy, ; see Figure [2, on page

Property 2.4 (Density of the Set V* = ] V,, in the Weierstrass Curve [DL22b]).

neN

The set V* = | V,, is dense in the Weierstrass Curve T'yy.

neN

Definition 2.4 (Adjacent Vertices, Edge Relation).

For any m € N, the prefractal graph I'yy, is equipped with an edge relation ~, as follows: two
m
vertices X and Y of I'y,,  (i.e., two points belonging to V,,,) will be said to be adjacent (i.e., neighboring
or junction points) if and only if the line segment [X,Y] is an edge of I')y, ; we then write X ~ Y.
m

Note that this edge relation depends on m, which means that points adjacent in V,,, might not remain
adjacent in V,,,;. This simple fact will play a crucial role in this paper, especially when discussing
the orthogonal decomposition of the (complex) fractal cohomology spaces and their consequences, in
Section [l

Property 2.5 (Scaling Properties of the Weierstrass Function, and Consequences [DL22al).

o0
Since, for any real number x, W(x) = Z A" cos (27 Ny x), we have that
n=0

(e¢]

W(Nyz) = cos 277]\7;”1
2" eos

Z)\ cos 27TNb :v) = L W(z) —cos(27x)) ,

A

>/I*—‘

this yields, for any strictly positive integer m and any j in {0,...,#V,, — 1},

W(m)”w(m)+“5(wﬁ+§w)'

By induction, one then obtains that

W&Eﬁﬁ?)AW@MJﬂﬁfﬁ“%ﬁg%%)
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We refer to part iv. of Property along with Figure [I} for the definition of the polygons Py,
and Q,, ;, associated with the Weierstrass Curve and which will play an important role in the sequel.

Property 2.6. [Davl8] For any m € N, the following statements hold:

i. Vm C Vm+1 .
ii. #V,, = (Ny — 1) N;" + 1, where #V,,, denotes the number of elements in the finite set V,,.
iii. The prefractal graph Ty, has ezactly (N, — 1) Ny edges.

iv. The consecutive vertices of the prefractal graph I'yy — are the vertices of Ny simple nonregular
polygons P, . with Ny, sides. For any strictly positive integer m, the junction point between two
consecutive polygons Pp, . and P, 41 s the point

(%W( H)) , 1<sksN' —1.

Hence, the total number of junction points is Ny ' — 1. For instance, in the case Ny = 3, the
polygons are all triangles; see Figure[l], on page[13

We call extreme vertices of the polygon Py, . the junction points

(N, — 1)k ( (N, — 1)k

Vinitial (Pm,k) = ((Nb — 1) N (Np = 1) N

)) , 0sksN)' -1,

and

Vend (Pon) = ((Nb — 1) (k+1) ( (Ny— 1) (k +1)

0<ks<N"-2.
(N, — 1) N (N, — 1) N" )) ’ b

In the sequel, we will denote by Py the initial polygon, whose vertices are the fixed points of

the maps T;, 0 < i < Ny — 1, introduced in Notation[6, on page[10] and Definition[2.3, on page[10,
i.e., {PO, .. .,PNb_l}; see, again, Figure on page E

In the same way, the consecutive vertices of the prefractal graph I'y, , distinct from the fived
points Py and Py,_1 (see Notation @ on page @), are also the wvertices of Ny' —1 simple
nonregular polygons Q,, ;, for 1 < j < Ny =2, again with N, sides. For any integer j such
that 1 < j < N" — 2, one obtains each polygon Qp.j by connecting the point number j (i.e., with
the notation of Property below, on page the vertex M; ,,) to the point number j + 1 (i.e.,

the vertex M 1 ,,) if j = i mod Ny, for 1 <i < Ny — 1, and the point number j to the point num-
ber j — Ny + 1 if j = 0mod N.

As previously, we call extreme vertices of the polygon Q,, . the points

Vinitial (Qm.k) = ( (N, — 1)k ( (Ny — 1)k

1<sks<N"-1
(N, — 1) NJ™ (Nb—l)Ng”))’ b

and

L@AQWQ:(U%_1Hk+D (U%—1Hk+n

1<k<N"-2.
(N, - 1) N* (Ny — 1) Nj" )) ’ b

12



Definition 2.5 (Polygonal Set [DL24b]).
For any m € N, we introduce the following polygonal sets,

P ={Pmr,0<sk<sN, =1} and Q,, ={Qni,0<sk< N, —2}.

Initial polygon

Figure 1: The initial polygon Py, and the respective polygons Pg 1, P1,1, P1,2, 1,15 1,2,
1
in the case when \ = 5 and N, = 3. (See also Figure on page )

Notation 7. For any m € N, we denote by:

ii. X € Py, (resp., X € Q,,) a vertex of a polygon Py, s, with 0 < k < Ny — 1 (resp., a vertex of
a polygon Q,, j, with 1 <k < Nj" - 2).

ii. P |J Qm the reunion of the polygonal sets P,, and Q,,, which consists in the set of all the
vertices of the polygons P, 1, with 0 < k < N," — 1, along with the vertices of the polygons Qm k>
with 1 € k < N — 2. In particular, X € P,, J Q,, simply denotes a vertex in P, or Q,,.

iii. Pp ) Qm the intersection of the polygonal sets P, and Q,,, which consists in the set of all the
vertices of both a polygon P, ., with 0 < k < N;" — 1, and a polygon Qm i, with 1 <k < Ny - 2.

Definition 2.6 (Vertices of the Prefractals, Elementary Lengths, Heights and Angles [DL22al).

Given a strictly positive integer m, we denote by (ijm)Osjs(Nb—l)Ng" the set of vertices of the

prefractal graph I'yy, . One thus has, for any integer j in {0,...,(N, — 1) Ny"}:

13



Mim = ((Nb —]1)Ng”’W((Nb —]1)N£”)> |

We also introduce, for any integer j in {0,..., (N, — 1) Ny" — 1}:

1. the elementary horizontal lengths:

J
Ly = ———"<=m; R4
"N DN =Y
1. the elementary lengths:
Lgrim = d(Mjm, Mjsrm) =\ Lo + 1 41 n
where hj i1, is defined in 7. just below.
111. the elementary heights:
) )
h i =W (— W\ —1|;
porhm I (N, = ) N} (N, = D) Ny
1. the minimal height:
hin' = 0<j<(NiI_1£) N -1 Pigetm (R3)
SJ b
along with the the maximal height:
b = sup hjjr1m; (R6)

0sjs(Np—1) N -1

v. the geometric angles:

—_—

0i-1jm = (W), (Mjo1mM;jm)) 5 05 01.m = ((W'y), (M Mjz1m))

which yield the value of the geometric angle between consecutive edges,
namely, [ M1 Mj m, M M1 m]:

L, m
9’—1,j,m + 9j,j+1,m = arctan ——  + arctan

’ |h-1.5m] |hjjetml
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Figure 2: The prefractal graphs I'yy,, Ty, , T'w,, T'w,, I'w,, T'y,, in the case when A =

and NNy = 3.
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Property 2.7. For the geometric angle 0j_1 jm, 0 < j < (N, — 1) N}, m € N, we have the following
relation:

hj_lvjym

tanf_y ., =
J sJs Lm

The following property and definition play an important role in our previous work (especially, [D1.22a],
[DL24a], provided in this context in [DL22b], including for our interpretation of Poincaré duality).

1
Property 2.8 (A Consequence of the Symmetry with Respect to the Vertical Line x = 5).

For any strictly positive integer m and any j in {0, ..., #V,, — 1}, we have that

(o) - ()

which means that the points

((]?}v; i)ljﬁl:;j’w(%v; 1)1])Vi:;j)) and ((Nb —j1> Ng"’W<<Nb —j1>Ng“))

1
are symmetric with respect to the vertical line x = 57 see Fz'gure@ on page .
Definition 2.7 (Left-Side and Right-Side Vertices).

Given nonnegative integers m, k such that 0 < k < Ny — 1, and a polygon Pk, we define:

[N, -1
1. The set of its left-side vertices as the set of the first b2 vertices, where [y] denotes the
integer part of the real number y. ) )
) o . , [ Ny — 1] .
1. The set of its right-side vertices as the set of the last 5 vertices.

When the integer IV, is odd, we define the bottom vertex as the ( b2 ) one; see Figure on
page [I7}

16



N |=

Mj_1,m Mn,-1) Ny j+1,m

-1r Mj_1.p.m Mn,,-1) Ny™- j+1-p,m

1
Figure 3: Symmetric points with respect to the vertical line x = oR

Left - side vertices

__ Left-sidevertices  Right - side vertices._

Bottom vertex” :
Bottom vertex Right - side vertices

Figure 4: The Left and Right—Side Vertices.

Property 2.9 ([DL22a]).

For any integer j in {0,..., Ny — 1}:

j _ - n n ,7 _ - n 27Tj _ 1 27Tj
() - 1 (o ) - 2 e (5 ) - e e ()

n=0

Property 2.10 ([DL224]).

(N, - 1) (Ny,— 1) <

For0<j< 5 (resp., for — j < Ny—1), we have that

j+1 J j+1 J
W(Nb_l)—W<Nb_l)S0 (Tesp., W(Nb_1>—W<Nb_1>BO>.
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Notation 8 (Signum Function).

The signum function of a real number x is defined by

-1, if <0,
segn (z) = 0, if z=0,
+1, if 2>0.

Property 2.11 ([DL22a]).

Given any strictly positive integer m, we have the following properties:

i. For any j in {0,...,#V,, — 1}, the point

(o —jl)N?’W(<Nb —jnw))

is the image of the point

( j _iW< j _i>>:(j—z'(Nb—1)N?‘l W(j—i(Nb—l)Né”‘l))
m—1 ) m—1 m—1 ’ m—1
(Nb_l)Nb (Nb_l)Nb (Nb_l)Nb (Nb_l)Nb

under the map T;, where i € {0,..., N, — 1} is arbitrary.

Consequently, for 0 < j < Ny —1, the jth vertex of the polygon Pp,;, 0 <k < N =1, ie.,
the point

(v (wmnar))

is the image of the point

(Ny—1) (k=i (N = 1) N ™) + o[ =D (k=i (Ny = 1) N") +
=N ’ Ny - )N

under the map T;, where i € {0,..., N, — 1} is again arbitrary. It is also the jth vertex of
the polygon Pm—l,k—i(Nb—l)Ng"‘l- Therefore, there is an exact correspondence between vertices
of the polygons at consecutive steps m — 1, m.

i. Given j in {0,...,N, —2} and k in {0,...,Ny" — 1}, we have that

o (o (ERE) BB 28] )
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Proof.

i. Given m € N*, let us consider i € {0,..., Ny — 1}. The image of the point

J . J :
m—1 ) w m—1 ¢
(Nb_l)Nb (Nb_l)Nb
under the map 7; is obtained by applying the analytic expression given in Property on page

to the coordinates of this point, which, thanks to Property on page [L1|above, yields the expected
result, namely,

J J : 2mj ( J ( J ))
Y AW | ————— —i|+cos — | = — W — 1.
(Ny — 1) Ny ((Nb—l)Ng”‘1 ) (Ny — 1) Ny (Ny —1) Ny (Ny — 1) Ny

w3
(N — 1) N+

(by 1-periodicity)

ii. See [DL22a).

Property 2.12 (Lower Bound and Upper Bound for the Elementary Heights [DL22al).

For any strictly positive integer m and any j in {0, o (N —1) Ngn}, we have the following esti-
mates, where Ly, is the elementary horizontal length introduced in part i. of Definition[2.6, on page[13:

Cong LV < IW((+ 1) L) =W (G L)l S Cop Lin Y, m € N,0<j<(Ny—1)N,", (k)

hjj+1,m

where the finite and positive constants Cy,y and Cg,, are given by

2-D . J+1 J
Cing = (Np =1)7 7 min . ‘W(N—l)_w(zv_l)’
05j<Np=1,W( 35 ) (55 b b

and

2-D
Coup = (Np— 1) 7" | max
sup = (Np = 1) 0<j<N,-1

w(ZH L) w2
Ny -1 Ny -1
One should note, in addition, that these constants Cy, ¢ and Cy,, depend on the initial polygon Py,
but are independent of m € N sufficiently large.

N 27 )
(Ny—=1) (AN, -1) )

As a consequence, we also have that
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Cong L3P < Wi < Co LY and iy Loy < hyy < Coup L7

where hfj}f and h,, respectively denote the minimal and mazimal heights introduced in part iv. of Def-

inition [2.6, on page[13

Theorem 2.13 (Sharp Local Discrete Reverse Hélder Properties of the Weierstrass Func-
tion [DL22al).

For any nonnegative integer m (i.e., for any m € N), let us consider a pair of real numbers (x, :U')
such that

(N =1)E+j  (Nyg=1Dk+j+10

x = Ny~ )N =((Ny-1Dk+j) Ly, , z = (o= DN =((Ny-1)k+j+4) L,

where 0 < k < N" — 1. We then have the following (discrete, local) reverse-Holder inequality, with

In A\
N, - 2 — Dyy:

sharp Hoélder exponent —

2-Dyy

Cing |2 =277 < [W(a') - W(a))|

where (x, W(x)) and (a:', W(LL")) are adjacent vertices of the same m" prefractal approximation, I'yy, |
with m € N arbitrary. Here, Cyy, s is given as in Property on pagejust above.

Corollary 2.14 (Optimal Holder Exponent for the Weierstrass Function (see [DL22a))).

The local reverse Holder property of Theorem [2.13, on page [20 just above — in conjunction with
the Holder condition satisfied by the Weierstrass function (see also [Zyg02], Chapter II, Theorem 4.9,

In . . . .
N, € 10,1[ is the best (i.e., optimal) Holder

exponent for the Weierstrass function (as was originally shown, by a completely different method,
by G. H. Hardy in [Harl0)).

page 47) — shows that the Codimension 2 — Dy = —

Note that, as a consequence, since the Holder exponent is strictly smaller than one, it follows
that the Weierstrass function YW is nowhere differentiable. Indeed, if VW were differentiable at some
point xg € R, it would have to be locally Lipschitz at xg.

Corollary 2.15 (of Property (see [DL22al)).
Thanks to Property on page one may now write, for any strictly positive integer m and
any integer j in {O, o (N = 1) Ny = 1}, and with Ciyp and Cyypyp defined as in Property on

page [19:

1. for the elementary heights:

hjotgam = Loy " O (1) 5 (R7)
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ii. for the elementary quotients:

hj_lzjym

= = L, o) (R8)

and where

0<Cipng <O(1) € Cgyp <00

ad where, as is explained in Notation @ on page @ the notation O (1) denotes terms which depend
onm € N, but are bounded away from 0 and oo, uniformly in m € N.

Corollary 2.16 (Nonincreasing Sequence of Geometric Angles (Coming from Property
see [DL22al)).

For the geometric angles 6;_1 j ,,, 0 < j < (N —1) N}, m € N, introduced in part v. of Defini-
tion [2-6, on page[13, we have the following result:

L
tanﬁj_l,j,m = h—m(Nb - ].) > tan9j_1,j,m+1 s
j_lzjzm

which yields

Dyy—1
Oj-1jm > 0j-1jme1 and 051 jme1 < Ly

Definition 2.8 (mth Cohomology Infinitesimal [DL22a], [DL22b] and m'™ Intrinsic Co-

homology Infinitesimal [DL23b|, [DL23a]). From now on, given any m € N, we will call m'™

cohomology infinitesimal the number e, > 0 which also corresponds to the elementary horizontal

1 1
length introduced in part i. in Definition [2.6, on page |13} i.e., ey = (£,,)" = —-
Ny—1 N,

Observe that, clearly, ¢, itself — and not just ¢, — depends on m.

In addition, since Nj, > 1, e, satisfies the following asymptotic behavior,

m
Em — 0, as m — 00,

which, naturally, results in the fact that the larger m, the smaller e),,. It is for this reason that we call
— or rather, the sequence (5%)::0 of positive numbers tending to zero as m — oo, with ¢, = (¢,,)"",
for each m € N — an infinitesimal. Note that this m'" cohomology infinitesimal is the one naturally
associated to the scaling relation of Proposition [2.5] on page

In the sequel, it is also useful to keep in mind that the sequence of positive numbers (Em)f,jzo itself
satisfies

€m~ﬁb,asm—>00;

1
Ny’
positive and finite limit.

ie., &, — as m — oo. In particular, ¢,, 4 0, as m — oo, but, instead, ¢, tends to a strictly
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We also introduce, given any m € N, the m™ intrinsic cohomology infinitesimal, denoted by €™ > 0,
such that

R
Ny ’
where
1
€= N,

We call € the intrinsic scale, or intrinsic subdivision scale.

Note that

and that €,,, = €, as m — o0.

Remark 2.2 (Connection Between the Parameter A and the Minkowski Dimension D,y,).

Note that since

9 Dy = In\ | 1
WE TN, T M
(see Notation [5, on page E[), we also have that
A= NV TP

1
where € = N is the intrinsic scale introduced in Definition just above, on page
b

Definition 2.9 (Cohomological Vertex Integer [DL24b]).

Givenm € N, and a vertex M, ,,, = M(n,-1) k'+k” .;m € Vim, of abscissa ((Nb -1) K+ k”) e where
0<k'< N;" —1and 0 < k” € N, — 1, we introduce the cohomological vertex integer ¢; m associated to

the vertex M ,, (which is also the (k" )th vertex of the polygon Py, i/; see part iv. of Property on
page [12)), as

Cim = b = (Ny = 1)K + k7. (R9)

((Ny = 1)K + k) em = ((Ny = 1) K'bis + k”bis) emir -
Depending on the context; that is,
i. when the cohomological vertex integer enables one to locate the vertex M;,,.

7i. When it is used in a more general framework, i.e., in order to describe the generators of coho-
mology groups;

we will use the best suited notation between ¢; ,,, in case i., or £ j» ,,, in case ii.
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Proposition 2.17 (Cross-Scales Paths, and Associated Sequence of Vertex Integers).

Givenm € N, 0<j < #V,, —1 and a vertex M, = M(n,—1)k'+k>,m 11 Vip, with
0<k < N;" =1 and 0 < k” < Ny — 1, we introduce the cross-scales path Path (Pkw , Mj,m): where Py
is the (k:')th fized point of the map Ty (see Proposition on page along with Notation @ on

page @), as the ordered set (M such that:

koK Joskem

i. For0 <k <m, each vertex My, . 1 isin Vg \ Vi NV}, (which means that M, ..k strictly belongs

to Vi, i.e., it is in the k" prefractal approzimation T'yy, , and not in I'yy, ).

. For 1<k <m, each vertex Mj, 1= Mn, 1)k, sk k> with 0 < k;gm < Nf — 1, is the image of
the point M k—1 under the map T; (see again Proposz'tz'on on page @), wherei € {0,..., N, — 1}

Jk—1,m>
s the smallest admissible value. We thus also have that

M, 1=
jk*l,mvk 1 (Nb _ 1) NéC—].

(Ny = 1) (Ki =i (Ny = 1) N1 ) + &7 (Ny = 1) (Ki =i (N = 1) N1 ) + &7
’ (N, — 1) Nj~! '

This latter point is also the (k:”)th vertex of the polygon k:;gm —i(Ny—1) Nf_l (see part iv.

of Property on page @

The sequence of vertex integers associated with the cross-scales path Path (Pk»,Mj,m) (or, in
short, and equivalently, also refered to as the sequence of vertex integers associated with Mj,,) is the

sequence (Ejk,m:’f)o<k<m7 where, for 0 < k< m, Ejk,m,k 1s the cohomological vertex integer associated
with the ve