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Abstract

We establish new connections between the local and global polyhedral zeta functions associated
with a fractal – in our present context, the Weierstrass (fractal) Curve – and differential operators.
First, we exhibit Lie brackets (or commutators), associated with this global polyhedral zeta func-
tion.

We then introduce a (natural) transfer operator, which acts on the underlying fractal cohomol-
ogy, and we extend, to our fractal setting, the classical Lefschetz operator. This new operator, a
bigraded operator, of bigrading (1, 1), induces a Hodge Star relation on the functions defined on
the Weierstrass Curve and on all the higher-order differential forms.

Moreover, we obtain an analog, in our fractal context, of the classical Hodge theory – and of
the associated (orthogonal) decomposition of the fractal cohomology groups. This decomposition
is presently obtained by means of an inner product involving the (specifically constructed for frac-
tals) polyhedral measure introduced in our previous work [DL24b]. This inner product is a fractal
counterpart of the classical polarization operator, in the sense of Deligne. These results enable
us, in particular, to obtain fractal analogs of Poincaré Duality, the Hard Lefschetz Theorem, and
the Hodge–Riemann (Bilinear) Relations, that are key to classical Hodge theory in algebraic and
arithmetic geometry.

Finally, we introduce and study the (differential) operator induced by the global zeta function,
which enables us to obtain the functional equation satisfied by this zeta function and its dual zeta
function.
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We also show that the global zeta function – viewed as a differential operator acting on the
fractal cohomology – enables us to obtain the operator which acts as the Frobenius operator in this
context, since the spectrum of this operator essentially coincides with the Complex Codimensions.
In fact, the spectrum of a small modification of this operator precisely coincides with the underlying
Complex Dimensions.

Our work provides convincing strong evidence for a future unification between key aspects of
fractal and arithmetic geometries.
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Keywords: Weierstrass Curve, iterated fractal drum (IFD), fractal zeta functions, Complex Dimen-
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polygonal) neighborhoods, effective local and global polyhedral zeta functions, prefractal cohomology,
fractal cohomology, transfer operator, Lefschetz operator, Hodge decomposition, functional equation,
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1 Introduction

This is a story of two mathematicians, who lived nearly at the same time, in the same country. We
can say that the work of Bernhard Riemann was among the ones that inspired a lot Karl Weierstrass.
For instance, we could wonder how the pathological, continuous everywhere, while nowhere differ-
entiable, Weierstrass function [Wei75], came to Weierstrass’s mind. As is mentioned in [Dav22], we
note that some mathematicians, like J.-P. Kahane [Kah64], suggest that it could be attributed to the
Riemann function, for which Karl Weierstrass did not know how to prove the non-differentiable feature.

Eventually, it was claimed by Godfrey Harold Hardy and John E. Littlewood in [HL14] that
Riemann’s function, defined, for all x ∈ R, by

R(x) =
+∞

∑
n=1

sinn
2
x

n2
,

was nowhere differentiable. Later, Joseph Gerver, in [Ger70], proved this was false and determined
the precise points at which it is differentiable.

A priori, no connection can be established between nowhere differentiable functions, and the Rie-
mann Hypothesis. None. Unless we take into account the fractality of the corresponding curves. Then,
things change drastically. Indeed, building on the theory of Complex Dimensions, developed for many
years now by M. L. Lapidus and his collaborators, for example in [Lap91], [Lap92], [Lap93], [LP93], [LM95],
[LP06], [Lap08], [LPW11], [LvF06], [LvF13], [LRŽ17a], [LRŽ17b], [LRŽ18], [Lap19], [HL21], [Lap24],
[LR24], which makes the connection between the fractality of an object and its differentiability proper-
ties, we have at our disposal those geometric (or fractal) zeta functions – which stand for the trace of
a differential operator at a complex order s. Thus far, however, this differential operator had not yet
been identified. We hereafter propose two different, but convergent methods in order to characterize
and study it.

The poles of those fractal (or geometric) zeta functions – i.e., the (fractal) Complex Dimensions –
are of the highest interest, since they provide us with a range of specific informations, which enable us
to characterize fractality. Recall that, for a long time, mathematicians have avoided defining fractality,
after failed attempts (see [Fal97]), especially the wrong one by Benôıt Mandelbrot himself, who claimed
that a geometric object was fractal if its fractal dimension exceeded its topological dimension, which is
not correct, since many actual fractals have the same fractal and topological dimension, including, for
example, the Devil’s staircase (the graph of the Cantor–Lebesgue function) and all plane (or space)
filling curves (including the Peano and the Hilbert Curves). In this light, and for a long time, the
consensus – among mathematicians (see again [Fal97]) – was that a set was fractal “if it has almost all
or most of the following features: “it has a fine structure, that is, irregular details at arbitrarily small
scales ” ; or/and “it is too irregular to be described by calculus or traditional geometric language,
either locally or globally”; or/and it has some self-similarity or self-affinity, perhaps in a statistical or
approximate sense” ; “often” it has “ a natural appearance” (the quotes are in loc. cit.). Each of these
definitions attempts to convey the concept of a fractal, but only informally. A fractal for instance,
while having details appearing at arbitrary scales, is not always self-similar. One had to wait until the
work of the second author (see, among other references, [LvF13], [LRŽ17b], [Lap19]) for a proper and
sound definition of fractality: a geometric object is said to be fractal if it admits at least one nonreal
Complex Dimension.

If our recent work provides the exact values of the Complex Dimensions of the Weierstrass Curve –
via new (local and global) fractal zeta functions and the new concept of iterated fractal drums (IFDs)
associated with the underlying prefractal (polygonal or graph) approximations (see [DL23b] – things
become even more complicated when the zeros are concerned. A natural question is the existence of
an underlying functional equation, which would enable us to obtain (or, at least, to better understand)
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the zeros of those (fractal) zeta functions, as well as the poles.

In this light, the Weierstrass Curve appears as an incredibly rich source of results and inspiration.
For instance, in our previous works [DL22b], [DL24a], [DL24b], [DL23b], [DL23a], a natural symmetry
– s↦ 2 − s – interchanges the abscissa of convergence DW of the global fractal effective zeta func-
tion ζ̃

e
W(s) and D

⋆
W = 2 −DW . It was then natural to expect the corresponding functional equation

to be, for all s ∈ C,

ζ̃
e,⋆
W (s) = ζ̃eW(2 − s) ,

which is the case, as will be shown in this paper, since the associated residues are the same. This
functional equation connects the fractal zeta functions of W and of its dual W⋆

, where W⋆
is a Weier-

strass function which is both smooth and fractal, which is another novel feature of the theory.

To our knowledge, it is he first time that a functional equation is obtained for any kind of non-
trivial fractal zeta function. Furthermore – especially in the self-dual case, when W =W⋆

and
hence, ζ̃

e
W = ζ̃

e,⋆
W – this functional equation is eerily similar to the one satisfied by the (completed

or global) Riemann zeta function ξ(s), namely, ξ(s) = ξ(1 − s), for all s ∈ C.

At the same time, as is also shown in this paper, building on [DL22a], [DL22b], [DL23b], that the
Weierstrass function W has a fractal power series, Taylor-like expansion, taken over its Complex Di-
mensions. Indeed, even though W is not differentiable, we can define associated fractional derivatives,
by connecting each term of the aforementioned Taylor-like expansion to a differential operator. Inso-
far as our fractal is approximated by a sequence of finite discrete graphs – the prefractal graphs, the
so-called Weierstrass Iterated Fractal Drums (in short, Weierstrass IFDs) – an interesting analogy was
to seach for an equivalent lattice model. The Toda-like system, introduced by the Japanese physicist
Morikazu Toda (see, for instance, [Tod89]), appeared as a good candidate. Indeed, the Toda model,
initially used in the case of a one-dimensional crystal, enables us to describe the motion of chains of
particles, taking into account neighbor interactions. In our present context, we already highlighted
(in our work on fractal cohomology [DL22b]), a quasiperiodic geometric property (reminiscent of, but
not identical to the one established in Chapter 3 of [LvF13] for nonlattice self-similar strings), which
could possibly be connected to the structure of a (generalized) quasicrystal (see [LvF13], Problem 3.22,
page 89, and [Lap08], especially, Chapter 5 and Appendix F).

At this stage, it is interesting to make a few comments about fractals and their mathematical
representation. Often, fractals are apprehended as the limits of the aforementioned sequences of pre-
fractal graphs. Those graphs are considered as static graphs, meaning that they do not evolve with
time. Bear in mind that, since their first introduction by Benôıt Mandelbrot in [Man83], fractals were
meant to model and represent “the irregular and fragmented patterns around us” (the quote is in
loc. cit.). To name a few, ferns, cauliflowers (see the recent work of the biomathematician Christophe
Godin, the biologist François Parcy and their collaborators in [ATM

+
21]), trees, clouds, mountains,

coastlines, rivers, lungs, networks of blood vessels, etc. . . In this light, things take a different direction.
Indeed, in nature, growth is a continuous process – which means that fractal-shaped living forms
cannot, reasonably, be modelled without taking into account the underlying dynamical expansions.

By relying on the aforementioned analogy – with quasicrystals – we thus exhibit a differential
operator – in the form of a Lie bracket (or commutator), associated with our sequence of prefractal
graphs. This enables us to make preliminary steps in the understanding of fractal dynamics, in terms
of the connection with the Taylor-like expansions of functions belonging to the cohomology groups;
see [DL22b]. Moreover, we provide an equivalent – but even much more meaningful – result, which
concerns the fractal zeta functions introduced in [DL23b], since we prove that the Taylor-like expan-
sions obtained in [DL22b] can also be obtained as the sums of traces of differentiable operators, and
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thus involve fractional derivatives.

This is not all. The aforementioned quasiperiodic geometric property suggests the existence of a
natural transfer operator (as well as of a Frobenius operator), under the action of which our fractal –
the Weierstrass Curve – along with its cohomology, both remain invariant. More precisely, our quest
is to determine, given m ∈ N, this operator which enables us to switch from each m

th
graph approxi-

mation ΓWm
to the (m + 1)th graph approximation ΓWm+1

. At the same time, we also aim at tracking
the evolution of the family of (fractal) differential operators when switching from a scale to the next
or the previous one. If we, again, make an analogy with nature and fractal shaped living forms, this
is in direct connection with the growth or the retraction phenomena; recall that there exists fractal-
shaped living organisms which both expand and contract, as is the case for slime molds; see [TGE

+
17].

Back to a purely mathematical point of view, we aim at a better understanding of the fractal coho-
mology obtained in our previous work [DL22b]. For this purpose, we first introduce our own (fractal,
natural) transfer operator, which acts on the fractal cohomology; more precisely, given m ∈ N, this

transfer operator enables us to switch from the m
th

cohomology group to the (m + 1)th one. Going
further, we extend, to our fractal setting, the classical Lefschetz operator which enables us to go di-
rectly from the m

th
cohomology group to the (m + 2)th one. This new operator, a bigraded operator

of bigrading (1, 1), is defined in terms of the aforementioned transfer operator. A very interesting
feature is that the Lefschetz operator induces a Hodge Star relation on the functions defined on the
Weierstrass Curve and on all the higher-order differential forms.

The next step was to obtain an analog, in our fractal context, of the classical Hodge theory –
and the associated (orthogonal) decomposition of the cohomology groups. This decomposition is ob-
tained here by means of an inner product involving the polyhedral measure introduced in our previous
work [DL24b] (and specifically associated to fractals). This inner product is an extension of the clas-
sical polarization operator, in the sense of Deligne, within the context of pure Hodge theory. We
thereby obtain a fractal counterpart of many of the key classical theorems from Hodge theory in al-
gebraic geometry (see, e.g., [Voi02], [Voi07], [Kon08]), including Poincaré Duality, the Hard Lefschetz
Theorem and the Riemann–Hodge (Bilinear) Relations, along with various geometric and analytic
forms of Hodge’s Orthogonal Decompositions.

Things go even deeper if we envision the (differential) operator induced by the global zeta function.
In an echo to the functional equation also unveiled in this paper, the Hodge star relation induced by
our (fractal) Lefschetz operator enables us to recover, in a completely different manner, the same
functional equation, thereby going further in the understanding of the connections between the zeros
and the poles of the global zeta function.

The global zeta function – viewed as an operator acting on the underlying fractal cohomology –
can be seen in our present context as a suitable counterpart of the Frobenius operator, which plays
a key role in several aspects of number theory, algebraic geometry and arithmetic geometry, whose
spectrum (when it acts on the underlying fractal cohomology) yields the zeros and the poles of the
corresponding zeta functions. Consistent with this philosophy, we show that the spectrum of our ver-
sion of the Frobenius operator essentially coincides with the Complex Codimensions of the Weierstrass
Curve. We also define a slight modification of this operator whose spectrum precisely coincides with
the set of Complex Codimensions.

Recall that the Frobenius operator, at least in the context of curves – or, more generally, varieties
over finite fields – was used in a successful manner by André Weil [Wei40], [Wei41], [Wei46], [Wei48]
and Pierre Deligne [Del74], [Del80] in order to establish the analog of the Riemann Hypothesis. In the
case of number fields (and associated L-functions), however, it was – and still is – a great challenge
to achieve such a goal and prove the associated Riemann hypothesis (including the celebrated 1859
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original Riemann hypothesis [Rie60] which corresponds to the number field Q of rational numbers and
to the completion ξ of the classic Riemann zeta function).

Along these lines, Alexander Grothendieck [Gro60], [Gro66], [Gro69], proposed a set of conjectures
and a possible plan of attack which, thus far, has remained unfulfilled. His then conjectural motivic
cohomology, along with its associated and partly mythical notion of motive, has remained to this day
an unrealized, although quite attractive, dream.

More recently, Christopher Deninger has proposed a largely heuristic but quite interesting coho-
mological approach to number theory (see, e.g., [Den92], [Den93], [Den94]).

Within the context of fractal geometry, M. L. Lapidus and Machiel van Frankenhuisjen [LvF00],
[LvF06], [LvF13], suggested a possible analogy between aspects of fractal geometry and arithmetic
geometry, via in particular, the use of a Frobenius operator – viewed as a differential operator acting
on a suitable Hilbert space – and a yet to be constructed fractal cohomology associated with the
Complex Dimensions of the underlying fractal space. Part of this program was further extended by
the second author in his book [Lap08], by means of a conjectural fractal flow acting on a moduli space
of fractal strings and of its quantization, the moduli space of fractal membranes. In particular, a
conjectural functional equation connecting a fractal membrane and its dual membrane, played a key
role in that fractal setting.

In the recent book of Hafedh Herichi and the second author on quantized number theory [HL21],
the real version of the differentiation operator (or infinitesimal shift) proposed in [LvF06], [LvF13], was
made precise and studied in detail, while a complex version (based, in particular, on suitable weighted
Bergman spaces) enabled Tim Cobler and the second author [CL17] to develop a first rigorous version
of fractal cohomology and of a Frobenius operator acting on it, the spectrum of which coincides with
the zeros and the poles of any given (appropriate) meromorphic function – including the Riemann
zeta function and other L-functions. (See also the second author’s forthcoming book, [Lap24].)

What was missing, however, in this analytic approach, was a direct connection with an underlying
geometric space. Building on the new h-cohomology developed by the first author and Gilles Lebeau
in [DL23d], along with an extension of the theory of Complex Dimensions introduced in [DL22a] (and
later completed in [DL23b], see also [DL24a], [DL24b]), the authors of the present paper proposed for
the first time in [DL22b] a geometric fractal cohomology theory, which they applied to the Weierstrass
Curve in order to explicitly calculate the corresponding local and global (i.e., total) fractal cohomology
groups and the associated sets of potential Complex Dimensions, which turn out to be subsets of their
counterparts obtained in [DL22a] and [DL23b].

In the present work, we will show that the resulting local and global fractal cohomology spaces and
their orthogonal decompositions provide a very useful geometric map of the Weierstrass Curve and
its prefractal graph approximations (as well as of the vertices of its associated polygons), respectively,
and that the corresponding decompositions of the Frobenius operator (viewed as a specific operator
defined by means of the local and global zeta functions and acting on the corresponding fractal coho-
mology spaces) yield a significant amount of new information – including finite and infinite products
of the characteristic determinants of Frobenius.

In the process, we obtain entirely new connections between fractal geometry, complex differential
geometry, Kähler geometry and Hodge theory, as well as algebraic and arithmetic geometry. Conse-
quently, those developments constitute an important step towards a future unification of many aspects
of fractal geometry, algebraic topology and geometry, differential geometry, number theory and arith-
metic geometry.
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Our main results in the present paper can be found in the following places:

i. In Theorem 3.1, on page 30, along with Theorem 3.2, on page 33, where we establish the con-
nection between the Weierstrass function, our fractal zeta functions and suitable differential
operators. Note that the first result also makes the connection with the sequence of prefractal
graphs which approximate the Weierstrass Curve, because the coordinates of the vertices are, of
course, obtained by means of the values taken by the Weierstrass function.

ii. In Definition 4.14, on page 46, and Theorem 4.10, on page 46, where we introduce the natural

transfer operator, LW , and its dual L#
W , respectively associated with the Weierstrass Curve ΓW

and defined in terms of the underlying iterated function system (IFS) (or of the dual IFS).

iii. In Theorem 4.24, on page 59, where we give the generators of the C-tensored (i.e., complex)
prefractal (or local) cohomology.

iv. In Theorem 4.30, on page 68, where we obtain a fractal analog of Hodge’s orthogonal decompo-
sition for the total (or global) cohomology space.

v. In Theorem 4.27, on page 63, where we obtain a fractal analog of Poincaré Duality, the Hard
Lefschetz Theorem (with respect to our (fractal) Lefschetz Operator, also introduced in Propo-
sition 4.32, on page 69), respectively, and in Theorem 4.25, on page 60, for the Hodge–Riemann
Relations.

vi. In Theorem 4.35, on page 72, where we give the explicit expression of the resolvent of the (differ-
ential) operator induced by the global zeta function, thereby going further in the understanding
of the connections between the zeros and the poles of the global zeta function.

vii. In Theorem 4.36, on page 78, where we unveil the Frobenius operator and determine its spec-
trum, which essentially consists of the underlying Complex Dimensions of the Weierstrass Curve.

viii. In Theorem 4.37, on page 79, where we obtain the functional equation satisfied by the global
fractal effective zeta function ζ̃

e
W , associated with the Weierstrass function W, and by the global

fractal effective zeta function ζ̃
e,⋆
W associated with the dual Weierstrass function W⋆

.

2 Preliminaries: Geometry of the Weierstrass Curve and Fractal
Zeta Functions

We begin by reviewing the main geometric properties of the Weierstrass Curve (and of the associ-
ated IFD; i.e., the sequence of prefractal graphs, the so-called Weierstrass Iterated Fractal Drums (in
short, Weierstrass IFDs)), which will be needed in this paper.

We point out that this discussion of the geometric properties of the Weierstrass largely overlaps
with its counterparts in [DL22a], [DL22b], [DL23b], [DL24b], but is essential for understanding and
laying out the ground for the results obtained in the remainder of this paper.
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2.1 Geometry of the Weierstrass Curve

Henceforth, we place ourselves in the Euclidean plane, equipped with a direct orthonormal frame.
The usual Cartesian coordinates are denoted by (x, y). The horizontal and vertical axes will be
respectively referred to as (x′x) and (y′y).

Notation 1 (Set of all Natural Numbers, and Intervals).

As in Bourbaki [Bou04] (Appendix E. 143), we denote by N = {0, 1, 2, . . .} the set of all natural
numbers, and set N⋆ = N \ {0}.

Given a, b with −∞ ⩽ a ⩽ b ⩽∞, ]a, b[ = (a, b) denotes an open interval, while, for example,
]a, b] = (a, b] denotes a half-open, half-closed interval.

Notation 2 (Wave Inequality Symbol (see [Tao06], Preface, page xiv)).

Given two positive-valued functions f and g, defined on a subset I of R, we use the following
notation, for all x ∈ I: f(x) ≲ g(x) when there exists a strictly positive constant C such that, for
all x ∈ I, f(x) ⩽ C g(x), which is equivalent to f = O (g). Note that in our forthcoming context, we
will often use O (1) to denote terms which depend on m ∈ N, but are bounded away from 0 and ∞,
uniformly in m ∈ N; more precisely, those terms will always satisfy bounds of the following form,

0 < Constantinf ⩽ O (1) ⩽ Constantsup <∞ , (R 1)

where Constantinf and Constantsup denote strictly positive and finite constants (independent ofm ∈ N).

Notation 3 (Weierstrass Parameters).

In the sequel, λ and Nb are two real numbers such that

0 < λ < 1 , Nb ∈ N⋆ and λNb > 1 ⋅ (♣) (R 2)

Note that this implies that Nb > 1; i.e., Nb ⩾ 2, if Nb ∈ N⋆, as will be the case in this paper.

As is explained in [Dav19], we deliberately made the choice to introduce the notation Nb which
replaces the initial number b, in so far as, in Hardy’s paper [Har16] (in contrast to Weierstrass’ original
article [Wei75]), b is any positive real number satisfying λ b > 1, whereas we deal here with the specific
case of a nonnegative integer, which accounts for the natural notation Nb.

Definition 2.1 (Weierstrass Function, Weierstrass Curve).

We consider the Weierstrass function W (also called, in short, the W-function) defined, for any
real number x, by

W(x) =
∞

∑
n=0

λ
n

cos (2πNn
b x) ⋅ (R 3)

We call the associated graph the Weierstrass Curve, and denote it by ΓW .
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Due to the one-periodicity of the Weierstrass function (since Nb ∈ N⋆), from now on, and without
loss of generality, we restrict our study to the interval [0, 1[= [0, 1). Note that W is continuous, and
hence, bounded on all of R. In particular, ΓW – which can equivalently be defined as the graph of the
restriction of W to [0, 1[ or to [0, 1] – is a (nonempty) compact and connected subset of R2

.

Definition 2.2 (Complexified Weierstrass Function).

We introduce the Complexified Weierstrass function Wcomp, defined, for any real number x, by

Wcomp(x) =
∞

∑
n=0

λ
n
e

2 i π N
n
b x .

Clearly, Wcomp is also a continuous and 1-periodic function on R.

Notation 4 (Logarithm).

Given y > 0, ln y denotes the natural logarithm of y, while, given a > 0, a ≠ 1, lna y =
ln y

ln a
denotes

the logarithm of y in base a; so that, in particular, ln = lne.

Notation 5 (Minkowski Dimension and Hölder Exponent).

For the parameters λ and Nb satisfying condition (♣) (see Notation 3, on page 8), we denote by

DW = 2 +
lnλ

lnNb
= 2 − lnNb

1

λ
∈ ]1, 2[

the box-counting dimension (or Minkowski dimension) of the Weierstrass Curve ΓW , which happens
to be equal to its Hausdorff dimension [KMPY84], [BBR14], [She18], [Kel17]. We point out that,
in [DL23b] (announced in [DL23a]), and in [DL22a] respectively, is provided a direct geometric and
fully rigorous proof of the fact that DW , the Minkowski dimension (or box-counting dimension) of ΓW ,
exists and takes the above values, as well as of the fact that W is Hölder continuous with optimal
Hölder exponent

2 −DW = −
lnλ

lnNb
= lnNb

1

λ
.

Convention (The Weierstrass Curve as a Cyclic Curve).

In the sequel, we identify the points (0,W(0)) and (1,W(1)) = (1,W(0)). This is justified by the
fact that the Weierstrass function W is 1-periodic, since Nb is an integer.

Remark 2.1. The above convention makes sense, because, in addition to the periodicity property of
the W-function, the points (0,W(0)) and (1,W(1)) have the same vertical coordinate.

9



Property 2.1 (Symmetry with Respect to the Vertical Line x =
1

2
).

Since, for any x ∈ [0, 1],

W(1 − x) =
∞

∑
n=0

λ
n

cos (2πNn
b − 2πN

n
b x) =W(x) ,

the Weierstrass Curve is symmetric with respect to the vertical straight line x =
1

2
.

In the sequel, we will denote by S the symmetry with respect to the vertical straight line x =
1

2
.

Proposition 2.2 (Nonlinear and Noncontractive Iterated Function System (IFS)).

Following our previous work [Dav18], we approximate the restriction ΓW to [0, 1[×R, of the
Weierstrass Curve, by a sequence of finite graphs, built via an iterative process. For this purpose, we
use the nonlinear iterated function system (IFS) consisting of a finite family of C

∞
bijective maps

from R2
to R2

and denoted by
TW = {T0, . . . , TNb−1} ,

where, for any integer i belonging to {0, . . . , Nb − 1} and any point (x, y) of R2
,

Ti(x, y) = (x + i
Nb

, λ y + cos (2π (x + i
Nb

))) .

Note that unlike in the classical situation, these maps are not contractions. Nevertheless, ΓW can
be recovered from this IFS in the usual way, as we next explain.

Property 2.3 (Attractor of the IFS [Dav18], [Dav19]).

The Weierstrass Curve ΓW is the attractor of the IFS TW , and hence, is the unique nonempty

compact subset K of R2
satisfying K =

Nb−1

⋃
i=0

Ti(K); in particular, we have that ΓW =

Nb−1

⋃
i=0

Ti(ΓW).

Notation 6 (Fixed Points).

For any integer i belonging to {0, . . . , Nb − 1}, we denote by

Pi = (xi, yi) = ( i

Nb − 1
,

1

1 − λ
cos ( 2π i

Nb − 1
))

the unique fixed point of the map Ti; see [Dav19].

Definition 2.3 (Sets of Vertices, Prefractals).

We denote by V0 the ordered set (according to increasing abscissae) of the points

{P0, . . . , PNb−1} .
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The set of points V0 – where, for any integer i in {0, . . . , Nb − 2}, the point Pi is linked to the
point Pi+1 – constitutes an oriented finite graph, ordered according to increasing abscissae, which we
will denote by ΓW0

. Then, V0 is called the set of vertices of the graph ΓW0
.

For any nonnegative integer m, i.e., for any m ∈ N, we set Vm =

Nb−1

⋃
i=0

Ti (Vm−1).

The set of points Vm, where two consecutive points are linked (to form an edge), is an oriented finite

graph, ordered according to increasing abscissae, called the m
th

order W-prefractal. Then, Vm is
called the set of vertices of the prefractal ΓWm

; see Figure 2, on page 15.

Property 2.4 (Density of the Set V
⋆
= ⋃
n∈N

Vn in the Weierstrass Curve [DL22b]).

The set V
⋆
= ⋃
n∈N

Vn is dense in the Weierstrass Curve ΓW .

Definition 2.4 (Adjacent Vertices, Edge Relation).

For any m ∈ N, the prefractal graph ΓWm
is equipped with an edge relation ∼

m
, as follows: two

vertices X and Y of ΓWm
(i.e., two points belonging to Vm) will be said to be adjacent (i.e., neighboring

or junction points) if and only if the line segment [X,Y ] is an edge of ΓWm
; we then write X ∼

m
Y .

Note that this edge relation depends on m, which means that points adjacent in Vm might not remain
adjacent in Vm+1. This simple fact will play a crucial role in this paper, especially when discussing
the orthogonal decomposition of the (complex) fractal cohomology spaces and their consequences, in
Section 4.

Property 2.5 (Scaling Properties of the Weierstrass Function, and Consequences [DL22a]).

Since, for any real number x, W(x) =
∞

∑
n=0

λ
n

cos (2πNn
b x), we have that

W(Nb x) =
∞

∑
n=0

λ
n

cos (2πN
n+1
b x) = 1

λ

∞

∑
n=1

λ
n

cos (2πNn
b x) =

1

λ
(W(x) − cos (2π x)) ,

this yields, for any strictly positive integer m and any j in {0, . . . ,#Vm − 1},

W ( j

(Nb − 1)Nm
b

) = λW ( j

(Nb − 1)Nm−1
b

) + cos ( 2π j

(Nb − 1)Nm
b

) .

By induction, one then obtains that

W ( j

(Nb − 1)Nm
b

) = λmW ( j

(Nb − 1)) +
m−1

∑
k=0

λ
k

cos( 2πN
k
b j

(Nb − 1)Nm
b

) .
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We refer to part iv. of Property 2.6, along with Figure 1, for the definition of the polygons Pm,k
and Qm,k associated with the Weierstrass Curve and which will play an important role in the sequel.

Property 2.6. [Dav18] For any m ∈ N, the following statements hold :

i. Vm ⊂ Vm+1 .

ii. #Vm = (Nb − 1) Nm
b + 1, where #Vm denotes the number of elements in the finite set Vm.

iii. The prefractal graph ΓWm
has exactly (Nb − 1) Nm

b edges.

iv. The consecutive vertices of the prefractal graph ΓWm
are the vertices of N

m
b simple nonregular

polygons Pm,k with Nb sides. For any strictly positive integer m, the junction point between two
consecutive polygons Pm,k and Pm,k+1 is the point

( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

)) , 1 ⩽ k ⩽ N
m
b − 1 .

Hence, the total number of junction points is N
m
b − 1. For instance, in the case Nb = 3, the

polygons are all triangles; see Figure 1, on page 13.

We call extreme vertices of the polygon Pm,k the junction points

Vinitial (Pm,k) = ( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

)) , 0 ⩽ k ⩽ N
m
b − 1 ,

and

Vend (Pm,k) = ((Nb − 1) (k + 1)
(Nb − 1)Nm

b

,W ( (Nb − 1) (k + 1)
(Nb − 1)Nm

b

)) , 0 ⩽ k ⩽ N
m
b − 2 .

In the sequel, we will denote by P0 the initial polygon, whose vertices are the fixed points of
the maps Ti, 0 ⩽ i ⩽ Nb − 1, introduced in Notation 6, on page 10 and Definition 2.3, on page 10,
i.e., {P0, . . . , PNb−1}; see, again, Figure 1, on page 13.

In the same way, the consecutive vertices of the prefractal graph ΓWm
, distinct from the fixed

points P0 and PNb−1 (see Notation 6, on page 10), are also the vertices of N
m
b − 1 simple

nonregular polygons Qm,j, for 1 ⩽ j ⩽ N
m
b − 2, again with Nb sides. For any integer j such

that 1 ⩽ j ⩽ N
m
b − 2, one obtains each polygon Qm,j by connecting the point number j (i.e., with

the notation of Property 2.6 below, on page 13, the vertex Mj,m) to the point number j + 1 (i.e.,
the vertex Mj+1,m) if j ≡ imod Nb, for 1 ⩽ i ⩽ Nb − 1, and the point number j to the point num-
ber j −Nb + 1 if j ≡ 0 mod Nb.

As previously, we call extreme vertices of the polygon Qm,k the points

Vinitial (Qm,k) = ( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

)) , 1 ⩽ k ⩽ N
m
b − 1 ,

and

Vend (Qm,k) = ((Nb − 1) (k + 1)
(Nb − 1)Nm

b

,W ( (Nb − 1) (k + 1)
(Nb − 1)Nm

b

)) , 1 ⩽ k ⩽ N
m
b − 2 .
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Definition 2.5 (Polygonal Set [DL24b]).

For any m ∈ N, we introduce the following polygonal sets,

Pm = {Pm,k , 0 ⩽ k ⩽ N
m
b − 1} and Qm = {Qm,k , 0 ⩽ k ⩽ N

m
b − 2} .

P0 P2

P1

polygon P1,0

polygon P1,1

polygon P1,2

polygon Q1,2polygon Q1,1

Initial polygon 

1
x

-1

1

y

Figure 1: The initial polygon P0, and the respective polygons P0,1, P1,1, P1,2, Q1,1, Q1,2,

in the case when λ =
1

2
and Nb = 3. (See also Figure 2, on page 15.)

Notation 7. For any m ∈ N, we denote by:

ii. X ∈ Pm (resp., X ∈ Qm) a vertex of a polygon Pm,k, with 0 ⩽ k ⩽ N
m
b − 1 (resp., a vertex of

a polygon Qm,k, with 1 ⩽ k ⩽ N
m
b − 2).

ii. Pm⋃Qm the reunion of the polygonal sets Pm and Qm, which consists in the set of all the
vertices of the polygons Pm,k, with 0 ⩽ k ⩽ N

m
b − 1, along with the vertices of the polygons Qm,k,

with 1 ⩽ k ⩽ N
m
b − 2. In particular, X ∈ Pm⋃Qm simply denotes a vertex in Pm or Qm.

iii. Pm⋂Qm the intersection of the polygonal sets Pm and Qm, which consists in the set of all the
vertices of both a polygon Pm,k, with 0 ⩽ k ⩽ N

m
b − 1, and a polygon Qm,k′ , with 1 ⩽

′
k ⩽ N

m
b − 2.

Definition 2.6 (Vertices of the Prefractals, Elementary Lengths, Heights and Angles [DL22a]).

Given a strictly positive integer m, we denote by (Mj,m)0⩽j⩽(Nb−1)Nm
b

the set of vertices of the

prefractal graph ΓWm
. One thus has, for any integer j in {0, . . . , (Nb − 1)Nm

b }:

13



Mj,m = ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) .

We also introduce, for any integer j in {0, . . . , (Nb − 1)Nm
b − 1}:

i. the elementary horizontal lengths:

Lm =
j

(Nb − 1)Nm
b

; (R 4)

ii. the elementary lengths:

lj,j+1,m = d (Mj,m,Mj+1,m) =
√
L2
m + h

2
j,j+1,m ,

where hj,j+1,m is defined in iii. just below.

iii. the elementary heights:

hj,j+1,m =

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»

;

iv. the minimal height:

h
inf
m = inf

0⩽j⩽(Nb−1)Nm
b −1

hj,j+1,m , (R 5)

along with the the maximal height:

hm = sup
0⩽j⩽(Nb−1)Nm

b −1

hj,j+1,m ; (R 6)

v. the geometric angles:

θj−1,j,m = ̂((y′y), (Mj−1,mMj,m)) , θj,j+1,m = ̂((y′y), (Mj,mMj+1,m)) ,

which yield the value of the geometric angle between consecutive edges,
namely, [Mj−1,mMj,m,Mj,mMj+1,m]:

θj−1,j,m + θj,j+1,m = arctan
Lm

∣hj−1,j,m∣
+ arctan

Lm

∣hj,j+1,m∣
.
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1
x

-1

1

y

(a) The prefractal graph ΓW0
, in the

case when λ =
1

2
and Nb = 3.

1
x

-1

1

y

(b) The prefractal graph ΓW1
, in the

case when λ =
1

2
and Nb = 3.

1
x

-1

1

y

(c) The prefractal graph ΓW2
, in the

case when λ =
1

2
and Nb = 3.

1
x

-1

1

y

(d) The prefractal graph ΓW3
, in the

case when λ =
1

2
and Nb = 3.

1
x

-1

1

y

(e) The prefractal graph ΓW4
, in the

case when λ =
1

2
and Nb = 3.

1
x

-1

1

y

(f) The prefractal graph ΓW5
, in the

case when λ =
1

2
and Nb = 3.

Figure 2: The prefractal graphs ΓW0
, ΓW1

, ΓW2
, ΓW3

, ΓW4
, ΓW5

, in the case when λ =
1

2
and Nb = 3.
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Property 2.7. For the geometric angle θj−1,j,m, 0 ⩽ j ⩽ (Nb − 1)Nm
b , m ∈ N, we have the following

relation:

tan θj−1,j,m =
hj−1,j,m

Lm
.

The following property and definition play an important role in our previous work (especially, [DL22a],
[DL24a], provided in this context in [DL22b], including for our interpretation of Poincaré duality).

Property 2.8 (A Consequence of the Symmetry with Respect to the Vertical Line x =
1

2
).

For any strictly positive integer m and any j in {0, . . . ,#Vm − 1}, we have that

W ( j

(Nb − 1)Nm
b

) =W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

) ,

which means that the points

((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

,W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

)) and ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

are symmetric with respect to the vertical line x =
1

2
; see Figure 3, on page 17.

Definition 2.7 (Left-Side and Right-Side Vertices).

Given nonnegative integers m, k such that 0 ⩽ k ⩽ N
m
b − 1, and a polygon Pm,k, we define:

i. The set of its left-side vertices as the set of the first [Nb − 1

2
] vertices, where [y] denotes the

integer part of the real number y.

ii. The set of its right-side vertices as the set of the last [Nb − 1

2
] vertices.

When the integer Nb is odd, we define the bottom vertex as the (Nb − 1

2
)
th

one; see Figure 4, on

page 17.
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M j-1,m

M j-1+p,m

M(Nb-1)Nb
m
- j+1,m

M(Nb-1)Nb
m
- j+1-p,m

x =
1

2

1
x

-1

1

y

Figure 3: Symmetric points with respect to the vertical line x =
1

2
.

Left - side vertices Right - side vertices

Bottom vertex

x

y

Left - side vertices

Right - side vertices

Bottom vertex

1
x

-1

1

y

Figure 4: The Left and Right–Side Vertices.

Property 2.9 ([DL22a]).

For any integer j in {0, . . . , Nb − 1}:

W ( j

Nb − 1
) =

∞

∑
n=0

λ
n

cos (2πN
n
b

j

(Nb − 1)) =
∞

∑
n=0

λ
n

cos ( 2π j

Nb − 1
) = 1

1 − λ
cos ( 2π j

Nb − 1
) .

Property 2.10 ([DL22a]).

For 0 ⩽ j ⩽
(Nb − 1)

2
(resp., for

(Nb − 1)
2

⩽ j ⩽ Nb − 1), we have that

W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩽ 0 (resp., W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩾ 0) .
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Notation 8 (Signum Function).

The signum function of a real number x is defined by

sgn (x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1, if x < 0,
0, if x = 0,
+1, if x > 0 .

Property 2.11 ([DL22a]).

Given any strictly positive integer m, we have the following properties:

i. For any j in {0, . . . ,#Vm − 1}, the point

( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

is the image of the point

( j

(Nb − 1)Nm−1
b

− i,W ( j

(Nb − 1)Nm−1
b

− i)) = (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

,W (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

))

under the map Ti, where i ∈ {0, . . . , Nb − 1} is arbitrary.

Consequently, for 0 ⩽ j ⩽ Nb − 1, the j
th

vertex of the polygon Pm,k, 0 ⩽ k ⩽ N
m
b − 1, i.e.,

the point

((Nb − 1) k + j
(Nb − 1)Nm

b

,W ((Nb − 1) k + j
(Nb − 1)Nm

b

)) ,

is the image of the point

⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j
(Nb − 1)Nm−1

b

,W
⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j
(Nb − 1)Nm−1

b

⎞
⎟
⎠
⎞
⎟
⎠

under the map Ti, where i ∈ {0, . . . , Nb − 1} is again arbitrary. It is also the j
th

vertex of
the polygon Pm−1,k−i (Nb−1)Nm−1

b
. Therefore, there is an exact correspondence between vertices

of the polygons at consecutive steps m − 1, m.

ii. Given j in {0, . . . , Nb − 2} and k in {0, . . . , N
m
b − 1}, we have that

sgn (W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W (k (Nb − 1) + j
(Nb − 1)Nm

b

)) = sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) .
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Proof.

i. Given m ∈ N⋆, let us consider i ∈ {0, . . . , Nb − 1}. The image of the point

( j

(Nb − 1)Nm−1
b

− i,W ( j

(Nb − 1)Nm−1
b

− i))

under the map Ti is obtained by applying the analytic expression given in Property 2.2, on page 10,
to the coordinates of this point, which, thanks to Property 2.5, on page 11 above, yields the expected
result, namely,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

j

(Nb − 1)Nm
b

, λ W ( j

(Nb − 1)Nm−1
b

− i)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
W ( j

(Nb − 1)Nm−1
b

)

(by 1-periodicity)

+ cos
2π j

(Nb − 1)Nm
b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) .

ii. See [DL22a].

Property 2.12 (Lower Bound and Upper Bound for the Elementary Heights [DL22a]).

For any strictly positive integer m and any j in {0, . . . , (Nb − 1)Nm
b }, we have the following esti-

mates, where Lm is the elementary horizontal length introduced in part i. of Definition 2.6, on page 13:

Cinf L
2−DW
m ⩽ ∣W ((j + 1)Lm) −W (j Lm)∣

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
hj,j+1,m

⩽ Csup L
2−DW
m , m ∈ N, 0 ⩽ j ⩽ (Nb − 1)Nm

b , (✠)

where the finite and positive constants Cinf and Csup are given by

Cinf = (Nb − 1)2−DW min
0⩽j⩽Nb−1,W( j+1

Nb−1
)≠W( j

Nb−1
)

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»

and

Csup = (Nb − 1)2−DW ( max
0⩽j⩽Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1)) .

One should note, in addition, that these constants Cinf and Csup depend on the initial polygon P0,
but are independent of m ∈ N sufficiently large.

As a consequence, we also have that
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Cinf L
2−DW
m ⩽ h

inf
m ⩽ Csup L

2−DW
m and Cinf L

2−DW
m ⩽ hm ⩽ Csup L

2−DW
m ,

where h
inf
m and hm respectively denote the minimal and maximal heights introduced in part iv. of Def-

inition 2.6, on page 13.

Theorem 2.13 (Sharp Local Discrete Reverse Hölder Properties of the Weierstrass Func-
tion [DL22a]).

For any nonnegative integer m (i.e., for any m ∈ N), let us consider a pair of real numbers (x, x′)
such that

x =
(Nb − 1) k + j
(Nb − 1)Nm

b

= ((Nb − 1) k + j) Lm , x
′
=

(Nb − 1) k + j + `
(Nb − 1)Nm

b

= ((Nb − 1) k + j + `) Lm ,

where 0 ⩽ k ⩽ N
m
b − 1. We then have the following (discrete, local) reverse-Hölder inequality, with

sharp Hölder exponent −
lnλ

lnNb
= 2 −DW :

Cinf ∣x′ − x∣2−DW
⩽

»»»»»W(x′) −W(x)»»»»» ,

where (x,W(x)) and (x′,W(x′)) are adjacent vertices of the same m
th

prefractal approximation, ΓWm
,

with m ∈ N arbitrary. Here, Cinf is given as in Property 2.12, on page 19 just above.

Corollary 2.14 (Optimal Hölder Exponent for the Weierstrass Function (see [DL22a])).

The local reverse Hölder property of Theorem 2.13, on page 20 just above – in conjunction with
the Hölder condition satisfied by the Weierstrass function (see also [Zyg02], Chapter II, Theorem 4.9,

page 47) – shows that the Codimension 2 −DW = −
lnλ

lnNb
∈ ]0, 1[ is the best (i.e., optimal) Hölder

exponent for the Weierstrass function (as was originally shown, by a completely different method,
by G. H. Hardy in [Har16]).

Note that, as a consequence, since the Hölder exponent is strictly smaller than one, it follows
that the Weierstrass function W is nowhere differentiable. Indeed, if W were differentiable at some
point x0 ∈ R, it would have to be locally Lipschitz at x0.

Corollary 2.15 (of Property 2.12 (see [DL22a])).

Thanks to Property 2.12, on page 19, one may now write, for any strictly positive integer m and
any integer j in {0, . . . , (Nb − 1)Nm

b − 1}, and with Cinf and Csupf defined as in Property 2.12, on
page 19:

i. for the elementary heights:

hj−1,j,m = L
2−DW
m O (1) ; (R 7)
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ii. for the elementary quotients:

hj−1,j,m

Lm
= L

1−DW
m O (1) , (R 8)

and where

0 < Cinf ⩽ O (1) ⩽ Csup <∞
ad where, as is explained in Notation 2, on page 8, the notation O (1) denotes terms which depend
on m ∈ N, but are bounded away from 0 and ∞, uniformly in m ∈ N.

Corollary 2.16 (Nonincreasing Sequence of Geometric Angles (Coming from Property 2.11;
see [DL22a])).

For the geometric angles θj−1,j,m, 0 ⩽ j ⩽ (Nb − 1)Nm
b , m ∈ N, introduced in part v. of Defini-

tion 2.6, on page 13, we have the following result:

tan θj−1,j,m =
Lm

hj−1,j,m
(Nb − 1) > tan θj−1,j,m+1 ,

which yields

θj−1,j,m > θj−1,j,m+1 and θj−1,j,m+1 ≲ L
DW−1
m .

Definition 2.8 (m
th

Cohomology Infinitesimal [DL22a], [DL22b] and m
th

Intrinsic Co-

homology Infinitesimal [DL23b], [DL23a]). From now on, given any m ∈ N, we will call m
th

cohomology infinitesimal the number ε
m
m > 0 which also corresponds to the elementary horizontal

length introduced in part i. in Definition 2.6, on page 13; i.e., ε
m
m = (εm)m =

1

Nb − 1

1

Nm
b

.

Observe that, clearly, εm itself – and not just ε
m
m – depends on m.

In addition, since Nb > 1, ε
m
m satisfies the following asymptotic behavior,

ε
m
m → 0 , as m→∞,

which, naturally, results in the fact that the largerm, the smaller ε
m
m. It is for this reason that we call ε

m
m

– or rather, the sequence (εmm)∞m=0 of positive numbers tending to zero as m→∞, with ε
m
m = (εm)m,

for each m ∈ N – an infinitesimal. Note that this m
th

cohomology infinitesimal is the one naturally
associated to the scaling relation of Proposition 2.5, on page 11.

In the sequel, it is also useful to keep in mind that the sequence of positive numbers (εm)∞m=0 itself
satisfies

εm ∼
1

Nb
, as m→∞ ;

i.e., εm →
1

Nb
, as m→∞. In particular, εm /→ 0, as m→∞, but, instead, εm tends to a strictly

positive and finite limit.
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We also introduce, given anym ∈ N, them
th

intrinsic cohomology infinitesimal, denoted by ε
m
> 0,

such that

ε
m
=

1

Nm
b

,

where

ε =
1

Nb
.

We call ε the intrinsic scale, or intrinsic subdivision scale.

Note that

ε
m
m = (εm)m =

ε
m

Nb − 1

and that εm → ε, as m→∞.

Remark 2.2 (Connection Between the Parameter λ and the Minkowski Dimension DW).

Note that since

2 −DW = −
lnλ

lnNb
= lnNb

1

λ
,

(see Notation 5, on page 9), we also have that

λ = N
DW−2
b = ε

2−DW ,

where ε =
1

Nb
is the intrinsic scale introduced in Definition 2.8 just above, on page 21.

Definition 2.9 (Cohomological Vertex Integer [DL24b]).

Given m ∈ N, and a vertex Mj,m =M(Nb−1) k′+k” ,m ∈ Vm, of abscissa ((Nb − 1) k′ + k”) εmm, where

0 ⩽ k
′
⩽ N

m
b − 1 and 0 ⩽ k” ⩽ Nb − 1, we introduce the cohomological vertex integer `j,m associated to

the vertex Mj,m (which is also the (k”)th vertex of the polygon Pm,k′ ; see part iv. of Property 2.6, on
page 12), as

`j,m = `k′,k”,m = (Nb − 1) k′ + k” . (R 9)

((Nb − 1) k′ + k”) εmm = ((Nb − 1) k′bis + k”bis) εm+1
m+1 .

Depending on the context; that is,

i. when the cohomological vertex integer enables one to locate the vertex Mj,m.

ii. When it is used in a more general framework, i.e., in order to describe the generators of coho-
mology groups;

we will use the best suited notation between `j,m, in case i., or `k′,k”,m, in case ii.
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Proposition 2.17 (Cross-Scales Paths, and Associated Sequence of Vertex Integers).

Given m ∈ N, 0 ⩽ j ⩽ #Vm − 1 and a vertex Mj,m =M(Nb−1) k′+k”,m in Vm, with

0 ⩽ k
′
⩽ N

m
b − 1 and 0 ⩽ k” ⩽ Nb − 1, we introduce the cross-scales path Path (Pk”,Mj,m), where Pk′

is the (k′)th fixed point of the map Tk′ (see Proposition 2.2, on page 10, along with Notation 6, on

page 10), as the ordered set (Mjk,m,k)0⩽k⩽m
such that:

i. For 0 ⩽ k ⩽ m, each vertex Mjk,m,k is in Vk \ Vk ∩ Vm (which means that Mjk,m,k strictly belongs

to Vk, i.e., it is in the k
th

prefractal approximation ΓWk
, and not in ΓWk+1

).

ii. For 1 ⩽ k ⩽ m, each vertex Mjk,m,k =M(Nb−1) k′k,m+k”,k, with 0 ⩽ k
′
k,m ⩽ N

k
b − 1, is the image of

the point Mjk−1,m,k−1 under the map Ti (see again Proposition 2.2, on page 10), where i ∈ {0, . . . , Nb − 1}
is the smallest admissible value. We thus also have that

Mjk−1,m,k−1 =
⎛
⎜
⎝
(Nb − 1) (k′k,m − i (Nb − 1)Nk−1

b ) + k”

(Nb − 1)Nk−1
b

,W
⎛
⎜
⎝
(Nb − 1) (k′k,m − i (Nb − 1)Nk−1

b ) + k”

(Nb − 1)Nk−1
b

⎞
⎟
⎠
⎞
⎟
⎠
.

This latter point is also the (k”)th vertex of the polygon k
′
k,m − i (Nb − 1)Nk−1

b (see part iv.
of Property 2.6, on page 12).

The sequence of vertex integers associated with the cross-scales path Path (Pk”,Mj,m) (or, in
short, and equivalently, also refered to as the sequence of vertex integers associated with Mj,m) is the

sequence (`jk,m,k)0⩽k⩽m
, where, for 0 ⩽ k ⩽ m, `jk,m,k is the cohomological vertex integer associated

with the vertex Mjk,m,k (see Definition 2.9, on page 22).

Proof. We simply use the results of Property 2.11, on page 18.

We now recall the following key result, obtained in [DL22b], and extended in [DL23b].

Theorem 2.18 (Complex Dimensions Series Expansion of the Complexified Weierstrass
function Wcomp [DL22b], [DL23b], and of the Weierstrass function W).

For any sufficiently large positive integer m and any j in {0, . . . ,#Vm − 1}, we have the following
exact expansion, indexed by the Complex Codimensions k (DW − 2) + i k `jk,m,k p, with 0 ⩽ k ⩽ m,

Wcomp (j εmm) = Wcomp (
j ε

m

Nb − 1
)

= ε
m (2−DW) Wcomp (

j

Nb − 1
) +

m−1

∑
k=0

ck,j,m ε
k (2−DW)

ε
i `k,j,m p

=

m

∑
k=0

ck,j,m ε
k (2−DW)

ε
i `jk,m,k p

,

(R 10)
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where, for 0 ⩽ k ⩽ m, ε
k

is the k
th

intrinsic cohomology infinitesimal, introduced in Definition 2.8,

on page 21, with p =
2π

lnNb
denoting the oscillatory period of the Weierstrass Curve, as introduced

in [DL22a] and where:

i. `jk,m,k ∈ Z is the cohomological vertex integer associated with the vertex Mjk,m,k (see Defini-
tion 2.9, on page 22);

ii. cm,j,m =Wcomp (
j

Nb − 1
) and, for 0 ⩽ k ⩽ m − 1, ck,j,m ∈ C is given by

ck,j,m = exp ( 2 i π

Nb − 1
j ε

m−k) . (⋄⋄) (R 11)

for 0 ⩽ k ⩽ m, the coefficient ck,j,m will also be referred to as the k
th

Weierstrass coefficient asso-
ciated with the vertex Mjk,m,k ∈ Vk.

For any m ∈ N, the complex numbers {c0,j,m+1, . . . , cm+1,j,m+1} satisfy the following recurrence
relations:

cm+1,j,m+1 =W ( j

Nb − 1
) = cm,j,m (R 12)

and

∀ k ∈ {1, . . . ,m} ∶ ck,j,m+1 = ck−1,j,m . (R 13)

In addition, since relation (R10) is valid for any m ∈ N⋆ (and since, clearly, relation (R11)
implies that the coefficients ck,j,m are nonzero for 0 ⩽ k ⩽ m), we deduce that the associated Complex
Dimensions (i.e., in fact, the Complex Dimensions associated with the Weierstrass function) are

DW − k (2 −DW) + i `jk,m,k p

0 ⩽ k ⩽ m and `jk,m,k ∈ Z is the cohomological vertex integer associated with the vertex Mjk,m,k (see
Definition 2.9, on page 22).

This immediately ensures, for the Weierstrass function (i.e., the real part of the Complexified
Weierstrass function Wcomp), that, for any strictly positive integer m and for any j in {0, . . . ,#Vm − 1},

W (j εmm) = ε
m (2−DW) Wcomp (

j

Nb − 1
) +

m−1

∑
k=0

ε
k (2−DW) Re (ck,j,m ε

i `jk,m,k p

k )

= ε
m (2−DW) Wcomp (

j

Nb − 1
) + 1

2

m−1

∑
k=0

ε
k (2−DW) (ck,j,m εi `jk,m,k p

+ ck,j,m ε
− i `jk,m,k p)

=
1

2

m

∑
k=0

ε
k (2−DW) (ck,j,m εi `jk,m,k p

+ ck,j,m ε
− i `jk,m,k p) ,

(R 14)
where z̄ denotes the complex conjugate of z ∈ C.
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More generally, for any strictly positive integer m and for any integer j ∈ N (and not only any j
in {0, . . . ,#Vm − 1}),

Wcomp (j εm) =
∞

∑
k=0

ε
k (2−DW)

ck,j,m ε
k (2−DW)

ε
i `jk,m,k p

, (R 15)

where, for all k ∈ N,

ck,j,m = ε
2 i π N

k
b j ε

m

, . (R 16)

Due to the density of the set V
⋆
= ⋃
n∈N

Vn in the Weierstrass Curve ΓW (see Property 2.4, on

page 11), for each point X ∈ ΓW :

X = lim
m→∞

Mj,m ,

where Mj,m ∈ Vm. We also note that, if a vertex Mj,m =Mj ′,m+m′ is in Vm ∩ Vm+m′, for m
′
∈ N, we

of course have that, for 0 ⩽ k ⩽ m

ck,j,m = ck,j ′,m+m′ , (R 17)

along with

ε
i `jk,m,k

= ε
i `jk,m+m”,k . (R 18)

For m + 1 ⩽ k ⩽ m +m′
, we have that

ck,j,m = ck,j ′,m+m′ = 0 . (R 19)

Property 2.19 (A Hodge Diamond Star Relation [DL23b]).

For any m ∈ N⋆, any k in {1, . . . ,m} and any j in {0, . . . ,#Vm − 1}, we have the following Hodge
Diamond Star relation

ck,(Nb−1)Nm
b −j,m

ε
i `k,(Nb−1)Nm

b −j,m p
= ck,j,m ε

i `k,j,m p , (R 20)

which is directly connected to the symmetry with respect to the vertical line x =
1

2
, stated in Prop-

erty 2.8, on page 16, since the points

((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

,W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

)) and ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

are symmetric with respect to the vertical line x =
1

2
; see Figure 3, on page 17. It is also reminiscent

of Poincaré duality (see our previous work [DL22b], and the corresponding result in Theorem 4.27, on
page 63).
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2.2 Fractal Zeta Functions

Theorem 2.20 (Local and Global Polyhedral Effective Zeta Functions [DL23b]).

Given any m ∈ N⋆ sufficiently large, we introduce the m
th

local polyhedral effective zeta func-
tion ζ̃

e
m, such that, for all s ∈ C,

ζ̃
e
m(s) =

1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=1

ck,(Nb−1) j+q,m ε
s−2+k (2−DW)+i `k,(Nb−1) j+q,m p

s − 2 + k (2 −DW) + i `k,(Nb−1) j+q,m p

+
1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=1

ck,(Nb−1) j+q,m ε
s−2+k (2−DW)−i `k,(Nb−1) j+q,m p

s − 2 + k (2 −DW) − i `k,(Nb−1) j+q,m p
,

(R 21)

or, equivalently,

ζ̃
e
m(s) =

1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=1

ck,(Nb−1) j+q,m ε
s−DW+(k−1) (2−DW)+i `k,(Nb−1) j+q,m p

s −DW + (k − 1) (2 −DW) + i `k,(Nb−1) j+q,m p

+
1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=1

ck,(Nb−1) j+q,m ε
s−DW+(k−1) (2−DW)−i `k,(Nb−1) j+q,m p

s −DW + (k − 1) (2 −DW) − i `k,(Nb−1) j+q,m p
,

(R 22)

where the complex coefficients ck,(Nb−1) j+q,m are given by relation (R11), on page 24, (`k,(Nb−1) j+q,m)
0⩽k⩽m

denotes the sequence of cohomological vertex integers associated with the vertex M(Nb−1) j+q,m ∈ Vm
(see Definition 2.17, on page 23), and where ε is the intrinsic scale introduced in Definition 2.8, on
page 21), and where, for 0 ⩽ j ⩽ N

m
b − 1 and 0 ⩽ q ⩽ Nb,

a. When the integer Nb is odd:

α0(Nb) = αNb−1(Nb) = −αNb−1
2

(Nb) = −αNb−1
2

+Nb−1(Nb) =
Nb − 2

2 (Nb − 1)

and for 1 ⩽ q ⩽ Nb − 2,

αNb−1
2

+q(Nb) = −αq(Nb) = −αNm
b ,(Nb−1)Nm

b −(Nb−1)+q(Nb) =
1

Nb − 1
,

along with

αNm
b ,(Nb−1)Nm

b −(Nb−1)(Nb) = αNm
b ,1(Nb) =

Nb − 2

2 (Nb − 1) .

b. When the integer Nb is even:

α0(Nb) = αNb−1(Nb) = −αNb
2
(Nb) = −αNb

2
+Nb−1(Nb) =

Nb − 2

2 (Nb − 1)

and for 1 ⩽ q ⩽ Nb − 2,

αNb
2
+q(Nb) = −αq(Nb) = −αNm

b ,(Nb−1)Nm
b −(Nb−1)+q(Nb) = −

1

Nb − 1
,
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along with

αNm
b ,(Nb−1)Nm

b −(Nb−1)(Nb) = αNm
b ,1(Nb) =

Nb − 2

2 (Nb − 1) .

More specifically, still for all m ∈ N⋆ sufficiently large, the function ζ̃
e
m is well defined and mero-

morphic in all of C. Furthermore, its (necessarily unique) meromorphic extension (still denoted by ζ̃
e
m)

is given, for all s ∈ C by the expressions given in relation (R21) above.

Moreover, the associated sequence (ζ̃em)
m∈N

satisfies the following recurrence relation, for all values
of the positive integer m sufficiently large, and for all s ∈ C:

ζ̃
e
m+1(s)= ε ζ̃

e
m(s)

+
1

2
ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

m+1

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−DW+(k−1) (2−DW)+i ((Nb−1) j+q)p

s −DW + (k − 1) (2 −DW) + i ((Nb − 1) j + q) p

+
1

2
ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

m+1

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−DW+(k−1) (2−DW)−i ((Nb−1) j+q)p

s −DW + (k − 1) (2 −DW) − i ((Nb − 1) j + q) p
,

(R 23)
where the complex coefficients ck,(Nb−1) j+q,m+1 are given by relation (R11), on page 24.

This ensures the existence of the limit fractal zeta function ζ̃
e
W , i.e., the fractal zeta function

associated with the Weierstrass Curve ΓW (or, rather, with the Weierstrass IFD), called the global
polyhedral effective zeta function and given by

ζ̃
e
W = lim

m→∞
ζ̃
e
m ,

where the convergence is locally uniform on C, along with the existence of an integer m0 ∈ N such
that, for any integer integer m ⩾ m0, the set of poles of ζ̃

e
W is a subset of the set of poles of ζ̃

e
m+1 –

and hence also, of that of ζ̃
e
W . More specifically, ζ̃

e
W is meromorphic in all of C and its meromorphic

extension (still denoted ζ̃
e
W) is given, for all s ∈ C by

ζ̃
e
W(s) =

1

2

1

1 − ε
lim
m→∞

ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

m+1

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−DW+(k−1) (2−DW )+i ((Nb−1) j+q)p

s −DW + (k − 1) (2 −DW) + i ((Nb − 1) j + q) p

+
1

2

1

1 − ε
lim
m→∞

ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

m+1

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−DW+(k−1) (2−DW )−i ((Nb−1) j+q)p

s −DW + (k − 1) (2 −DW) − i ((Nb − 1) j + q) p
,

(R 24)

where the complex coefficients ck,(Nb−1) j+q,m+1 are given by relation (R11), on page 24.

In this statement, the meromorphic functions ζ̃
e
m and ζ̃

e
W are viewed as continuous functions with

values in the Riemann sphere In this statement, the meromorphic functions P
1(C) = C ∪∞, equipped

with the chordal metric, as in [LvF13], [LRŽ17b], [LvF00], [HL21].

In other words, ζ̃
e
W admits a (necessarily unique) meromorphic continuation, given, for all s ∈ C,

by relation (R24) just above.
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As was mentioned in the introduction, we note that our result is stronger than the one previously
obtained in [DL22a], where, in particular, the values of the possible Complex Dimensions of the Weier-
strass IFD included −2, 0 and 1 − 2 k, with k ∈ N arbitrary. As we can see in relation (R24) just
above, the poles of the limit effective fractal zeta function ζ̃

e
W are exactly the same as the Complex

Dimensions of the Weierstrass function itself; see Theorem 2.18, on page 23. Note that, in [DL22a],
the Complex Dimensions are defined in terms of the volume of the tubular (rather than polyhedral)
neighborhoods of the Weierstrass IFD.

Corollary 2.21 (Intrinsic Complex Dimensions of the Weierstrass Curve).

The Intrinsic Complex Dimensions (or Complex Dimensions, in short) of the Weierstrass Curve ΓW
– defined as the poles of the global polyhedral effective zeta function ζ̃

e
W – are all exact (i.e., actual

poles of ζ̃
e
W), simple and given by

ωjk,m,k = DW − k (2 −DW) ± i `jk,m,k p , with m ∈ N arbitrary and 0 ⩽ k ⩽ m, (R 25)

where the integers `jk,m,k ∈ N (which depend on k and m) are given in Theorem 2.18, on page 23) and

where DW = 2 − lnNb

1

λ
, 2 −DW = lnNb

1

λ
and p =

2π

lnNb
are, respectively, the Minkowski Dimension,

the optimal Hölder exponent (as well as the Minkoswki Codimension) and the oscillatory period of the
Weierstrass Curve. (Note that, for notational simplicity, we use the notation `jk,m,k of Theorem 2.18,
on page 23 – associated to the integer 0 ⩽ k ⩽ m – instead of the notation `k,(Nb−1) j+q,m – associated
to the integer k − 1 ⩾ 0 of Theorem 2.20, on page 26. Of course, both notations are equivalent.)

Consequently, the Weierstrass Curve ΓW has (countably) infinitely many nonreal Complex Di-
mensions and is fractal. More specifically, in the terminology of [LRŽ17b], [Lap19], ΓW is fractal in
(countably) infinitely many dimensions dk = DW − k (2 −DW), with k ∈ N arbitrary. Furthermore,
for any k ∈ N, on the vertical line with abscissa dk = DW − k (2 −DW) ∈ R, there are (countably)
infinitely many nonreal Complex Dimensions, in complex conjugate pairs.

Remark 2.3 (Intrinsic Prefractal Complex Dimensions of the Weierstrass Curve).

Similarly, for all m ∈ N⋆ sufficiently large (i.e., for all m ⩾ m0, for some m0 ∈ N⋆), the m
th

prefractal Complex Dimensions of the Weierstrass Curve – defined as the poles of the m
th

local poly-
hedral effective zeta function ζ̃

e
m – are given as in Corollary 2.21 just above, except for the fact

that m ∈ N⋆ is fixed (equal to this value of m) and hence, is no longer arbitrary. Accordingly, for a

given k ∈ N, with 0 ⩽ k ⩽ m, there are only finitely many m
th

prefractal Complex Dimensions with
real part dk = DW − k (2 −DW) – namely ωk ∈ R itself and also, finitely many (nonreal) complex
conjugate pairs with real part ωk.

In particular, for all m ⩾ m0, the m
th

prefractal approximation ΓWm
to the Weierstrass Curve ΓW

is fractal in finitely many dimensions dk = DW − k (2 −DW), as above, with 0 ⩽ k ⩽ m.
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Corollary 2.22 (A Resulting Hodge Diamond Star Relation Satisfied by the Coefficients
Involved in the Expression for the Local and Global Polyhedral Effective Zeta Functions).

For any m ∈ N⋆, any k in {1, . . . ,m} and any j in {0, . . . ,#Vm − 1}, we also have the following
Hodge Diamond Star relation,

ck,(Nb−1)Nm
b −(Nb−1) j−q,m = ck,(Nb−1) j+q,m . (R 26)

Again, as in Property 2.19 above, on page 25, it is also reminiscent of Poincaré duality (see our
previous work [DL22b], and the corresponding result inTheorem 4.27, on page 63).

Proof. This directly follows from Property 2.19, on page 25, since the coefficients involved in the
expression for the local polyhedral effective zeta functions, in relation (R21), on page 26, or, equiv-
alently, in relation (R22), on page 26, are themselves coefficients of the Complex Dimensions series
expansion of the Weierstrass function, and automatically satisfy the Hodge Diamond star relation of
Property 2.19, on page 25.

As for the coefficients involved in the expression for the global polyhedral effective zeta functions,
in relation (R24), on page 27, they are given by countably infinite linear combinations of the coef-
ficients involved in the expression for the local polyhedral effective zeta functions. Hence, they also
automatically satisfy the Hodge Diamond star relation of Property 2.19, on page 25.

3 A Toda-Like System

In this section, our main aim is to determine whether there could exist a differential operator L –
in a matrix form – such that, for any strictly positive integer m and any j in {0, . . . ,#Vm − 1}, each
term Wcomp (j εmm) could be connected to L. More precisely, we would like to obtain L in the form of a
Lie bracket (or a commutator), i.e., L = [M,J ] =MJ − J M, where (J ,M) is a Lax pair. In such
a context, it is known that, with suitable assumptions on the initial conditions, the time-dependent
differential system

d (J X)
dt

= [M,J ] X(t) (R 27)

can be solved due to the isospectral properties (i.e., here, the eigenvalues of J are independent of time,
or of any equivalent parameter that would play the role of time). More precisely, In the case of the
time variable, given an eigenvalue λ of the Jacobi matrix J , along with an eigenvector X associated
with λ, we have that

d (J X)
dt

=
d (λX)
dt

=
d (λ)
dtÍ ÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÏ
0

X + λ
d (X)
dt

= λ
dX

dt
,

while, at the same time,

[M,J ] X = λMX − J MX = (λ Id − J ) MX ,

which ensures that
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λ
dX

dt
= λ Ẋ = (λ Id − J ) MX .

Usually, the knowledge of the eigenvectors of the matrix J – or, even better, of an Hilbert basis
of eigenvectors of J – enables us to solve an inverse spectral problem; i.e., in our context, to obtain
the solutions of the differential system (R27) as functions of the (eigen)vectors of the Hilbert basis.
However, the determination of this Hilbert basis is not a compulsory step, especially, in our present
context, where the sole fact that, for any strictly positive integer m and any j in {0, . . . ,#Vm − 1},
each term Wcomp (j εmm) can be connected to a differential operator is already a very important result,
which will enable us to make the connection with the Taylor-like expansions of functions belonging to
the cohomology groups; see [DL22b].

Notation 9 (k
th

Truncated Trace of an Infinite (Square) Matrix).

Given a countably infinite (square) matrix

A∞ = (aij)1⩽i, 1⩽j ,

along with an integer k ⩾ 1, we denote by trk (A∞) the k
th

truncated trace

trk (A∞) =
k

∑
k′=0

ak′,k′ .

Theorem 3.1 (The Weierstrass Function as the Sum of Traces of a Differential Operator).

We set, for all m ∈ N, 0 ⩽ j ⩽ #Vm − 1, 0 ⩽ k
′
⩽ k ⩽ m, 0 ⩽ k” ⩽ N

m
b − 1 and 0 ⩽ j

′
⩽ Nb − 1,

β
2
k′,j = ck′,j,m ε

k
′ (2−DW)+i `k”,j,′m p

, (R 28)

where βk′,j ∈ C and we choose the standard determination of the positive square root, ε is the intrinsic
scale, introduced in Definition 2.8, on page 21, while the coefficient ck′,j,m is given by relation (R11),

on page 24, and `k”,j ′,m = j = (Nb − 1) k” + j ′ (see Definition 2.9 above, on page 22).

Let us consider the following countably infinite matrices,

JW,j,∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 β0,j 0 . . . . . . . . . 0
β0,j 1 β1,j . . . . . . ⋮
0 β1,j 1 β2,j 0 . . . ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ ⋱ ⋱ 0
⋮ . . . ⋱ ⋱ ⋱ 0 ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, MW,j,∞ =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 β0,j 0 . . . . . . . . . 0
−β0,j 1 β1,j . . . . . . ⋮

0 −β1,j 1 β2,j 0 . . . ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ ⋱ ⋱ 0
⋮ . . . ⋱ ⋱ ⋱ 0 ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and, as a result, the Lie bracket (or commutator) of these two matrices, which is the diagonal matrix
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[MW,j,∞,JW,j,∞] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

β
2
1,j − β

2
0,j 0 0 . . . . . . . . . 0

0 β
2
2,j − β

2
1,j 0 . . . . . . ⋮

0 0 β
2
3,j − β

2
2,j 0 0 . . . ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0

0 . . . . . . 0 0 β
2
k,j − β

2
k−1 0

0 . . . . . . 0 0 0 ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Note that the symmetric, tridiagonal matrix JW,j,∞ is a Jacobi matrix.

We then have that, for each integer j in {0, . . . ,#Vm − 1},

Wcomp (j εmm) =
m

∑
k=0

k

∑
k′=0

trk′ ([MW,j,∞,JW,j,∞]) . (R 29)

where, for all 0 ⩽ k
′
⩽ k, trk′ ([MW,j,∞,JW,j,∞]) is the k

′th
truncated trace of the commutator

[MW,j,∞,JW,j,∞], as introduced in Notation 9, on page 30.

Note that (JW,j,∞,MW,j,∞) forms a Lax pair, in the sense of Lax’s approach to integrable Hamil-
tonian systems; see [Lax68].

Proof. Thanks to Theorem 2.18, on page 23, we have that, for any strictly positive integer m and
any j in {0, . . . ,#Vm − 1},

W (j εmm) = 1

2

m

∑
k=0

ε
k (2−DW) (ck,j,m εi `k,j,m p

+ ck,j,m ε
− i `k,j,m p) , (R 30)

or, equivalently,

Wcomp (j εmm) =
m

∑
k=0

ck,j,m ε
k (2−DW)+i `k,j,m p

, (R 31)

where ε is the intrinsic scale, introduced in Definition 2.8, on page 21, while the coefficient ck′,j,m is

given by relation (R11), on page 24, and where `k”,j ′,m = j = (Nb − 1) k” + j ′ (see Definition 2.9 above,
on page 22), that we can also write in the following form:

Wcomp (j εmm) =

m

∑
k=0

k

∑
k′=0

(ck′,j,m εk
′ (2−DW)+i `k′,j,m p

− ck′−1,j,m ε
(k′−1) (2−DW)+i `k′,j,m p) , (R 32)

with the additional convention that c−1,j,m = 0 .

In our present context, we have that, for any strictly positive integerm and any j in {0, . . . ,#Vm − 1},

Wcomp (j εmm) =

m

∑
k=0

k

∑
k′=0

(ck′,j,m εk
′ (2−DW)+i `k′,j,m p

− ck′−1,j,m ε
(k′−1) (2−DW)+i `k′,j,m p) . (R 33)

For each fixed k ∈ {0, . . . ,m}, we introduce the following finite, k × k matrices where, for each
j ∈ {0, . . . ,#Vm − 1},
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JW,j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 β0,j 0 . . . . . . . . . 0
β0,j 1 β1,j 0 . . . . . . ⋮
0 β1,j 1 ⋱ 0 . . . ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0
0 . . . . . . 0 βk−1,j 1 βk,j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and

MW,j =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 β0,j 0 . . . . . . . . . 0
−β0,j 1 −β1,j 0 . . . . . . ⋮

0 −β1,j 0 β2,j 0 . . . ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ βk
0 . . . . . . 0 0 −βk 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where, for every k
′
∈ {0, . . . , k}, βk′,j is given by relation (R28), on page 30. Note that the symmetric,

tridiagonal matrix JW,j is a Jacobi matrix.

It follows that the commutator of these two matrices is the countably infinite diagonal matrix

[MW,j ,JW,j] =MW,j JW,j−JW,j MW,j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

β
2
1,j − β

2
0,j 0 0 . . . . . . . . . 0

0 β
2
2,j − β

2
1,j 0 . . . . . . ⋮

0 0 β
2
3,j − β

2
2,j 0 0 . . . ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0

0 . . . . . . 0 0 0 β
2
k,j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Note that we are interested here in the associated countably infinite matrices

JW,j,∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 β0,j 0 . . . . . . . . . 0
β0,j 1 β1,j . . . . . . ⋮
0 β1,j 1 β2,j 0 . . . ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ ⋱ ⋱ 0
⋮ . . . ⋱ ⋱ ⋱ 0 ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, MW,j,∞ =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 β0,j 0 . . . . . . . . . 0
−β0,j 1 β1,j . . . . . . ⋮

0 −β1,j 1 β2,j 0 . . . ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ ⋱ ⋱ 0
⋮ . . . ⋱ ⋱ ⋱ 0 ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and, as a result, in their commutator, given by the following countably infinite diagonal matrix

[MW,j,∞,JW,j,∞] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

β
2
1,j − β

2
0,j 0 0 . . . . . . . . . 0

0 β
2
2,j − β

2
1,j 0 . . . . . . ⋮

0 0 β
2
3,j − β

2
2,j 0 0 . . . ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0

0 . . . . . . 0 0 β
2
k,j − β

2
k−1,j 0

0 . . . . . . 0 0 0 ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Observe that the trace of the k × k matrix [MW,j ,JW,j] is equal to β
2
k,j − β

2
0,j ; see relation (R28),

on page 30. It is also equal to the k
th

truncated trace of [MW,j,∞,JW,j,∞].
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In light of relation (R29), on page 31, combined with relation (R28), on page 30, we therefore

precisely obtain Wcomp (j εmm) as the sum, from k = 0 to m, of the k
th

truncated trace of the commu-
tator [MW,j,∞,JW,j,∞], as desired and as stated by relation (R29), on page 31 .

This amounts to envisioning the set of points Mj,m of the m
th

prefractal set Vm, with
j ∈ {0, . . . ,#Vm − 1}, as a Toda-like system, where each point Mj,m plays the part of a particle. We
assume that the order of the particles does not depend on the variable that plays the role of time. We
will identify a natural order further on in this paper. Note that in the discussion here, just above, we
have used the notation Mj,m for the points of Vm introduced in Property 2.6 above, on page 12.

For the moment, we have an equivalent – but even much more meaningful – result, which concerns
the polyhedral, effective, fractal zeta functions introduced in [DL23b] (announced in [DL23a]), since
it will enable us to prove that the Taylor-like expansions obtained in [DL22b] can also be obtained as
the sums of traces of differentiable operators, and thus involve actual fractional derivatives.

Theorem 3.2 (The Fractal Zeta Functions as the Sum of Traces of Differential Operators).

We set, for all m ∈ N , 0 ⩽ j ⩽ #Vm − 1, 1 ⩽ k
′
⩽ k ⩽ m, 0 ⩽ k” ⩽ N

m
b − 1, 0 ⩽ j

′
⩽ Nb − 1 and

all s ∈ C,

γ
2
k′,j,q(s) =

1

2

αq(Nb) ck′,(Nb−1) j+q,m ε
s−DW−(k′−1) (2−DW)+i `k′,(Nb−1) j+q,m p

s −DW − (k′ − 1) (2 −DW) + i `k”,(Nb−1) j+q,m p

+
1

2

αq(Nb) ck′,(Nb−1) j+q,m ε
s−DW−(k′−1) (2−DW)−o `k′,(Nb−1) j+q,m p

s −DW − (k′ − 1) (2 −DW) − i `k”,(Nb−1) j+q,m p
.

(R 34)

where ε is the intrinsic scale, introduced in Definition 2.8, on page 21, while the coefficient ck′,j,m
is given by relation (R11), on page 24, and where `k”,j ′,m = j = (Nb − 1) k” + j ′ (see Definition 2.9
above, on page 22). Also, in relation (R34), γk′,j,q(s) ∈ C and as is done above (see relation (R28)
and the discussion preceding it), we choose the standard determination of the positive square root.

Let us consider the following countably infinite matrices, given, for all s ∈ C, by

Jζ̃em,j,∞(s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 γ0,j,q(s) 0 . . . . . . . . . 0
γ0,j(s) 1 γ1,j,q(s) . . . . . . ⋮

0 γ1,j,q(s) 1 γ2,j(s) 0 . . . ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ ⋱ ⋱ 0
⋮ . . . ⋱ ⋱ ⋱ 0 ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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Mζ̃em,j,∞
(s) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 γ0,j,q(s) 0 . . . . . . . . . 0
−γ0,j(s) 1 γ1,j,q(s) . . . . . . ⋮

0 −γ1,j(s) 1 γ2,j,q(s) 0 . . . ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ ⋱ ⋱ 0
⋮ . . . ⋱ ⋱ ⋱ 0 ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and, as a result, their Lie bracket (or commutator), given, for each fixed s ∈ C, by the countably
infinite diagonal matrix

[Mζ̃em,j,∞
(s),Jζ̃em,j,∞(s)] =

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

γ
2
1,j,q(s) − γ0,j,q(s)2

0 0 . . . . . . . . . 0

0 γ
2
2,j,q(s) − γ2

1,j,q(s) 0 . . . . . . ⋮
0 0 γ

2
3,j,q(s) − γ2

2,j,q(s) 0 0 . . . ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0

0 . . . . . . 0 0 γ
2
k,j,q(s) − γ2

k−1,j,q(s) 0
0 . . . . . . 0 0 0 ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Note that, for each fixed s ∈ C, the symmetric, tridiagonal matrix Jζ̃em,j,∞(s) is a countably infi-

nite Jacobi matrix; furthermore, (Jζ̃em,j,∞(s),Mζ̃em,j,∞
(s)) forms a Lax pair.

Still for all m ∈ N⋆ sufficiently large, we have that, for all s ∈ C,

ζ̃
e
m(s) = ε

m
N

m
b −1

∑
j=0

Nb

∑
q=0

m

∑
k=0

k

∑
k′=0

trk′ ([Mζ̃em,j,∞
(s),Jζ̃em,j,∞(s)]) ,

(R 35)

where, for all 0 ⩽ k
′
⩽ k, trk′ ([Mζ̃em,j,∞

(s),Jζ̃em,j,∞(s)]) is the k
′th

truncated trace of the commutator

[Mζ̃em,j,∞
(s),Jζ̃em,j,∞(s)] .

The proof of Theorem 3.2 is given on page 34, just after Remark 3.1.

Remark 3.1. Note that, in classical approaches, the occurrence of the zeta function can be understood
very intuitively, since it represents the trace of the differential operator at a complex order s – coming
from the Selberg trace formula (see the very clear, detailed and enthusiastic point of view which is
presented in the work of Dennis A. Hejhal [Hej76]). Our result, obtained by means of a different
approach, can therefore be thought as being, in some sense, related to the Selberg trace formula.

Proof. We simply apply the same reasoning as in the proof of Theorem 3.1, stated on page 30. Indeed,
we can check that

[Mζ̃em,j,∞
(s),Jζ̃em,j,∞(s)] =
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

γ
2
1,j,q(s) − γ2

0,j,q(s) 0 0 . . . . . . . . . 0

0 γ
2
2,j(s) − γ2

1,j,q(s) 0 . . . . . . ⋮
0 0 γ

2
3,j(s) − γ2

2,j(s) 0 0 . . . ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0

0 . . . . . . 0 0 γ
2
k,j,q(s) − γ2

k−1,j,q(s) 0
0 . . . . . . 0 0 0 ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Note that our context is somewhat different from classical contexts involving Lie brackets with
Jacobi matrices. Indeed, such a decomposition (the Lie bracket) is used for integrating a differential
system. We are in a totally different kind of situation, here: if, of course, we were looking for the
equivalent of a canonical flow, the suitable adaptation to fractals of a geodesic flow, as is suggested
in [Lap08], on top of page 185), we would already have at our disposal explicit expressions.

At the same time, recall that the determination of the eigenvectors of a Jacobi matrix is a well-
known, and a frequently studied problem in the literature. In short, in the case of the countably
infinite Jacobi matrix

J∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 γ0,∞(s) 0 . . . . . . . . . 0
γ0,∞(s) 1 γ1,∞(s) . . . . . . ⋮

0 γ1,∞(s) 1 γ2,∞(s) 0 . . . ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ ⋱ ⋱ 0
⋮ . . . ⋱ ⋱ ⋱ 0 ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

it amounts to determining a sequence of complex-valued polynomials (Pk(z))k∈N, of a complex vari-
able z, where P0(z) = 1 and such that

Jj,∞ P = zP ,

where

P =

⎛
⎜⎜⎜⎜⎜⎜
⎝

P0(z)
P1(z)
P2(z)
⋮

⎞
⎟⎟⎟⎟⎟⎟
⎠

;

i.e.,

P0(z) + γ0,∞ P1(z) = z P0(z)

γ0,j P1(z) + P1(z) + γ1,∞ P2(z) = z P1(z)

. . . . . . . . .

βk,∞ Pk(z) + Pk+1(z) + γk+1,∞ Pk+2(z) = z Pk+1(z) .
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. . . . . . . . .

Those polynomials thus satisfy a three-term recurrence relation. By induction, we clearly obtain
that each polynomial Pk is exactly of degree k.

Also, the family (Pk(z))k∈N is orthonormal with respect to a specific measure. Note also that
the family (Pk(z))k∈N can be deduced from the canonical polynomial basis by means of the Gram–
Schmidt process.

However, this method cannot be applied realistically in our present context. To begin with, there
are several Jacobi matrices involved, and not only one. This results in awfully complicated expressions
for the coefficients associated to the aforementioned three-term recurrence relation.

Moreover, we already have at our disposal Taylor-like expansions of the Weierstrass function,
with underlying exponents the Complex Codimensions. This strongly suggests, instead of classical
polynomials (i.e., with integer exponents, in N), to consider fractional polynomials, with underlying
exponents the Complex Codimensions; namely, of the following form,

m

∑
k=0

ck z
k (2−DW)+i k `p

=

m

∑
k=0

ck (z(2−DW)+i `p)
k
,

where m ∈ N and for 0 ⩽ k ⩽ m, ck denotes a complex coefficient, ` is an integer, while

p =
2π

lnNb

is the oscillatory period of the Weierstrass Curve introduced in [DL23b].

In fact, this simply amounts to considering complex polynomials of the form

m

∑
k=0

ck Z
k

and to evaluate them at

Z = (2 −DW) + i `p .

As for their orthogonality with respect to a specific measure, we will obtain it below in The-
orem 4.25, on page 60, by means of a polarization operator (connected with a transfer operator)
involving the polyhedral measure.

4 The Frobenius Operator – Connections with Fractal Cohomology

In this section, we unveil the natural transfer operator and the Frobenius operators associated with
the Weierstrass Curve ΓW , in direct connection with the Toda-like system of Section 3.

For the sake of clarity, and in order to facilitate the reader’s understanding, we provide a first
subsection consisting in a dictionary of the main concepts and mathematical objects or results gener-
alized to the fractal setting in Subsection 4.2, on page 44.

More precisely, we briefly discuss in Subsection 4.1 some of the basic elements of the classical
complex geometry (including Kähler geometry and Hodge theory, establishing a key bridge between
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algebraic topology, algebraic geometry and differential geometry), and the associated basic results (es-
pecially, Poincaré Duality, the Hard Lefschetz Theorem and the Hodge–Riemann Bilinear Relations).
In the remainder of this section (i.e., in Subsection 4.2), we develop fractal analogs of many of those
notions and results, building, in particular, on our previous work on fractal cohomology [DL22b] and
extended theory of Complex Dimensions in [DL22a], [DL23a], [DL23b], [DL24a], along with the notion
of polyhedral measure (and associated function spaces) introduced and studied in [DL24b]. The latter
measure will play a crucial role in order to define a suitable fractal counterpart of Deligne’s polar-
ization in pure Hodge theory that is key to many topics at the junction of algebraic and arithmetic
geometry.

At the end of this section, i.e., in in Subsection 4.2.6, on page 84, we give a table providing a corre-
spondence between the main concepts and results discussed in the classical setting (in Subsection 4.1)
and their fractal counterparts introduced in Subsections 4.2.1–4.2.5.

4.1 Dictionary: The Classical Case

We inform the reader that very useful references on Hodge theory can be found in the transcription
of the lectures given by Maxim Kontsevich in [Kon08], or in the book of Claire Voisin [Voi02]. As for
Poincaré Duality, we refer to the book of Jean Gallier and Jocelyn Quaintance [GQ22].

4.1.1 Notation and General Framework

In the sequel, X denotes a smooth manifold, of dimension n ∈ N⋆. We hereafter use the classical ∧
notation both for the exterior product and exterior derivatives. Without further mention, throughout
this subsection, X will be assumed to be compact and connected (and without boundary, i.e., closed).

Given a nonnegative integer p, we denote by Ω
p(X) the space of smooth p-forms on X.

Definition 4.1 (Partial Derivatives).

Given a strictly positive integer p, a smooth p-form f on X, and k in {0, . . . , p}, the partial
derivative ∂kf is defined, for any

(x0, . . . , xp) = ((x0,i0)1⩽i0⩽n
, . . . , (xp,ip)1⩽ip⩽n

) ∈ X
p+1

by

∂k f (x0, . . . , xp) =

n

∑
ik=1

∂f

∂xk,ik
((x0,i0)1⩽i0⩽n

, . . . , (xp,ip)1⩽ip⩽n
) dxk,ik ⋅

Definition 4.2 (Exterior Derivative).

Given a smooth function f defined on X, the exterior derivative of f is the differential of f , i.e., the
unique 1-form such that, for any smooth vector field u = (du1, . . . , dun), we have (in local coordinates),

d f(u) =
n

∑
k=1

∂f

∂xk
duk .
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By induction, given p ∈ N, the exterior derivative of a p-form (i.e., a differential form of degree p)
is a (p + 1)-form (i.e., a differential form of degree p + 1).

Definition 4.3 (De Rham Differential).

Given a p-form ω ∈ Ω
p(X), such that, for any x = (x1, . . . , xn) ∈ X,

ω(x) = ∑
1⩽i1<...<ip⩽n

fi1,...,ip(x) dx
i1 ∧ . . . dx

ip ,

and where, for any (i1, . . . , ip) ∈ {1, . . . , n}p, the coefficients fi1,...,ip denote smooth functions on X,
the de Rham differential dω is defined (still in local coordinates) by

dω(x) =
n

∑
k=1

∑
1⩽i1<...<ip⩽n

∂fi1,...,ip
∂xk

(x) dxk ∧ dxi1 ∧ . . . dxip ⋅

Definition 4.4 (De Rham Complex on X).

The de Rham Complex on X is the cochain complex of differential forms

0
d
⟶ Ω

0(X) d
⟶ Ω

1(X) d
⟶ Ω

2(X) . . .

that we will denote by Ω
•,d

.

4.1.2 Riemannian Metric

Given a smooth manifold X (i.e., a C
∞

manifold) of dimension n ∈ N⋆, a Riemannian metric
on X is the smooth (assignment) of a positive definite inner product (or bilinear form) defined on the
tangent space TMX at each point M ∈ X.

4.1.3 Almost Complex Structure

Definition 4.5 (Almost Complex Structure).

Given a smooth manifold X = XC of dimension n ∈ N⋆, an almost complex structure on X is a
linear map J acting on the tangent space TX such that, for all tangent vectors u ∈ TX,

J
2
u = −u .

Motre precisely, for 0 ⩽ k ⩽ n, by using the (complex) coordinates

zk = xk + i yk ,

we have that

J ( ∂

∂xk
) = ∂

∂yk
, J ( ∂

∂xy
) = − ∂

∂xk
.

Note that, necessarily, n must be an even integer, for an almost complex structure to exist on X.
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4.1.4 Kähler Manifold – Kähler Form

Definition 4.6 (Kähler Manifold).

Given a complex manifold X (also denoted XC), a Kähler structure on X is a triple of ten-
sors (g, ω, J), where g is a Riemannian metrix on X, ω an antisymmetric and nondegenerate 2-form
on the tangent bundle TX and J an almost complex structure on X. Note that ω, called a Kähler
form, is a closed differential form: dω = 0. Therefore, ω is a symplectic form on X. Furthermore, g, ω
and T satisfy the following compatibility condition:

g (K1,K2) = ω (K1, J K2) ,
for all tangent vectors K1 ,K2 to X at any x ∈ X.

The manifold X, equipped with such a Kähler structure, is then called a Kähler manifold. It is
naturally endowed with the Hermitian metric

h = g − i ω .

Definition 4.7 ((p, q)-Form).

Given a pair of nonnegative integers (p, q) ∈ {1, . . . , n}2
, where n is the complex dimension

of X = XC, a differential form on XC is said to be of (p, q) type (or (p, q)-form, in short) if it is
locally of the form (with z̄ denoting the complex conjugate of z ∈ C),

∑
(i1,...,ip,j1,...,jq)

dzi1 ∧ . . . dzip ∧ dz̄j1 ∧ . . . dz̄jp ,

Note that (p, q)-forms are of (total) degree p + q.

Definition 4.8 (∂ and ∂̄ Operators).

The ∂ and ∂̄ operators, which act on smooth functions f defined on the complex manifold XC (of
complex dimension n and hence, of real dimension 2n), are defined via

∂f =
n

∑
i=1

∂f

∂zi
dzi

and

∂̄f =
n

∑
i=1

∂f

∂z̄i
dz̄i .

They are such that

∂f + ∂̄f = d ,

where d is the exterior derivative (see Definition 4.2 above, on page 37).

Note that ∂ is a (1, 0)-form, while ∂̄ is a (0, 1)-form.
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Remark 4.1. In short, Kähler geometry extends results on real compact manifolds X of dimen-
sion n ∈ N⋆ to compact, connected, complex manifoldsXC = X ⊗ C = X + iX. If we denote by (z1, . . . , zn)
local, holomorphic coordinates on XC, a local basis of the space of differential forms associated on XC
is thus

(dz1, . . . , dzn, dz̄1, . . . , dz̄n) .

4.1.5 Hodge Structure

The beginning of this subsection, which deals with the case of a real manifold, is an excerpt from
the corresponding one in [DL23d].

Definition 4.9 (Hodge Star Operator on a Finite-Dimensional Oriented Euclidean Space).

Let E be a finite-dimensional oriented Euclidean space, endowed with a nondegenerate symmetric
bilinear form ∧. We set

dimE = n ∈ N⋆.

Given a nonnegative integer p ⩽ n, ∧pE and ∧n−pE respectively denote the subspaces of p and n − p
vectors. One trivially has

dim∧
p
E = dim∧

n−p
E = (np) = (n − pp ) ;

and similarly for ∧⋆,pE, with p replaced by n − p. (The choice of a basis of ∧pE amounts to choosing p
vectors among the n elements of any basis of E.)

The Hodge star operator ⋆ is simply the natural isomorphism between ∧pE and ∧n−pE. For any
orthonormal basis {e1, . . . , en}, we have that

⋆ (e1 ∧ . . . ∧ ep) = ep+1 ∧ . . . ∧ en .

Property 4.1. Given a nonnegative integer p ⩽ n, and a p-vector η ∈ ∧pE, we have that

⋆ ⋆ η = (−1)p (n−p) η .

Remark 4.2. We thus have that

Λ
p

Λ
n−p

Λ
p−1

Λ
n−p+1

⋆

d

⋆

Now, in the case of our smooth manifold X, the above space E is simply the tangent space TMX
at some point M ∈ X, as is given in Definition 4.10 just below, on page 41.

40



Definition 4.10 (d
⋆

Operator on the de Rham Complex).

Given a strictly positive integer p ⩽ n, we define the codifferential d
⋆

by

d
⋆
∶ Ω

p
⟶ Ω

p−1

via

d
⋆
= (−1)n (p−1)+1

⋆ d⋆ ⋅

Ω
p

Ω
n−p

Ω
p−1

Ω
n−p+1

⋆

d
⋆ d

⋆

Definition 4.11 (Hodge Laplacian and Space of Harmonic Forms).

The Hodge Laplacian on Ω
•(X) is given by

□ = (d + d⋆)2
= d d

⋆
+ d

⋆
d .

In the sequel, we will denote by H the space of harmonic forms (i.e., the kernel of □, with

□ ∶ Ω =

n

⨁
p=0

Ω
p
→ Ω), and for each nonnegative integer p ⩽ n, by Hp

= H∣Ωp the space of p-harmonic

forms (i.e., the kernel of □p = □∣Ωp ∶ Ω
p
→ Ω

p
).

Theorem 4.2 (Hodge Decomposition Associated with a Compact Analytic Riemannian
Manifold).

In the case where X is a compact analytic Riemannian manifold, then, for any strictly positive
integer p, we have that

Ω
p−1

Ω
p

Ω
p+1d d

and

Ω
p+1

Ω
p

Ω
p−1d

⋆
d
⋆

To facilitate understanding, the following diagram might be helpful:

Ω
p−1

Ω
p

Ω
p

Ω
p+1

d

dd d
⋆

d
⋆

d
⋆

Also, we have the following orthogonal, direct sum, decompositions, with respect to the inner product
associated with the L

2
metric on differential forms (where H is the space of harmonic forms, see

Definition 4.11, on page 41),

41



⎧⎪⎪⎪⎨⎪⎪⎪⎩

ker d∣Ωp = Imd∣Ωp−1 ⊕H∣Ωp

ker d
⋆
∣Ωp = Imd

⋆
∣Ωp+1 ⊕H∣Ωp

,

and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ω
p(X) = Imd∣Ωp−1 ⊕H∣Ωp ⊕ (ker d∣Ωp)⊥

Ω
p(X) = Imd

⋆
∣Ωp+1 ⊕H∣Ωp ⊕ (ker d

⋆
∣Ωp)⊥

,

which naturally yields

□ =
⎛
⎜⎜
⎝

d d
⋆

0 0
0 0 0

0 0 d
⋆
d

⎞
⎟⎟
⎠
,

and similarly for each □p = □∣Ωp, for 0 ⩽ p ⩽ n.

Theorem 4.3 (Hodge Decomposition Associated with a Compact Kähler Manifold, as
described in [Kon08]).

Given a compact Kähler manifold XC, of complex dimension n ∈ N⋆, along with an integer
k ∈ {0, . . . , 2n}, the de Rham cohomology associated with XC, denoted by H

k (XC), is such that

H
k (XC) =

∞

⨁
p+q=k

H
p,q (XC) ,

where, for all pairs of nonnegative integers (p, q) such that p + q = k, H
p,q (XC) is the subspace

of H
k (XC) of cohomology classes of (p, q) type closed forms. Note that each (Dolbeault cohomol-

ogy) space H
p,q (XC) satisfies the Hodge symmetry

H
p,q (XC) = Hq,p (XC) ,

where, as before, the overbar indicates complex conjugation.

Here and elsewhere, we use the convention that H
q (XC) = {0} if q < 0 or if if q < n.

4.1.6 Poincaré Duality – Lefschetz Operator, Hard Lefschetz Theorem

Theorem 4.4 (Poincaré Duality).

Given a compact Kähler manifold XC, of dimension n, along with any integer k ∈ {0, . . . , n}, the
Poincaré Duality consists in the isomorphism

H
k (XC) ≃ Hn−k (XC) .

Theorem 4.5 (Lefschetz Operator [Voi07], Chapter 6, on page 139).
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Given a compact Kähler manifold XC, of real dimension 2n, with associated Kähler (or fundamen-
tal form) ω (see Definition 4.6, on page 39), along with an integer k ∈ {0, . . . , 2n − 2}, the exterior

product with ω induces a differential operator from H
k (XC) to H

k+2 (XC), which is a bigraded oper-
ator, of bigrading (1, 1), called the Lefschetz operator, denoted by L = Lef .

More specifically, Lef ([ϕ]) = [ω ∧ ϕ], for any ϕ in H
k−2 (XC), and [η] denotes the cohomology

class of η ∈ H
q (XC), for any q ∈ {0, . . . , n}.

Its adjoint, with respect to the Hermitian metric associated with X, is denoted by Lef#
and such

that, for 2 ⩽ k ⩽ 2n,

Lef#
∶ H

k−2 (XC)→ H
k (XC) .

Theorem 4.6 (Hard Lefschetz Theorem).

Given a compact Kähler manifold XC, of real dimension 2n (i.e., of complex dimension n), along

with an integer k ∈ {0, . . . , n}, then, the k
th

power of L (i.e., the linear operator induced by the

exterior wedge product by ω
k
), induces an isomorphism

L
k
∶ H

n−k
→ H

n+k
,

given by L
k ([ϕ]) = [ωk ∧ ϕ], the cohomology class of the wedge product ω

k ∧ ϕ, for any [ϕ] ∈ H
n−k (X).

Note that the Hard Lefschetz Theorem implies Poincaré Duality with real coefficients.

Definition 4.12 (Primitive Harmonic Form [Voi02], on page 141).

Given a compact Kähler manifold XC, of real dimension 2n, along with a strictly positive inte-
ger k ⩽ n, a harmonic form ω ∈ H

k(XC) is said to be a primitive form if

ω ∈ kerLefn−k+1
,

where Lef is the Lefschetz operator introduced in Theorem 4.5 above, on page 42.

Corollary 4.7 ((of Theorem 4.6) Lefschetz Decomposition [Voi02], on page 143).

Given a compact Kähler manifold XC, of real dimension 2n, along with an integer k ∈ {0, . . . , n},

we define the k
th

primitive cohomology space by

P
k(XC) = ker (Lefn−k+1

∣Hk(XC)) ,

where the notation Lefn−k+1
∣Hk(XC) (the k

th
primitive cohomology space) means that we consider the re-

striction of the (n − k + 1)th iterate of the Lefschetz operator Lef to H
k(XC).

We then have the following (primitive) Lefschetz decomposition:

H
k(XC) = P k(XC)⊕ LefP k−2(XC)⊕ LefP k−4(XC)⊕ . . . .
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Note that the linear map

L
n−k+1

∶ H
k(XC)→ H

2n−k+2(XC)
need not be injective – and let alone an isomorphism. Indee, since n − k′ = k implies that k

′
= n − k ≠ n − k + 1,

the hypotheses of the Hard Lefschetz Theorem 4.6, on page 43, are not satisfied, with k
′
= n − k instead

of k.

Definition 4.13 (Polarization Operator (in the Deligne Sense)).

Given a compact Kähler manifold XC, of real dimension 2n, along with an integer k ∈ {0, . . . , n},
a map

Q ∶ H
k(XC) ×Hk(XC)→ C

is said to be a polarization operator if it is C-bilinear and positive definite on H
m ⊗ C, the complexi-

fication of H
m

.

Note that for simplicity, here and thereafter, we no longer use the notation for cohomology classes.

Remark 4.3 (Usual Polarization Operator)).

Given a compact Kähler manifold XC (of associated Kähler form ω; see Definition 4.6 above, on
page 39), along with an integer k ∈ {0, . . . , n}, the usual polarization operator is the C-bilinear map

Q ∶ H
k(XC) ×Hk(XC) → C

(ϕ,ψ) ↦ Q (ϕ,ψ) = ∫
X
ϕ ∧ ψ ∧ ω

n−k
.

Theorem 4.8 (Hodge–Riemann Bilinear Relations (see [Huh18])).

Given a compact Kähler manifold XC, along with an integer k ∈ {0, . . . , 2n} and the usual polar-
ization map Q, then, for all pairs of integers (p, q) such that p + q = k, the Hermitian form

H
p,q(XC) × P k(XC) → C

(ϕ,ψ) ↦ (−1)
k (k−1)

2 i
p−q

Q (ϕ,ψ) ,

where P
k(XC) = ker (Lefn−k+1

∣Hk(XC)) is the k
th

primitive cohomology space which has been introduced in
Corollary 4.7 above, on page 43, is positive definite.

4.2 Main Results

We now return to the fractal setting considered earlier in the paper, that of the Weierstrass fractal
curve ΓW (or, equivalently, of the associated iterated fractal drum).
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4.2.1 Conjugation

Theorem 4.9 (A Two-Level Conjugation).

In light of the symmetry of ΓW with respect to the vertical line x =
1

2
(see Property 2.1, on page 10),

it seems natural to consider the following change of variables from real to complex coordinates (with
an obvious relabelling of the axes):

Z = y + i (x − 1

2
) , where (x, y) ∈ R2

.

We then define the corresponding complex conjugation, which, to any point M of the complex

plane, associates its symmetric point M
′
= S(M) with respect to the vertical line x =

1

2
,

M =M
′
,

with affix the complex number Z̄ defined by Z̄ = y − i (x − 1

2
).

This yields:

i. ([DL22b]) For any strictly positive integer m and any integer j in {0, . . . ,
#Vm − 1

2
} (where

#Vm = (Nb − 1) Nm
b + 1; see part ii. of Property 2.6, on page 12),

M#Vm−1−j,m =M(Nb−1)Nm
b −j,m

=Mj,m ,

or

( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) = ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

,W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

)) .

(Note that the numbering of the vertices of Vm begins at 0, which accounts for the fact that the
last vertex of Vm is the vertex number #Vm − 1 = (Nb − 1)Nm

b .)

ii. Also, since the sequence of sets of vertices (Vm)m∈N is increasing, for all pairs of integers (m,m′) ∈ N2

and any j in {0, . . . ,
(Nb − 1)Nm

b

2
}, we have that

M
#Vm+m′−1−(#Vm+m′−1−j) (Nb−1)m′

−j,m+m′ =Mj,m .

Note that this conjugation relation establishes a connection between two different levels of the
sequence of prefractal approximations of ΓW .

Proof.

i. See [DL22b].

ii. When switching from the m
th

prefractal approximation (with associated set of vertices Vm),

to the (m + 1)th prefractal approximation (with associated set of vertices Vm+1), there are Nb − 2
new vertices (i.e., the vertices in Vm+1 \ Vm) between consecutive vertices of Vm. By induction, we
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therefore obtain that when switching to the m
th

prefractal approximation (with associated set of

vertices Vm), to the (m +m′)th prefractal approximation (with associated set of vertices Vm+m′), the
number of new vertices (i.e., in Vm+m′ \ Vm) between the vertices M#Vm−1,m and M#Vm−1−j,m is equal

to (#Vm+m′ − j) (Nb − 1)m
′

, which results in the above conjugation relation.

4.2.2 The Natural Transfer Operator

Definition 4.14 (The Natural Transfer Operator).

We introduce the natural transfer operator LW associated with the Weierstrass Curve ΓW by the
formal sum

LW = T0 + . . . + TNb−1 , (R 36)

where T0, . . . , TNb−1 are the C
∞

bijective maps from R2
to R2

of the nonlinear iterated function sys-
tem TW introduced in Proposition 2.2, on page 10.

More precisely, the sum in formula (R36) above has to be understood in the sense that, given any
function f defined on ΓW , and a point M ∈ ΓW ,

LW (f) (M) =
Nb−1

∑
j=0

f (Tj(M)) . (R 37)

Note that the sum

Nb−1

∑
j=0

f (Tj(⋅)) can be interpreted modulo Nb, if the set of integers {0, . . . , Nb − 1}

is identified with the ring Z/Nb Z .

Theorem 4.10 (The Action of the Nonlinear and Noncontractive Iterated Function System
on the Symmetry S – Dual Transfer Operator).

For any integer j belonging to {0, . . . , Nb − 1}, we set

T
#
j = Tj ◦ S ,

where TW = {T0, . . . , TNb−1} is the nonlinear iterated function system (IFS) introduced in Proposi-

tion 2.2, on page 10, while S is the symmetry with respect to the vertical straight line x =
1

2
(see

Property 2.1, on page 10).

Hereafter, we will use the notation

T #
W = {T#

0 , . . . , T
#
Nb−1}

and call T #
W the dual IFS of TW .

Similarly, since S
2
= Id, TW is the dual IFS of T #

W .

We note that
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T #
W = TW ◦ S and TW = T #

W ◦ S .

We then introduce the dual natural transfer operator L#
W associated with the Weierstrass Curve ΓW

by the formal sum

L#
W = T

#
0 + . . . + T

#
Nb−1 . (R 38)

More precisely, the sum in formula (R38) above has to be understood in the sense that, given any
function f defined on ΓW , and a point M ∈ ΓW ,

L#
W (f) (M) =

Nb−1

∑
j=0

f (T#
j (M)) . (R 39)

Also, since the symmetry S is an isometry, this ensures that TW and its dual T #
W have the same

attractor, the Weierstrass Curve ΓW (see Property 2.3, on page 10).

Proposition 4.11 (Joint Actions of the Natural Transfer Operator and the Conjugation).

The joint action of the natural transfer operator LW introduced in Definition 4.14 above, on
page 46, and of the conjugation Z ↦ Z̄ (see Theorem 4.9, on page 45), can be summarized as fol-
lows: given any function f defined on ΓW , we have that

LW (f̄) = L#
W (f) . (R 40)

Proof. This simply comes from the fact that the conjugation map Z ↦ Z̄ and the symmetry S are
equivalent, in the sense that, given a point M of affix Z, its image S(M) has affix Z̄ (see Theorem 4.9,
on page 45).

Remark 4.4. From the point of view of symbolic dynamics (see, e.g., [BKS91]), for any given j

in {0, . . . , Nb − 1}, the action of Tj can be identified with the j
th

-shift (acting on code space Σ = AN

and with alphabet A = {0, . . . , Nb − 1}), which appends the letter j to any given infinite word in Σ.

Therefore, both the transfer operator LW and its dual L#
W can be reexpressed in terms of the

simultaneous actions of the Nb j shifts (combined with the action of the symmetry S – or, equivalently,

of the complex conjugation Z ↦ Z̄ – in the case of the dual transfer operator L#
W), for j = 0, . . . , Nb − 1.

Proposition 4.12 (Joint Actions of the Natural Transfer Operator and its Dual).

The joint action of the natural transfer operator LW introduced in Definition 4.14 above, on

page 46, and its dual L#
W (see Theorem 4.10, on page 46), can be summarized as follows: given

any function f defined on ΓW , we have that
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LW L#
W (f) = L2

W (f ◦ S) and L#
W (f) LW (f) = L2

W (f ◦ S) . (R 41)

Proof. Thanks to Proposition 4.11, on page 47, given a function f defined on ΓW , we have that

L#
W (f) = LW (f̄) = LW (f ◦ S) .

We then deduce that

LW L#
W (f) = L2

W (f ◦ S) and L#
W (f) LW (f) = L2

W (f ◦ S) ,
as desired; so that

LW L#
W = L#

W LW .

4.2.3 Fractal Cohomology

Now, we are particularly interested in the action of the transfer operators LW and L#
W on the

(fractal) cohomology associated with the Weierstrass Curve ΓW . We introduced this cohomology in
our previous work [DL22b], that we recall below. However, in this form, the cohomology groups are
not vector spaces (they are simply additive abelian groups). In order to apply our transfer operator,
a suitably adapted structure is required, as is given below in Proposition 4.21, on page 56, and
Theorem 4.24, on page 59.

Definition 4.15 ((m,p)-Fermion [DL22b]).

By analogy with particle physics, given a pair of integers (m, p), with m ∈ N and p ∈ N⋆, we will
call (m, p)-fermion on Vm, with values in C, any antisymmetric map f from V

p+1
m to C. (Here, V

p+1
m

denotes the (p + 1)-fold cartesian product of Vm by itself.) Note that these maps are not assumed to
be multilinear (which would be meaningless here, anyway).

For any m ∈ N, an (m, 0)-fermion on Vm (or a 0-fermion, in short) is simply a map f from Vm
to C. We adopt the convention according to which a 0-fermion on Vm is a 0-antisymmetric map on Vm.

In the sequel, for any (m, p) ∈ N2
, we will denote by Fp (Vm,C) the C-module (i.e., the complex

vector space) of (m, p)-fermions on Vm, with values in C, which makes it an abelian group with
respect to the addition, with an external law from C × Fp (Vm,C) to Fp (Vm,C), corresponding to
the multiplication by a scalar.

Definition 4.16 ((m − 1,m)-Path [DL22b]).

Given a strictly positive integer m, and two adjacent vertices Xm−1,k, Xm−1,k+1 in Vm−1,
for 0 ⩽ k ⩽ #Vm−1 − 2, we call (m − 1,m)-path between Xm−1,k, Xm−1,k+1 the ordered set of vertices

Pm−1,m (Xm−1,k, Xm−1,k+1) = {Xm,` , 0 ⩽ ` ⩽ Nb} ,
where
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Xm,` = Xm−1,k and Xm,`+Nb
= Xm−1,k+1 ;

see Figure 5, on page 49.

Mj,m ϵ Vm\Vm-1

Mi,m-1 ϵ Vm-1 ⊂Vm Mi+1,m-1 ϵ Vm-1 ⊂Vm

Mj+1,m ϵ Vm\Vm-1

Figure 5: In search of invariants, when switching from the initial prefractal graph, to the
first one.

Remark 4.5 (On the Intrinsinc Meaning of our (m − 1,m)-Paths).

Note that our discrete paths enable us to mathematically represent the underlying dynamical
evolution of the fractal, i.e., the switch/transition from a scale to the next or previous one.

Definition 4.17 ((m − 1,m)-Differentials [DL22b]).

Given a strictly positive integer m, we define the (m − 1,m)-differential δm−1,m from F0 (Vm,C)
to FNb+1 (Vm,C), for any f in F0 (ΓW ,C) and any (Mi,m−1,Mi+1,m−1,Mj+1,m, . . . ,Mj+Nb−2,m) ∈ V

Nb+1
m

such that

Mi,m−1 =Mj,m and Mi+1,m−1 =Mj+Nb,m ,

by

δm−1,m(f) (Mi,m−1,Mi+1,m−1,Mj+1,m, . . . ,Mj+Nb−1,m) = cm−1,m (
Nb

∑
q=0

(−1)q f (Mj+q,m)) ,

where cm−1,m denotes a suitable positive constant. Note that, given the way we deal with these dif-
ferentials in the present paper, one does not need to know – or fix – the value of this constant. It
becomes important, however, when operators involving the differentials, such as the Laplacian, are
involved; see, for instance, Section 6 of [DL23d].

The spaces Fq (Vm,C), equipped with the differentials, form a complex, in the standard sense of
algebraic topology or homological algebra (see, e.g., [GQ22]), so that the definition of H

m
is justified.
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Proposition 4.13 (Prefractal Cohomology Groups [DL22b]).

In our present setting, with the differential introduced in Definition 4.17, on page 49, the cohomol-
ogy groups are the quotient groups

H
m
= ker δm−1,m/Im δm−2,m−1 , for m ⩾ 0 ,

which consist in maps the expression of which is obtained as the difference of an antisymmetric map
with respect to the set of vertices (Mi,0,Mi+1,0,Mj+1,m, . . . ,Mj+Nm

b −1,m) and of an antisymmetric map

with respect to the set of vertices (Mi,0,Mi+1,0,Mj+1,m−1, . . . ,Mj+Nm−1
b −1,m−1).

Hereafter, we will use the additional convention that δ−2,−1 = 0 and δ−1,0 = 0, which ensures that H
0
= {0}.

Definition 4.18 (Set of Functions of the Same Nature as the Weierstrass Function W [DL22b]).

i. We say that a continuous, complex-valued function f , defined on ΓW ⊃ V
⋆
, is of the same nature

as the Weierstrass function W, if it satisfies local Hölder and reverse-Hölder properties analogous
to those satisfied by the Weierstrass function W; i.e., for any pair of adjacent vertices (M,M

′) of
respective affixes (z, z′) ∈ C2

of the prefractal graph ΓWm
, with m ∈ N arbitrary,

C̃inf ∣z′ − z∣2−DW
⩽

»»»»»f(z
′) − f(z)»»»»» ⩽ C̃sup ∣z

′
− z∣2−DW ,

where C̃inf and C̃sup denote positive and finite constants (but not necessarily the same ones as for the
Weierstrass function W itself, in Proposition 2.12, on page 19). This can be written, equivalently, as

»»»»»z − z
′»»»»»

2−DW
≲

»»»»»f(z) − f(z
′)»»»»» ≲

»»»»»z − z
′»»»»»

2−DW
. (R 42)

Hereafter, we will denote by Ḧold (ΓW) the complex vector space consisting of the continuous,
complex-valued functions f , defined on ΓW ⊃ V

⋆
and satisfying relation (R42); see the discussion just

above.

ii. Moreover, we will denote by Ḧoldgeom (ΓW) ⊂ Ḧold (ΓW) the complex subspace of Ḧold (ΓW)
consisting of the functions f of Ḧold (ΓW) which satisfy the following additional geometric condi-
tion (R43), again, for any pair of adjacent vertices (M,M

′) with respective affixes (z, z′) ∈ C2
of the

prefractal graph Vm, with m ∈ N arbitrary; namely,

»»»»»arg (f(z)) − arg (f(z′))»»»»» ≲
»»»»»z − z

′»»»»»
DW−1

. (R 43)

Theorem 4.14 (Complex Dimensions Series Expansion and Characterization of the Pre-
fractal Cohomology Groups H

m
[DL22b]).

Let m ∈ N be arbitrary. Then, if the functions f belong to Ḧoldgeom (ΓW) (see part ii. of Defi-
nition 4.18, on page 50 above), then, for any strictly positive integer m, and again with the conven-
tion H

0
= Im δ−1,0 = {0}, the cohomology groups

H
m
= ker δm−1,m/Im δm−2,m−1
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are comprised of the restrictions to Vm of (m,Nm
b + 1)-fermions, i.e., the restrictions to V

N
m
b +1

m of
antisymmetric maps on ΓW , with N

m
b + 1 variables (corresponding to the vertices of Vm), involving

the restrictions to Vm of continuous functions f on ΓW , such that, for any vertex Mj,m ∈ Vm,

f (Mj,m) =
m

∑
k=0

ck (f,Mj,m) εk (2−DW)
k ε

i k `k,j,m p

k =

m

∑
k=0

ck (f,Mj,m) εk (2−DW)+i k `k,j,m p

k , M⋆,m ∈ Vm ,

(R 44)
where p denotes the oscillatory period introduced in [DL22a],

p =
2π

lnNb
,

and where the coefficients ck (⋆,⋆) are complex numbers which still depend on the function f in-
volved, and on the point at which they are evaluated. Here, in relation (R44), for each integer k such
that 0 ⩽ k ⩽ m, `k,j,m denotes an integer (in Z) satisfying the estimate

»»»»»»»»»
{k `k,j,m

ln ε
k
k

lnNb
}
»»»»»»»»»
≲
ε
k (DW−1)
k

2π
. (R 45)

In expansion (R44), the coefficients ck (f,M⋆), for 0 ⩽ k ⩽ m, reflect the dependence of the value

taken by the map f at the vertex Mj,m on the values taken by f at previous steps – vertices – of the m
th

prefractal graph approximation, in conjunction with values taken by f at neighboring vertices of Mj,m

at the same level (m) of the prefractal sequence and with vertices which, in addition, strictly belong
to the same polygon Pm,k introduced in part iv. of Property 2.6, on page 12, with 1 ⩽ k ⩽ N

m
b − 1 (by

“strictly” here, we mean that the junction vertices are not included).

The expansion (R44) could be interpreted as a kind of generalized Taylor expansion with corre-
sponding complex derivatives of orders −ωk = k (2 −DW) + i k `k,j,m p, where k ∈ N is arbitrary, the
coefficients ck (f,M⋆) can thus be interpreted as (discrete) derivatives of complex order −ωk of the
function f , evaluated at the point M⋆ of V

⋆
⊂ ΓW .

Remark 4.6. Note that in the expansion (R44), for 0 ⩽ k ⩽ m, and by contrast with our previous

work [DL22b], we have used the k
th

intrinsic cohomology infinitesimal ε
k
= (Nb − 1) εkk =

1

Nk
b

, instead

of the k
th

intrinsic cohomology infinitesimal ε
k
k (see Definition 2.8, on page 21). Of course, the two

expressions – ε
k

and ε
k
k – are essentially equivalent, since they have the same asymptotic behavior

as k →∞, up to a positive multiplicative constant.

Proposition 4.15 (The Cohomological Vertex Integers (see Definition 2.9, on page 22)
Can be Used in the Estimate (R50) below, on page 55).

Given m ∈ N, and a vertex Mj,m =M(Nb−1) k′+k” ,m ∈ Vm, of abscissa ((Nb − 1) k + j) εmm, and as-

sociated cohomological vertex integer `j,m = (Nb − 1) k′ + k”, where 0 ⩽ k
′
⩽ N

m
b − 1 and 0 ⩽ k” ⩽ Nb − 1,

we have that

»»»»»»»»»
{`j,m

ln ε
k
k

lnNb
}
»»»»»»»»»
≲
ε
k (DW−1)

2π
. (R 46)
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Proof. This simply comes from the fact that

0 < ε
k (DW−1)
k < 1 .

We thus obviously have that

{`j,m
ln ε

k
k

lnNb
} ⩽ Ck,j,m

ε
k (DW−1)
k

2π
,

where the positive constant Ck,j,m can be choosen such that

Ck,j,m ⩾ 2π ε
k (1−DW)
k

»»»»»»»»»
{`j,m

ln ε
k
k

lnNb
}
»»»»»»»»»
.

Proposition 4.16 (Fixing the Integers in the Expansion (R44) above, on page 51).

In the sequel, for the sake of the forthcoming Hodgde decomposition of the total (fractal) cohomology
in Theorem 4.30 below, on page 68, given m ∈ N, and a vertex Mj,m =M(Nb−1) k′+k” ,m ∈ Vm, of ab-

scissa ((Nb − 1) k + j) εmm, and associated vertex integer `j,m = (Nb − 1) k′ + k”, where 0 ⩽ k
′
⩽ N

m
b − 1

and 0 ⩽ k” ⩽ Nb − 1 (see Definition 2.9, on page 22), we fix the integers `k,j,m in the expansion (R44),
on page 51, in the following way:

k `k,j,m = k `j,m = k ((Nb − 1) k′ + k”) ,
which yields

f (Mj,m) =
m

∑
k=0

ck (f,Mj,m) εk (2−DW)
k ε

i k `k,j,m p

k =

m

∑
k=0

ck (f,Mj,m) εk (2−DW)+i k `j,m p

k . (R 47)

Indeed, as seen in Proposition 4.15, on page 51, the cohomological vertex integers can be used in the
estimate (R50), on page 55. Also, it is important to bear in mind that the estimate (R50), on page 55,
comes from a generalized Hölder condition on the arguments of the involved functions f (see our
previous work [DL22b]), which is a translation of the fact that, when switching from a vertex Mj ′,m−1,

with 0 ⩽ j
′
⩽ #Vm−1 − 1, to the the adjacent neighboring vertices in Vm, the argument increases nearly

arithmetically. The corresponding information is exactly carried by the cohomological vertex integers.

Proposition 4.17 (Generators of the Cohomology Groups [DL22b]).

For any integer m ⩾ 1, and with the convention H
0
= Im δ−1,0 = {0}, the generators of the (addi-

tive) cohomology groups

H
m
= ker δm−1,m/Im δm−2,m−1

are to be understood in the sense of the k
th

(intrinsic) cohomology infinitesimals ε
k
, for 0 ⩽ k ⩽ m

(see Definition 2.8, on page 21, and recall that ε =
1

Nb
). Note that by “ generators”, here, we do not

refer to the notion of group generators in the sense of group theory, but in a broader sense, instead.
Indeed, in our present context, we express the values, at the vertices of Vm, of the continuous, complex-

valued maps defined on the Weierstrass Curve ΓW ⊃ ⋃
n∈N

Vn, which constitute the quotient groups H
m

,
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by means of Taylor-like expansions involving fractional powers of the k
th

(intrinsic) cohomology in-

finitesimals ε
k
, for 0 ⩽ k ⩽ m. So, in a sense, one could think of those generators as generalized

(fractional) polynomial variables. Those generators are therefore of the following form:

ε
k (2−DW)
k ε

i k `k,j,m p

k = ε
k ((2−DW)+i k `k,j,m p)
k

and

ε
k (2−DW)
k ε

−i k `k,j,m p

k = ε
k ((2−DW)−i k `k,j,m p)
k ,

or, equivalently, by using the cohomological vertex integers, introduced in Definition 2.9, on page 22,

ε
k (2−DW)
k ε

i k `k′,k”,m p
= ε

k (2−DW)+i k `k′,k”,m p

k

and

ε
k (2−DW)
k ε

−i k `k′,k”,m p
= ε

k (2−DW)−i k `k′,k”,m p

k ,

with 0 ⩽ k ⩽ m, 0 ⩽ k
′
⩽ N

m
b − 1, 0 ⩽ k” ⩽ Nb − 1 and where `j,m = (Nb − 1) k′ + k” ∈ {0, . . . ,#Vm − 1}

is the the cohomological vertex integer associated with the point Mj,m; see also Theorem 4.14 above,
on page 50, along with the aforementioned Definition 2.9, on page 22.

In accordance with the expansion given in Theorem 4.14, in relation (R44), we can also write those
generators in the equivalent following form,

ε
k (2−DW)

ε
i `k,j,m p

and ε
k (2−DW)

ε
−i `k,j,m p

.

We can now begin discussing our new results – starting with the connections between fractal
cohomology, Taylor-like expansions and their coefficients, along with the traces of commutators of
Lax pairs.

Theorem 4.18 (Fractional Taylor Expansions).

We note that the expansion in relation (R44) of Theorem 4.14, on page 51, is of the same form
as the complex dimensions series expansion of the Complexified Weierstrass function given in Theo-
rem 2.18, on page 23.

We set, for all m ∈ N , 0 ⩽ j ⩽ #Vm − 1, 0 ⩽ k
′
⩽ k ⩽ m,

β
2
k′,j(f) =

1

2
ck′ (f,Mj,m) εk

′ (2−DW)+i k′ `j,m p

k′
+

1

2
ck′ (f,Mj,m) εk

′ (2−DW)−i k′ `j,m p

k′
,

where ε is the intrinsic scale, introduced in Definition 2.8, on page 21, while the numbers ck′ (f,Mj,m)
are the complex coefficients involved in expansion (R44), on page 51, and where `j,m = (Nb − 1) k′ + k”,

where 0 ⩽ k
′
⩽ N

m
b − 1 and 0 ⩽ k” ⩽ Nb − 1 (see Definition 2.9 above, on page 22).

By applying the same method as in Theorem 3.1, on page 30, we obtain that, for each continuous
function f on ΓW satisfying, for all m ∈ N and each j ∈ {0, . . . ,#Vm − 1}, relation (R44), f (Mj,m)
can be expressed as the sum of traces of commutators, in the following form,

f (Mj,m) =
k

∑
k=m

k

∑
k′=0

trk′ ([Mf,j,∞,Jf,j,∞]) , (R 48)
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with the countably infinite matrices Jf,j,∞ and Mf,j,∞ (where Jf,j,∞ is a Jacobi matrix) given by

Jf,j,∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 β0,j(f) 0 . . . . . . . . . 0
β0,j(f) 1 β1,j(f) . . . . . . ⋮

0 β1,j(f) 1 β2,j(f) 0 . . . ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ ⋱ ⋱ 0
⋮ . . . ⋱ ⋱ ⋱ 0 ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Mf,j,∞ =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 β0,j(f) 0 . . . . . . . . . 0
−β0,j(f) 1 β1,j(f) . . . . . . ⋮

0 −β1,j(f) 1 β2,j(f) 0 . . . ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ ⋱ ⋱ 0
⋮ . . . ⋱ ⋱ ⋱ 0 ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and, as a result, the Lie bracket (or commutator), is given by the countably infinite diagonal matrix

[Mf,j,∞,Jf,j,∞] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

β
2
1,j(f) − β2

0,j(f) 0 0 . . . . . . . . . 0

0 β
2
2,j(f) − β2

1,j(f) 0 . . . . . . ⋮
0 0 β

2
3,j(f) − β2

2,j(f) 0 0 . . . ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0

0 . . . . . . 0 0 β
2
k,j(f) − β2

k−1(f) 0
0 . . . . . . 0 0 0 ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and where, for all 0 ⩽ k
′
⩽ k, trk′ ([Mf,j,∞,Jf,j,∞]) is the k

′th
truncated trace of the commutator [Mf,j,∞,Jf,j,∞],

as introduced in Notation 9, on page 30.

This ensures that the expansion (R44), on page 51, is an actual fractional Taylor expansion, since
each term

1

2
ck′ (f,Mj,m) εk

′ (2−DW)+i k′ `j,m p

k′
+

1

2
ck′ (f,Mj,m) εk

′ (2−DW)−i k′ `j,m p

k′

can be associated to the trace of a commutator.

Remark 4.7 (A Forthcoming Structure of Vector Space).

As is described above, the cohomology groups H
m

are additive groups. However, as we will see
below (in Theorem 4.24, on page 59), we can equip them with a vector space structure, by means
of a tensor product with C. Such an underlying structure is natural, since the condition (R42), on
page 50, which, in a sense, governs the cohomology groups (see the proof of Theorem 4.14 in our
previous work [DL22b]) is still satisfied by a complex linear combination of functions f1 and f2 which
themselves satisfy condition (R42).
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Theorem 4.19 (Fractal Cohomology of the Weierstrass Curve [DL22b]).

Within the set Ḧoldgeom (ΓW) of continuous, complex-valued functions f , defined on the Weier-

strass Curve ΓW ⊃ V
⋆
= ⋃
m∈N

Vm (see part ii. of Definition 4.18, on page 50 above), let us consider

the following Complex (which can be called the Fractal Complex of ΓW):

H
⋆
= H

• (F• (ΓW ,C) , δ•) =
∞

⨁
m=0

H
m
,

where, for any integer m ⩾ 1, and with the convention H
0
= Im δ−1,0 = {0}, H

m
is the cohomology

group

H
m
= ker δm−1,m/Im δm−2,m−1 .

Then, H
⋆

is the set consisting of functions f on ΓW , viewed as 0-fermions (in the sense of Def-
inition 4.15, on page 48), and, for any integer m ⩾ 1, of the restrictions to Vm of (m,Nm

b + 1)-

fermions, i.e., the restrictions to (the Cartesian product space) V
N

m
b +1

m of antisymmetric maps on ΓW ,
with N

m
b + 1 variables (corresponding to the vertices of Vm), involving the restrictions to Vm of the con-

tinuous, complex-valued functions f on ΓW – like, naturally, the aforementioned 0-fermions – satisfy-
ing the following convergent (and even, absolutely convergent) Taylor-like expansions (with V

⋆
= ⋃
n∈N

Vn),

∀M⋆,⋆ ∈ V
⋆
∶ f (M⋆,⋆) =

∞

∑
k=0

ck (f,M⋆,⋆) ε
k ((2−DW)+i `k,j,m p)
k , (R 49)

where, for each integer k ⩾ 0, the coefficient ck (⋆,⋆) is a complex number which depends on the

function f involved, and on the point at which it is evaluated. The number ε
k
k > 0 is the k

th
component

of the k
th

cohomology infinitesimal introduced in Definition 2.8, on page 21, and `k,j,m denotes an
integer (in Z) such that, for all k ∈ N (with {y} ∈ [0, 1[ denoting the fractional part of the real
number y)

»»»»»»»»»
{`k,j,m

ln ε
k
k

lnNb
}
»»»»»»»»»
≲
ε
k (DW−1)
k

2π
. (R 50)

Note that since the functions f involved are uniformly continuous on the Weierstrass Curve ΓW ⊃ V
⋆

,
and since the set V

⋆
is dense in ΓW , they are uniquely determined by their restriction to V

⋆
, as given

by (R49). We caution the reader, however, that at this stage of our investigations, we do not know
whether f(M) is given by an expansion analogous to the one in (R49), for every M ∈ ΓW , rather
than just for all M ∈ V

⋆
.

The convergence (or even, the absolute convergence) of the series
∞

∑
k=0

ck (f,M⋆,⋆) ε
k ((2−DW)+i `k,j,m p)
k

directly follows from the fact that the coefficients ck (⋆,⋆) are uniformly bounded and that, for any k ∈ N⋆,

»»»»»»»
ε
k ((2−DW)+i `k,j,m p)
k

»»»»»»»
= ε

k (2−DW)
k = (ε2−DW

k )
k
, with 0 < εk < 1 and 2 −DW > 0 .

Finally, for each M⋆ =M⋆,m ∈ V
⋆

, the coefficients ck (⋆,⋆) (for any k ∈ N) are the residues at
the possible Complex Dimensions − (k (2 −DW) + i `k,j,m p)) of a suitable global scaling zeta function
introuced in [DL22b].

The group H
⋆
=

∞

⨁
m=0

H
m

is called the total fractal (or global) cohomology group of the Weier-

strass Curve ΓW (or else, of the Weierstrass function W).
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Note that H
⋆

is to be understood in the sense of the inductive limit of the sequence of cohomology
groups (Hm)m∈N; namely, for each fermion ϕ ∈ H

⋆
, and each m ∈ N, the restriction ϕ∣Vm of ϕ to

the set of vertices Vm belongs to H
m

; the restriction (ϕ∣Vm+1
)∣Vm to Vm of the restriction ϕ∣Vm+1

of ϕ

to the set of vertices Vm+1 (which is itself in Hm+1), cöıncides with the restriction ϕ∣Vm of ϕ to Vm;
i.e.,

∀m ∈ N ∶ ϕ∣Vm ∈ H
m

and (ϕ∣Vm+1
)∣Vm = ϕ∣Vm .

This amounts, for each ϕ ∈ H
⋆

, to

ϕ = (ϕm)m∈N ,

where, for each m ∈ N, ϕm ∈ H
m

, while, if we denote by πm+1 ∶ H
m+1

→ H
m

the projection from H
m+1

to H
m

, we have that πm+1 (ϕm+1) ∈ H
m

coincides with ϕm.

According to Proposition 4.15, on page 51, and Proposition 4.16, on page 52, the estimate (R50) in
Theorem 4.19, on page 55, is, in particular, satisfied by the cohomological vertex integers, introduced in
our previous work [DL24b]; see Definition 2.9 just below. Not only do they satisfy the aforementioned
estimate, they also carry the information associated to the vertex point involved. Also, as we will see
below, in Theorem 4.20, on page 56, they satisfy a Hodge diamond star relation of the same form as
the one given in Property 2.19, on page 25.

Theorem 4.20 (A Second Hodge Diamond Star Relation).

For any m ∈ N⋆, any k in {0, . . . ,m} and any j in {0, . . . ,#Vm − 1}, we have the following second
Hodge Diamond Star relation, which goes hand in hand with – and completes the previous one given
in Property 2.19, on page 25,

ε
i k (#Vm−1−`j,m)p
k = εi k `j,m p , (R 51)

or, equivalently, with the second notation given in Definition 2.9, on page 22,

ε
i k (#Vm−1−`k′,k′′,m)p
k = ε

i k ((Nb−1)Nm
b −(Nb−1) k′−k′′)p

k = ε
i k `k′,k”,m p

k = ε
i k ((Nb−1) k′+k”)p
k , (R 52)

where 0 ⩽ k
′
⩽ N

m
b − 1 and 0 ⩽ k

′′
⩽ Nb − 1, which is also directly connected to the symmetry S with

respect to the vertical line x =
1

2
, stated in Property 2.8, on page 16, since the points

((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

,W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

)) and ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

are symmetric with respect to the vertical line x =
1

2
; see Figure 3, on page 17.

Proposition 4.21 (The Prefractal Cohomology Groups as Z-Modules).

For all m ∈ N, the cohomology groups H
m

– introduced in Proposition 4.13, on page 50, and
characterized in Theorem 4.14, on page 50 – can also be viewed as Z-modules (indeed, these groups
are abelian); i.e., for all (k, k′) ∈ Z2

and all (ϕ,ψ) ∈ H
m ×Hm

,
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k (ϕ + ψ) = k ϕ + k ψ ∈ H
m
,

(k + k′)ϕ = k ϕ + k′ ϕ ∈ H
m
.

4.2.4 The Polyhedral Measure

We now recall the results we have obtained in [DL24b], where we introduced and constructed a
specific polyhedral measure µ (by means of a sequence of polygonal neighborhoods of the Weierstrass
Curve), better suited to our polyhedral geometric context than the Hausdorff measure. This polyhedral
measure is the weak limit as m→∞ of discrete measures (or Dirac Combs) µm, which will play a key
role in obtaining the forthcoming orthogonal decomposition of the C-tensored prefractal cohomology
groups in Theorem 4.26, on page 63 below, this decomposition involving, of course, Hilbert spaces;
namely, L

2 (ΓW , µm), the space of complex-valued functions f on the Weierstrass Curve ΓW such that,
for all m ∈ N and each vertex X in Vm, f(X) exists.

Definition 4.19 (Sequence of Domains Delimited by the Weierstrass IFD – Polyhedral
Neighborhoods of the Weierstrass Curve [DL24b]).

We introduce the sequence of domains delimited by the Weierstrass IFD, or polygonal neigh-
borhood of the Weierstrass Curve as the sequence (D (ΓWm

))m∈N of open, connected polygonal
sets (Pm ∪Qm)m∈N, where, for each m ∈ N, Pm and Qm respectively denote the polygonal sets
introduced in Definition 2.5, on page 13; see also Notation 7, on page 13.

Given m ∈ N, we call D (ΓWm
) the m

th
polyhedral neighborhood (of the Weierstrass Curve ΓW).

Property 4.22 (Domain Delimited by the Weierstrass IFD [DL24b]).

We call domain, delimited by the Weierstrass IFD, the set which is equal to the following limit,

D (ΓW) = lim
m→∞

D (ΓWm
) ,

where the convergence is interpreted in the sense of the Hausdorff metric on R2
; see [DL24b]. In fact,

we have that

D (ΓW) = ΓW .

Notation 10 (Lebesgue Measure on R2
).

In the sequel, we denote by µL the Lebesgue measure on R2
.

Definition 4.20 (Power of a Vertex of the Prefractal Graph ΓWm
, m ∈ N⋆, with Respect

to the Polygonal Families Pm and Qm).

Given a strictly positive integer m, a vertex X of the prefractal graph ΓWm
will be said to be:
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i. of power one relative to the polygonal family Pm if X belongs to (to be understood in the sense
that X is a vertex of) one and only one Nb-gon Pm,j , 0 ⩽ j ⩽ N

m
b − 1;

ii. of power
1

2
relative to the polygonal family Pm if X is a common vertex to two consecutive Nb-

gons Pm,j and Pm,j+1, 0 ⩽ j ⩽ N
m
b − 2;

iii. of power zero relative to the polygonal family Pm if X does not belong to (to be understood in
the sense that X is not a vertex of) any Nb-gon Pm,j ,
0 ⩽ j ⩽ N

m
b − 1.

Similarly, given m ∈ N, a vertex X of the prefractal graph ΓWm
is said to be:

i. of power one relative to the polygonal family Qm if X belongs to (as above, to be understood in
the sense that X is a vertex of) one and only one Nb-gon Qm,j , 0 ⩽ j ⩽ N

m
b − 2;

ii. of power
1

2
relative to the polygonal family Qm if X is a common vertex to two consecutive Nb–

gons Qm,j and Qm,j+1, 0 ⩽ j ⩽ N
m
b − 3;

iii. of power zero relative to the polygonal family Qm if X does not belong to (as previously, to be
understood in the sense that X is not a vertex of) any Nb-gon Qm,j , 0 ⩽ j ⩽ N

m
b − 2.

Notation 11. In the sequel, given a strictly positive integer m, the power of a vertex X of the
prefractal graph ΓWm

relative to the polygonal families Pm and Qm will be respectively denoted by

p(X,Pm) and p(X,Qm) .

Notation 12 ([DL24b]).

For any m ∈ N, and any vertex X of Vm, we set

µ
L (X,Pm,Qm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

Nb
p (X,Pm) ∑

0⩽j⩽Nm
b −1,X vertex of Pm,j

µL (Pm,j) , if X ∉ Qm ,

1

Nb
p (X,Qm) ∑

1⩽j⩽Nm
b −2,X vertex of Qm,j

µL (Qm,j) , if X ∉ Pm ,

1

2Nb

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p (X,Pm) ∑

0⩽j⩽Nm
b −1,X vertex of Pm,j

µL (Pm,j) + p (X,Qm) ∑
1⩽j⩽Nm

b −2,X vertex of Qm,j

µL (Qm,j)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

if X ∈ Pm ∩Qm .

Theorem 4.23 (Polyhedral Measure on the Weierstrass IFD [DL24b]).

We introduce the polyhedral measure on the Weierstrass IFD, denoted by µ, such that for any
continuous function u on the Weierstrass Curve, with the use of Notation 12, on page 58,

∫
ΓW

u dµ = lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) u (X) , (⋆)

which, thanks to Definition 4.19, on page 57, can also be understood in the following way,
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∫
ΓW

u dµ = ∫
D(ΓW)

u dµ .

In addition, µ is the weak limit as m→∞ of the following discrete measures (or Dirac Combs),
given, for each m ∈ N, by

µm = ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) δX , (R 53)

where ε
m
m denotes the m

th
cohomology infinitesimal introduced in Definition 2.8, on page 21, δX is the

Dirac measure concentrated at X, and we have used Notation 12, on page 58, for µ
L (X,Pm,Qm).

4.2.5 Fractal Hodge Decomposition

Theorem 4.24 (The C-Tensored Prefractal Cohomology Groups – Associated Generators).

For all m ∈ N, we consider the tensor product of the cohomology group H
m

by C:

H
m
⊗ C = {z ϕ ∶ ϕ ∈ H

m
, z ∈ C} .

Note that the tensor product H
m ⊗ C is thus equipped with a vector space structure on the field C;

i.e., it is a complex vector space This enables us, in particular, to apply the natural transfer opera-
tor LW introduced in Definition 4.14, on page 46, to H

m ⊗ C.

From a strict algebraic point of view, we should really write H
m ⊗Z C, and similarly H

⋆ ⊗Z C
instead of H

⋆ ⊗ C just below. For notational simplicity, we will not do so in the sequel.

We also introduce

H
⋆
⊗ C =

∞

⨁
m=0

H
m
⊗ C ,

which, as is the case at the end of Theorem 4.19, on page 55, has to be understood in the sense of the
inductive limit of the sequence of the C-tensored cohomology groups (Hm ⊗ C)m∈N.

Along the lines of the generators of the (additive) cohomology groups introduced in Proposition 4.17,
on page 52, we introduce, for any integer m ⩾ 1, the generators of the tensor product H

m ⊗ C as

ε
k ((2−DW)+i k `k,j,m p)
k = ε

k ((2−DW)+i k `k′,k”,j,m p)
k ,

with 0 ⩽ k ⩽ m, 0 ⩽ k
′
⩽ N

m
b − 1, 0 ⩽ k” ⩽ Nb − 1 and `k′,k”,j,m = (Nb − 1) k′ + k”; see also Theorem 4.14

above, on page 50, and Definition 2.9, on page 22.

In our quest for an orthogonal decomposition of the complex cohomology – the natural extension
to our fractal context, of the classical Hodge decomposition (see Theorem 4.3, on page 42), we next
introduce a polarization operator on the C-tensored cohomology groups; it will provide a suitable
analog, in our context, of Deligne’s polarization used in pure Hodge theory, for example.
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Definition 4.21 (Alternate (Tensor) Product of a Pair of Continuous Functions on ΓW).

Given m ∈ N⋆, along with a pair of continuous functions (f, g) on ΓW , satisfying relation (R44),
on page 51, we introduce their alternate tensor product (f ⊗ g)a ∈ C, as the function defined, for all
vertices Mj,m ∈ Vm, with 0 ⩽ j ⩽ #Vm − 1, by

(f ⊗ g)a (Mj,m) =

=

#Vm−1

∑
j ′=0

N
m
b −1

∑
k′=0

m

∑
k=0

(1 − δ`j,m,(Nb−1) k′) ck (f,Mj,m) ck (g,M#Vm−1−j,m) ε2 k (2−DW)+i (k `k,j,m+k `k#Vm−1−j,m)p
k ,

(R 54)
where, for (q, q′) ∈, N2

, δq,q′ denotes the Kronecker delta: δq,q = 1 and δq,q′ = 0 if q
′
≠ q.

Remark 4.8 (About the Alternate (Tensor) Product of Definition 4.21).

The sum over the indices k
′
∈ {0, . . . , N

m
b − 1} in relation (R54) is to ensure that the vertices Mj,m,

for j ∈ {0, . . . ,#Vm − 1}, belong to Vm \ Vm−1 (i.e., they are not junction vertices; see part iv. of Prop-
erty 2.6, on page 12, along with Definition 2.9, on page 22), which will play a key role in the forthoming
orthogonal decomposition of the cohomology groups; see Theorem 4.26, on page 63.

Theorem 4.25 (A Polarization Operator on (Hm ⊗ C), and the Associated Fractal Hodge–Rie-
mann Relations (Fractal Counterpart of the Operator Given in Remark 4.3, on page 44,
and of the Classical Hodge-Riemann Relations, given in Theorem 4.8, on page 44)).

For any m ∈ N⋆, we introduce the polarization operator Qm from (Hm ⊗ C) × (Hm ⊗ C) to C
such that, for all (ϕ,ψ) ∈ (Hm ⊗ C) × (Hm ⊗ C) – where ϕ and ψ respectively involve the restrictions
to Vm of continuous functions f and g on ΓW , we have that, since µm is a bounded measure,

Qm (ϕ,ψ) = ∫
D(ΓWm)

(f ⊗ g)a dµm = ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

(f ⊗ g)a(X)µL (X,Pm,Qm) =

= ε
m (DW−2)
m

#Vm−1

∑
j=0

µ
L (Mjm,Pm,Qm)×

N
m
b −1

∑
k′=0

m

∑
k=0

(1 − δ`j,m,(Nb−1) k′) ck (f,Mj,m) ck (g,M#Vm−1−j,m) ε2 k (2−DW)+i k (`k,j,m+`k,#Vm−1−j,m)p
k ,

(R 55)
where D (ΓWm

) has been introduced in Definition 4.19 above, on page 57.

The alternate tensor product (f ⊗ g)a has been introduced in Definition 4.21 above, on page 60.
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Clearly, Qm is a C-bilinear map on (Hm ⊗ C) × (Hm ⊗ C).

The polarization operator Qm is C-bilinear, positive definite on (Hm ⊗ C)H,⋆ × (Hm ⊗ C)H,⋆,

where (Hm ⊗ C)H,⋆ is the subspace of (Hm ⊗ C) comprised of antisymmetric maps which involve
complex-valued continuous functions f on ΓW such that, for any vertex Mj,m ∈ Vm,

f (Mj,m) =
m

∑
k=0

ck (f,Mj,m) εk (2−DW)+i k `k,j,m p

k ,

and where, for 0 ⩽ k ⩽ m, the complex coefficients ck (f,Mj,m) εi k `k,j,m p

k satisfy the following Hodge
Diamond star relation

ck (f,M(Nb−1)Nm
b −j,m

) ε
i k `k,(Nb−1)Nm

b −j,m p

k = ck (f,Mj,m) εi k `k,j,m p

k . (R 56)

This property constitutes a fractal analog of the classital Hodge–Riemann relations, given in The-
orem 4.8, on page 44.

In addition, since, for all m ∈ N⋆, Vm−1 ⊆ Vm and hence also, H
m−1

⊆ H
m

(see [DL22b]), as

well as H
m−1 ⊗ C ⊆ H

m ⊗ C, we can extend Qm to (Hm ⊗ C) × (Hm−1 ⊗ C) by letting, for all (ϕ,ψ)
in (Hm ⊗ C) × (Hm−1 ⊗ C) – where, this time, ϕ and ψ respectively involve the restrictions to Vm
and Vm−1 of complex-valued continuous functions f and g on ΓW , and where, for all vertices X ∈ Vm \ Vm−1,

g(X) = 0 .

This immediately ensures, for all (ϕ,ψ) ∈ (Hm ⊗ C) × (Hm−1 ⊗ C), the orthogonality relation

Qm (ϕ,ψ) = 0 .

The proof of Theorem 4.25 is given on page 61, just after Remark 4.9.

Remark 4.9. The fact that the polarization operator Qm is positive definite on the complex sub-

space (Hm ⊗ C)H,⋆ is essential, since our main interest, in the cohomology, is the operator induced by

the global polyhedral effective zeta function, which belongs to (Hm ⊗ C)H,⋆; see also Corollary 2.22,
on page 29.

Proof. (Of Theorem 4.25, on page 60)

The C-bilinearity of the polarization operator Qm directly follows from the expression in rela-
tion (R55), on page 60.

We can check that Qm is positive definite on the complex subspace (Hm ⊗ C)H,⋆ of antisymmetric
maps which involve continuous functions f on ΓW such that, for any vertex Mj,m ∈ Vm,

f (Mj,m) =
m

∑
k=0

ck (f,Mj,m) εk (2−DW)+i k `k,j,m p

k , M⋆,m ∈ Vm ,

where, for 0 ⩽ k ⩽ m, the complex coefficients ck (f,Mj,m) εi k `k,j,m p

k satisfy the following Hodge Dia-
mond star relation,
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ck (f,M(Nb−1)Nm
b −j,m

) ε
i k `k,(Nb−1)Nm

b −j,m p

k = ck (f,Mj,m) εi k `k,j,m p

k .

Indeed, for any ϕ ∈ (Hm ⊗ C)H,⋆, we have that

Qm (ϕ,ϕ) = ∫
D(ΓWm)

(f ⊗ f)a dµm

= ε
m (DW−2)
m

#Vm−1

∑
j=0

µ
L (Mj,m,Pm,Qm)×

N
m
b −1

∑
k′=0

m

∑
k=0

(1 − δ`j,m,(Nb−1) k′) ck (f,Mj,m) ck (f,M#Vm−1−j,m) ε2 k (2−DW)+i k (`k,j,m+`k,#Vm−1−j,m)p
k

= ε
m (DW−2)
m

#Vm−1

∑
j=0

µ
L (Mj,m,Pm,Qm)×

N
m
b −1

∑
k′=0

m

∑
k=0

(1 − δ`j,m,(Nb−1) k′) ∣ck (f,Mj,m)∣2 ε2 k (2−DW)+i k (`k,j,m+`k,#Vm−1−j,m)p
k

= ε
m (DW−2)
m

#Vm−1

∑
j=0

µ
L (Mj,m,Pm,Qm)

N
m
b −1

∑
k′=0

m

∑
k=0

(1 − δ`j,m,(Nb−1) k′) ∣ck (f,Mj,m)∣2 ε2 k (2−DW)
k

(R 57)
since relation (R51), on page 56, implies that

ck (f,M(Nb−1)Nm
b −j,m

) ε
i k `k,(Nb−1)Nm

b −j,m p

k = ck (f,Mj,m) εi k `k,j,m p

k .

The last part of the theorem; i.e., for all (ϕ,ψ) ∈ (H −⊗C) × (H‘m − 1⊗ C), the orthogonality
relation

Qm (ϕ,ψ) = 0 ,

directly follows from the definition of the alternate tensor product; see Definition 4.21, on page 60,
along with Remark 4.8, on page 60.

Notation 13. Henceforth, given m ∈ N⋆, we will also use the following notation:

i. (Hm ⊗ C) \ (Hm−1 ⊗ C) to denote the complex vector space consisting of all functions ϕ in (Hm ⊗ C),
the expression of which only involves generators of the form

ε
m (2−DW)
m ε

im `k′,k”,j,m p
= ε

m (2−DW)+im `k′,k”,j,m p
m ,

with 0 ⩽ k
′
⩽ N

m
b − 1, 0 ⩽ k” ⩽ Nb − 1.
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In our present context, the notation (Hm ⊗ C) \ (Hm−1 ⊗ C) thus corresponds to the orthogonal

ofH
m−1 ⊗ C inHm ⊗ C with respect to the inner product Qm on the Hilbert space L

2 (Hm ⊗ C, µm),
introduced in Theorem 4.25, on page 60. In particular, it is a (complex) Hilbert space itself.

ii. Given 0 ⩽ k ⩽ m, 0 ⩽ k
′
⩽ N

m
b − 1 and 0 ⩽ k” ⩽ Nb − 1, ((Hm ⊗ C))k

′
,k”

to denote the complex
vector space consisting of all functions ϕ in (Hm ⊗ C), the expression of which only involves
generators of the form

ε
k (2−DW)
k ε

i k `k′,k”,j,m p

k = ε
k (2−DW)+i k `k′,k”,j,m p

.

iii. Given 0 ⩽ k
′
⩽ N

m
b − 1 and 0 ⩽ k” ⩽ Nb − 1, ((Hm ⊗ C) \ (Hm−1 ⊗ C))k

′
,k”

to denote the com-

plex vector space consisting of all functions ϕ in (Hm ⊗ C), the expression of which only involves
generators of the form

ε
m (2−DW)
m ε

im `k′,k”,j,m p
m = ε

m ((2−DW)+im `k′,k”,j,m p)
m .

Here too, much as in i., each of the complex vector space introduced in part ii. and iii. are complex
Hilbert spaces.

Theorem 4.26 (A First Orthogonal Hodge Decomposition of the Cohomology Groups
(Fractal Analog of Theorem 4.3, on page 42)).

Given m ∈ N⋆, we have the following, orthogonal Hodge decomposition:

(Hm
⊗ C) =

m

⨁
k=0

((Hk
⊗ C) \ (Hk−1

⊗ C)) =
m

⨁
k=0

N
m
b −1

⨁
k′=0

Nb−1

⨁
k”=0

((Hk
⊗ C) \ (Hk−1

⊗ C))
k
′
,k”

, (R 58)

where, for each k ∈ {0, . . . ,m}, (Hk ⊗ C) \ (Hk−1 ⊗ C) is the orthogonal of H
k−1 ⊗ C in H

k ⊗ C with

respect to Qm (see Theorem 4.25, on page 60), and where, for 0 ⩽ k
′
⩽ N

m
b − 1 and 0 ⩽ k” ⩽ Nb − 1,

the notation ((Hm ⊗ C) \ (Hm−1 ⊗ C))k
′
,k”

has been introduced in part i. of Notation 13 above, on
page 62.

Proof. This result directly follows from the properties of the polarization operator, given in Theo-
rem 4.25, on page 60.

Theorem 4.27 (Poincaré Duality – Conjugation Relation Associated with

(Hm ⊗ C) \ (Hm−1 ⊗ C) (see Notation 13 just above, on page 62) (Fractal Analog of The-
orem 4.4, on page 42).

Note that, given any m ∈ N⋆, we have that

(Hm
⊗ C) \ (Hm−1

⊗ C) =
N

m
b −1

⨁
k′=0

Nb−1

⨁
k”=0

((Hm
⊗ C) \ (Hm−1

⊗ C))k
′
,k”

. (R 59)

63



Thanks to the Hodge Diamond Star relation given in Theorem 4.20, on page 56, still given m ∈ N⋆,
0 ⩽ k

′
⩽ N

m
b − 1 and 0 ⩽ k” ⩽ Nb − 1, we have that

((Hm
⊗ C) \ (Hm−1

⊗ C))#Vm−1−(Nb−1) k′,−k”
= ((Hm ⊗ C) \ (Hm−1 ⊗ C))k

′,k”
, (R 60)

where the equality in relation (R60) really stands for an isomorphism of complex Hilbert spaces.

Remark 4.10 (Connection with the Geometry of the Prefractal Sequence).

Also, (Hm ⊗ C) \ (Hm−1 ⊗ C) can be viewed as a (#Vm −#Vm−1 + 1)-dimensional complex Hilbert
space.

Moreover, the orthogonal decomposition in relation (R59), on page 63, corresponds to the following
disjoint decomposition of the set of vertices Vm, given by

Vm = Vm0
⋃

⎛
⎜
⎝

m

⋃
k=m0+1

Vk \ Vk−1

⎞
⎟
⎠
,

where, for m0 + 1 ⩽ k ⩽ m, Vk \ Vk−1 now truly denotes the set-theoretic difference

Vk \ Vk−1 = Vk⋂V
c
k−1 ,

with V
c
k−1 standing for the complement of Vk−1 in Vk. See also Figure 6, on page 65, along with

Figure 7, on page 66.

In addition, due to the exact correspondance between vertices of the polygons at consecutive
steps m − 1, m (since, for 0 ⩽ k

′′
⩽ Nb − 1, the (k′′)th vertex of the polygon Pm,k′ , is the image of

the (k′′)th vertex of the polygon Pm−1,(Nb−1) (k′−i (Nb−1)Nm−1
b ) under the map Ti, where i ∈ {0, . . . , Nb − 1}

is arbitrary (see Property 2.11, on page 18), we also have the associated correspondence (i.e., isomor-

phism) between (Hm−1 ⊗ C)(Nb−1) (k′−i (Nb−1)Nm−1
b ),k”

and (Hm−1 ⊗ C)k
′
,k”

. This correspondence can
be interpreted as a quasi-periodicity property of the cohomology.

Theorem 4.28 (The Action of the Natural Transfer Operator LW on the Cohomology
Groups).

Given m ∈ N⋆, the natural transfer operator LW introduced in Definition 4.14, on page 46, acts
on the tensor product H

m ⊗ C (see Theorem 4.24 above, on page 59), in the following way (see also
Figure 8, on page 67),

LW (Hm
⊗ C) = Hm+1

⊗ C . (R 61)

In this light, the natural transfer operator LW can be interpreted as a differential, the natural
extension to our fractal context of the classical (exterior) derivative d (see Definition 4.2 above, on

page 37). In the same manner, the dual transfer operator L#
W (see Theorem 4.10, on page 46, and

recall that ε =
1

Nb
) can be interpreted as the conjugate d̄ of the aforementioned classical (exterior)

derivative d.
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(a) The set of vertices V0 (of the
prefractal graph ΓW0

), in the case

when λ =
1

2
and Nb = 3.

(b) The sets of vertices V1 (of the
prefractal graph ΓW1

), in the case

when λ =
1

2
and Nb = 3.

(c) The set of vertices V2 (of the
prefractal graph ΓW2

), in the case

when λ =
1

2
and Nb = 3.

Figure 6: The sets of vertices V0, V1, V2, in the case when λ =
1

2
and Nb = 3.

Accordingly, LW and L#
W play the role, in our fractal context, of

∂

∂z
and

∂

∂z̄
, respectively.

Note that, in terms of the generators of H
m

(see Proposition 4.17, on page 52), namely,

ε
k ((2−DW)+i k `k,j,m p)
k , for 0 ⩽ k ⩽ m,

and because

ε
k+1
k+1 =

1

Nb
ε
k
k = ε ε

k
k ,

along with the fact that, for `k′,j ′,m+1 ∈ Z,

ε
i (k+1) `k′,j′,m+1 p

k+1 = ε
i (k+1) `k′,j′,m+1 p ε

i (k+1) `k′,j′,m+1 p

k = ε
i `k′,j′,m+1 p

k ε
i k `k′,j′,m+1 p

k ,

since

ε
i (k+1) `k′,j′,m+1 p

k+1 = e
−2 i π (k+1) `k′,j′,m+1

lnε
lnε = 1 ,
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(a) The set of vertices V1 \ V0, in the

case when λ =
1

2
and Nb = 3.

(b) The set of vertices V2 \ V0, in the

case when λ =
1

2
and Nb = 3.

Figure 7: The set of vertices V1 \ V0 and V2 \ V0, in the case when λ =
1

2
and Nb = 3.

the action of LW on H
m ⊗ C amounts to the multiplication by ε

(2−DW)
ε
i `p
k , for a suitable ` ∈ Z.

And similarly, the action of L#
W on H

m ⊗ C amounts to the multiplication by ε
(2−DW)

ε
−i `p
k , for

a suitable ` ∈ Z.

Also, for 0 ⩽ k
′
⩽ N

m
b − 1, 0 ⩽ k” ⩽ Nb − 1 and 0 ⩽ i ⩽ Nb − 1 arbitrary, thanks to the correspon-

dence between

(Hm−1
⊗ C)(Nb−1) (k′−i (Nb−1)Nm−1

b ),k”
and (Hm−1

⊗ C)k
′
,k”

(see Theorem 4.24 above, on page 59, along with Notation 13, on page 62), we have that (see Figure 8,
on page 67),

LW ((Hm−1
⊗ C)Nb−1) (k′−i (Nb−1)Nm−1

b ),k”) = (Hm−1
⊗ C)k

′
,k”

. (R 62)

And similarly for L#
W .

Proof. This simply follows from the fact that Vm+1 =

Nb−1

⋃
i=0

Ti (Vm) (see Definition 2.3, on page 10).
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H
m

H
m ⊗ C

Hm+1 Hm+1 ⊗ C

δm,m+1 LW

Figure 8: Respective (and corresponding) actions of the differential δm,m+1 and the natural
transfer operator LW .

Indeed, since the m
th

cohomology group H
m

is comprised of the set of the restrictions to Vm
of (m,Nm

b + 1)-fermions, i.e., the restrictions to V
N

m
b +1

m of antisymmetric maps on ΓW , with N
m
b + 1

variables (corresponding to the vertices of Vm), involving the restrictions to Vm of continuous func-
tions f on ΓW , such that, for any j ∈ {0, . . . ,#Vm − 1}, we have that

f (Mj,m) =
m

∑
k=0

ck (f,Mj,m) εk (2−DW)+i k `k,j,m p

k (R 63)

(with p =
2π

lnNb
denoting the oscillatory period introduced in [DL22a]), the action of LW on H

m ⊗ C

gives the set of the restrictions to Vm+1 of (m + 1, N
m+1
b + 1)-fermions, i.e., the restrictions to V

N
m
b +1

m+1

of antisymmetric maps on ΓW , withN
m
b + 1 variables (corresponding to the vertices of Vm+1), involving

the restrictions to Vm+1 of continuous functions f on ΓW , such that, for any
j ∈ {0, . . . ,#Vm+1 − 1}, we have that

f (Mj,m+1) =
m+1

∑
k=0

ck (f,Mj,m+1) ε
k (2−DW)+i k `k,j,m+1 p

k ;

i.e., it yields H
m+1 ⊗ C .

Theorem 4.29 (A Second Hodge Decomposition of the Prefractal Cohomology Groups
(Fractal Counterpart of Theorem 4.3, on page 42)).

For all m ∈ N, and any j
′
∈ {0, . . . ,

#Vm − 1

2
}, we introduce the sets

H
m,j

′

and H
m,#Vm−j

′

as the set of the restrictions to Vm of (m,Nm
b + 1)-fermions, i.e., the restrictions to V

N
m
b +1

m of anti-
symmetric maps on ΓW , with N

m
b + 1 variables (corresponding to the vertices of Vm), involving the

restrictions to Vm of continuous functions f on ΓW , such that, for any j ∈ {0, . . . , j
′}, we have that

f (Mj,m) =
m

∑
k=0

ck (f,Mj,m) εk (2−DW)+i k `k,j,m p

k , (R 64)

where p denotes the oscillatory period introduced in [DL22a].

We then have that

H
m
=

#Vm−1
2

⨁
j ′=0

(Hm,j
′

⊕H
m,#Vm−j

′

) . (R 65)
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Upon tensoring by C, we deduce at once from relation (R65) the following orthogonal decomposition
of the (finite-dimensional) complex Hilbert space H

m ⊗ C:

H
m
⊗ C =

#Vm−1
2

⨁
j ′=0

(Hm,j
′

⊗ C⊕H
m,#Vm−j

′

⊗ C) . (R 66)

Proof. Relation (R65) directly follows from the fact that

Vm = {Mj,m , 0 ⩽ j ⩽ #Vm − 1} = {Mj ′,m , 0 ⩽ j
′
⩽

#Vm − 1

2
}⋃ {Mj ′,m ,

#Vm − 1

2
⩽ j

′
⩽ #Vm − 1} ,

where the subsets involved in the second equality are pairwise disjoint.

As was mentioned above, relation (R66) then follows at once from relation (R65) upon tensoring
by C.

Theorem 4.30 (Orthogonal Hodge Decomposition of the Total Cohomology).

The Fractal Complex of ΓW , H
⋆
= H

• (F• (ΓW ,C) , δ•) (see Theorem 4.19 above, on page 55),
can be decomposed as follows,

H
⋆
=

∞

⨁
m=0

#Vm−1
2

⨁
j ′=0

(Hm,j
′

⊕H
m,#Vm−j

′

) , (R 67)

or, else,

H
⋆
=

∞

⨁
m=0

∞

⨁
m′
=0

#Vm−1
2

⨁
j ′=0

(Hm,j
′

⊕H
m+m′

,#Vm+m′−(#Vm+m′−j) (Nb−2)m
′
−j ′) . (R 68)

Those two decompositions (which should be interpreted as inductive limits, much as towards the
end of Theorem 4.19, on page 55) also ensure the resulting (C-tensored) orthogonal decompositions
of the (infinite dimensional and separable) complex Hilbert space H

⋆ ⊗ C, with respect to the inner
product defined by Qm (see Theorem 4.25, on page 60),

H
⋆
⊗ C =

∞

⨁
m=0

#Vm−1
2

⨁
j ′=0

((Hm,j
′

⊗ C)⊕ (Hm,#Vm−j
′

⊗ C)) , (R 69)

or, else,

H
⋆ ⊗ C =

∞

⨁
m=0

∞

⨁
m′
=0

#Vm−1
2

⨁
j ′=0

((Hm,j
′

⊗ C)⊕ (Hm+m′
,#Vm+m′−(#Vm+m′−j) (Nb−2)m

′
−j ′)⊗ C)

=

∞

⨁
m=0

∞

⨁
m′
=0

#Vm−1
2

⨁
j ′=0

⎛
⎜⎜
⎝
(Hm,j

′

⊗ C)⊕
⎛
⎜⎜
⎝
(Lm

′

W (Hm
⊗ C))

#Vm+m′−(#Vm+m′−j) (Nb−2)m
′
−j ′⎞

⎟⎟
⎠
⊗ C

⎞
⎟⎟
⎠
,

(R 70)
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where, for any m
′
∈ N , Lm

′

W denotes the (m′)th iterate of the transfer operator L.

Proof. Since, by definition, H
⋆
=

∞

⨁
m=0

H
m

, the first decomposition, given in relation (R67), directly

follows from Theorem 4.29, on page 67.

As for the second decomposition, given in relation (R68), we obtain it thanks to the symmetry,

with respect to the vertical line x =
1

2
, of the vertices

Mj ′,m and M
#Vm+m′−(#Vm+m′−j ′) (Nb−2)m′

−j ′,m+m′ ,

for 0 ⩽ j
′
⩽

(Nb − 1)Nm
b

2
(see also the equivalent property in part ii. of Theorem 4.9, on page 45).

Relations (R69) and (R70) then follow at once from relation (R67) and (R68), respectively, upon
tensoring by C.

Proposition 4.31 (Operators Induced by the Natural Transfer Operator and its Dual).

The natural transfer operator LW and its dual L#
W , introduced in Definition 4.14, on page 46,

induce operators – still denoted by LW and L#
W , respectively, for the sake of simplicity – acting on the

(total) C-tensored cohomology H
⋆ ⊗ C.

Proposition 4.32 ((Fractal) Lefschetz Operator (Fractal Counterpart of the Classical Lef-
schefz Operator, Given in Theorem 4.5, on page 42)).

We introduce the (fractal) Lefschetz Operator LefW via

LefW = iLW L#
W = iL#

W LW ,

where LW is the natural transfer operator introduced in Definition 4.14, on page 46, while L#
W is its

dual (see Proposition 4.10, on page 46).

The Lefschetz Operator LefW is a bigraded operator, of bigrading (1, 1), which, given m ∈ N⋆,
acts on each tensor product H

m ⊗ C (see Theorem 4.24 above, on page 59, along with Theorem 4.28
above, on page 64), in the following way,

LefW (Hm
⊗ C) = Hm+2

⊗ C . (R 71)

This yields a fractal counterpart of the classic (primitive) Lefschetz decomposition, given (in the
case of Kähler manifolds) in Corollary 4.7, on page 43, since, given m ∈ N⋆ and 0 ⩽ k ⩽ m, with

P
k (Hm

⊗ C) = ker (Lefm−k+1
W ∣Hm⊗C) ,

we obviously have the following orthogonal decomposition of the (finite-dimensional) complex Hilbert
space H

m ⊗ C:
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H
m
⊗ C = P

m (Hm
⊗ C)⊕ LefWP

m−2 (Hm
⊗ C)⊕ LefWP

m−4 (Hm
⊗ C)⊕ . . . .

Remark 4.11 (Hodge Star Relation Induced by the Lefschetz Operator).

Obviously, the Lefschetz operator LefW introduced in Proposition 4.32 above, on page 69, induces
a Hodge Star relation on the functions defined on the Weierstrass Curve ΓW and on all the higher
differential forms. Naturally, an entirely similar comment applies to the transfer operator LW and its

adjoint L#
W , as well as to the fractal Hodge Laplacian, □W , which we next introduce.

Definition 4.22 (Fractal Hodge Laplacian (Fractal Counterpart of the Classical Hodge
Lapacian, Given in Definition 4.11, on page 41)).

The fractal Hodge Laplacianis given by

□W = LefW Lef#
W + Lef#

W LefW .

Along the lines of Remark 4.11 just above, and as alluded to in the introduction, we can now wonder
about the possible connections between the local and global polyhedral effective zeta functions, and
the cohomology. This issue is addressed in Proposition 4.33 just below.

Proposition 4.33 (Operators Induced on the Fractal Cohomology by the Local and Global
Polyhedral Effective Zeta Functions).

Given any m ∈ N⋆, the m
th

local polyhedral effective zeta function ζ̃
e
m introduced in Theorem 2.20,

on page 26, induces a (necessarily bounded, since the Hilbert space H
m ⊗ C is finite-dimensional) lin-

ear operator – denoted by ζ̃
e,op
m = ζ̃

e,op
m (s), for the sake of simplicity – which, for each s ∈ C, acts

on H
m ⊗ C.

In the same way, the global polyhedral effective zeta function ζ̃
e
W = ζ̃

e
W(s) introduced in Theo-

rem 2.20, on page 26, induces a (possibly unbounded) linear operator – denoted similarly by ζ̃
e,op
W = ζ̃

e,op
W (s),

for the sake of simplicity – which, again, for each fixed s ∈ C, acts on H
⋆ ⊗ C. (See Remark 4.12

below, on page 71.)

Proof. This simply comes from the respective expressions of the local and global polyhedral effec-
tive zeta functions according to the generators of the C-tensored cohomology groups H

m ⊗ C; see
Theorem 2.20, on page 26. Indeed, given m ∈ N, and 0 ⩽ k ⩽ m,

ε
k (2−DW)

= (Nb − 1) εk (2−DW)
k

and we can write each complex number ε
i `k,j,m p

in the following form,

ε
i `k,j,m p

= ck,j,m ε
i k `

′
k,j,m p

k ,
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with ck,j,m ∈ C and `
′
k,j,m ∈ Z (where ε

k
k is the k

th
cohomology infinitesimal, introduced in Defini-

tion 2.8, on page 21, with p =
2π

lnNb
denoting the oscillatory period of the Weierstrass Curve).

Remark 4.12. Since H
⋆ ⊗ C = lim

⟵
H
m ⊗ C is the inductive limit of the finite-dimensional complex

Hilbert spaces H
m ⊗ C – a fact wich follows (upon tensoring by C) from the latter part of the state-

ment of Theorem 4.19, on page 55 (see also Theorem 4.24, on page 59) – with associated orthogonal

projections π
C
m+1 ∶ H

⋆ ⊗ C→ H
m ⊗ C, such that – if we write (much as at the end of the statement

of Theorem 4.19, on page 55) every ϕ ∈ H
⋆ ⊗ C in the form ϕ = (ϕm)m∈N, with ϕm = π

C
m+1 (ϕ), for

all m ∈ N – then, with this notation, we expect that the (possibly) unbounded operor ζ̃
e,op
W = ζ̃

e,op
W (s)

can be viewed as a kind of inductive limit of the bounded operors ζ̃
e,op
m = ζ̃

e,op
m (s); at least symboli-

cally, ζ̃
e,op
W = lim

⟵
ζ̃
e,op
m , which is an inductive limit counterpart of the usual notion of the strong operator

convergence in operator theory.

More specifically, we expect that

ζ̃
e,op
W (s) (ϕ) = lim

m→∞
ζ̃
e,op
W (s) (ϕm) , (R 72)

for all ϕ = (ϕm)m∈N in D (ζ̃e,opW (s)), where the convergence holds in the norm topology of the Hilbert

space H
⋆ ⊗ C and is locally uniform in s ∈ C. Here, for each s ∈ C, D (ζ̃e,opW (s)) ⊆ H⋆ ⊗ C is the do-

main of the operator ζ̃
e,op
W (s), which should precisely coincide with the set of ϕ ∈ H

⋆ ⊗ C such that the

limit in relation (R72) exists in H
⋆ ⊗ C, with the obvious identification of H

m ⊗ C = π
C
m+1 (H⋆ ⊗ C)

with a closed subspace of H
⋆ ⊗ C.

We note that the kind of quantization of fractal zeta functions introduced in the present work is
analogous – but not at all identical – to the one introduced and studied in the book on Quantized
Number Thery, by Hafedh Herichi and the second author in [HL21].

Corollary 4.34 (A First Step Towards A Functional Equation: A Hodge Star Relation).

By applying the result mentioned in Remark 4.11, on page 70, we immediately obtain that the
Lefschetz Operator LefW introduced in Proposition 4.32 above, on page 69, induces a Hodge Star
relation on the (differential) operator ζ̃

e,op
W induced by the global polyhedral effective zeta function ζ̃

e
W ,

in the following form,

ζ̃
e,op
W = ζ̃

e,op
W ,

from which we deduce that, for all s ∈ C,

ζ̃
e
W(s̄) = ζ̃eW(s) ,

an identity that can also be verified directly from the definition and the expression of ζ̃
e
W .

The forthcoming consequence of Theorem 4.35 below, on page 72, about the resolvent of the
(differential) operator ζ̃

e,op
W = ζ̃

e,op
W (s) induced by the global zeta function, is also new. It is based

upon its decomposition with respect to the total cohomology, given in Theorem 4.19, on page 55. The
proof of this result, where the difficulty is to go to the limit when the integer m tends to infinity,
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can be obtained via two completely different methods: first, by using the explicit expression for the
global effective polyhedral zeta function; second, by relying on the (natural) correspondence between
the Alexander-Kolmogorov Complex, and the de Rham complex, by means of a small scale parameter;
see [DL23d]. In short, this latter result will enable us to go to the limit when the integer m tends
to infinity, and obtain the result we expect in the case of the global zeta function. This passage
to the limit is done in a very elegant way, by means of canonical projectors between the de Rham
Complex and a h-scale cohomology, where h is a very small parameter (in our present setting, we will

take h = ε
m

, the intrinsinc m
th

cohomology infinitesimal, introduced in Definition 2.8, on page 21).

Theorem 4.35 (Resolvent of the (Differential) Operator Induced by the Global Zeta Func-
tion).

Given m ∈ N sufficiently large (i.e., for all m ⩾ m0, for some optimal m0 ∈ N), the operator ζ̃
e,op
m

induced by the m
th

local polyhedral effective zeta function ζ̃
e
m (see Proposition 4.33, on page 70)

introduced in Theorem 2.20 above, on page 26, can be decomposed with respect to the C-tensored
cohomology groups H

m0 ⊗ C, . . ., H
m−m0+1 ⊗ C in the following two ways:

ζ̃
e,op
m = (ζ̃e,opm )∣Hm0⊗C

+ (ζ̃e,opm )∣(Hm0+1⊗C)\(Hm0⊗C) + . . . + (ζ̃e,opm )∣(⊗C)Hm\(Hm−1⊗C)

= (ζ̃e,opm )∣Hm0⊗C
+

m

∑
k=m0+1

(ζ̃e,opm )∣(Hk⊗C)\(Hk−1⊗C) ,

which corresponds to a graded decomposition of the cohomology according to the real parts of the
generators (see Proposition 4.17, on page 52, along with Theorem 4.24, on page 59), or, going further,
i.e., taking into account a graded decomposition of the cohomology according to the real and imaginary
parts of the generators (see relation (R58), on page 63),

ζ̃
e,op
m =

N
m0
b −1

∑
k′=0

Nb−1

∑
k′′=0

(ζ̃e,opm )∣(Hm0⊗C)k′,k′′ +
N

k
b −1

∑
k′=0

Nb−1

∑
k′′=0

m

∑
k=m0+1

(ζ̃e,opm )∣(Hk⊗C)\(Hk−1⊗C)k
′,k′′ .

In the same way, the operator ζ̃
e,op
W induced by the global effective zeta function ζ̃

e
W introduced

in Theorem 2.20 above, on page 26, can be decomposed with respect to the C-tensored cohomology
groups H

m0 ⊗ C, H
m0+1 ⊗ C, . . ., in the following two ways:

ζ̃
e,op
W = (ζ̃e,opW )∣Hm0⊗C

+ (ζ̃e,opW )∣(Hm0+1⊗C)\(Hm0⊗C) + . . . + (ζ̃e,opW )∣(⊗C)Hm\(Hm−1⊗C)

= (ζ̃e,opW )∣Hm0⊗C
+

∞

∑
k=m0+1

(ζ̃e,opW )∣(Hk⊗C)\(Hk−1⊗C) ,

and

ζ̃
e,op
W =

N
m0
b −1

∑
k′=0

Nb−1

∑
k′′=0

(ζ̃e,opW )∣(Hm0⊗C)k′,k′′ +
N

k
b −1

∑
k′=0

Nb−1

∑
k′′=0

∞

∑
k=m0+1

(ζ̃e,opW )∣(Hk⊗C)\(Hk−1⊗C)k
′,k′′ .

This ensures, for all z ∈ C \ Sp (ζ̃e,opm ), where Sp (ζ̃e,opm ) denotes the spectrum of ζ̃
e,op
m and Id∣Hm⊗C

the identity map on H
m ⊗ C, that for all m ⩾ m0, with m0 ∈ N as above, the determinant of the
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resolvent (z Id∣Hm⊗C − ζ̃
e,op
m )−1

of the m
th

local operator ζ̃
e,op
m can be expressed in the following two

forms,

det (z Id∣Hm⊗C − ζ̃e,opm )−1
=

= det (z Id∣Hm0⊗C − (ζ̃e,opm )∣Hm0⊗C
)
−1 m

∏
k=m0+1

det (z Id∣(Hk⊗C)\(Hk−1⊗C) − (ζ̃e,opm )∣(Hk⊗C)\(Hk−1⊗C))
−1

,

(R 73)
or,

det (z Id∣Hm⊗C − ζ̃
e,op
m )−1

=

= det (z Id∣Hm0⊗C − (ζ̃e,opm )∣Hm0⊗C
)
−1

×
m

∏
k=m0+1

N
k
b −1

∏
k′=0

Nb−1

∏
k′′=0

det (z Id∣((Hk⊗C)\(Hk−1⊗C))k
′,k” − (ζ̃e,opm )∣((Hk⊗C)\(Hk−1⊗C))k

′,k′′)
−1

= det (z Id∣(Hm0⊗C) − (ζ̃e,opm )∣Hm0⊗C
)
−1

×
m

∏
k=m0+1

N
k
b −1

∏
k′=0

Nb−1

∏
k′′=0

det (z Id∣((Hk⊗C)\(Hk−1⊗C))k
′,k” − (ζ̃e,opm )∣((Hk⊗C)\(Hk−1⊗C))k

′,k′′)
−1

= det (z Id∣(Hm0⊗C) − (ζ̃e,opm )∣Hm0⊗C
)
−1

×
m

∏
k=m0+1

[N
k
b
2

]

∏
k′=0

Nb−1

∏
k′′=0

det (z Id∣((Hk⊗C)\(Hk−1⊗C))k
′,k” − (ζ̃e,opm )∣((Hk⊗C)\(Hk−1⊗C))k

′,k′′)
−1

× det (z Id
∣((Hk⊗C)\(Hk−1⊗C))(Nb−1)Nk

b −k
′,−k” − (ζ̃e,opm )

∣((Hk⊗C)\(Hk−1⊗C))(Nb−1)Nk
b −k

′,−k”)
−1

×
Nb−1

∏
k′′=0

(1 + (−1)k+1

2
) det(z Id

∣((Hk⊗C)\(Hk−1⊗C))[
Nk
b
2 ]+1,k”

− (ζ̃e,opm )
∣((Hk⊗C)\(Hk−1⊗C))[

Nk
b
2 ]+1,k′′

)
−1

;

(R 74)
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i.e.,

det (z Id∣Hm⊗C − ζ̃
e,op
m )−1

=

= det (z Id∣(Hm0⊗C) − (ζ̃e,opm )∣Hm0⊗C
)
−1

×
m

∏
k=m0+1

[N
k
b
2

]

∏
k′=0

Nb−1

∏
k′′=0

det (z Id∣((Hk⊗C)\(Hk−1⊗C))k
′,k” − (ζ̃e,opm )∣((Hk⊗C)\(Hk−1⊗C))k

′,k′′)
−1

× det (z Id∣((Hk⊗C)\(Hk−1⊗C))k
′,k′′ − (ζ̃e,opm )∣((Hk⊗C)\(Hk−1⊗C))k

′,k”)
−1

×
Nb−1

∏
k′′=0

(1 + (−1)k+1

2
) det(z Id

∣((Hk⊗C)\(Hk−1⊗C))[
Nk
b
2 ]+1,k”

− (ζ̃e,opm )
∣((Hk⊗C)\(Hk−1⊗C))[

Nk
b
2 ]+1,k′′

)
−1

= det (z Id∣(Hm0⊗C) − (ζ̃e,opm )∣Hm0⊗C
)
−1

×
m

∏
k=m0+1

[N
k
b
2

]

∏
k′=0

Nb−1

∏
k′′=0

»»»»»»»»»
det (z Id∣((Hk⊗C)\(Hk−1⊗C))k

′,k” − (ζ̃e,opm )∣((Hk⊗C)\(Hk−1⊗C))k
′,k′′)

−1»»»»»»»»»

2

×
Nb−1

∏
k′′=0

(1 + (−1)k+1

2
) det(z Id

∣((Hk⊗C)\(Hk−1⊗C))[
Nk
b
2 ]+1,k”

− (ζ̃e,opm )
∣((Hk⊗C)\(Hk−1⊗C))[

Nk
b
2 ]+1,k′′

)
−1

(R 75)
with, of course,

det (z Id∣Hm0⊗C − (ζ̃e,opm )∣Hm0⊗C
)
−1
=

N
m0
b −1

∏
k′=0

Nb−1

∏
k′′=0

det (z Id∣Hm0⊗C − (ζ̃e,opm )∣(Hm0⊗C)k′,k′′)
−1
. (R 76)
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We also have that, for all z ∈ C \ Sp (ζ̃e,opW ), where Sp (ζ̃e,opW ) denotes the spectrum of the (differen-

tial) operator ζ̃
e,op
W (where ζ̃

e
W is given in Theorem 2.20, on page 26), the resolvent det (z Id∣H⋆⊗C − ζ̃

e,op
W )−1

of the global operator ζ̃
e,op
W can be expressed in the following form:

det (z Id∣H⋆⊗C − ζ̃
e,op
W )−1

=

= det (z Id∣Hm0⊗C − (ζ̃e,opW )∣Hm0⊗C
)
−1 ∞

∏
k=m0+1

det (z Id∣((Hk⊗C)\(Hk−1⊗C))k
′,k” − (ζ̃e,opW )∣((Hk⊗C)\(Hk−1⊗C))k

′,k”)
−1

= det (z Id∣Hm0⊗C − (ζ̃e,opW )∣Hm0⊗C
)
−1

×
∞

∏
k=m0+1

N
k
b −1

∏
k′=0

Nb−1

∏
k′′=0

m

∏
k=m0+1

det (z Id∣((Hk⊗C)\(Hk−1⊗C))k
′,k” − (ζ̃e,opW )∣((Hk⊗C)\(Hk−1⊗C))k

′,k”)
−1

= det (z Id∣Hm0⊗C − (ζ̃e,opW )∣Hm0⊗C
)
−1

× lim
m→∞

N
k
b −1

∏
k′=0

Nb−1

∏
k′′=0

det (z Id∣((Hk⊗C)\(Hk−1⊗C))k
′,k” − (ζ̃e,opW )∣((Hk⊗C)\(Hk−1⊗C))k

′,k”)
−1

which, of course, can also be written as

det (z Id∣H⋆⊗C − ζ̃
e,op
W ) =

= det (z Id∣Hm0⊗C − (ζ̃e,opW )∣Hm0⊗C
)

× lim
m→∞

N
k
b −1

∏
k′=0

Nb−1

∏
k′′=0

det (z Id∣((Hk⊗C)\(Hk−1⊗C))k
′,k” − (ζ̃e,opW )∣((Hk⊗C)\(Hk−1⊗C))k

′,k”) .

Since, for m ⩾ m0, 0 ⩽ k ⩽ m, 0 ⩽ k
′
⩽ N

m
b − 1 and 0 ⩽ k” ⩽ Nb − 1, the expression (for each

fixed s ∈ C) of the operator ζ̃
e,op
W on each (Hk ⊗ C) \ (Hk−1 ⊗ C)k

′
,k
′′

only involves terms in

ε
k (2−DW) s+i k `k′,k”,j,m p

, we note that the eigenvalues of ζ̃
e,op
W = ζ̃

e,op
W (s) are precisely the complex num-

bers

λ(s) =
1

2
ε
m+1

αq(Nb)
ck,(Nb−1) j+q,m+1 ε

s

s −DW + (k − 1) (2 −DW) + i `k,(Nb−1) j+q,m+1 p

+
1

2
ε
m+1

αq(Nb)
ck,(Nb−1) j+q,m+1 ε

s

s −DW + (k − 1) (2 −DW) − i `k,(Nb−1) j+q,m+1 p
,

for 0 ⩽ q ⩽ Nb, and where the coefficients αq(Nb) have been introduced in Theorem 2.20, on page 26,
while the coefficients ck,(Nb−1) j+q,m+1 are given in Theorem 2.18, on page 23.

The proof of Theorem 4.35 is given on page 76, just after Remark 4.13.
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Remark 4.13 (On the Optimality of the Integer m0 Involved in the Expression of the Global
Polyhedral Effective Zeta Function).

Note that the integer m0, involved in the expression of the global polyhedral effective zeta func-
tion ζ̃

e
W given in Theorem 2.20, on page 26, has to be chosen as the optimal admissible integer, since

this integer plays a key role. More precisely, it is the value of m0 which fixes the global polyhedral
effective zeta function ζ̃

e
W and hence helps determine not only its poles (i.e., the intrinsinc Complex

Dimensions) but also its zeros.

Proof. (Of Theorem 4.35, on page 72)

The first part of the theorem, i.e., the result in relation (R73), comes from Proposition 4.17, on
page 52, which provides the generators of the cohomology groups H

m
, as the following generalized

(fractional) polynomials

ε
k (2−DW)
k ε

i k `j,m p

k = ε
k ((2−DW)+i k `j,m p)
k

and

ε
k (2−DW)
k ε

−i k `j,m p

k = ε
k ((2−DW)−i k `j,m p)
k ,

with 0 ⩽ k ⩽ m, 0 ⩽ `j,m ⩽ #Vm − 1, along with Proposition 4.33, on page 70, and its proof, on page 70.

This immediately ensures, for the (differential) operator ζ̃
e,op
m induced by the m

th
local polyhedral

effective zeta function ζ̃
e
m, the expression of which with respect to the aforementioned generators, is

given by relation (R21), on page 26, that ζ̃
e,op
m can be decomposed as

ζ̃
e,op
m = (ζ̃e,opm )∣Hm0⊗C

+ . . . + (ζ̃e,opm )∣Hm⊗C
,

with

(ζ̃e,opm )∣Hm0⊗C
=

1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m0

∑
k=1

ck,(Nb−1) j+q,m ε
s−DW+(k−1) (2−DW)+i k `k,(Nb−1) j+q,m p

k

s −DW + (k − 1) (2 −DW) + i k `k,(Nb−1) j+q,m p

+
1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m0

∑
k=1

ck,(Nb−1) j+q,m ε
s−DW+(k−1) (2−DW)−i k `k,(Nb−1) j+q,m p

k

s −DW + (k − 1) (2 −DW) − i k `k,(Nb−1) j+q,m p
∈ H

m0 ⊗ C

where the coefficients ck,(Nb−1) j+q,m+1 are given in Theorem 2.18, on page 23, and where, for allm0 + 1 ⩽ k ⩽ m,

(ζ̃e,opm )∣(Hk⊗C)\(Hk−1⊗C) =
1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
ck,(Nb−1) j+q,m ε

s−DW+(k−1) (2−DW)+i k `k,(Nb−1) j+q,m p

s −DW + (k − 1) (2 −DW) + i k `k,(Nb−1) j+q,m p

+
1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
ck,(Nb−1) j+q,m ε

s−DW+(k−1) (2−DW)−i k `k,(Nb−1) j+q,m p

s −DW + (k − 1) (2 −DW) − i k `k,(Nb−1) j+q,m p

and acts on (Hk ⊗ C) \ (Hk−1 ⊗ C), as desired.
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The second part of the theorem, i.e., the result in relation (R74), also comes from Proposition 4.17,
on page 52, which also provides the generators of the cohomology groups H

m
, as the following gener-

alized (fractional) polynomials

ε
k (2−DW)
k ε

i k `k′,k′′,m p

k = ε
k ((2−DW)+i k `k′,k′′,m p)
k ,

with 0 ⩽ k ⩽ m, 0 ⩽ k
′
⩽ N

m
b − 1, 0 ⩽ k

′′
⩽ Nb − 1. This immediately ensures, for the m

th
local polyhe-

dral effective zeta function ζ̃
e
m, the expression of which with respect to the aforementioned generators,

is given by relation (R21), on page 26, that the (differental) operator ζ̃
e,op
m can be decomposed as

ζ̃
e,op
m =

N
m0
b −1

∑
k′=0

Nb−1

∑
k′′=0

(ζ̃e,opm )∣(Hm0⊗C)k′,k′′ +
N

k
b −1

∑
k′=0

N
k
b −1

∑
k′′=0

m

∑
k=m0+1

(ζ̃e,opm )∣(Hk⊗C)\(Hk−1⊗C)k′,k′′ .

The third step is to go to the limit when the integer m tends to ∞. We can, indeed, use the explicit
expression for the global polyhedral effective zeta function ζ̃

e
W given in relation (R24), on page 27,

which directly yields the expected result.

We can also apply the same method as in [DL23d], based on the (natural) correspondence between
the Alexander–Kolmogorov Complex, and the de Rham Complex, by means of a small scale parameter.
To this purpose, we require the following scaled cohomology, obtained by letting, for all m ∈ N⋆,

δ
ε
m−1,m = ε

−m
δm−1,m ⋅

where the (m − 1,m)-differential δm−1,m from F0 (Vm,C) to FNb+1 (Vm,C) has been introduced in
Definition 4.17, on page 49. This provides the scaled cohomology

m

⨁
m=0

(Hm)ε , (R 77)

where, for all m ∈ N⋆,

(Hm)ε = ker δ
ε
m−1,m/Im δ

ε
m−2,m−1 .

The method given in [DL23d], also applies in our present context. For the sake of concision, we
do not rewrite here all the details. The important point is that it relies on canonical projections
between the scaled complex and the de Rham Complex. It enables us to go to the limit when m → ∞
(or, equivalently, when ε

m
→ 0), thus also providing the result obtained by using the recurrence

relation (R23), on page 27.

Remark 4.14 (About the Natural Correspondence Between the Alexander-Kolmogorov
Complex, and the de Rham Complex – Remarkable Consequences on Local Zeta Func-
tions).

We stress that the method given in [DL23d] enables us to go to the limit in the case of local zeta
functions which do not satisfy a recurrence relation. It thus provides a very powerful and natural tool
which, thus far, was missing from the theory.
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Theorem 4.36 (The (Complex Dimensions) Frobenius Operator).

Given m ∈ N sufficiently large (i.e., for all m ⩾ m0, for some optimal m0 ∈ N), the opera-

tor (ζ̃e,opm )−1
– the inverse operator of ζ̃

e,op
m (see Proposition 4.33, on page 70), can also be decomposed

with respect to the C-tensored cohomology groups H
m0 ⊗ C, . . ., H

m−m0+1 ⊗ C in the following two
ways:

(ζ̃e,opm )−1
= ((ζ̃e,opm )−1)

∣Hm0⊗C
+ ((ζ̃e,opm )−1)

∣(Hm0+1⊗C)\(Hm0⊗C)
+ . . . + ((ζ̃e,opm )−1)

∣(⊗C)Hm\(Hm−1⊗C)

= ((ζ̃e,opm )−1)
∣Hm0⊗C

+
m

∑
k=m0+1

((ζ̃e,opm )−1)
∣(Hk⊗C)\(Hk−1⊗C)

,

where the last sum is equal to zero if m = m0, or, going further, i.e., taking into account a graded
decomposition of the cohomology according to the real and imaginary parts of the generators (see
relation (R58), on page 63),

(ζ̃e,opm )−1
=

N
m0
b −1

∑
k′=0

Nb−1

∑
k′′=0

((ζ̃e,opm )−1)
∣(Hm0⊗C)k′,k′′

+
N

k
b −1

∑
k′=0

Nb−1

∑
k′′=0

m

∑
k=m0+1

((ζ̃e,opm )−1)
∣(Hk⊗C)\(Hk−1⊗C)k

′,k′′ .

Similarly, the operator (ζ̃e,opW )−1
– the inverse operator of ζ̃

e,op
W , can be decomposed with respect to

the C-tensored cohomology groups H
m0 ⊗ C, H

m0+1 ⊗ C, . . ., in the following two ways:

(ζ̃e,opW )−1
= ((ζ̃e,opW )−1)

∣Hm0⊗C
+ ((ζ̃e,opW )−1)

∣(Hm0+1⊗C)\(Hm0⊗C)
+ . . . + ((ζ̃e,opW )−1)

∣(⊗C)Hm\(Hm−1⊗C)

= ((ζ̃e,opW )−1)
∣Hm0⊗C

+
∞

∑
k=m0+1

((ζ̃e,opW )−1)
∣(Hk⊗C)\(Hk−1⊗C)

,

and

(ζ̃e,opW )−1
=

N
m0
b −1

∑
k′=0

Nb−1

∑
k′′=0

((ζ̃e,opW )−1)
∣(Hm0⊗C)k′,k′′

+
N

k
b −1

∑
k′=0

Nb−1

∑
k′′=0

∞

∑
k=m0+1

((ζ̃e,opW )−1)
∣(Hk⊗C)\(Hk−1⊗C)k

′,k′′ .

Since, for m ⩾ m0, 0 ⩽ k ⩽ m, 0 ⩽ k
′
⩽ N

m
b − 1 and 0 ⩽ k” ⩽ Nb − 1, the expression of the opera-

tor (ζ̃e,opW )−1
on each (Hk ⊗ C) \ (Hk−1 ⊗ C)k

′
,k
′′

only involves terms in

ε
k (2−DW) s+i k `k′,k”,j,m p

k , we note that the eigenvalues of (ζ̃e,opW )−1
= (ζ̃e,opW (s))−1

, for each fixed s ∈ C,
are precisely the complex numbers

λ
+
k′′′,(Nb−1) j+q,k+1(s)

−1
=

2

αq(Nb) εk+1

s + 2 (k′′′ − 1) − kDW + i `k′′′,(Nb−1) j+q,k+1 p

ck′′′,(Nb−1) j+q,k+1 ε
s

and

λ
−
k′′′,(Nb−1) j+q,k+1(s)

−1
=

2

αq(Nb) εk+1

s + 2 (k′′′ − 1) − kDW − i `k′′′,(Nb−1) j+q,k+1 p

ck′′′,(Nb−1) j+q,k+1 ε
s ,

where 0 ⩽ k
′′′
⩽ k + 1, along with
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λ
+
k+1,(Nb−1) j+q,k+1(s)

−1
=

2

αq(Nb) εk+1

s + 2 k − (k + 1)DW + i `k+1,(Nb−1) j+q,k+1 p

ck+1,(Nb−1) j+q,k+1 ε
s

and

λ
−
k+1,(Nb−1) j+q,k+1(s)

−1
=

2

αq(Nb) εk+1

s + 2 k − (k + 1)DW − `k+1,(Nb−1) j+q,k+1 p

ck+1,(Nb−1) j+q,k+1 ε
s ,

with 0 ⩽ q ⩽ Nb, where the coefficients αq(Nb) have been introduced in Theorem 2.20, on page 26,
while the coefficients ck,(Nb−1) j+q,k+1 are given in Theorem 2.18, on page 23.

Going further, by introducing the operator

Ze,op
W =

N
m0
b −1

∑
k′=0

Nb−1

∑
k′′=0

((ζ̃e,opW )−1)
∣(Hm0⊗C)k′,k′′

+2

N
k
b −1

∑
k′=0

Nb−1

∑
k′′=0

∞

∑
k=m0+1

k+1

∑
k′′′=0

Nb

∑
q=0

s + 2 (k′′′ − 1) − k′′′DW + i `k′′′,(Nb−1) j+q,k+1 p

αq(Nb) εk+1 ck′′′,(Nb−1) j+q,k+1 ε
s

((ζ̃e,opW )−1)
∣(Hk⊗C)\(Hk−1⊗C)k

′,k′′

+2

N
k
b −1

∑
k′=0

Nb−1

∑
k′′=0

∞

∑
k=m0+1

k+1

∑
k′′′=0

Nb

∑
q=0

s + 2 (k′′′ − 1) − k′′′DW − i `k′′′,(Nb−1) j+q,k+1 p

αq(Nb) εk+1 ck′′′,(Nb−1) j+q,k+1 ε
s

((ζ̃e,opW )−1)
∣(Hk⊗C)\(Hk−1⊗C)k

′,k′′

+2

N
k
b −1

∑
k′=0

Nb−1

∑
k′′=0

∞

∑
k=m0+1

Nb

∑
q=0

s + 2 (k − 1) − kDW + i `k,(Nb−1) j+q,k+1 p

αq(Nb) εk+1 ck,(Nb−1) j+q,k+1 ε
s

((ζ̃e,opW )−1)
∣(Hk⊗C)\(Hk−1⊗C)k

′,k′′

+2

N
k
b −1

∑
k′=0

Nb−1

∑
k′′=0

∞

∑
k=m0+1

Nb

∑
q=0

s + 2 (k − 1) − kDW − i `k,(Nb−1) j+q,k+1 p

αq(Nb) εk+1 ck,(Nb−1) j+q,k+1 ε
s

((ζ̃e,opW )−1)
∣(Hk⊗C)\(Hk−1⊗C)k

′,k′′ .

we note that, for s = 0, the eigenvalues of Ze,op
W ∣s=0 = Ze,op

W (0) are exactly the intrinsic Complex Di-
mensions of the Weierstrass Curve ΓW , as given by relation (R25) of Corollary 2.21, on page 28.

Remark 4.15 (About the Frobenius Operator).

Our Frobenius operator, as introduced in Theorem 4.36, on page 78, is simply a normalized version
of the inverse of the (differential) operator ζ̃

e,op
W induced by the global zeta function ζ̃

e
W . This can

be understod intuitively, insofar as the global zeta function ζ̃
e
W is, also, the global zeta function

associated with the Weierstrass function W, when an infinity of other functions enable us to obtain
the cohomology groups; see Theorem 4.19 above, on page 55.

Theorem 4.37 (Functional Equation for the Global (Polyhedral) Zeta Function ζ̃
e
W).

We set

λ
⋆
=

1

λN2
b

. (R 78)
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Since λNb > 1 and 0 < λ < 1, we then have that

λN
2
b > Nb > 1 and λ

⋆
< ε =

1

Nb
< 1 ,

while

λ
⋆
Nb =

1

λNb
< 1 ,

along with

D
⋆
W = 2 +

lnλ
⋆

lnNb
= 2 +

− lnλ − 2 lnNb

lnNb
= −

lnλ

lnNb
= 2 −DW ∈ ]0, 1[ . (R 79)

We then consider the Weierstrass star function W⋆
(also called, in short, the W⋆

function, or the
dual Weierstrass function) defined, for any real number x, by

W⋆(x) =
∞

∑
n=0

(λ⋆)n cos (2πNn
b x) , (R 80)

with associated fractal curve Γ
⋆
W = ΓW⋆, along with its complex counterpart, defined, for any real

number x, by

W⋆
comp(x) =

∞

∑
n=0

(λ⋆)n e2 i π N
n
b x . (R 81)

The global fractal effective zeta function ζ̃
e,⋆
W , associated with the Weierstrass star function W⋆

,
satisfies the following functional equation, for all s ∈ C,

ζ̃
e,⋆
W (2 − s) = ζ̃eW(s) , (R 82)

where, by definition, ζ̃
e,⋆
W = ζ̃

e
W⋆.

Since 0 < λ
⋆
< 1, the function W⋆

is of class (at least) C
1

(i.e., continuously differentiable). There-
fore, the corresponding Weierstrass Curve Γ

⋆
W = ΓW⋆ is also of class C

1
(in particular, it has a tangent

line at every point), and yet, it is fractal, in the sense of the theory of fractal Complex Dimen-
sions [LvF13], [LRŽ17b], [Lap19], [DL23b].

Indeed – according to the functional equation (R82), and Corollary 2.21, on page 28 – it must have
infinitely Complex Dimensions (all of which, but 2 −DW ∈ ]0, 1[) are nonreal; namely, the Complex
Dimensions of Γ

⋆
W = ΓW⋆ are all simple and exact, as well as given by

m (2 −DW) ± i `jk,m,k p , with m ∈ N arbitrary and 0 ⩽ k ⩽ m, (R 83)

where the integers `jk,m,k ∈ N (which depend on k and m) are given in Theorem 2.18, on page 23)

and where p =
2π

lnNb
is the oscillatory period of the dual Weierstrass Curve Γ

⋆
W (as well as of the

Weierstrass Curve ΓW).

Remark 4.16. Naturally, if, in Theorem 4.37, we assume, instead, that λNb < 1, with 0 < λ < 1 – so
that the Weierstrass function W and the Weierstrass Curve ΓW are of class C

1
– the dual Weierstrass

function W⋆
and the dual Weierstrass Curve Γ

⋆
W are nowhere differentiable, while the global (poly-

hedral) zeta functions of ΓW and Γ
⋆
W , namely, ζ̃

e
W and ζ̃

e,
⋆

W are still related by the same functional

equation (R82), on page 80. Also, the (intrinsic) Complex Dimensions of Γ
⋆
W (i.e., the poles of ζ̃

e,
⋆

W )
are given by relation (R25), in Corollary 2.21, on page 28.
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Proof. (Of Theorem 4.37)

The functional equation given in relation (R82) above can be obtained in the three following equiv-
alent manners, where m ∈ N⋆ is sufficiently large (i.e., for all m ⩾ m0, where m0 ∈ N⋆ is optimal):

i. First, by using the Hodge star relation induced by the Lefschetz Operator (see Remark 4.11, on
page 70).

ii. Second, by noting that the complex coefficients involved in the explicit expression for the global
polyhedral effective zeta function ζ̃

e
W given in relation (R24), on page 27, both satisfy Hodge Diamond

Star relations (for the coefficients ck,j,m, Proposition 2.19, on page 25, and Theorem 4.20, on page 56,

for the terms ε
i k `j,m p

).

iii. The m
th

local polyhedral effective zeta function ζ̃
e,⋆
m is obtained by applying Theorem 2.20, on

page 26, where λ is replaced by λ
⋆
, Nb by N

2
b , and DW by D

⋆
W − 2,

ζ̃
e,⋆
m (s) =

1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αj,q(Nb)
m

∑
k=1

ck,(Nb−1) j+q,m ε
s−D⋆

W+(k−1) (2−D⋆
W)+i `k,(Nb−1) j+q,m p

s −D⋆
W + (k − 1) (2 −D⋆

W) + i `k,(Nb−1) j+q,m p

+
1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αj,q(Nb)
m

∑
k=1

ck,(Nb−1) j+q,m ε
s−D⋆

W+(k−1) (2−D⋆
W)−i `k,(Nb−1) j+q,m p

s −D⋆
W + (k − 1) (2 −D⋆

W) − i `k,(Nb−1) j+q,m p
.

(R 84)
The poles of ζ̃

e,⋆
m (s) are then given by:

s = D
⋆
W − (k − 1) (2 −D⋆

W) ± i `k,(Nb−1) j+q,m p

while the poles of ζ̃
e
m(s) are given by:

s = DW − (k − 1) (2 −DW) ± i `k,(Nb−1) j+q,m p .

The symmetry s↦ 2 − s thus interchanges DW and D
⋆
W = 2 −DW .

Since the residues of ζ̃
e,⋆
m (s) and ζ̃

e
m(s) are the same (they are given by Theorem 2.18, on page 2.18,

where, again, λ is replaced by λ
⋆
,Nb byN

2
b , andDW byD

⋆
W − 2, with ε =

1

N2
b

); namely, ζ̃
e
m(s) satisfies,

for all integers m ⩾ m0, and for all s ∈ C, the functional equation

ζ̃
e,⋆
m (s) = ζ̃em(2 − s) .

This concludes the proof, since, according to Theorem 2.20, on page 26, the corresponding global
zeta functions ζ̃

e,⋆
W (s) and ζ̃

e
W(s) are obtained by taking the limits of the local zeta functions ζ̃

e,⋆
m (s)

and ζ̃
e
m(s), respectively.

(Note that again, for notational simplicity, in the statement of Theorem 4.37, on page 79, we use
the notation `jk,m,k of Theorem 2.18, on page 23 – associated to the integer 0 ⩽ k ⩽ m – instead of the
notation `k,(Nb−1) j+q,m – associated to the integer k − 1 ⩾ 0 of Theorem 2.20, on page 26. Of course,
both notations are equivalent.)

81



The following result is an immediate consquence of the proof of Theorem 4.37, on page 81,

Corollary 4.38. For all m ∈ N⋆ sufficiently large (i.e., for all m ⩾ m0, where m0 ∈ N⋆ is opti-

mal), ζ̃
e
m, the m

th
local (polyhedral) zeta function of the Weierstrass Curve ΓW , satisfies the following

functional equation, for all s ∈ C,

ζ̃
e,⋆
m (2 − s) = ζ̃em(s) , (R 85)

where ζ̃
e,⋆
m denotes the m

th
local (polyhedral, effective) zeta function ofΓ

⋆
W = ΓW⋆, the dual Weierstrass

Curve of ΓW .

Note that it is the exact local counterpart of the functional equation satisfied by ζ̃
e
W in rela-

tion (R82), on page 80.

Definition 4.23 (Supercritical, Subcritical and Critical Cases).

Let W̃ be a Weierstrass function, with associated parameters λ̃ and Ñb, where 0 < λ̃ < 1 and Ñb ∈ N⋆.
Then, W̃ (or, equivalently, the associated Weierstrass curve Γ̃W = ΓW̃) is said to be supercritical, sub-
critical or critical, respectively, if λ̃ Ñb > 1, λ̃ Ñb < 1, or λ̃ Ñb = 1. Note that – according to the
definition of the dual function W⋆

and of Γ
⋆
W = ΓW⋆ given in Theorem 4.37, on page 79, then, W⋆

(or, equivalently, Γ
⋆
W = ΓW⋆) is subcritical (respectively, supercritical) if and only if W (or, equiva-

lently, ΓW) is supercritical (respectively, subcritical).

Also, it is critical if and only if W⋆
=W.

Finally, note that W⋆⋆
=W (i.e., Γ

⋆⋆
W = ΓW⋆⋆). Indeed, since λ

⋆
=

1

λN2
b

, we have that

λ
⋆⋆
=

1

λ⋆N2
b

= λ .

Remark 4.17 (Subcritical Case).

Assume that W is supercritical (i.e., λNb > 1), as usual. Then, observe that D
⋆
W = 2 −DW ∈ ]0, 1[

(see relation (R79), in Theorem 4.37, on page 79) cannot be equal to the Minkowski dimension of the
dual Weierstrass Curve ΓW⋆ . Indeed, the latter dimension must be equal to 1 (> DW⋆) because ΓW⋆

is of class C
1

and hence, ΓW is rectifiable. Instead, D
⋆
W should be equal to the anti-abscissa of conver-

gence of ζ̃
e,⋆
W – or the anti-abscissa of holomorphic continuation of ζ̃

e,⋆
W , in a sense analogous to that

of [LRŽ17b], but with the implied convergence or holomorphic continuation holding in a left rather
than in a right half-plane.

We expect that the methods and results of [DL23b] can be naturally extended and adapted in
order to show that the poles of ζ̃

e,⋆
W – which, in light of Corollary 2.21, on page 28, and the functional

equation (R82) in Theorem 4.37, on page 79, must all be simple and precisely given by

ω
⋆
k,m = 2 − ωk,m = m (2 −DW) ± i `jk,m,k p , with m ∈ N arbitrary and 0 ⩽ k ⩽ m,

where the integers `jk,m,k ∈ N (which depend on k and m) are given in Theorem 2.18, on page 23)
and
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ωk,m = DW −m (2 −DW) ± i `jk,m,k p ,

are precisely the exact (intrinsic) Complex Dimensions of the subcritical Weierstrass Curve ΓW⋆ . Ac-
cordingly, it would follow that in addition to being (at least C

1
) smooth, ΓW⋆ is fractal, in the sense

of the extended theory of Complex Dimensions.

Finally, let

n = max {j ∈ N⋆ ∶ λ⋆N j
b < 1} .

Then, we conjecture that the subcritical Weierstrass function W⋆
is smooth of class C

n
, with n

being optimal (i.e., W⋆
is not of class C

n+1
and (W⋆)(n), the n

th
derivative of W⋆

, is Hölder continuous
of optimal Hölder exponent α

⋆
, given by

α
⋆
= {2 −D

⋆
W} = {2 −

ln 1
λ⋆

lnNb
} = {DW} = {2 −

ln 1
λ

lnNb
} ∈ [0, 1) , (R 86)

where {y} is the fractional part of y ∈ R, and just below, [y] stands for the integer part of y ∈ R.

In other words, conjecturally, n = [
ln 1

λ⋆

lnNb
] ∈ N⋆ is the maximal order of smoothness of W⋆

,

while α
⋆
= {

ln 1
λ⋆

lnNb
} is given by relation (R86). Rephrased: Conjecturally, the subcritical Weierstrass

funcion W⋆
is Hölder continuous of class C

n+α⋆
(e.g., in the sense of [JM96]), where n + α⋆ = n + 2 −

ln 1
λ⋆

lnNb
,

with n ∈ N⋆ and α
⋆
∈ [0, 1) being optimal and given as above.

Remark 4.18 (Critical Weierstrass Curve and Self-Duality).

Note that since λNb > 1, the Weierstrass function W (or, equivalently, the Weierstrass Curve ΓW)
is nowhere differentiable. However, since λ

⋆
Nb < 1, its dual Weierstrass function W⋆

(or, equivalently,
the Weierstrass Curve ΓW⋆) is at least C

1
-smooth – but is still fractal, in the sense of the theory of

Complex Dimensions, and in light of the functional equation (R82), and of [DL23b] (Theorem 2. 19
and Corollary 2. 20), as is discussed in more detail in the previous remark.

Observe that in the critical case when λNb = 1, then W =W⋆
and so, ΓW = ΓW⋆ and ζ̃

e
W = ζ̃

e,⋆
W .

Consequently, the critical Weierstrass function W, the critical Weierstrass Curve ΓW and the global
effective zeta function ζ̃

e
W are all self-dual. In particular, ζ̃

e
W satisfies the following self-dual functional

equation, for all s ∈ C,

ζ̃
e
W(s) = ζ̃eW(2 − s) . (R 87)

Since DW = D
⋆
W = 2 −DW = 1 in this case, it follows that, conjecturally (see the corresponding

discussion in Remark 4.17, on page 82), the (exact) Complex Dimensions of the critical Weierstrass
Curve ΓW should be simple and given by

m ± i `jk,m,k p , with m ∈ N arbitrary and 0 ⩽ k ⩽ m,

where the integers `jk,m,k ∈ N (which depend on k and m) are given in Theorem 2.18, on page 23);

i.e., the set of Complex Dimensions is included in the rank 2 lattice Z⊕ ipZ, where p =
2π

lnNb
is the
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oscillatory period of ΓW .

Also, in light of the self-dual functional equation (R87), it is natural to call the vertical line Re(s) = 1
the critical line of the fractal zeta function ζ̃

e
W . Furthermore, it follows from (R87) that, in general,

the poles ω (i.e., the Complex Dimensions of ΓW), as well as the zeros of ζ̃
e
W , come in quadru-

plets (ω, ω̄, 2 − ω, 2 − ω̄), unless they are located on the real axis (i.e., ω = ω̄, or, equivalently, ω ∈ R)
or on the critical line Re(s) = 1 (i.e., ω = 2 − ω̄, or, equivalently, Re(ω) = 1).

Remark 4.19 (Possible Analogy with the Conjectural Fractal Flow in [Lap08]).

The above comments in Remark 4.17, on page 82, and in Remark 4.18, on page 83, along with
Definition 4.23, on page 82, suggest that there might be interesting connections between our present
setting and the (noncommutative) fractal flow (called the modular flow) conjectured to exist in [Lap08]
and assumed to play a key role in interpreting dynamically and geometrically, as well as possibly es-
tablishing, the (generalized) Riemann Hypothesis.

This fractal flow acts on the moduli space of fractal membranes and to it, are naturally associated
a flow of zeta functions (or partition functions), along with a flow of zeros and poles.

Furthermore, the (noncommutative) fixed points of the flow are the self-dual geometries and self-
dual zeta functions – naturally corresponding, in our present setting, to the critical (and hence also
self-dual) Weierstrass Curves and their (global, effective) fractal zeta functions. Note that, here,
since Nb is fixed, the parameter playing the role of time is the parameter λ (or some suitable function

of λ), with the ± infinite time limit (or the ± zero temperature limit) corresponding to λ tending to
1

Nb
from above or from below, respectively. In a later work, we hope to pursue this analogy with [Lap08].

4.2.6 A Summary of the Analogies Between the Classical Theory and our Fractal Theory

The following table may be helpful to the reader as a quick guide through the new fractal counter-
part of classical Hodge theory developed in this paper.

Classical theory Fractal theory

Exterior derivative, d, on page 37 Natural transfer operator LW , on page 64

Adjoint of the exterior differential, d
⋆

Dual natural transfer operator L#
W , on pages 46 and 64

Hodge Laplacian,

□ = (d + d⋆)2
= d d

⋆ + d⋆ d, on page 41

Fractal Hodge Laplacian,

LW L#
W + L#

W LW , on page 70

Lefschetz operator, LefW , on page 42
Fractal Lefschetz operator,

LefW = iLW L#
W = iL#

W LW , on page 69

Polarization operator, Q, on page 44 Prefractal polarization operator, Qm, on page 60

Poincaré Duality, on page 42 Fractal Poincaré Duality, on page 63

Hard Lefschetz Theorem, on page 43 Fractal Hard Lefschetz Theorem, on page 69

Hodge–Riemann Relations, on page 44 Fractal Hodge–Riemann Relations, on page 60

Hodge decomposition, on page 41 Fractal Hodge decomposition, on page 63
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5 Concluding Comments

Thus far, the (explicit) determination of the connections between fractal zeta functions and differ-
ential operators remained an open problem, that we have partially addressed. In doing so, our results
shed new lights on the theory of Complex Dimensions which, at the same time, enables us to extend
to the fractal realm the classical Hodge theory in terms of an orthogonal decomposition of the fractal
cohomology. Note that those results rely on our previous works [DL23b] and [DL22b] where, for the
first time, in the case of a (non self-affine) fractal curve, we respectively obtain the exact expressions
of the local and global polyhedral fractal zeta functions, as well as an explicit determination of the
cohomology groups associated with the (fractal) curve.

A key remaining issue is to obtain a clear cohomological (and spectral) interpretation of the zeros
of the global polyhedral zeta function ζ̃

e
W – or rather, for example, of the poles and zeros of a zeta

function whose logarithmic derivative coincides with ζ̃
e
W . Accordingly, the zeros and the poles would

be placed on a truly level-playing field.

By necessity of concision, we postpone to later work a careful consideration of several of the func-
tional analytic and operator-theoretic issues involved in this paper, especially once we consider (which
is only partially done in this article; see Remark 4.12, on page 71) the action of the Lefschetz operator
on the total (infinite dimensional) fractal cohomology H

⋆ ⊗ C, as well as of the various operators
involved (transfer operator and its dual, Lefschetz operator, fractal Hodge Laplacian and Frobenius
operator).

In the near future, we intend to keep on exploring the fields of fractal algebraic topology. In
particular, our current quest is to find an appropriate fractal homology theory, dual of the existing
fractal cohomology theory in [DL22b]. Homology, which enables us to algebraically represent and
model topological spaces, appears as a compulsory step when studying fractals and their applications
to real life, for instance, morphogenesis, where the occurrence of similar or quasi-similar polygonal
patterns in fractal shaped living forms suggests that their abstract representation (for computational
purposes again), can be obtained by means of fractal homology.

Clearly, our results and methods in this paper and in our previous work [DL22a], [DL22b], [DL24a],
[DL24b], [DL23b], could be extended to a variety of fractal geometries; see, e.g., [DL23c], an extension
of [DL23b] to the case of the classic Koch Curve. We expect (as in [LvF13], [Lap08], [Lap19], [Lap24])
that some of these fractal-like geometries may provide suitable geometric models for the classic num-
ber theories (e.g., number fields and function fields) arising in mathematics and associated with arith-
metic L-functions, including the Riemann zeta function and its various generalizations.

If this is correct, then the theory presented in this paper may provide a very useful and powerful
tool to understand arithmetic geometries, and to eventually resolve some of its most unattainable
conjectures, including the Riemann Hypothesis and its natural generalizations.
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pages 41–55. Société mathématique de France, 1966. talk:279. URL: http://www.numdam.
org/item/SB_1964-1966__9__41_0/.

[Gro69] Alexander Grothendieck. Standard conjectures on algebraic cycles. In Algebraic Geometry
(International Colloquium, Tata Institute of Fundamental Research, Bombay, 1968), pages
193–199. 1969.

[Har16] Godfrey Harold Hardy. Weierstrass’s Non-Differentiable Function. Trans-
actions of the American Mathematical Society, 17(3):301–325, 1916. URL:
https://www.ams.org/journals/tran/1916-017-03/S0002-9947-1916-1501044-1/

S0002-9947-1916-1501044-1.pdf.

87

https://hal.archives-ouvertes.fr/hal-03758820v3
https://hal.science/hal-04153049
https://hal.sorbonne-universite.fr/hal-04348346
https://hal.sorbonne-universite.fr/hal-04348346
https://hal.sorbonne-universite.fr/hal-03698953/document
https://hal.sorbonne-universite.fr/hal-03698953/document
https://hal.science/hal-03797595v2
https://hal.sorbonne-universite.fr/hal-03946104v3
https://hal.sorbonne-universite.fr/hal-03946104v3
http://www.numdam.org/item/SB_1964-1966__9__41_0/
http://www.numdam.org/item/SB_1964-1966__9__41_0/
https://www.ams.org/journals/tran/1916-017-03/S0002-9947-1916-1501044-1/S0002-9947-1916-1501044-1.pdf
https://www.ams.org/journals/tran/1916-017-03/S0002-9947-1916-1501044-1/S0002-9947-1916-1501044-1.pdf


[Hej76] Dennis A. Hejhal. The Selberg trace formula and the Riemann zeta function. 43(3):441–
482, 1976. URL: http://projecteuclid.org.accesdistant.sorbonne-universite.

fr/euclid.dmj/1077311789.

[HL14] Godfrey Harold Hardy and John E. Littlewood. Some problems of diophantine approxi-
mation. 37(1):155–191, 1914. URL: https://doi.org/10.1007/BF02401833.

[HL21] Hafedh Herichi and Michel L. Lapidus. Quantized Number Theory, Fractal Strings and
the Riemann Hypothesis: From Spectral Operators to Phase Transitions and Universality.
World Scientific Publishing, Singapore and London, 2021.

[Huh18] June Huh. Combinatorial applications of the Hodge-Riemann relations. In Proceedings
of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited
lectures, pages 3093–3111. World Sci. Publ., Hackensack, NJ, 2018.
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Hebdomadaires des Séances de l’Académie des Sciences, 210:592–594, 1940.
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