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We argue that nucleation of brittle cracks in initially flawless soft elastic solids is preceded by a
nonlinear elastic instability, which cannot be captured without accounting for geometrical precise
description of finite elastic deformation. As a prototypical problem we consider a homogeneous
elastic body subjected to tension and assume that it is weakened by the presence of a free surface
which then serves as a site of crack nucleation. We show that in this maximally simplified setting,
brittle fracture emerges from a symmetry breaking elastic instability activated by softening and
involving large elastic rotations. The implied bifurcation of the homogeneous elastic equilibrium is
highly unconventional for nonlinear elasticity as it exhibits an extraordinary sensitivity to geometry,
reminiscent of the transition to turbulence in fluids. We trace the post-bifurcational development
of this instability beyond the limits of applicability of scale free continuum elasticity and use a
phase-field approach to capture the scale dependent sub-continuum strain localization, signaling the
formation of actual cracks.

While linearized elasticity theory is usually sufficient
in problems involving propagation of pre-existing cracks
[1–3], we present a compelling evidence that, at least for
some classes of soft materials, the description of crack
nucleation requires an account of both geometrically and
physical elastic nonlinearity [4, 5]. To elucidate the phys-
ical origin of the failure of linear theory, we build a contin-
uous path from surface instability in tension to fracture.

The phenomenon of surface fracture is of considerable
recent interest because the sub-micron parts employed in
many modern applications are effectively defect free and
their fracture usually originates on unconstrained exter-
nal surfaces [6]. Crack nucleation at the surface is also of
importance for the understanding of the fragmentation
of various brittle surface layers [7–10]. More generally,
the emergence of surface fracture patterns [11, 12] is an
example of a symmetry breaking instability which is at
the heart of complexity development from soft matter
physics [13, 14] to biophysics [15, 16].

Nonlinear elastic instabilities were studied extensively
in the context of compressive buckling [17–25]. Elastic
instabilities can also take place under tension, with neck-
ing, wrinkling and shear banding, as the most promi-
nent examples [26–30]. However, the potential relation
of these tensile instabilities to fracture has been largely
overlooked. Several studies attempted to develop con-
ceptual links between the bulk crack nucleation and ma-
terial softening and used them to advance various phe-
nomenological nucleation criteria [11, 31–38]. Still, an
understanding of how such criteria relate to the subtle
interplay between geometric and physical nonlinearities
along the crack nucleation path remains obscure.

Brittle cracking of soft solids is not uncommon, as it
is exemplified by an abrupt failure of an elastic rubber
band under tension. In particular, brittle-soft behavior is
characteristic for hydrogels [39–42], where the diverging

stress at the crack tip is typically accompanied not only
by large stretches but also by large rotations with several
candidate mechanisms debated as potential regulators of
the underlying material failure at the micro scale [43].

In this Letter we use the geometrically simplest set-
ting to explore both linear and nonlinear stages of the
tensile instability in a soft solid which culminates in the
formation of a brittle crack. The implied instability is
of spinodal type [39–41] but with a peculiarity that it
is associated with the surface rather than with the bulk
[42–46]. The degenerate nature of this instability in the
purely elastic setting [47] leads to a high sensitivity of the
emerging patterns to sample geometry. Such sensitivity
is typical for nonlinear systems without an internal length
scale and therefore the ensuing crack nucleation scenario
is reminiscent, for instance, of a transition to turbulence.
Regularization of the problem, bringing a fixed internal
length scale, naturally simplifies the picture, as it is al-
ready known from the study of the prototypical one di-
mensional models [48, 49].

Our first goal is to show in detail how the above sym-
metry breaking elastic instability serves as a precursor of
the ultimate strain localization. Then, since the emerg-
ing strain singularity renders the scale-free continuum
elasticity inadequate, the modeling paradigm must be
changed if the goal is to capture the formation of sharp
cracks. To describe the role of micro-scales in such a
sharpening process we resort to a phase-field-type exten-
sion of the continuum theory [34, 48, 50, 51]. We show
that such a hybrid approach allows one to model seam-
lessly the whole process from a continuum elastic insta-
bility to a sub-continuum evolution of developed cracks.

Consider a 2D rectangular body Ω = [−L, L]× [0, H].
Denote by x ∈ Ω points in the reference configuration
and by y(x) their deformed position, see Fig. 1. Work-
ing directly with the deformation gradient F = ∇y we ac-
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FIG. 1. Schematic representation of the considered surface in-
stability showing the reference and the actual configurations,
while also detailing the nature of the boundary conditions.

count for geometric nonlinearities. In such an approach
not only the principal stretches λ1,2 (the square roots of
the eigenvalues of FTF), can be large but also that the
description of rotations is geometrically exact [18].

Assume that the material is incompressible, so that
detF = λ1λ2 = 1, and isotropic, so that the elastic energy
density can be written as ŵ(λ1) = w(λ1, λ

−1
1 ). We can

then write the force balance in the form ∇·P = 0, where
Pij are the components of the first Piola-Kirchhoff stress
tensor P = ∂w/∂F+pF−1 and p is the Lagrange multiplier
enforcing the incompressibility constraint.

Suppose further that the body Ω is loaded in a two-
sided hard device, such that y1 = λx1 at x1 = ±L, where
λ is the applied stretch which serves as the control pa-
rameter. Then on the side boundaries (at x1 = ±L)
the horizontal displacements are prescribed y1 = ±λL
while the possibility of free sliding is ensured by the sec-
ond condition P12 = 0. The upper boundary x2 = 0
will be kept free so that P22 = P21 = 0 while the lower
boundary x2 = H will be constrained only partially so
that y2 = H/λ and P21 = 0. The ensuing basic prob-
lem of elasticity theory admits a homogeneous solution
y(0) := F(0)x, where F(0) = diag (λ, λ−1); the correspond-
ing pressure is p(0) := −λ−1∂w/∂λ2.

To study the stability of this solution, we use stan-
dard methods [20, 52–54] and write the perturbed dis-
placement and pressure fields, in the form y = y(0) +∑∞

j=1 ε
ju(j) and p = p(0)+

∑∞
j=1 ε

jp(j) where ε is a small
parameter. Inserting these expansions in the force bal-
ance we obtain, at the first order, a linear boundary value
problem for u(1) and p(1).

To illustrate the results we introduce the stream func-
tion u(1)(x) = (∂2χ, −∂1χ), and write the solution of
the first order equilibrium problem in the form χ =
iAg(γx2) exp(iγx1)/γ + c.c., where A is still undefined
complex amplitude and c.c. denotes complex conjugate.
Here we have also introduced the horizontal wavenumber
γ = (nπ)/(2λL), where n is an integer with even (odd)
values representing symmetric (asymmetric) modes, re-
spectively. The expression for p(1)(x) in terms of g(γx2)
is too long to be presented here, see [55].

Following closely [20], we write the real valued func-

tion g in the form g(γx2) =
∑4

k=1 Ckexp[γωk x2], where
ω1 = −ω2 = α, ω3 = −ω4 = β. The constants
α, β can be found from the relations αβ = λ2 and

α2 + β2 + 2 = λ(λ4 − 1)η; the elastic energy enters these
relations through the function η(λ) = ŵ′′(λ)/ŵ′(λ) which
characterizes the physical nonlinearity.

The bifurcation points λn(H/L), parametrized by the
integers n(H/L), can be found from the condition that
there exists a nontrivial set of coefficients Ck, such that
the functions u(1) and p(1)) satisfy the boundary con-
ditions at the linear order. This gives an explicit non-
linear algebraic equation, see [55]. We can then define
λcr(H/L) = minn≥1 λn(H/L) and denote by ncr(H/L)
the corresponding critical mode. To illustrate the sensi-
tivity of the instability threshold λcr(H/L) to the geom-
etry of the domain characterized by the ratio H/L, we
need to choose a specific energy density.

To account for strain softening in the simplest form, we
assume that w = µ (I−2)/I, where I = λ21+λ

2
2 is the first

strain invariant and µ is the measure of rigidity (see more
about this particular choice in [55]). In this case ŵ(λ) =
µ(λ2 − 1)2/(2(λ4 + 1)) and the softening (ŵ′′ < 0) takes

place for λ > λlm = 4

√
(1/3)

(√
33 + 6

)
, see Fig. 2(a)

and [55]. The value λlm is known as the Considère or
the load maximum (LM) threshold [54, 62, 63], where by
the ‘load’ we understand the axial stress in the direction
of traction P (λ) = e1 · P · e1 = ŵ′(λ); reaching this
threshold indicates the occurrence of necking in slender
bodies [20, 26, 64, 65]; it can be shown that crossing
the LM threshold is also a necessary condition for the
occurrence of a general instability [20].

FIG. 2. (a) The energy density ŵ(λ) of our softening material
as a function of the maximal principal stretch λ1. (b) The
stability curves for the two modes with n = 1, 2; the purple
line in the inset represents the function λcr(H/L).

Observe first that, independently of the value of n,
the functions λn(H/L), shown in Fig. 2(b) for n = 1, 2,
approach the point λlm ≃ 1.407 in the limit infinitely
small aspect ratios (H ≪ L, thin domains) and the point
λcc ≃ 1.465 in the limit of infinitely large aspect ratios
(H ≫ L, thick domains).

Note that the emerging threshold λcc indicates the fail-
ure of the complementing condition (CC) [44, 46, 66–68].
In an infinite system it marks the onset of wrinkling in-
stability with all wave numbers becoming unstable simul-
taneously. In our case the value of the CC threshold can
be found analytically as a solution of the transcendental
equation η(λcc) = −λ−3

cc [55]. Note also that in the classi-
cal geometrically linearized elasticity theory, where both
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stretches and rotations are small and therefore we can use
the approximation w(E) with E = (1/2)(∇u+∇uT ), the
very difference between the thresholds λcc and λlm disap-
pears and the whole complexity of the emerging stability
diagram is lost [55].

Outside these two limits (of infinitely thin and in-
finitely thick domains), the behavior of the function
λcr(H/L) looks uncorrelated. However, a remarkable un-
derlying structure reveals itself if we focus instead on the
integer valued function ncr(H/L), see Fig.3.

First of all, we observe that the necking-type instabil-
ity with ncr = 1 is not a feature of slender bodies only,
but appears periodically as one changes the aspect ratio.
Similarly, the wrinkling-type instability with ncr = ∞
appears at periodically distributed values of the aspect
ratio. In both cases the period is the same and is equal to
∆(H/L) = 4λ3cc/

√
−1 + 2λ2cc + 3λ4cc, see [55] for details.

Overall, we observe a periodic distribution of ‘stair-
case’ structures with infinite number of steps in ev-
ery period representing all integer values of ncr from
necking with ncr = 1 to wrinkling with ncr = ∞.
Each of these ‘staircases’ demonstrates the same ‘devil-
ish’ features with step accumulation taking place around
the recurrent wrinkling thresholds (where the unstable
mode becomes singularly localized near the free surface).
In other words, each ‘staircase ’ describes a scale-free
crossover between necking and wrinkling with the steps
emerging due to the locking in the parameter intervals
where horizontal and vertical oscillations of the displace-
ment field are resonant with the domain geometry. To
the best of our knowledge, the reported extreme sensi-
tivity of the critical wave number to the aspect ratio and
the emergence of special geometries where the instabil-
ity pattern changes dramatically from fully localized to
fully de-localized, have not been previously observed in
nonlinear elasticity problems.

FIG. 3. The inverse of the critical mode ncr versus the aspect
ratio H/L.The accumulation points correspond to n = ∞.

The revealed distribution of the stability thresholds
can be corroborated analytically using the observation
that for H/L ≫ 1 (when λcr ∼ λcc) one can approxi-
mate the actual problem of finding ncr(H/L), involving
minimization of an implicitly given function over a dis-
crete set, by a model problem N = arg maxξ(sin(aξ)/e

ξ),
where ξ is a positive integer and a ∼ H/L. The model

problem can be solved explicitly and its solution N can
be formally proved to exhibit the periodic staircase struc-
ture of the type shown in Fig. 3.
To determine the nature of detected bifurcations, we

now perform a standard weakly nonlinear amplitude ex-
pansion [4, 69–75]. The idea is to compute the next terms
of the perturbative expansion u(2), p(2) and use the ob-
tained information to determine λ dependence of the am-
plitude A near the bifurcation point λcr. In this respect
the ‘near necking’ ( single-mode instability) and the ‘near
wrinkling’ (multi-mode instability) regimes function dif-
ferently.
Indeed, in the more conventional ‘near necking’

regimes, where the buckling thresholds λn are well sep-
arated and only a finite number of modes are initially
activated in the postbuckling regime, the natural small
parameter is known to be ε =

√
|λ− λcr|/λcr. By ex-

panding the energy functional W =
∫
Ω
w dx in ε we

obtain [55] ∆W = ε4(θ2 |A|2 + θ4 |A|4) + o(ε4), where
θ2(λ), θ4(λ) are known real functions. The requirement
of stationarity of the energy in A (at order ε4), gives
the expression for the amplitude A =

√
−θ2/(2θ4) where

θ2 and θ4 have the same sign. This characterizes the
bifurcation as a subcritical (unstable) pitchfork, see the
dashed line in Fig. 4 (a). The implied unstable postbuck-
ling regime is the diffuse necking illustrated in the inset
in Fig. 4(a).

FIG. 4. Bifurcation diagrams showing the amplitude ∆H
of the unstable mode on the free surface for the cases: (a)
H/L = 1 (near necking case) and (b) H/L = 2.5 (near wrin-
kling case). The red triangles denote the critical thresholds
λcr. Solid and dashed lines represent the results of the finite
element simulations and of the weakly non-linear analysis, re-
spectively. Insets show the distribution of the maximal prin-
cipal stretch λmax in the actual configuration corresponding
to the location of the square marker.

The ‘near wrinkling’ regimes, where buckling thresh-
olds accumulate, are markedly different. In this case a
small increment of the control parameter λ away from
the critical value λcr activates an essentially infinite num-
ber of instability modes. Therefore in the weakly non-
linear approximation an unstable mode interacts with
many other modes. The availability of a broad band-
width of such modes requires a different scaling and one
can show that the natural small parameter in this case
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is ε = |λ − λcr|/λcr, see [76, 77] for similar analyses. To
take into account all the implied interactions we need to
modify the expression for the first order stream function
adopted in the ’near necking’ case and write instead χ =∑+∞

m=−∞ i(Am/γm)g(γmx2) exp(iγmx1) + c.c. where m
is an integer and Am is amplitude of the modem. We can
then proceed as before and find the amplitude equation,
accounting for cubic resonances, which now takes the

form of an infinite system: θ1Am+
+∞∑

k=−∞
θ3(k)AkAm−k =

0. Here the real functions θ1(λ;m) and θ3(k)(λ;m) are
known explicitly [55]. The analysis shows that the bi-
furcation is again a subcritical pitchfork, see the dashed
line in Fig. 4(b), which implies that the incipient postb-
ifurcational mode, illustrated in the inset in Fig. 4(b) is
again unstable.

To complement this analytical study we also performed
some parallel direct numerical simulations. For numer-
ical convenience we slightly modified the model by in-
troducing into our original energy density w(F) a de-
pendence on J = λ1λ2, a measure of volumetric de-
formation. More specifically we used the expression
wJ(F) = (µ/I) (I − 2 log J − 2) + (Λ/2)(log J)2 with Λ
equal to 100µ which corresponds to almost incompress-
ibility; note that at Λ → +∞ we recover both the original
model.

The bifurcated branch was recovered after we intro-
duced a small imperfection on the free boundary with
a wavenumber of the instability mode and a small am-
plitude of the order of 10−5 L, see the blue lines in
Fig. 4(a,b). We used an arclength continuation method
[78, 79] which allowed us to reach the state of strain fo-
cusing caused the local violation of the complementing
condition. The deformation patterns at such limits (of
the applicability of continuum elasticity) are illustrated
in the insets in Fig. 4(a,b) for the typical ‘near necking’
and ’near wrinkling’ regimes.

The ultimate strain localization, which caused the
break down of our continuum model, is indicative of
the trend towards the formation of atomically sharp
cracks. To capture the latter, the scale-free contin-
uum theory, which is expected to be operative only on
long waves, can be regularized through the introduc-
tion of a sub-continuum length scale. A convenient ap-
proach of this type is a phase-field model of fracture, e.g.
[50, 51, 80, 81]. Specifically, we assume that

wpf(F, α) = (1− α)2(µ/2)(I − 2) + µα2 + µ ℓ20∥∇α∥2,
where α(x) ∈ [0, 1] is a subcontinuum damage-like
scalar field: the compatibility with our original nonlin-
ear elasticity model is ensured by the fact that w(F) =
minα∈[0,1][(1 − α)2(µ/2)(I − 2) + µα2]. The regulariza-
tion is achieved through the term penalizing gradients of
α which brings an internal length scale ℓ0. At ℓ0 ≪ L this
approach is known to be equivalent to the Griffith frac-
ture model with the toughness Gc = µℓ0/2 [34, 50, 82].

FIG. 5. Normalized axial force F/µL versus the mean stretch
λ for the near necking case (H/L = 1). The insets on the
right show the distribution of the internal variable α in the
reference configuration corresponding to the points A and B.
The parameter ℓ0/H = 0.01.

Going in this way beyond continuum elasticity and
adopting again the weak compressibility regularization,
we performed a series of numerical simulations with the
goal to capture the actual formation of cracks. We used a
Newton’s algorithm complemented by a standard pseudo-
arclength continuation technique [78] to minimize at each
value of the loading parameter λ the energy with respect
to both, the deformation field y(x) and the auxiliary
scalar field α(x).

The results of the two representative numerical simu-
lations, illustrating qualitatively different ‘near necking’
and ‘near wrinkling’ regimes, are presented in Figs. 5-6.
In both figures the (unstable) post-bifurcational response
is represented through the dimensionless force-stretch re-

lation F (λ) =
∫ 0

−H
P11(λ)|x1=L dx2. The deformed con-

figurations close and far from the bifurcation points are
shown in the insets. Note that while in our ‘near wrin-
kling’ regime we show for simplicity only the case with
two emerging cracks, the aspect ratio of the domain and
the regularization length could be chosen differently to
obtain arbitrary many cracks.

FIG. 6. Normalized axial force F/µL versus the mean stretch
λ for the near wrinkling case (H/L = 2.5). The insets on the
right show the distribution of the internal variable α in the
reference configuration corresponding to the points A and B.
The parameter ℓ0/H = 0.01.

The common feature of the two cases, shown in Figs. 5-
6, is the gradual sharpening of the initially diffuse local
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’non-affinity’ measured by parameter α. The actual for-
mation of cracks can be linked to the moment of reach-
ing the value α ∼ 1 inside the localized regions with the
thickness of order of sub-continuum scale ℓ0. Since the
focus of our study is crack nucleation, we did not advance
our simulations till the complete break down of the slab
which is preceded by secondary bifurcations representing
both crack branching and crack arrest [11]. Overall, the
presence in this problem of a subcritical bifurcation indi-
cates the possibility of abrupt (dynamic) transition from
a homogeneous state to a cracked state which is a typical
scenario in brittle fracture.

To conclude, using the simplest geometrical setting
and focusing on initially flawless soft solids, we showed
that crack nucleation is preceded by an elastic instability
which can be identified using continuum elasticity theory
only if the latter accounts properly for both geometrical
and physical nonlinearities. Such elasticity theory pre-
dicts a surprisingly complex linear stability diagram with
recurrent geometry-sensitive crossovers between necking
and wrinkling modes. Both necking and wrinkling insta-
bilities were shown to evolve towards the formation of
developed cracks when the classical elasticity was seam-
lessly extended as a phase-field type model. Our analysis
builds a bridge between nonlinear elasticity and fracture
mechanics and points to the existence of purely elas-
tic precursors of crack nucleation. Similar mechanisms
should be operative in other highly nonlinear manifesta-
tions of elasticity such as cavitation [83, 84], phase nu-
cleation [85, 86], and creasing [87, 88].
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Linear stability analysis

At the linear order the incremental Piola–Kirchhoff stress is of the form P(1) = K(1) : Γ − p(0)Γ + p(1)I where
Γ = ∇xu

(1), ∇x is the gradient operator in the finitely deformed configuration [−λL, λL]× [0, H/λ], and K(1) is the
tensor of instantaneous elastic moduli. The components of K(1) are given by [1]

K
(1)
iijj = λiλj

∂2W

∂λi∂λj
,

K
(1)
ijij =

(
λi
∂W

∂λi
− λj

∂W

∂λj

)
λ2i

λ2i − λ2j
, i ̸= j,

K
(1)
ijji = K

(1)
jiij = K

(1)
ijij − λi

∂W

∂λi
, i ̸= j,

for i, j = 1, 2. At the linear order, the incremental equations can be written as ∇x · P(1) = 0, tr Γ = 0, which are

complemented by the linearized form of the boundary conditions: u(1) · e2 = 0 atx2 = H/λ; e1 · P(1)Te2 = 0 at

x2 = H/λ; u(1) · e1 = 0 at x1 = ±λL; e2 ·P(1)Te1 = 0 at x1 = ±λL and finally P(1)e2 = 0 at x2 = 0. As explained in
the main text, it is natural to look for solutions in the form

u
(1)
1 = ıAg′(γx2)e

ıγx1 + c.c., u
(1)
2 = Ag(γx2)e

ıγx1 + c.c., (S1)

p(1) = γA((K
(1)
1122 +K

(1)
2112 −K

(1)
1111)g

′(γx2) +K
(1)
2121g

′′′(γx2))e
ıγx1 + c.c., (S2)

with the scalar function g given in this general form

g(γx2) = C1 cosh(αγx2) + C2 sinh(αγx2) + C3 cosh(βγx2) + C4 sinh(βγx2). (S3)

Here C1, C2, C3, C4 are constants to be found from the boundary conditions, while α and β satisfy

α2 =
b

c
+

√(
b

c

)2

− a

c
, β2 =

b

c
−
√(

b

c

)2

− a

c
, (S4)

where

a = K
(1)
1212 = λ5

w′(λ)
λ4 − 1

, c = K
(1)
2121 = λ

w′(λ)
λ4 − 1

,

2b = K
(1)
1111 +K

(1)
2222 − 2(K

(1)
1122 +K

(1)
2112) = λ2w′′(λ)− 2c.

(S5)

The non trivial solutions of the resulting linear system exists whenever the following characteristic equation for the
eigenvalue γ is satisfied

(
α4β + 2α3β2 + 2α2

(
β3 + β

)
+ α

(
β4 + 2β2 − 1

)
− β

)
(α− β)2 sinh

(
Hγ(α+ β)

λ

)
+

+(α+ β)2
(
α4β − 2α3β2 + 2α2

(
β3 + β

)
− α

(
β4 + 2β2 − 1

)
− β

)
sinh

(
Hγ(α− β)

λ

)
= 0.

(S6)
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2

The corresponding eigenfunction g can be then written in the form:

g(γx2) = cosh(αγx2)−
cosh(αγh)− α2+1

β2+1 cosh(βγH/λ)

sinh(αγH/λ)− β2+1
α2+1

α
β sinh(βγH/λ)

cosh(βγx2)+

−α
2 + 1

β2 + 1
sinh(αγx2) +

β2+1
α2+1 cosh(αγH/λ)− cosh(βγH/λ)

α
β sinh(αγH/λ)− β2+1

α2+1 sinh(βγH/λ)
sinh(βγx2).

(S7)

Material behavior

To achieve analytical transparency, we consider the strain energy density of a softening solid in the following simple
form

w(F) =
µ

I
(I − 2) = µ

(
λ21 − 1

)2

λ41 + 1
, (S8)

where I = F : F = λ21 + λ−2
1 . For the homogeneous deformation F(0) = diag(λ, λ−1), the strain energy density

reduces to the function w(λ). The load maximum (LM) stretch λlm introduced in the main text and corresponding

to the maximum of w′(λ) is now λlm = 4

√
1
3

(√
33 + 6

)
. The complementing condition (CC) is violated whenever the

incremental problem admits a non-trivial solution in the half-space. Therefore, by taking the limit H → +∞, in the
characteristic equation (S6) we obtain an equation for λ = λcc:

λ3ccw
′′(λcc) + w′(λcc) = 0. (S9)

In the case of the strain energy density (S8), the equation (S9) reads 3λ11cc − λ9cc − 12λ7cc + λ3cc + λcc = 0, and its
relevant root is λcc ≃ 1.46527.

The formal advantage of the choice (S8) for W (F) becomes clear at the very end of our study where we take
advantage of the fact that such an energy density can be obtained as the minimum of a function involving the
auxiliary field α characterizing material softening:

w(F) = min
α∈[0,1]

ψ(α, F) = min
α∈[0,1]

a(α)ŵ(F) + ϕ(α), (S10)

where ŵ(F) = µ
2 (I − 2) = µ

2

(
λ21 + λ−2

1 − 2
)
is the strain energy density of a standard neo-Hookean material, a(α) =

(1− α)2 is the measure of stiffness degradation and ϕ(α) = µα2 is the energetic price of such degradation.

Periodicity of stability thresholds

Assume that the thresholds λcc > λlm > 1 exist for a given strain energy density w(λ1) and suppose that λ ∈
[λlm, λcc]. Then from (S9) we have η(λ) ∈

[
−1/λ3, 0

]
. Then (α+β)2 > 0, (α−β)2 < 0, while αβ is real and positive.

Therefore, α and β are complex conjugate numbers and we can write α = γ + ıδ, β = γ − ıδ, γ, δ > 0, with
δ = δ(λ), γ = γ(λ), whose explicit expressions can be easily obtained. The characteristic equation (S6) can be now
rewritten as

sin(Ãn) = f(λ, n). (S11)

where

Ã(λ) =
πδ(λ)

λ2
H

L
, f(λ, n) =

δ
(
1 + λ3η(λ)

)

γ (1− λ3η(λ))
sinh

(
πγn

λ2
H

L

)
. (S12)

We observe that f(λcc, n) = 0 for any value of n. The corresponding values of the aspect ratio are

H

L
=

mλ2

δ(λcc)
=

2mλ3cc√
3λ4cc + 2λ2cc − 1

.
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FIG. S1. The function e−n sin(An) for A = 1, 3, 5. The markers indicate the values of the functions evaluated for n ∈ N+.

Auxiliary model

The equation (S11) is not transparent but it can be dramatically simplified for λ ≈ λcc. Indeed, let F (λ) =
sin(An) − f(λ, n), and rewrite (S11) in the form F (λ) = 0. By expanding this equation around λ = λcc we obtain
F (λcc, n) + F ′(λcc, n)(λ− λcc) = 0 from where the critical wavenumber can be computed as

ncr = argmax
N+

(
γ(λcc)

2 sin(nÃ(λcc))

nγ(λcc)2Ã′(λcc) cos(nÃ(λcc))− γ(λcc)δ(λcc)S′(λcc) sinh(nB(λcc))

)
(S13)

where

S(λ) =

(
1 + λ3η(λ)

)

(1− λ3η(λ))
, B(λ) =

πγ(λ)

λ2
H

L
.

Consider next the limit H/L → ∞. Then we can neglect the cosine carrying term in the denominator of (S13) and
approximate the remaining part of the denominator by the the exponential term of the form eBn, where B turns our
to be an irrelevant parameter as far as the limiting behavior at large H/L is concerned, with the right asymptotic
behavior already recoverable at B = 1.

We can then introduce an auxiliary problem:

N(A) := argmax
n∈N+

(
e−n sin(An)

)
, (S14)

see Fig. S1 showing the optimized function at several values of parameter A. It also illustrates the complexity of the
problem (S14) which implies integer valued optimization.

FIG. S2. Plot of the inverse of N(A) over three periods (a) and a zoom over one period (b).

From the boundeness and the periodicity of sin(An), it follows that the integer valued function N(A) is well defined
and non-negative. Since N(A) is periodic with period 2π, it is sufficient to analyze its behavior on the interval [0, 2π].
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We first show that N(A) ≡ 1 if A ∈ [0, π]. Indeed, by induction in this range of A we have sin(An)
sinA ≤ n. This is

clearly true for n = 1. Then, if sin(An) ≤ n sin(A) we obtain sin(A(n+1))
sinA = sin(An) cosA

sinA + cos(An) ≤ n + 1. Thus,
e−n sinAn ≤ e−nn sinA ≤ e−1 sinA which proves the result. We next show that limA→2π− N(A) = +∞. Indeed, for
any M ∈ N+ we can take δ = π/M , and then sin(An) < 0 for all n ≤ M and A ∈ (2π − δ, 2π). Since the maximum
over n of e−n sin(An) exists and is positive, N(A) > M for A ∈ (2π − δ, 2π). This result also proves the periodic
blow up of N(A) at A → 2mπ− with m ∈ N+, which is in agreement with the behavior of the function ncr obtained
numerically, see Fig. S2. Next we show that the integer valued function N(A), apparently exhibiting ‘devilish’ features
around the points 2mπ− in Fig. S2, indeed takes all positive integer values as the parameter A changes inside the
interval of periodicity, A ∈ [0, 2π]. Suppose that that N(A) = m at some A = Am. If Am ∈ Im = [2π − π/m, 2π],
then sin(Aml) ≤ 0 whenever l ≤ m and l ∈ N+. Therefore, N(A) > m in Im. Our conjecture follows from the
observation that N(A) = m+ 1 for Am+1 = 2π − π/m, which can be checked by direct substitution

N(Am+1) = argmax
n∈N+

(
e−n sin

((
2π − π

m

)
n
))

= m+ argmax
l∈N+

(
e−l sin

( π
m
l
))

= m+ 1,

where we used the fact that argmaxl∈N+

(
e−l sin (lπ/m)

)
= 1 since π/m ∈ [0, π].

Weakly nonlinear stability analysis

Near necking. In this case, the critical threshold λcr is a non-degenerate stationary point of the marginal stability
curve (λ,n). Accordingly, a small increase of order ε2 beyond this critical threshold actives a narrow bandwidth of
order ε of marginally stable modes. Thus, we can use the order parameter ε =

√
(λ− λcr)/λcr ≪ 1 to expand the

weakly nonlinear terms in the energy functional. The second order equilibrium equations and the incompressibility
constraint take the form:

K
(1)
jiklu

(2)
k,lj +K

(2)
jiklnmu

(1)
m,nu

(1)
k,lj + p

(2)
,i − p

(1)
j u

(1)
j,i = 0 (S15)

divu(2) = u
(1)
1,2u

(1)
2,1 − u

(1)
2,2u

(1)
1,1. (S16)

Here K
(2)
ijklnm =

∑2
a, b, c=1 FiαFkbFnc

∂3W
∂Fja∂Flb∂Fmc

are the third-order instantaneous elastic moduli. Similarly, we can

obtain the second-order boundary conditions.
The solution of the resulting boundary value problem, implying quadratic coupling with the first order solution,

can be written in the form u
(2)
i = U

(2)
i (γx2)|A|2 +

(
V

(2)
i (γx2)A

2 e2ıkx1 + c.c.
)
, where we introduced the scalar

fields U
(2)
i = U

(2)
i (γx2) and V

(2)
i = V

(2)
i (γx2) which are known explicitly but the corresponding expressions are too

cumbersome to be presented here.
A further series development of the solution would introduce resonant terms in the third-order problem due to the

cubic interactions of the linear modes. The corresponding solutions can be obtained by requiring that the energy
functional is stationary at each relevant order in ε as described it is described in detail for instance in [2].

If we now expand the elastic energy about the homogeneous solution

G(u) = W(u)−W(u(0)) =

∫

Ω

[
pui,i +

1

2
K

(1)
jilkuk,lui,j +

1

6
K

(2)
jilknmuk,lui,jum,n +

1

24
K

(3)
jilknmqsuk,lui,jum,nus,q

]
dV,

(S17)

where K
(3)
jilknmqp are the fourth-order instantaneous elastic moduli, and substitute into (S17) the series expansion of

the displacement and pressure fields while using (S15) as well as the incompressibility condition at order ε4 in the

form u
(4)
i,i = u

(1)
j,ku

(3)
k,j +

1
2u

(2)
j,ku

(2)
k,j − 1

2 (u
(2)
i,i )

2, we obtain :

G(u) = ε4
∫

Ω

[
1

2
p(0)u

(2)
j,ku

(2)
k,j +

1

2
p1u

(1)
j,ku

(1)
k,j −

1

8
p(0)(u

(1)
j,ku

(1)
k,j)

2

+ p1u
(1)
j,ku

(2)
k,j +

1

2
K

(1)
jilku

(2)
k,lu

(2)
i,j +

1

2
K⋆

jilku
(1)
k,lu

(1)
i,j +

1

2
K

(2)
jilknmu

(1)
k,lu

(1)
i,j u

(2)
m,n +

1

24
K

(3)
jilknmqsu

(1)
k,lu

(1)
i,j u

(1)
m,nu

(1)
s,q

]
dV +O(ε4)

(S18)
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where p1 = (dp(0)/dλ)|λ=λcr
, K⋆

jilk = (∂K
(1)
jilk/∂λ)|λ=λcr

. Observe that the terms of order ε3 vanish due to periodic

nature of the boundary conditions in the horizontal direction. Note also that the next-to-leading term of order ε4

accounts for the sub-harmonic resonance of the critical mode. In view of the the periodicity of this mode, it is sufficient
to perform the integration in (S18) over a critical wavelength. We finally obtain

G/ε4 = θ2 |A|2 + θ4 |A|4 +O(ε) (S19)

where θ2, θ4 are known real constants. In particular, θ2 is a function only of the critical incremental solution, while
θ4 also depends on the subharmonic near-critical mode.

The amplitude equation now follows from the condition that the incremental energy G is stationary (at the lowest

nontrivial order ε4) which means that dG/dA = 0 and θ2A + 2θ4A |A|2 = 0. Combined with its complex conjugate,
this equation shows that the bifurcation is of a pitchfork type [3]. Since θ2 and θ4 are found having the same sign,
the pitchfork is subcritical.

Near wrinkling. In this case, the critical threshold λcr is a degenerate stationary point of the marginal stability
curve (λ,n). Accordingly, a small increase of order ε beyond this critical threshold actives an infinite bandwidth of
marginally unstable modes. Thus, the weakly nonlinear analysis requires a different scaling comparing to the ’near
necking’ case. By choosing ε = λ−λcr

λcr
≪ 1 we can capture the the superposition of all subharmonic modes representing

incremental fields, see [4] for a similar analysis and additional references. Thus, the first order terms have now the
following structure

u
(1)
1 = ı

+∞∑

m=−∞
Amg

′(γcrmx2)e
ıγmx1 , u

(1)
2 =

+∞∑

m=−∞
Amg(γcrmx2)e

ıγmx1 , (S20)

p(1) =
+∞∑

m=−∞
Ammγ((K

(1)
1122 +K

(1)
2112 −K

(1)
1111)g

′(γcrmx2) +K
(1)
2121g

′′′(γcrmx2))e
ıγmx1 , (S21)

where m is an integer and Am is the amplitude of mode m.

From the linear stability analysis we know that A−m = Ām, A0 = 0 and g(−γcrmx2) = ḡ(γcrmx2). By expanding
the energy functional (S17), at the next-to-leading order we find

G =
ε3

2

∫

Ω

[
p1u

(1)
i,j u

(1)
j,i +K⋆

jiklu
(1)
i,j u

(1)
l,k + p(1)u

(1)
i,j u

(1)
j,1 +

1

3
K

(2)
jiklqpu

(1)
i,j u

(1)
l,ku

(1)
p,q

]
dV + o(ε3). (S22)

where we account for the fact that cubic resonances between each of the infinitely many linearly unstable modes
become dominant at order ε3. Using the solution of the incremental (first-order) equilibrium problem which we do
not present in full detail here and which specifies the unknown functions in (S20,S21), we obtain

2G

ε3
=

+∞∑

m=−∞
θ1(m)|Am|2 +

+∞∑

r=−∞
θ3(r,m)ĀmArAm−r + o(1), (S23)

Here θ1(m) and θ3(r, m) are known real constants which are known functionals of the incremental first-order solutions.
We remark that in our case the subharmonic resonance of the critical modes turn out to be appearing only at order
ε4, and can be therefore neglected in the analysis of the amplitude equation. The latter can be obtained from (S23)
using the same reasoning as in the ’near necking’ case. Specifically, the stationarity of the energy functional (S23)
with respect to each amplitude Am gives

θ1(m)Am +
+∞∑

r=−∞
θ3(r,m)ArAm−r = 0, (S24)

which is exactly the amplitude equation presented in the main text. To construct the graphs presented in the main
paper we solved a truncated system up to a finite orderM until a given convergence is reached, adapting the numerical
procedure proposed in [5].
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Regularized model

In our numerical simulations we use the energy density accounting for both, phase field type regularization and
weak compressibility:

wpf(α, F) = a(α)wJ(F) + ϕ(α) + ϕ(1)ℓ2∥∇α∥2,

wJ(F) =
µ

I
(I − 2− 2 log J) +

Λ

2
(log J)2.

(S25)

We remark that, as the auxiliary field α increases, the shear modulus of the material diminishes but its compressibility
is not affected. In all the simulations, the parameter Λ was set equal to 100µ.

The fully non linear problem was approximated using the finite element method. We discretize the displacement
field by using continuous piecewise quadratic functions to avoid locking phenomena. On the other hand, the auxiliary
field α is approximated by piecewise linear functions.

We decompose the displacement field into two components u(x) = u(0)(x) + δu(x), where u(0) is the homogeneous
solution. This choice is motivated by the fact that we can impose homogeneous boundary conditions on the dis-
placement field δu, simplifying the implementation of the continuation method. The deformation gradient becomes
F = I + ∇u = I + ∇u(0) + ∇δu. In order to select the bifurcated branch in the post-bifurcation regime, a small
imperfection is imposed at the boundary of the domain with the amplitude of the order of 10−5 L. The wavenumber
of the imperfection is chosen to match the nontrivial eigenfunction of linear stability analysis.

Then, we use the arclength continuation method [6] to construct the bifurcation diagram and to study the post-
bifurcational behavior.

The method was implemented in Python using the software collection for the numerical solution of partial differential
equations FEniCS [7], the library BiFEniCS [8][9] for the arclength continuation method, while PETSc was used as
linear algebra backend [10]. The nonlinear problem was numerically solved through a SNES solver, where a secant
predictor was used to identify the initial guess. At each step of the non-linear algorithm, the linear system was
directly solved using MUMPS. The computational domain was discretized by subdividing each side of the rectangle
into intervals of length L/250 and constructing a structured triangular mesh.

The geometrically linear case

Suppose that the deformation of our isotropic material is (geometrically) small but the material response is still
(physically) nonlinear. Let E1 and E2 be the eigenvalues of the infinitesimal strain tensor E = sym∇u = (1/2)(∇u+
∇uT ). Then the strain energy density is w(E1, E2). In this geometrical nonlinear approximation the incompressibility
constraint reduces to trE = ∇ · u = 0 and therefore, without loss of generality, we canassume that 0 < E =
E1 = −E2, and introduce the reduced energy density ŵ(E) = w(E, −E). We observe that ŵ′ = w,1 −W,2, and
ŵ′′ = w,11 + w,22 − 2w,12, where w,j = ∂w/∂Ej . The Cauchy stress tensor is then S = ∂w/∂E+ pI.

In the case of uniaxial traction, the homogeneous solution of the elastic equilibrium problem is u(0) = EX1e1 −
EX2e2 and p(0) = −w,2. To study linear stability of such a solution, we again we expand the unknown functions
in terms of the small parameter ε. Thus, we can write S =

∑
j ε

jS(j), where S(1) = C(1) : E(1) + p(1)I, while

E(j) = sym∇u(j), and C(1) = ∂2W
∂E∂E

∣∣∣
E(0)

. Using the results of [11] we obtain that C
(1)
iijj = w,ij , and C

(1)
ijij = 1

2
w,i−w,j

ei−ej

for i ̸= j, while all the other components of the tensor C(1) are equal to zero. The linearized form of the balance of
the linear momentum and of the incompressibility constraint reads

∇ · S(1) = 0 trE(1) = 0.

Using again the stream function χ, we can write u(1) = ∂χ/∂x2e1 − ∂χ/∂x1e2 where now χ = ıAg(γx2)e
ıγx1/γ. The

function g(γx2) is a solution of the ODE

ag′′′′(γx2)− 2bg′′(γx2) + cg(γx2) = 0,

where a = c = ŵ′

2E , and b = w′′ − ŵ′

2E . The corresponding characteristic equation takes the form

(
α2 + 1

) (
β2 + 1

) (
αβ
(
α2 + β2 + 2

)
(cosh(αγH) cosh(βγH)− 1)−

(
α2
(
2β2 + 1

)
+ β2

)
sinh(αγH) sinh(βγH)

)
= 0

where α and β are defined as in (S4) while the solution g(γx2) has the same form as (S3).
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We observe that the load maximum condition corresponds to a strain Elm such that w′′(Elm) = 0,representing a
necessary condition for a bifurcation to occur [12]. Similarly a sufficient condition for the instability of any wavenumber
is provided by the condition of loss of strong ellipticity, which is reached at b = −√

ac [1], i.e. when E = Esm defined
again by the same condition w′′(Ese) = 0. Therefore, a bifurcation occurs if and only if E = Elm = Ese for any value
of γ, and all the wavenumbers become unstable simultaneously.
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