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The inverse problem we consider takes a given model and an observed (or target) output probability density function
(pdf) on quantities of interest, and builds a new model input pdf which is consistent with both the model and the data
in the sense that the push-forward of this pdf through the model matches the given observed pdf. However, model eval-
uations in CFD tend to require significant computational resources which makes solving stochastic inverse problems
in CFD is very costly. To address this issue, we present a non-intrusive adaptive stochastic collocation method coupled
with a data-consistent inference framework to efficiently solve stochastic inverse problems in computational fluid dy-
namics (CFD). This surrogate model is built using an adaptive stochastic collocation approach based on a stochastic
error estimator and simplex elements in the parameters space. The efficiency of the proposed method is evaluated on
analytical test cases and two CFD configurations. The metamodel inference results are shown to be as accurate as crude
Monte Carlo inferences while performing 103 less deterministic computations for smooth and discontinuous response
surfaces. Moreover, the proposed method is shown to be able to reconstruct both an observed pdf on the data and key
components of a data-generating distribution in the uncertain parameter space.

KEY WORDS: inverse problems, data-consistent, updated density, stochastic collocation, adaptive sim-
plex, CFD, error estimation

1. INTRODUCTION

The recent development of data-driven approaches has increased interest in developing robust and ef-
ficient algorithms to exploit data in engineering design and modelling in CFD. Often, one seeks to use
data to improve models for a better understanding of the physical processes to enable more robust risk
management. A common set of data d can be some function (usually experimental) of a system output
also called observed data, or some desired (targeted) data, i.e., as is often used in optimization processes.
A frequent question then arises: what should be the model input that gives as output the targeted or observed
data. This is an inverse problem, and in an ideal environment, the solution to such problems would pro-
vide answers to unknown processes. However, solving such inverse problems using a high-fidelity CFD
model is very expensive in computational time and storage. This cost is even more important if the CFD
model is subject to uncertainties. Indeed, in practice, we are often interested in a model output, defined as
a quantity of interest (QoI) whose value, while in presence of uncertainties, will no longer be a scalar but
a functional depended on the uncertain parameters (i.e. a multi-dimensional functional). Besides the cost
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of high-fidelity CFD problems in presence of numerical uncertainties, the model must accurately describe
highly nonlinear flow dynamics (like shock waves, turbulence, etc).

For forward problems, the Monte-Carlo (MC) method is the most common approach to quantify uncer-
tainties. However, despite its robustness, ease of implementation and parallelization, MC methods quickly
become infeasible for CFD applications due to their high computational cost. Other approaches rely on
using the high-fidelity model to construct a surrogate, or metamodel, for the purposes of forward or in-
verse propagation of uncertainties. Examples include the generalized Polynomial Chaos (gPC) [1] methods
which construct a parameterized polynomial approximation of the QoI response or the Stochastic Collo-
cation (SC) methods which consist in constructing interpolation functions for given coefficients/samples
[2,3]. All of these methods are highly efficient when the QoI Q(λ) response is sufficiently smooth. How-
ever, in the case where the stochastic response is of low regularity or even exhibit discontinuities, these
global polynomial approximations are not amenable and may suffer from Gibbs oscillations. For instance,
the propagation of changing operating conditions and variations in the geometry of compressible flows
is well documented [4,5], but particularly challenging, e.g. [6]. This is because such systems are described
by nonlinear conservation laws containing uncertain parameters and resulting in stochastic solutions with
discontinuities in both physical and parametric dimensions. As each sample in the parameter space corre-
sponds to a costly CFD simulation, it becomes mandatory to reduce as much as possible the number of
needed samples in order to reach a prescribed QoI statistical accuracy. Therefore, adaptive solution tech-
niques [7–13] represent alternative approaches that may guarantee and accelerate the convergence of the
approximations, thanks to local relevant refinements of the response surface.

For inverse problems, Bayesian methods [14,15] are the most widely known approaches for inferring
probabilistic descriptions of model parameters from data. These approaches rely on a fundamental theo-
retical result, known as Bayes’ theorem, which provides a way to revise existing predictions given new or
additional evidences.

The Bayesian approach is most commonly applied in scenarios where the model inputs are described
as epistemic uncertainties with some prior probability distribution, and the goal is to determine the most
likely model inputs that could have produced the observed data given a likelihood model. The choice of
prior distribution reflects the prior knowledge or assumptions about the inputs being estimated and can
have a significant impact on the inference results. A common approach for accelerating Bayesian inference
in computationally intensive inverse problems relies on using forward surrogates models, constructed
through repeated forward simulations (see for instance [6,16–18]). Moreover, in some pioneering works,
such as those of [19] and [16], authors have pointed out that discontinuous solutions in the physical and
stochastic spaces often lead to a propagation of error to the input parameter posterior distribution. This
led to adaptive solutions for forward surrogate models coupled with the Bayesian approach, such as the
use of iterative gPC in [6], locally adaptive multi-fidelity gPC approach in [20] or building an adaptive
surrogate using goal-oriented a posteriori error estimate for quantities of interest in [21].

In this paper, we solve a different stochastic inverse problem where we seek an aleatoric characteriza-
tion of the model inputs given an observed/target probability measure/density on quantities of interest.
Such an aleatoric characterization is appropriate for problems where the variability in the observed data is
due to intrinsic variability in the input parameters. In this scenario, the goal is to describe this variability
on model inputs by seeking a probability measure/density on model inputs such that the corresponding
push-forward measure/density matches the observed, or target, measure/density. Thus, we seek a pull-
back probability measure. While pull-back measures are not necessarily unique, i.e., the inverse problem
is not necessarily well-posed, the data-consistent approach introduced in [22,23] and applied to different
studies [24–26] provide a robust and stable mechanism for constructing a pull-back measure by regulariz-
ing the problem in a manner similar to Bayesian inference.

The main objective in this paper is to combine the data-consistent inverse method of [22,23] with the
metric-based stochastic adaptive collocation method introduced in [27] for surrogate computation. The
stochastic adaptive approach of [27] consists in building adaptively a surrogate or metamodel by solving
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a stochastic optimization problem in the uncertain parameters space. Indeed, we seek an optimal parti-
tioning (or metric) of the parametric space (i.e. a ”mesh”) such that a prescribed stochastic error is min-
imized under the constraint of a computational cost (number of CFD computations one can afford). The
surrogate/metamodel is then built on the probabilistic space using a stochastic collocation approach on
these simplex elements. Among other adaptive approaches, this novel method has the advantage of being
anisotropic, thus capable of accurately and automatically capturing discontinuities that may arise in the
stochastic space. We study the performance of the combined methods applied to solving inverse stochastic
propagation for CFD problems where the fluid flow is highly non-linear, compressible and in presence of
discontinuities. Previous work combining surrogate, or approximate models, with data-consistent inver-
sion, e.g., [25,28], require fairly strong assumptions about the convergence of the approximate map which
may not hold for CFD applications where the true and surrogate maps may be discontinuous. Moreover,
these previous works did not seek to incorporate adaptive surrogate/metamodels.

The remainder of this paper is organized as follows. We first define the stochastic inverse problem
and provide the corresponding notation. Next, we introduce the data-consistent approach used to solve
the stochastic inverse problem. In the fourth section, we briefly recall the adaptive simplex stochastic col-
location (ASSC) approach proposed in [27]. The next section is dedicated to the verification of the pro-
posed method on an academic problem with discontinuities. Finally, two CFD inverse problems featuring
a NACA0012 airfoil and a scramjet geometry are solved using the proposed method. Some perspectives
and conclusions are contained in the final section of this paper.

2. NOTATION AND INVERSE PROBLEM SETUP

In this section, we introduce our notation and summarize the mathematical framework of the stochastic
inverse problem we seek to solve. Let Λ ⊂ Rn denote the space of model inputs, which we refer to as either
the physical parameters or parameters of interest. Let Q : Λ → D ⊂ Rm denote the quantity of interest
(QoI) map from the physical parameters to the space of observable model output data denoted by D ⊂ Rm.
We assume in this work (Λ,BΛ,µΛ) and (D,BD,µD) are two measurable spaces on some Borel σ-algebras
BΛ restricted to Λ and respectively BD on D. We assume that Q defines a measurable mapping between
the two previously defined measure spaces i.e. Q is at least piecewise-smooth in D. Thus, for any event
A ∈ BD, the measurability of Q implies that the contour σ-algebra is a sub-σ-algebra of BΛ, i.e.

Q−1(A) = {λ ∈ Λ|Q(λ) ∈ A} ∈ BΛ,

which implies

Q(Q−1(A)) = A.

Next, assume we are given an observed (or target) probability measure Pobs
D on (D,BD,µD), that is

absolutely continuous with respect to the measure µD and thus, thanks to the Radon Nykodim theorem,
admits an observed probability density πobs

D . This observed density may be approximated using physical
data, given analytically as a target density, or constructed using a data-generating distribution on the
model inputs which is propagated through the model to give πobs

D . In this paper, we consider observed
densities given analytically or constructed using the push-forward of a data-generating distribution on the
input parameters. For the sake of simplicity, we do not consider errors in the observed density due to finite
sampling or measurement error.

The implicit assumption here is that the variability in the observations is due to intrinsic variability of
the model input parameters, i.e., we seek an aleatoric characterization of the model inputs.

The inverse problem seeks a probability measure denoted PΛ on (Λ,BΛ), absolutely continuous with
respect to the measure µΛ such that the propagation of this measure/density through the model (i.e., the
push-forward) matches the observed measure for all A ∈ BD. This push-forward measure/density is the
solution to a forward uncertainty quantification problem that may be constructed or approximated before
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any data is collected. If we let PQ(PΛ)
D denote the push-forward (or predicted) probability measure of PΛ

through Q(λ), then we have

PQ(Pλ)
D (A) = PΛ(Q

−1(A)), ∀A ∈ BD.

Then, we can formalize the definition of the inverse problem solved in this paper as follows: given an
observed probability measure, Pobs

D , we seek a PΛ such that:

PQ(Pλ)
D (A) = PΛ(Q

−1(A)) = Pobs
D (A), ∀A ∈ BD. (1)

We refer to any PΛ that satisfies (1) as a data-consistent solution to the inverse problem. Of course, there are
typically infinitely∗ many probability measures that satisfy (1). In the next section, we describe a procedure
that uses prior information to regularize the inverse problem such that an unique, stable and computable
solution to the inverse problem may be obtained.

3. A SOLUTION TO THE STOCHASTIC INVERSE PROBLEM

Let Pinit
Λ on (Λ,BΛ,µΛ) be an initial probability measure on model inputs that is absolutely continuous with

respect to µΛ and with a probability density function πinit
Λ . This initial measure/density is linked to the

existing knowledge that we have regarding the aleatoric uncertainty in the parameters of interest. For the
ease of notation, we use PQ(init)

D and π
Q(init)
D to denote the push-forward measure and respectively density

of the initial measure through the model, i.e., these denote the initial prediction. The goal is to update this
initial measure to give a solution to the stochastic inverse problem.

However, in order to obtain a data-consistent solution to this problem, we must ensure that πQ(init)
D

exists with respect to µD and that the inverse problem is solvable. Following [22], the former can be assured
if the volume measure, µD, is chosen properly. For the latter, we need to make the following assumption:

Assumption 1 (predictability) : There exists a constant C > 0 such that πobs
D (q) ≤ Cπ

Q(init)
D for almost

every q ∈ D.
Assumption 1 implies that the observed measure is absolutely continuous with respect to the predicted

measure in D. This assumption can be interpreted as ensuring that the push-forward of the initial proba-
bility measure through the model can predict all the observed data. If this is not the case, then there is no
way to update the initial to obtain a solution to the inverse problem.

In [22] it is shown that a unique and stable solution can be obtained using the disintegration theorem
[29]. For the sake of completeness, we restate this theorem here:

Disintegration Theorem : Assume Q : Λ → D, BΛ measurable, PΛ is a probability measure on (Λ,BΛ)
and PD is the push-forward measure of PΛ on (D,BD). There exists a probability measure PD -almost ev-
erywhere uniquely defined by a family of conditional probability measures {Pq}q∈D, on (Λ,BΛ) such that
for any A ∈ BΛ,

Pq(A) = Pq(A ∩Q−1(q)).

Therefore, PΛ can be written as an integral

PΛ(A) =

∫
D

Pq(A)dPD(q) =

∫
D

(∫
A∩Q−1(q)

dPq(λ)

)
dPD(q), ∀A ∈ BΛ. (2)

The Disintegration theorem plays a critical role in constructing solutions to this class of inverse prob-
lem as it decomposes the input parameter space into directions informed by the map/data and directions
defined by generalized contours of the map over which Q(λ) is constant. Any pullback probability mea-
sure (solution to the inverse problem) is required to be the inverse image of the observed measure in the
∗Unless the QoI map is bijective, in which case, the solution is unique.
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informed directions, while the conditional probability measure within the contour event, A ∩Q−1(q), can
be any valid probability measure. As shown in [22], this theorem can be used to show that the updated
probability measure Pup

Λ on (Λ,BΛ) defined by

Pup
Λ (A) =

∫
D

(∫
A∩Q−1

πinit
Λ (λ)

πobs
D (Q(λ))

π
Q(init)
D (Q(λ))

dµΛ,q(λ)

)
dµD(q), ∀A ∈ BΛ, (3)

solves the stochastic inverse problem. As discussed in [22], the iterated integral form of the updated
measure, given in (3), is not required to approximate or generate samples from the updated density. Rather,
the updated density is calculated from the initial probability density using:

π
up
Λ (λ) = πinit

Λ (λ)
πobs
D (Q(λ))

π
Q(init)
D (Q(λ))

. (4)

This expression makes it clear why the solution to the stochastic inverse problem is called an updated
measure/density, since the ratio of the observed and predicted densities is used to update (reweight) the
initial probability density.

We conclude this section with a brief discussion of the similarities and differences between the proba-
bility density given in (4) and the classical Bayes formula. In a Bayesian formulation, the posterior proba-
bility density is defined as the prior probability density times the ratio of the likelihood and the evidence
(integral of the likelihood with respect to the prior). Thus, both formulations are similar in the sense that
they updated prior/initial characterizations using ratios of quantities dependent on the map and the ob-
served data. However, prior and posterior probability densities represent epistemic characterizations of
the relative probability that a given parameter may have produced the observed data. In the inverse prob-
lem discussed in this paper, the initial and updated densities represent aleatoric characterizations of the
model inputs that are consistent with a given observed probability measure. In general, the two formula-
tions give different solutions, and the choice of which to use depends on the inverse problem one wishes
to solve.

3.1 Computational considerations

In this section, we provide the main steps in numerically estimating and generating samples from the
updated probability density. First, we assume we have the ability to generate samples from πinit

Λ . A for-
ward uncertainty propagation is performed by generating samples from πinit

Λ , evaluating the model (or
metamodel/surrogate), and the push-forward density π

Q(init)
D can be estimated using a straightforward

technique, such as Kernel Density Estimation (KDE). In Section 5, several methods for accelerating this
forward propagation are investigated and performances compared. To generate samples from the updated
density, a simple rejection sampling algorithm is applied using the samples generated from the initial. This
computation is thus performed without the need of any additional deterministic calculations, which is ex-
tremely useful for computationally expensive CFD simulations.

For generalization and validation purposes we have investigated two different mechanisms for gen-
erating an observed/target density πobs

D : (a) we define directly πobs
D using classical analytical distributions

(Gaussian, etc..), (b) we use the model, or metamodel, to build πobs
D starting from a user-defined data-

generating input density πobs
Λ on the input parameters. Note that πobs

D could also be provided or approx-
imated using experimental data. However, the generation and incorporation of measurement data is be-
yond the scope of this work. The pre-processing steps of the data-generating method are illustrated in
Algorithm 1 below. As we shall see in Sections 5 and 6, using a data-generating distribution allows us
to make useful observations about the expectations that one should have when solving this class of in-
verse problems. In particular, it should only be possible to recover the data-generating distribution in a
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lower-dimensional manifold induced by the map and the data. More precisely, in the under-determined
case (more input parameters than observations) the updated density defines a unique solution on a lower
dimensional manifold, but this solution can be combined with any conditional probability density defined
within the generalized contours and still solve the stochastic inverse problem (see [22,30] for details). This
is not necessarily a drawback of the proposed approach, rather, it is a feature of pull-back measures for
under-determined maps.

Algorithm 1: Synthetic computation of πobs
D using a data-generating distribution.

Generate N0 samples from πobs
Λ using a sampling method ;

Evaluate the QoI map Q(λ) through a model or metamodel;

Compute πobs
D using the Kernel Density Estimator ;

4. ADAPTIVE SIMPLEX STOCHASTIC COLLOCATION METHOD (ASSC)

This section aims to summarize the surrogate method (metamodel) used to accelerate the construction of
the push-forward density of the quantity of interest, i.e. πQ(init)

D . As previously stated, we are interested in
solving stochastic inverse CFD problems where discontinuities from the physical space might also propa-
gate to the uncertain parameters space, meaning that the quantity of interest might have high and abrupt
variations in the stochastic space. Moreover, we are also sensitive to the potentially high computational
cost of each realization in the stochastic space. Using metamodels, which consists in building a response
surface of the quantity of interest on the parameters of interest space from a limited number of realizations
(i.e. CFD problems solves), is the solution we have considered in this paper.
Several methods have been proposed in the literature to deal with discontinuous response surfaces, such
as: multi-wavelets basis projection on block partitions in [12], multi-element gPC in [31], iterative gPC in
[6], ENO-type stencils and stochastic simplex collocation method in [32], minimal Multi-Element stochastic
collocation in [11]. All of these approaches share the need for a discontinuity or solution regularity detec-
tor often considered using the local variance of the solution or a polynomial annihilation edge detection
such as proposed in [13] and inspired by discontinuous physical solutions problems. Moreover, these ap-
proaches lack information regarding the anisotropic behavior of the discontinuity. We have chosen here to
build the metamodel using the adaptive simplex stochastic collocation (ASSC) approach of [27,33] which
uses the continuous framework of Riemannian metrics to construct anisotropic partition of the parameters
domain. The main idea is to estimate the stochastic error on the quantity of interest measuring the differ-
ence between the true value and the value estimated from the metamodel utilizing an interpolation error
estimate on the parameter space and use this error measure to refine the uncertain parameter space. This
method is inspired from what is done for deterministic quantities of interest, where the computational
(physical) mesh is adapted to improve the prediction of these quantities (see for example [34–36]). How-
ever, several differences appear when dealing with adaptivity in the stochastic/parametric space: (a) each
”mesh” node is a costly CFD computation and (b) we need to account for the initial probability density.
As it will be demonstrated later in the results section, using this method leads to anisotropic, accurate and
less costly results compared to other classical metamodels or sampling methods for problems with sharp
gradients or discontinuities.

The stochastic adaptive problem is formulated as an optimization problem in the parametric space. We
formulate and solve this optimization problem using mathematical framework of the continuous Rieman-
nian metric (RM) space [37,38]. The motivation for using this framework is twofold: using a continuous
formulation such as the RM space allows us to have the proper mathematical framework for solving this
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optimization problem and the solution to this problem provides anisotropic information which are very
useful when dealing with discontinuities that do not necessarily run along the principal directions. More
precisely, we use the RM space as a continuous model for the partition of the parametric space into simplex
elements. From this continuous representation, a unit ”mesh” is computed, for which the lengths of the
element edges are (approximately) unity in the RM space. Upon transformation to a Euclidean space, i.e.
our uncertain parameters space Λ, an anisotropic partition of Λ is obtained. Further details regarding the
continuous framework of Riemannian metric space can be found in [37,38].

After construction of this partition of the parametric space, the stochastic response is approximated
thanks to a tessellation of linear simplex elements, well adapted for discontinuous responses [39,40]. In
this respect, it resembles the simplex stochastic collocation (SSC) method, which uses a similar discretiza-
tion. In contrast, the method proposed in this work makes use of a stochastic error estimate committed
in approximating the quantity of interest on this tessellation, or stochastic ”mesh”. Next, we describe the
stochastic error estimate and the optimization problem, where we seek an optimal Riemannian metric in
the parametric space. For a more detailed description of this problem, we refer to [27].

4.1 Stochastic error estimate and optimization problem

As previously mentioned, and in order to have an accurate solution to the inverse problem, we need also
a good approximation of the push-forward of the initial density π

Q(init)
D . The estimation of this density

depends on how accurate we can predict the quantity of interest on the stochastic space. Using a continu-
ous approximation, i.e. a metamodel, of the QoI on the stochastic space is an efficient solution to predict
statistical information and new values of the QoI. However, we can only use a limited number of CFD
computations, thus each sample needs to be chosen such that the prediction of the QoI is as accurate as
possible. In this paper, we use a stochastic error estimation based on interpolation errors in the stochastic
space. Let

Q(λ) = q
(
λ, w(λ,x)

)
,

denote the quantity of interest which depends on the uncertain parameters λ and on the model solution
w(λ,x) (for example the Navier-Stokes model solution) through an observation operator q. For the purpose
of this paper, we neglect the deterministic discretization error for each realization of the QoI, meaning that
in practice we evaluate an approximation of w which is assumed to be sufficiently accurate. We refer to [27]
for a detailed description of the coupled deterministic-stochastic error control where mesh adaptivity has
been used to minimize deterministic discretization errors. Suppose a discretization or partition Hh of the
parametric space Λ into simplex elements using a finite number of samples λ(i), ∀i = 1, ..., ns. A surrogate
(or meta-) model is built from the computations on these samples. Then, let

Qh(λ(i)) = qh
(
λ(i), w(λ(i),x)

)
, (5)

be the approximate stochastic response or approximate quantity of interest. We aim to provide an estimate
of the following stochastic approximation error

δQ ≡ Q−Qh (6)

For the type of applications we consider, it is nowadays common knowledge that the dependence of
the QoI on the random variables (or parameters) is anisotropic, as we often encounter singularities and
sharp response gradients. To this purpose, we follow and adapt the deterministic formulation in [41], in
order to express the stochastic error using the Lp-norm of the interpolation error

∥q(λi, w)−Θhq(λi, w)∥Lp(Λ) (7)

where Θh is the (linear) interpolation operator in the parameters space. For the purpose of this paper, we
will focus on the L1-norm of the interpolation error in the stochastic space Λ with associated measure µΛ.
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This is a purely practical choice, well adapted for approximation of potentially discontinuous solutions,
but there is no restriction in using a different p-norm. We highlight here that since the true interpolation
error is not known, an interpolation error model is used to approximate the linear interpolation error as it
will be explained in the next section.
For deterministic problems, this kind of approach named ”feature” or ”sensor”-based mesh adaptation
has been proposed to capture all the scales/singularities of the model response and has been successfully
applied to improve CFD models predictions [41,42]. Several differences appear naturally when employing
this approach in the stochastic context. First, the sensor here is our quantity of interest Q. Second, the L1-
norm of the interpolation error of Q on the parameter space, now equipped with a probability measure µΛ,
introduces the input density πinit

Λ in the formulation. Furthermore, δQ being a random quantity, we focus
on minimizing the average error η̄ where

η̄ = E [δQ] ≤
∫
Λ

|q(λi, w)−Θhq(λi, w)|πinit
Λ (λ)dµλ. (8)

We highlight here that the probability density function acts as a weighting of the interpolation error. The
error estimate (8) will be used as refinement indicator to drive adaptivity over Λ. More precisely, our
stochastic error control problem will be formulated as an optimization problem, which solution is an optimal
discretization of the parameters space, minimizing the stochastic error (8) under the constraint of a given
number of samples. A continuous formulation of this discrete optimization problem is proposed where a
continuous error model for the interpolation error in the stochastic space is built using linear interpolation
model in a Riemannian metric space. This error model and optimal solution will be expressed in terms of
Hessians of Q in the parameters space as explained hereafter.

4.1.1 Stochastic Adaptive optimization problem

An efficient approach to generate anisotropic meshes in the physical deterministic space has been intro-
duced in [37,38]. In order to build such meshes, one must be able to prescribe at each point of the compu-
tational domain privileged sizes and orientations for the elements. The use of Riemannian metric spaces is
an elegant and efficient way to achieve this goal. The main idea of metric-based mesh adaptation, initially
introduced in [43], is to generate a unit mesh in a prescribed Riemannian metric space. Consequently, the
generated mesh will be uniform and isotropic in the Riemannian metric space while it will be anisotropic
and adapted in the usual, Euclidean space. This approach will be used to generate anisotropic ”meshes”
in the uncertain parameters space.

The Riemannian metric spaces can be seen as continuous models representing meshes. Working in this
framework allowed us to dispose of all the mathematical tools to define and solve the stochastic optimiza-
tion problem defined in this section. Moreover, as shown in [37] there is a duality between the continuous
framework of Riemannian metric spaces and the discrete space of our stochastic problem resolution. For
all x ∈ Ω ⊂ Rn, a Riemannian metric M(x) is a symmetric matrix having (ξi(x))i=1,...,n as eigenval-
ues along the principal directions (vi(x))i=1,...,n. Sizes along these directions are denoted (hi(x))i=1,...,n =

(ξ
− 1

2
i (x))i=1,...,n .

In the duality between the discrete and continuous space it is shown that discrete interpolation errors such
as formulation (8) are well represented by the continuous interpolation error related to M, which is expressed
locally in terms of the Hessians as follows:

(q − πMq)(x) =
1

10
trace(M− 1

2 (x) |Hq(x)|M− 1
2 (x)) (9)

where we denoted q − πMq the continuous dual of the discrete interpolation error in (8) and Hq(x) the
Hessian matrix of q(x).
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Using this continuous framework of Riemannian metric space and the associated continuous error
model (9), the stochastic error estimate (8) has the following representation in the Riemannian metric space

Eλ(M) =

∫
Λ

trace
(
M− 1

2 (λ)πinit
Λ (λ) ·H(Q(λ))M− 1

2 (λ)
)
dµλ, (10)

with H(Q(λ)) the Hessian matrix of Q(λ).
The stochastic optimization problem is then formulated as follows:

Find Mopt
λ = argmin

Mλ

Eλ(M), subject to C(M) = Cλ, (11)

where Cλ denotes a specified complexity in the parameters space, which is equivalent to the targeted
number of samples (or CFD solver runs). This means that a targeted computational effort constraint is
imposed. The notation Mopt

λ holds for the optimal metric that minimizes the expectation of the continuous
interpolation error in the parameter space. We will use this metric to build a simplex tessellation of the
parameter space, which is, roughly the ”mesh”† associated with Λ. The optimal stochastic metric, solution
to the n−dimensional optimization problem (11) is

Mopt
λ = C

2
n

λ

(∫
Λ

det(πinit
Λ (λ)|H(Q(λ))|) 1

2+n dµλ

)− 2
n

det(πinit
Λ (λ)|H(Q(λ))|)− 1

2+n |πinit
Λ (λ)H(Q(λ))| (12)

and the error estimate on this optimal metric is given by

Eopt
λ (Mopt

λ ) = nC− 2
n

λ

(∫
Λ

det(πinit
Λ (λ)|H(Q(λ))|) 1

2+n dµλ

) 2+n
n

. (13)

The proofs for formulations (12) and (13) are included in [33].

4.1.2 Stochastic adaptive strategy

We emphasize here that we rely on non-intrusive methods for the approximation of the stochastic prob-
lem, meaning that the deterministic solver counterpart (e.g. the CFD code) is seen as a black box. Many
different choices of non-intrusive stochastic surrogate models are available prior to the sampling adapta-
tion. However, for our type of applications, it is necessary to rely on methods that are robust, i.e. relatively
insensitive to the response surface smoothness, flexible and efficient, i.e. with an easy handling of local para-
metric sampling avoiding tensor-based refinements. The Simplex-Stochastic Collocation (SSC) method is
a good candidate that meets these requirements by discretizing the domain into simplices, and naturally
enforces local extrema conservation to suppress non-physical oscillations. A simple piecewise-linear ap-
proximation is chosen over higher degree polynomial approximation in accordance with the error estimate
chosen to drive the ”mesh” adaptation in the parameter space. Indeed, the error estimate is based on the
interpolation error committed when linearly interpolating a quadratic function.

The adaptive response surface in the parameter space is generated using similar numerical tools to the
deterministic case. Barring a few differences, a fixed-point algorithm is also used here. In the stochastic
case, since each mesh vertex (sample) truly represents a (potentially) costly CFD simulation, samples ac-
quired along the adaptation steps are always kept in the final discretization and we allow only the addition
of new samples or connections swap between samples. In this case, the cumulative sum of mesh vertices
from the initial design up to the final mesh is relevant to the numerical cost of the approximation method.
The adaptive metamodel construction and the estimation of πQ(init)

D are summarized in Algorithm 2.

†Here the ”mesh” nomenclature is used as a generic term for sampling and related discretization of the parametric space.
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Algorithm 2: Adaptive metamodel construction and π
Q(init)
D computation

• Given a set of Nλ,0 initial samples {λi}0 form the initial mesh Hλ,0 using a Delaunay
triangulation ;

• Evaluate the model to compute Q({λi}0);

For l = 1 to nadap ;

▶ Compute optimal metric Mopt
λi,l

and the stochastic error, solutions of the stochastic
optimization problem (11) with given complexity value Cλ based on the QoI evaluation on the
(vertices of the) previous mesh Hλ,l−1 ;

▶ Use anisotropic information provided by the metric to generate new mesh Hλ,l containing
Nλ,l = Nλ,l−1 +Nnew

λ,l samples;

▶ Use model to compute the QoI at the Nnew
λ,l new samples and update the metamodel Q({λ}l)

using linear interpolation (stochastic collocation approach);

▶ If needed, compute the statistical moments of the metamodel;

EndFor ;

• Generate a large number of samples from πinit
Λ and evaluate metamodel at each sample;

• Use a standard technique such as a kernel density method to estimate π
Q(init)
D ;

As outlined in Algorithm 2, we start out by (randomly) sampling Λ using πinit
Λ and constructing an

initial mesh as a Delaunay triangulation with samples λi. The model is evaluated for each of these samples
and QoI information is extracted. We then solve iteratively (as a fixed-point iteration) the stochastic op-
timization problem (11) which has the optimal metric (12) as solution. We have used our in-house solver
METRIX [44] for the optimal metric computation. METRIX uses the QoI information provided by the model
(CFD solver) at each mesh point as well as the mesh file to first compute the Hessian matrix H(Q(λ)) us-
ing derivative recovery methods such as L2-projection or Green formula, then the optimal metric Mopt

λi,l
for

each λi is assembled. We recall the optimal metric is the solution of a N -constrained optimization prob-
lem, where N is the maximum number of model evaluations we can afford. Therefore, at each iteration in
the fixed point loop, the position of the new samples generated and the connection of these samples with
the previous triangulation is decided by the optimal metric such as the stochastic error is minimized. The
model is evaluated on those samples to extract QoI information and the new stochastic mesh is generated
using a deterministic anisotropic mesh generator tool FEFLO (see for example [45]). We highlight here that
the optimal metric takes into account additional information, i.e. πinit

Λ . At the end of the fixed point loop,
when l = nadap we have obtained our metamodel with a computational cost controlled by the constraint.

The push-forward density π
Q(init)
D is then computed using a kernel density estimator (KDE) combined

with a sampling method such as Monte-Carlo (MC) or Latin Hypercube Sampling (LHS). Although other
methods can be used to compute this density, we have chosen to use a KDE for the sake of simplicity
and reproducibility. We are now able to compute the updated probability density π

up
Λ for any λ ∈ Λ using

relation (4) where π
Q(init)
D has been computed using Algorithm 2. However, it is common practice when

solving stochastic inverse problems to simply generate samples from π
up
Λ using a basic rejection sampling

algorithm on the samples generated from πinit
Λ . For details on this rejection sampling strategy, see [22].
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5. VERIFICATION

The new strategy of solving stochastic inverse CFD problems using data-consistent inversion and the adap-
tive simplex collocation method is tested in this section. We focus on the verification of the proposed
method on an analytical problem previously studied in [22] who presents a discontinuous QoI response
surface.

The influence of the metamodel choice is also investigated in this section.
The test function is a n−dimensional piece-wise continuous function which is setup to be our QoI. A
discontinuous representation of Q(λ) on parameters space Λ is considered here and illustrated for 2-
dimensional case in Figure 1 (left image). This problem is meant to illustrate some of the issues we might
encounter when dealing with compressible CFD problems, where discontinuities can arise in the QoI re-
sponse.
We define

Q(λ) =


Q1(λ)− 2 if 3λ1 + 2λ2 ≥ 0 and − λ1 + 0.3λ2 < 0
2Q2(λ) if 3λ1 + 2λ2 ≥ 0 and − λ1 + 0.3λ2 ≥ 0
2Q1(λ) + 4 if (λ1 + 1)2 + (λ2 + 1)2 < 0.952 and n = 2
Q1(λ) otherwise,

with

Q1(λ) = exp(−
n∑

i=1

λ2
i)− λ3

1 − λ3
2; Q2(λ) = 1 +Q1(λ) +

1
4n

n∑
i=1

λ2
i,

with uncertain parameters λ = [λ1, λ2, ..., λn], n ∈ N . For visualization purposes, we focus on n =
2 and λ ∈ Λ = [−1, 1]2. The observed probability density is built from an initial normal distribution
πobs
Λ (λ) = N ([0.2, 0.7], [0.032, 0.0052]) with mean and variance values 0.2 and 0.3 for λ1 and respectively

0.7 and 0.005 for λ2 such that it is defined on the threshold between two piecewise continuous surfaces as
shown on Figure 1 (a) and respectively Figure 1 (b), where the samples from πobs

Λ are drawn. The resulting
observed QoI density is illustrated in Figure 1 (c). We investigate the solution to the stochastic inverse
problems using two different metamodels: a generalized polynomial chaos approach (gPC) with 5th order
polynomial approximation and our ASSC method.

10

-4

0

6

-1
0

1 1

0

1

λ2

λ1

Q(λ)

(a) (b)

π
D
ob
s (Q

(λ
))

Q(λ)

(c)

FIG. 1: Verification. Reference densities in Λ and D stochastic spaces. (a) QoI response surface and samples generated from
the initial support distribution πobs

Λ , (b) initial support distribution πobs
Λ used to built the observed data density. (c) The observed

(targeted) density πobs
D .

We consider initially the two uncertain parameters to be uniformly distributed (i.e. πinit
Λ follows a uni-

form distribution law on Λ). The resulting metamodels obtained using 5th order gPC and our ASSC adap-
tive approach are illustrated in Figure 2. We remark the global polynomial approximation is unable to
accurately capture the discontinuities in the QoI definition, which is essentially expected, while the meta-
model obtained using the ASSC with the same number of deterministic samples is capable to accurately
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and automatically capture these discontinuities. A number of 105 post-processing LHS samples are used
over the metamodels to infer the observed data.

gPC : Posterior samples in the 
metamodel

λ2
λ1

Q(λ)

(a)
SC : Posterior samples in the 

metamodel

Q(λ)

λ1λ2

(b)

FIG. 2: Verification. Response surface of the QoI for each metamodel with the updated density samples (a) gPC (b) ASSC.

(a) (b)

FIG. 3: Verification. Updated density using rejection sampling algorithm on the metamodel: (a) Results using gPC metamodel,
(b) Results using ASSC metamodel.

The updated samples obtained using the rejection sampling algorithm for each of the metamodels
are represented by red dots in Figure 2. The resulting updated probability densities πup

Λ are illustrated
in Figure 3 (a)-(b). We remark the updated probability densities are very different for each metamodel.
Forward propagation of the updated density samples is performed next using both the metamodels and
the analytical values of the QoI. The resulting push-forward probability densities πcons

D (illustrated by green
and red curves in Figure 4) are compared with the observed one. The gPC metamodel approximation led
to an accurate inference result in its surrogate surface (see green curve on Figure 4 (a)). However, we can
see in the same figure with the curve in red that the push-forward density using the analytical values
(exact model) of the QoI is very much different from the observed one. This discrepancy can be explained
by the QoI approximation by global polynomials, which does not take into account discontinuities while
inferring. Moreover, the updated densities πup

Λ (λ) in Figure 3 (a)-(b) are very different for each metamodel
which suggests the inference results are highly influenced by the metamodel choice.

The ASSC method presents as well an accurate inference result and shows an efficiency in detecting
the singularities in the QoI domain. Indeed, both updated probability densities using the ASSC metamodel

International Journal for Uncertainty Quantification



Stochastic inverse problems for CFD using DCI and adaptive collocation 13

(a) (b)

FIG. 4: Verification: Updated push-forward densities results. Legend: (blue) observed (targeted) QoI density; (green) push-forward
of the updated density using rejection sampling algorithm on the metamodel; (red) push-forward of the updated density using
rejection sampling algorithm on the analytical (exact) model QoI. (a) Results using gPC metamodel. (b) Results using ASSC
metamodel.

and the analytical values of the QoI show a push-forward result close to the observed one (see Figure 4
(b)). These results show that the inference results are highly influenced by the metamodel choice and
particularly we cannot neglect discontinuous behavior on the QoI map when solving stochastic inverse
problems.

In Figure 5, we highlight the ASSC metamodel’s capability for detecting discontinuities on the QoI
space as opposed to a global polynomial approximation, where the QoI isolines for 105 samples evaluated
from both gPC and ASSC metamodels are represented. We recall that the metamodel is built using an adap-
tive approach, where a stochastic error estimate is used as refinement criteria. This allows an automatic
capturing of all (even highly anisotropic) discontinuities.

We can conclude that this analytical example comforts us in the choice of using the ASSC metamodel
while solving the stochastic inverse problem, where an accurate inference result was obtained for a dis-
continuous QoI problem.

Thus, for the next two examples, we will build the metamodel using the ASSC method when solving
the stochastic inverse problem.

6. COMPRESSIBLE CFD APPLICATIONS

The performance of the data-consistent inference method coupled with the adaptive stochastic collocation
(ASSC) approach is tested here for two CFD compressible flow problems.
The deterministic solver considered here solves the compressible flow equations using a mixed finite vol-
ume - finite element formulation on unstructured triangular/tetrahedral meshes. A brief description of
WOLF solver can be found in [42].

The two-dimensional steady Euler equations are set in the computational domain Ω ⊂ R2 of boundary
denoted Γ. We define our working functional space as V =

[
H1(Ω) ∩ C(Ω̄)

]4, that is the set of measurable
functions that are continuous with square integrable gradient. We formulate the Euler model in a compact
variational formulation in the functional space V as follows

Find w ∈ V such that ∀φ ∈ V, (Ψ(w) , φ) = 0,

with (Ψ(w) , φ) =

∫
Ω

φ∇ · F(w) dΩ −
∫
Γ

φ F̂(w).ndΓ . (14)
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λ2

λ1

Q(λ)(a) Q(λ)

λ2

λ1

(b)

FIG. 5: Verification. Iso-contours of the QoI evaluated with two forward propagation metamodels: (a) gPC (b) Adaptive Stochastic
Collocation (ASSC)

In the above definition, w = t(ρ, ρu, ρE) is the vector of conservative flow variables and F(w) = (F1(w),F2(w))
is the usual Euler flux:

F(w) = t (ρu, ρuu+ pex, ρvu+ pey, ρuH) .

We have noted ρ the fluid density, u = (u, v) the velocity vector, H = E + p/ρ the total enthalpy,
E = T + ∥u∥2

2 the total energy, p = (γ − 1)ρT the pressure with γ = 1.4 the ratio of specific heat ca-
pacities, T the temperature, and (ex, ey) the canonical basis.
Note that n is the outward normal to Γ, and the boundary flux F̂ contains the different boundary condi-
tions, which involve standard inflow, outflow and slip boundary conditions.
The computational domain is then divided in a finite-element partition of simplicial (triangular) elements
and the model (14) is discretized using a mixed finite-element/finite-volume approach on a discrete varia-
tional space. For further details on the discrete model, see [46]. This model is used for both CFD examples
described hereafter.

6.1 Inviscid flow around a NACA0012 airfoil

The geometry considered for this example is a symmetric NACA0012 airfoil with chord length c = 1.
The computational domain is discretized in an unstructured triangular mesh as shown in Figure 6 and
the discrete Euler model is used to analyze the external compressible flow around the airfoil. The inflow
conditions are defined by a free-stream Mach number M∞ and an angle of attack α imposed upstream to
our obstacle. The quantities of interest considered here, i.e. Q(λ) = (Q1(λ), Q2(λ)) are the point-wise Mach
number values at coordinate x/c = 0.25 in the lower (Q1(λ)) and respectively upper (Q2(λ)) surfaces, with
uncertain parameters λ : the inflow conditions λ1 = M∞ and λ2 = α. We consider thus the uncertain
parameters domain Λ = {[0.5, 0.7] × [2, 6]}. The pressure and respectively Mach fields for M∞ = 0.6 and
α = 4 are illustrated in Figure 7. These values correspond to the middle of the uncertain parameters do-
main. We observe a small shock appear on the upper airfoil surface where the flow becomes supersonic
and a non-symmetric solution due to a non-null value of the angle of attack. The free-stream Mach number
M∞ will have an influence on the intensity of this shock, while the angle of attack α will change the shock’s
position. For these particular values of the uncertain parameters, we observe our quantities of interest are
either in a transsonic (for Q1(λ)) or a subsonic (for Q2(λ)) regime.
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(a) (b)

FIG. 6: NACA0012 geometry and computational domain mesh.

The observed (or targeted) data has been built using an initial probability density for our uncertain
parameters and the forward (direct) propagation of these uncertainties throughout our Euler model. This
allows us to control the types of flow we wish to analyze as summarized in Figure 8 where the domain (A)
represents a subsonic flow and the domain (B) a transonic flow. A discontinuity is also represented on the
QoI Q2(λ) map as shown in Figure 9 (left image), while the response surface of Q1(λ) is smooth (see right
image of Figure 9).

(a) (b)

FIG. 7: NACA0012. Pressure (left image) and Mach number (right image) fields for middle uncertain domain Λ values: Mα =
0.6 and α = 4

For each of these studies, we compare the updated density and its push-forward with the observ-
able πobs

D and its support in Λ, πobs
Λ . The data-consistent inference method is applied using the adaptive

stochastic collocation metamodel with about 500 deterministic samples (CFD problems solves) and a LHS
sampling over the metamodel is used to post-process the results. Figure 9 illustrates the response surface
obtained for both QoI and again the capability of the adaptive approach to capture the discontinuity in Q2.

Results for the subsonic case (A) are illustrated in Figures 10-11-12. The data-consistent inference led
to a QoI pdf (see right image in Figure 11) in agreement with the observable (see left image in Figure 11)
built with the support illustrated in left image (a) of Figure 10. Figure 12 illustrates the same results and
conclusion with an individual view of each quantity of interest (results on Q1(λ) illustrated on the left
image and on Q2(λ) on the right image). Moreover, the updated density illustrated in the right image of
Figure 10 is of similar shape with the uniform support. We can conclude that for the subsonic case the
inverse problem solution obtained using the data-consistent inference approach coupled with the adap-
tive stochastic collocation metamodel is accurate since the updated and push-forward densities are well
reconstructed for our QoI Q(λ).
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(A)

subsonic transonic

(B)

Λ

M∞

α

FIG. 8: NACA0012. Stochastic supports (A) and (B) over the uncertain parameters space Λ.
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FIG. 9: NACA0012. QoI response surfaces for both parameters support. 500 deterministic samples were used.

When inferring on the data from the stochastic space in case (B) corresponding to the transonic flow
with the data-generating density shown in Figure 13 (left), we see in Figures 14 and 15 that the push-
forward of the updated density agrees very well with the observed pdf in each scenario. However, while
the updated density illustrated in Figure 13 (right) presents a shape similar to the uniform support of the
data-generating density shown in Figure 13 (left), some differences are notable. This discrepancy can be
explained by a non-uniqueness of the inverse problem solution. When inferring the observed data, more
than one density on Λ can push forward to the given observed density.

6.2 Inviscid flow in a Hyshot II-Scramjet configuration

Finally, the data-consistent inference is tested on an internal flow problem in a scramjet configuration.
The geometry (illustrated in Figure (16)), flow conditions and the pseudo-combustion model were initially
analyzed in [47] where the authors wished to assess the unstart condition on this problem using an adjoint-
based approach for accelerating the Monte-Carlo method. Although the geometry is rather simple, the flow
behavior is not. Indeed, this configuration is analyzed for a supersonic inflow Mach number M∞ where
the inlet velocity will always be parallel to the combustor walls. A shock train is generated by a blunt
lip at the entrance of the lower wall of the isolator. The combustion will lead also to the entertainment
of the shock train present in the combustor. In order to mimic the combustion process we added (as in
[47]) a heat release model to the energy equation in the Euler model, defined by S = ΦfstHfmairη(x/Lc),
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πΛ
obs(λ)

FIG. 10: NACA0012. Data-generating probability density, πobs
Λ (left), and the updated probability density, πup

Λ (right), for case
(A).

with η(x/Lc) = 1 − e−(Ccx/Lc)
Dc the heat release distribution function and Cc = −log(1 − Kc)

Dc , where
Kc is the fraction of completed combustion and Dc a shape parameter tuned to achieve a good fit with the
ground-based experimental measurements. The remaining symbols represent: the equivalence ratio (Φ),
the stoichiometric fuel/air ratio (fst), the fuel heating value (Hf ) and the mass of air (mair). The quantity
of interest is the normalized pressure deviation from the upstream pressure and is defined as follows:

Q(λ) =

(∫
Γ

(p− p∞)8dx

)1/8

. (15)

We consider in this study two observation surfaces: the upper wall of the Hyshot scramjet combustor
Γ (as shown in Figure 16) and the outflow O. Therefore, we introduce Q(λ) = (Q1, Q2) with Q1(λ) =(∫

Γ
(p− p∞)8dx

)1/8 and Q2(λ) =
(∫

O
(p− p∞)8dx

)1/8. By observing the QoI on these surfaces, we are able
to predict the impact of several changes in the flow parameters on the train shock and thus incidentally on
the unstart condition. This condition is characterized by a sudden drop of the system inlet flow velocity,
which leads to the failure of the engine ignition.

We consider here two uncertain parameters: the fraction of complete combustion Kc and the free
stream Mach number, M∞, defined in Λ = {[0.8, 1]× [2.8, 3.8]}. A stable solution is illustrated in Figure 17
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FIG. 11: NACA0012. Normalized observed probability density, πobs
D (left), and the normalized push-forward of the updated

probability density, πcons
D (right), for case (A) with two quantities of interest.

FIG. 12: NACA0012. Normalized observed probability density, πobs
D , and the normalized push-forward of the updated probability

density, πcons
D , for case (A) with one quantity of interest for the lower surface (left) and the upper surface (right).

where the simulation has been performed for the middle values of the uncertain parameters: M∞ = 3.2
and Kc = 0.9.

The observed data is built from a data-generating density, πobs
Λ , within the uncertain parameters space,

similarly to the previous CFD case. Two studies are conducted using two different data generating densi-
ties to build the observed data. First, we take πobs

Λ to be a uniform density on part of the uncertain domain
{[0, 97, 1] × [2.7, 2.9]}. In the second study, πobs

Λ is a bivariate correlated Gaussian function centered at
µ1 = 0.9 and µ2 = 3.2. For both studies, we start with a uniform distribution assumption of the uncertain
parameters on Λ. The data-consistent inference method is then applied coupled with the ASSC metamodel
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πΛ
obs(λ)

πΛ
up(λ)

FIG. 13: NACA0012. Data-generating probability density, πobs
Λ (left), and the updated probability density, πup

Λ (right), for case
(B).

built with 300 deterministic solves. For the post-processing, we used 2.105 LHS samples.
Successful results are obtained for both studies. We can see that the inference method is once again

capable to accurately reconstruct the observed data and the density, πobs
Λ meaning that the consistency

with both the data and the model is verified. For the first study where a uniform support was defined,
we can see in Figure 18 little differences with the updated density and πobs

Λ . We see in Figures 19 and 20
that the push-forward of the updated density agrees very well with the observed pdf in each scenario.
For the second, the Gaussian distribution is also well recovered in Λ (Figure 21). In the QoI space the
inference method led again to an updated push forward density in agreement with the observed one, πobs

D

(see Figures 22 and 23).
These results confirm the good approximation of the QoI map by the ASSC metamodel and show the

consistent inference capacity of reconstructing correlated support in the uncertain parameters space.

7. CONCLUSION

The data-consistent inference method was combined in this paper with an adaptive stochastic collocation
(ASSC) approach to solve inverse stochastic CFD problems. The coupling of these methodologies allows
addressing issues of both computational costs induced by solving expensive CFD inverse problems and
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FIG. 14: NACA0012. The normalized observed probability density, πobs
D (left), and the normalized push-forward of the updated

probability density, πcons
D (right), for case (B) with two quantities of interest.

FIG. 15: NACA0012. The normalized observed probability density, πobs
D , and the normalized push-forward of the updated proba-

bility density, πcons
D , for case (B) with one quantity of interest for the lower surface (left) and the upper surface (right).

potentially discontinuous responses over the uncertain input parameters. A verification case with a dis-
continuous response surface showed the accuracy of this method to correctly catch the singularities in the
QoI space, leading to correct inference results (36 deterministic samples were used). Results suggest that
additional care may be taken when building the metamodel for this kind of problem.

Moreover, after the verification phase, the coupled tool was able to recover both 1D and 2D observed
densities in the uncertain parameters and QoI stochastic spaces for two different CFD configurations, using
an increasingly more complex model.

Of course, the inference results presented are also dependent on other factors not studied here, such as
the kernel density estimation bandwidth, the QoI map, and other parameters we tuned. Such parametric
studies could be the subject of a future work or further investigations, but this is beyond the scope of this
article. Also, further studies shall focus on other forward propagation methods or metamodels, notably
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FIG. 16: Hyshot II-Scramjet: geometry configuration and simulation domain.

FIG. 17: HyShot II-Scramjet. Pressure (left image) and Mach number (right image) fields for middle values of the uncertain
parameter space Λ: Mα = 3.2 and Kc = 0.9

empirical ones, such as regressive neural networks, which might perform better in higher-dimensional
parameter spaces.
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FIG. 18: HyShot II-Scramjet. Data-generating density, πobs
Λ (left), and the updated probability density, πup

Λ (right), for the first
scramjet case.
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FIG. 21: HyShot II-Scramjet. Data-generating density, πobs
Λ (left), and the updated probability density, πup

Λ (right), for the second
scramjet case.

FIG. 22: HyShot II-Scramjet. The normalized observed probability density, πobs
D (left), and the normalized push-forward of the

updated probability density, πcons
D (right), for the second scramjet case with two quantities of interest.
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