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Abstract. Design patterns are standard solutions to recurrent software
engineering problems. The use of design patterns helps developers im-
prove software quality. However, when integrating design patterns into
their systems, software developers usually do not document their use. To
this end, the use of an automatic approach for their detection may accel-
erate program comprehension, assist developers in software refactoring,
and reduce efforts during the maintenance task. In this paper, we propose
an attention-based approach for design pattern detection. Specifically,
we utilize an automatic feature extraction step with a transformer-based
model incorporating the attention mechanism. Based on an unsupervised
approach, this step learns from source code to identify code attributes
and then produces embedding vectors. These vectors capture syntactic
and semantic information related to design pattern implementations and
serve as input to train a classifier for the design pattern detection task.
The attention mechanism is used to produce important representative
features of design pattern implementations and improve the accuracy of
the classification model. The evaluation shows that our classifier detects
GoF design patterns with an accuracy score of 86%, precision of 87%,
recall of 86%, and F1-score of 86%. The comparison of our findings with
state-of-the-art methods shows an improvement in (i) precision of 25%,
(ii) recall of 6%, and (iii) Fl-score of 8%.

Keywords: Design pattern detection - Feature extraction - classification
- Transformer architecture

1 Introduction

Design patterns are typically defined as a solution to a recurring problem appli-
cable in a specific context [18]. In software engineering, the application of design
patterns significantly simplifies the work of software developers and enhances
the quality of software systems across various domains. Patterns may aid in the
reuse of existing knowledge regarding similar development difficulties. They pro-
pose previously used and optimized solutions to specific problems in a variety
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of contexts. The lack of pattern-related data after the application of a design
pattern in source code is a common problem. Indeed, software developers apply
design patterns without frequently documenting their use. However, knowing
their presence in a software system improves the developer’s comprehension and
provides essential information for the developers to facilitate software refactoring
and maintenance tasks. One way to reduce refactoring and maintenance costs is
to detect design patterns. However, manually identifying and locating these pat-
terns can be complex and time-consuming. Developers must not only recognize
where a pattern is applicable but also ensure that it is applied correctly to reap
its full benefits.

Different approaches have been proposed in the literature for design pattern
detection. Some of those approaches rely on intermediate representations [5]
[17] and aim to convert the source code of the system implementing the design
pattern into an intermediate representation, like a graph or a matrix followed
by a comparison to find common structural elements. These methods show low
performance, and frequently fail to distinguish between design patterns with
similar structures. Metric-based approaches [6] [9] for design pattern detection
uses quantitative measures to identify and assess the presence of design patterns
in source code. However, the possibility of implementing a design pattern in var-
ious ways makes the use of software metrics challenging to capture all instances
accurately. Indeed, software metrics are generally based on structural analysis,
aiming to quantify certain structural characteristics and relationships between
the code elements. To address the limitations of the previous two approaches,
feature-based methods for design pattern detection have recently emerged. De-
tecting design patterns in code refers to the process of checking whether a source
code implements the features that define that pattern. Code features correspond
the specific characteristics of code that define a particular pattern. These meth-
ods are usually supported by machine learning techniques and mainly consist
of two stages: examining the code statically to extract syntactic and seman-
tic code features (known as feature extraction), then constructing a machine
learning model for classification. The feature extraction step is challenging since
the extracted attributes have a strong impact on the classification model’s per-
formance. In addition, this step is judged to be hard and time-consuming [15]
[11] due to the various representations of design patterns (i.e., variants). An-
other challenge facing feature-based approaches is embedding source code into
representative vectors in the dimensional space and that is due to the complex
structure of source code itself. Embedding helps capture semantic representation,
which consequently contributes to enhancing the accuracy of the classification
model. To perform this step, existing approaches perform a transformation of
source code to a textual representation that represents code features [11] [16],
then employ word embedding techniques such as word2vec [3| to produce the
embedding vectors.

Motivated by the limitations of existing works, we propose in this paper a
fully automated approach for GoF design pattern [8] detection named DPD 44;.
The proposed approach, based on the transformer architecture and enriched with
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the attention mechanism [21], intends to automatically extract code features us-
ing an unsupervised approach. Transformer is a neural network architecture first
introduced by Ashish et al. [21] in 2017. It adheres to an encoder-decoder struc-
ture, with the encoder tasked with transforming the input into an intermediate
representation that the decoder can subsequently employ to generate output.
Existing architectures built on top of this transformer often adopt one or more
of its building blocks, as some rely on an encoder-only network, whereas others
employ a decoder-only or encoder-decoder architecture. In this paper, the feature
extraction module is built on the transformer’s encoder. The attention mecha-
nism within a transformer-based auto-encoder enables the capture of contextual
information within an input sequence. It produces an output vector that encodes
the relationships between words or sub-words known as tokens in the input. This
method ensures that tokens sharing semantic similarities are represented by vec-
tors with smaller distances in the vector space, making it useful for learning
representations of sequential data such as code. Furthermore, to eliminate treat-
ing a source code as plain text for embedding, we utilize a code embedding
model in this paper. The resulting contextualized embeddings retrieved by our
feature extraction module serve as rich representations that include syntactic
and semantic information, making them helpful for design pattern detection.
The main contributions of this paper can be summarized as follows:

— We provide an attention-based approach for design pattern detection called
DPD 44¢. The proposed approach uses the transformer’s encoder to auto-
matically learn features with syntactics and semantics from encoded token
vectors extracted from source code, and then uses the attention mechanism
to generate key features (i.e., embedding vectors) for training a more precise
design pattern detection model. The approach is fully automated, and a tool
called the DPD 4;; detector is created.

— We build a large corpus DPD 44 corpus covering 13 GoF design patterns
and consisting of 1645 labeled Java files.

— We demonstrate the effectiveness of our approach by comparing it with state-
of-the-art methods in terms of precision, recall, and F1-score.

The rest of this paper is organized as follows: In Section 2, we provide back-
ground information on the concept of features in source code. Section 3 describes
the proposed approach. In Section 4, we present implementation details to create
our DPD 44; detector, we discuss evaluation results, and we compare the proposed
approach with the state-of-the-art methods. Section 5 overviews related work.
Conclusions and future work are discussed in Section 6.

2 Code features

Code features are code attributes or characteristics that are extracted or com-
puted from source code for a specific purpose. The code features used are deter-
mined by the task at hand. Code features might be syntactic or semantic. Syn-
tactic features are the structural elements and arrangement of the code, whereas
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semantic features are the meaning and behavior enclosed within those struc-
tures. In object-oriented programming, syntactic features may include class and
method declarations, variable names, inheritance relationships, and the overall
organization of code blocks. The inclusion of access modifiers like "public" or
"private," or the use of particular phrases like "extends" for inheritance are some
examples of syntactic features. On the other side, semantic characteristics exam-
ine the functionality and logic contained in the code. Important semantic features
include, for instance, the creation of objects, method calls, and interactions be-
tween various classes and objects. For feature extraction, various strategies may
be used. Static source code analysis, which involves examining the code without
executing it, may be used to extract static features. This includes techniques
such as parsing the code to construct an abstract syntax tree (AST) or using
data flow analysis to understand how data moves through the program. Fur-
thermore, advanced static analysis techniques such as symbolic execution [19],
formal methods [27], or machine learning [16] can be used to derive more in-
depth semantic features, revealing insights into the code’s intended behavior. In
this paper, we are interested in machine learning techniques to extract syntactic
and semantic features from source code. In particular, we aim to automatically
extract code features using an unsupervised approach.

3 Proposed approach

The proposed approach as depicted in Fig. 1 includes three main phases: the
data collection and preparation, the feature extraction, and the classification.
Each of these phases is explained in detail in the following subsections.

r———— r———— I teton S
Data collection Feature extraction -I r Classification Jja Java S:urce
| and preparation | code

:g @”Hm /¢:> e Ilnﬁ@j@-

DPD_Att -classifier o_J Lo etected design
dataset | DPD_Att pattern
J— Detector

Fig. 1: Proposed approach in a nutshell

3.1 Data collection and preparation

The effective training of any machine learning model requires a substantial vol-
ume of high-quality data. In our specific research context and to identify GoF
design patterns within Java source code, we opted for class-level detection as it
is the lowest possible level of granularity that may capture design patterns. We
started by conducting an extensive search for an open-source dataset. Our search
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led us to Nazar et al.’s [16] corpus, DPDp, one of the few open-source avail-
able design pattern detection datasets. This dataset was considered a starting
point for our work and a benchmark corpus. The DPDp comprises 1300 files
sourced from 216 projects, covering 12 design patterns. These files were care-
fully selected from the GitHub Java Corpus [1] and expertly labeled through
crowd knowledge. We further processed this dataset, starting with eliminating
redundant files and keeping only the ones with valid GitHub URLs and a ".java"
file extension, resulting in a reduced dataset size of 943 labeled examples. This
data curation step is essential since having duplicates in the dataset can lead to
inflating performance metrics. Following this, we continued to work with the re-
fined DPDp, expanding it to encompass 1645 Java files and to include 13 design
patterns, thereby covering a wider spectrum of design patterns and implementa-
tions. These additional files were also collected from GitHub and labeled manu-
ally by experts in the field. Subsequently, we named this refined corpus DPD 44,
which played a fundamental role in our feature extraction and the training of
our multi-class classification models. As depicted in Fig. 2, the DPDp dataset
encompasses 12 design patterns in addition to the "unknown" label. Whereas,
our dataset extends its label set to include the "Strategy" design pattern [§],
bringing the total to 14, including the "unknown" label.

Builder Prototype

FactoryMethod

Memeno pserver

Singletd sartegy

— DPD.F AbstractFactagy pecorator

— DPP_ALt

Proxy Adapter

Fig. 2: Comparison between the DPDp and DPD 44 corpora by the number of
collected instances per design pattern

3.2 Feature Extraction

In this paper, we aim to utilize a machine learning classifier for the detection
task. To do so, the classifier must be trained to distinguish between the fea-
tures that represent each design pattern. As a result, we need to supply it with
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data that implements these GoF pattern features so that it learns to map source
code to the design pattern it implements. However, supervised learning classifiers
cannot process code in its raw format, making an intermediary step of feature
extraction required. The feature extraction step as depicted in Fig. 1, aims to
automatically extract code features from the collected Java files (DPD 44+ cor-
pus) and represent them as fixed-size vectors (D P Pgy-classifier dataset). The
feature extraction starts with the tokenization step. This tokenization refers to
the process of mapping a given input into a vector of integers based on a specific
vocabulary, where each integer corresponds to a word or sub-word from the in-
put code. An example of a Java class called "Database" to which the Singleton
design pattern is applied is shown in Fig3. This code enables clients to create a
connection pool for accessing the database, ensuring the reuse of the same con-
nection across all clients. A possible tokenization process result is shown in Fig.
4. In this figure, the token "1" represents a special character initiating the start
of the sentence, and the token "2" represents a special token for the end of the
input. Then, the feature extraction module automatically extracts code features
from the tokenized DPD 44 corpus given as input. The attention mechanism is
used to capture contextual information and perform semantic analysis. Our fea-
ture extraction module utilizes this mechanism to learn how much a token from
the input sentence relates to all the other tokens from the same sentence. That
way, tokens that contribute most to the context of others will be looked at with
more "attention" during the learning. This contextualization is very important
in the context of pattern detection since it allows distinguishing between code
elements that are relevant to the implementation of the design pattern and other
tokens from the source code that are irrelevant. As a final step, these learned
dependencies are then mapped to an output vector, which is our embeddings. It
is worth noting that the size of this vector, called embedding size, has an impact
on the detection task, which will be discussed in more detail in the evaluation
section. Fig. 5 depicts the embedding vector for the Java class "DataBase" with
an embedding size equal to 256. Each element in the embedding vector repre-
sents a specific feature characterizing the design pattern Singleton in the source
code.

class Database {
private static Database dbObject;

private Database () {
public static Database getlnstance () {
// create object if it ’s mot already created
if (dbObject —— null)
dbObject = new Database ();

// returns the singleton object
return dbObject;

public void getConnection () {
System.out.println ("You_are_now_connected_to_the_database.");
}

}

Fig.3: An example of a Java class "DataBase" to which the Singleton pattern is
applied
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tensor([1, 203, 1106, 5130, 288, 203, 282, 3238, 760, 5130, 1319, 921, 31, 203, 282, 3238,
5130, 1435, 288, 4202, 203, 282, 289, 203, 282, 1071, 760, 5130, 3694, 1435, 288, 203, 1377,
368, 752, 733, 309, 518, 1807, 486, 1818, 2522, 203, 1377, 309, 12, 1966, 921, 422, 446,
13, 288, 203, 540, 1319, 921, 273, 394, 5130, 5621, 203, 1377, 289, 203, 4202, 368, 1135,
326, 6396, 733, 203, 4202, 327, 1319, 921, 31, 203, 282, 289, 203, 282, 1671, 918, 6742,
1435, 288, 203, 4202, 2332, 18, 659, 18, 8222, 2932, 6225, 854, 2037, 5840, 358, 326, 2063,
1199, 1769, 203, 282, 289, 203, 97, 203, 2])

Fig.4: Tokens of the Java class "DataBase"

tensor([-0.0599, -0.0019, -0.1362, -0.0059, -0.1154, ©.0384, 0.0832, -0.0376, -0.0993, 0.0214, 0.0576, 0.0866, 0.0443, 0.0262, ©.0683,
©.0198, 0.0836, -0.1733, -0.0918, ©.0761, 0.0331, ©.0234, -0.0019, 0.0564, 0.0160, 0.0435, -0.0038, 0.0191, -0.0854, -0.0252,
-0.0348, -0.0619, -0.0560, -0.0234, -0.0905, 0.0341, 0.0479, -0.0481, 0.0293, ©.0505, -0.0272, ©0.0239, 0.1233, 0.0406, 0.0708,
0.0073, -0.0586, ©.0429, 0.0112, -0.1061, 0.0861, ©.0571, 0.0533, -0.0291, -0.0571, ©.0004, 0.0285, 0.0192, 0.0083, 0.0727,
-0.0278, -0.0619, -0.0561, -0.0440, -0.0364, 0.0140, 0.0142, -0.0319, -0.0240, -0.0987, -0.0095, ©0.0792, 0.0146, -0.0824, -0.1464,
©.0493, -0.0365, -0.1038, 0.0748, -0.1273, 0.0096, ©.0127, 0.0376, -0.0701, -0.0534, -0.0139, -0.0733, -0.0380, 0.1140, -0.0623,
0.0147, 0.0357, ©.0839, 0.0499, -0.0235, 0.0410, ©.0270, -0.0733, 0.0156, -0.0276, -0.0074, -0.0528, -0.0212, -0.0434, 0.0233,
©.0309, -0.0446, ©.0289, -0.0390, -0.0726, -0.0382, ©.0447, 0.0352, 0.0756, -0.0075, -0.0513, -0.1216, -0.0088, 0.0157, -0.0249,
0.0972, 0.0932, ©.0408, 0.1057, ©.0070, -0.0331, -0.0617, 0.0060, ©0.0713, -0.0198, ©.0048, -0.0483, -0.0229, 0.0209, -0.0004,
-0.0154, -0.0235, -0.1061, 0.1601, 0.0173, -0.0198, 0.0494, 0.0565, 0.0537, -0.0054, -0.0800, ©0.0901, -0.0204, -0.0797, -0.1150,
©0.0884, -0.0690, -0.1142, -0.0339, ©.0111, -0.0533, -0.0654, 0.0312, 0.0156, 0.1225, 0.0139, 0.0977, 0.0066, -0.0013, -0.0131,
0.0762, -0.0556, ©.0423, 0.0634, ©.1082, -0.0373, 0.0078, -0.0478, 0.0431, 0.0101, -0.1972, -0.0150, -0.0603, 0.0469, -0.0080,
©.0867, 0.0667, -0.0568, -0.1139, ©.0926, 0.0226, -0.0058, 0.0367, -0.1321, -0.0385, 0.0581, 0.0676, 0.0019, -0.0905, -0.0394,
-0.0797, -0.0053, 0.0525, ©.1161, 0.0251, -0.0484, -0.0360, 0.0391, 0.0485, -0.0285, -0.0750, 0.0178, 0.0649, 0.0151, -0.0130,
-0.0383, 0.1017, 0.0646, 0.0963, -0.0029, 0.0035, ©0.0368, 0.0024, ©.0705, -0.0175, -0.1066, -0.0705, 0.0345, -0.0398, 0.0171,
©.0783, 0.0085, 0.0318, 0.0706, 0.0262, 0.1060, 0.0507, -0.0347, -0.0416, 0.1388, -0.1385, -0.0072, -0.0366, 0.0398, -0.0862,
©.0602, 0.0041, -0.0139, -0.0036, 0.0715, -0.1764, 0.0325, 0.1186, 0.0024, 0.0252, -0.0263, -0.0007, ©0.0133, 0.0036, 0.0775,
0.0557], grad_fn=<selectBackwarde>)

Fig. 5: Embedding vector for the Java class "DataBase"

3.3 Classification

Different paradigms exist when it comes to training machine learning models.
Supervised learning is one of them. Supervised learning involves training machine
learning models on labeled data. During its training, the model takes inputs
in addition to what it is supposed to predict given these inputs. That way,
the supervised learning algorithm can learn to map like-wise data points to
corresponding target values. Supervised learning can solve two types of problems
by providing the correct data. These problems can be regression or classification
problems. When the output we want to predict takes continuous values, we are
dealing with regression, while when it takes a finite set of discrete values, it is
a classification problem. In our work, we aim to detect design patterns given
the extracted features from the source code. Since the target we want to predict
takes a value from a discrete set of values, being the 13 design patterns our
collected dataset DPD 44 covers, we can then conclude that the design pattern
detection task is a classification problem. For the classification step, we first
constructed the DPD 44 -classifier dataset as shown in Fig. 1 based on the the
embedding vector produced in the feature extraction step. This dataset will be
used to train our classifier. Subsequently, we conducted experiments with various
classifiers and assessed their performance. Notably, we trained and evaluated the
quality of a Support Vector Machine (SVM), a Multi-Layer Perceptron (MLP),
and a Multinomial Logistic Regression (MLR) multi-class classifiers [12]. Once
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the choice of the classification model is made, dividing the data for training and
testing is a crucial step. Testing data should be around 20% to 30% of the total
size of the data. The training data is the one passed to the classification model
with its corresponding label so that it learns the design pattern features from it.
The testing data is then used to evaluate how well the model has learned from
its training process. Each Java source code is passed without its corresponding
label, as the trained classifier is required to predict that. Then the evaluation
is done based on the number of correctly predicted patterns and the wrongly
detected ones.

Cross-validation: One way to assure the quality of the classification and
assess the model’s ability to generalize is to use the cross-validation technique
[13]. As we said, a sample of the data is used for testing. This sample could be
situated in any part of the corpus. For example, if the testing data is 25% of
the total size of the dataset, these 25% could be situated in the first Fold of
the data, the second, the third, or the fourth. Cross-validation takes that into
consideration by evaluating each of these scenarios individually and then taking
the mean value as the final evaluation score.

4 Experimental results

This section first presents the implementation details. Then, an evaluation and
a comparison with related work are given. At the end of this section, we discuss
the computational complexity of the proposed approach.

4.1 Implementation

For the feature extraction step, our design pattern detector (DPD ast— petector)
uses the CodeT5+’s [23] encoder, an open-source transformer-based code Large
Language Model (LLM). To produce embedding vectors, a code embedding
model called codet5p-110m-embedding model [23] made available on the Hug-
ging Face Transformers library in May 2023 is used *. For the detection task,
we used the Scikit-learn library in Python to train the SVM, MLP, and MLR
classifiers.

4.2 Evaluation

In this section, we first introduce the considered evaluation criteria in this paper.
Then, we describe the evaluation results and compare our findings with related
work. The computational complexity is given at the end of this section.

Evaluation criteria. For the statistical evaluation of our approach, we report
four different metrics: Precision, Recall, F1-Score, and Accuracy.

4 https://huggingface.co/Salesforce/codet5p-110m-embedding
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— Accuracy measures the proportion of correctly classified instances (both
true positives and true negatives) out of all instances in the dataset and is

calculated as: o
Correct Predictions

Total Predictions (1)
Where Correct Predictions is the sum of true positives and true negatives,
the denominator is the total number of instances in the dataset.

— Precision inform you on the model’s ability to classify positive instances
correctly while minimizing false positives. We calculate precision as:

Accuracy =

Precision — True Positives 2)
" True Positives + False Positives

The term True Positive represents the instances correctly identified. Whereas
the term False Positives indicates the number of instances that were classified
as correct but were falsely predicted.

— Recall indicates the fraction of instances belonging to a certain class and
being identified as such by the classifier. We calculate the recall metric as:

True Positives
Recall = 3
eca True Positives + False Negatives (3)

False Negatives informs about the instances classified as negative when they
are actually positive.
— F1-score quantifies the harmonic mean between precision and recall as it
balances between them. We determine F1 as:
2 - Precision - Recall

F1 - = 4
score Precision + Recall (4)

Evaluation results. By considering the evaluation metrics described in the
previous section, we conducted experiments with our proposed approach. We
started by analyzing the impact of the feature extraction module on the clas-
sification process, especially the embedding size. To explore this, we adjusted
the length of the extracted features (i.e., embedding size) and examined its ef-
fect on the detection task. Our findings indicated that maintaining a size of 300
produced the most favorable outcomes. Specifically, it led to superior accuracy,
precision, recall, and F1 scores compared to other sizes. Fig. 7 depicts the ability
of our tool to detect design patterns given different numbers of features (100,
250, 300, and 350) generated by the feature extraction step. As depicted in Fig. 7,
increasing the embedding improved results. This enhancement can be attributed
to the increased capacity provided to the encoder, allowing it to better capture
features from the Java source code and minimize information loss. We can also
see that over-increasing the size of the vector to 350 resulted in decreased per-
formance, which can be explained by overfitting. Overfitting occurs when the
model becomes too complex for the available data and starts memorizing the
data instead of learning from it. In this case, when we increased the size of our
learned vector to 350 features, we provided the model with more parameters
to learn, which made it more capable of fitting the training data. That can be
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explained by its inability to generalize to new, unseen data. As a result, we con-
figured our model to generate vectors of size equal to 300.These vectors were
represented as torch tensors, which we then used to build DPD g4 ciassifier
dataset. The DPD a4—cCiassifier dataset is the csv file that is going to be passed
to the classifier for training and testing and is composed of 303 columns. The
first column serves as the name of the Java project. The second is the name of
the class, while the third represents the design pattern detected (label). The last
300 columns are the features extracted by CodeT5+’s encoder, capturing the
necessary information about each Java source code from each project.

We also compared the different classifiers for detecting GoF design patterns
in terms of accuracy, precision, recall, and F1-score. The different classifiers uti-
lized 80% of the DPD 41— ciassifier dataset for training and 20% for testing. To
ensure that the models do not overfit the training data. We opted for the K-
fold cross-validation technique with K = 5 by utilizing the K-fold module in the
sklearn library. Fig. 6 shows the mean values for the defined metrics. As depicted
in Fig. 6, the SVM classifier results in slightly better performance than the other
classifiers. This is the reason why we opted for the SVM classifier for our detec-
tion tool (DPD att—petector). Indeed, using our DPD as—ciassifier dataset and
the SVM classifier, we obtained an accuracy score of 0.86, an average precision
score of 0.87, an average recall score of 0.86, and a harmonic mean of 0.86. Table

0.87
Metrics
s Precision
0.8 = Recall
0.86 W F1 Score
B Accuracy
0.85 0.6
&
g v
]
0.84 3 8
L 0.4
[a]
0.81 o
0.83
0.2
0.82
0.81
081 0.0
&

Accuracy

Precision

Recall

F1 Score

250 300 350
é‘“ \“\"z Embedding Dimension
Fig.6: Performance comparison be- Fig.7: Average experimental results
tween the used classifiers with respect to the embedding size

1 gives the evaluation of our detection tool per label using the SVM classifier and
DPD 44-classifier dataset. As shown in Table 1, our approach detects 13 design
patterns with promising scores. The strategy and proxy patterns were predicted
with precision higher than 95%. Five other design patterns were detected with
a precision higher than 90%.
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Table 1: Evaluation per each design pattern on DPD 444

Class Precision Recall F1-Score
Singleton 0.88 0.79 0.84
Observer 0.94 0.91 0.92
Memento 0.87 0.90 0.89
Proxy 0.97 0.91 0.94
Prototype 0.94 0.97 0.95
Builder 0.76 0.73 0.75

Abstract Factory  0.94 0.94 0.94
Factory Method 0.90 0.95 0.92

Facade 0.94 0.82 0.87
Adapter 0.80 0.97 0.88
Decorator 0.81 0.83 0.82
Visitor 0.78 0.95 0.86
Unknown 0.64 0.59 0.61
Strategy 1.00 0.87 0.93

Comparison with related work. The objective of this section is to com-
pare our findings with related work that deal with design pattern detection. To
this end, we consider a machine learning-based approach, called DPDp, that
uses word embedding (i.e., word2vec) to represent their features for the classi-
fier [16], in addition to two metric-based approaches, MARPLE-DPD [25], and
FeatureMap [20]. To perform this comparison, we specifically refer to Nazar et
al. [16]’s corpus (i.e., DPDp corpus). Indeed, in their paper, the authors in
[16] used the DPDpg corpus for comparing DPDr, MARPLE-DPD, and Fea-
tureMap approaches. As shown in Fig.8, testing the DPD 44 approach on the
same DPDp corpus yields better results in terms of mean precision, mean re-
call, and mean F1-score. These results indicate superior performance compared
to state-of-the-art approaches [16][25][20], demonstrating the effectiveness of our
approach in addressing the problem of GoF design pattern detection in source
code. The comparisons of our approach with the state-of-the-art per design pat-
tern in terms of Fl-score is presented in Table 2. It is worth noting that this
comparison concerns only nine design patterns, which are Singleton, Observer,
Abstract Factory, Factory Method, Adapter, Builder, Decorator, Visitor, and
the "unknown" target since MARPLE-DPD |[25|, and FeatureMap [20] deal only
with these patterns. As we can see from the table, we achieve more promising re-
sults than FeatureMap [20] and MARPLE-DPD |[25], in addition to DPD [16].
Indeed, our approach, DPD 4y, outperforms them in detecting eight out of nine
GoF design patterns in Java. This is due to the capacity and performance of the
feature extraction method for automatically extracting contextual information
that encompasses the GoF design pattern features.

Computational complexity In this section, we evaluate the computational
complexity of the feature extraction module. LLMs are generally evaluated by
the number of parameters they have [2]. The count of parameters is intricately
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Table 2: Comparison of the DPD 44+ in term of F1-score per design pattern with
the state-of-the-art

Design Pattern FeatureMap [20] MARPLE-DPD [25] DPDy [16] DPD.y

Singleton 0.66 0.72 0.74 0.83
Observer 0.49 0.51 0.85 0.89
Builder 0.61 0.55 0.83 0.58
Abstract Factory 0.52 0.76 0.93 1.0

Factory Method 0.55 0.81 0.78 0.98
Adapter 0.33 0.82 0.69 0.88
Decorator 0.23 0.59 0.78 0.83
Visitor 0.65 0.63 0.94 0.94
Unknown 0.72 0.54 0.73 0.92

linked to kernel sizes, input and output channels, and serves as an indicator
of computational resource utilization, particularly memory, during both model
training and detection processes. In our feature extraction process, we employ
the encoder of the CodeT5+ model, which has 110 million frozen parameters. In
addition, we evaluate the operational performance of our feature extractor us-
ing Floating Points of Operations (FLOPs). FLOPs represent the total number
of multiplication and addition operations within the model, providing a mea-
sure of its computational complexity. The testing was conducted on a system
equipped with an Intel Core i7 processor running at 2.30GHz, 16GB of RAM,
and a NVIDIA Ge-Force GTX 1650 with Max-Q Design for video memory. Fig.9
shows the variation of FLOPs with respect to DPD 444 corpus. The maximum
number of floating operations by the encoder to extract features and construct
the embedding vector is 998.92G, and it reflects on the Java class with the high-
est number of tokens from the DPD 44 dataset. Whereas the minimum number
of FLOPs is equal to 1.002G, and it corresponds to the Java code with the least
number of tokens in DPD 4.

5 Related work

This section overviews attention-based methods proposed in the literature to
perform software engineering task. Then, it discusses existing design pattern
detection approaches and concludes with a discussion.

5.1 Attention-based methods in software engineering

For software defect prediction, different attention-based approaches have been
proposed in the literature. In [7], the authors employed attention mechanism
to capture syntactic and semantic features of programs and use them to im-
prove defect prediction. The proposed approach parses the abstract syntax trees
(ASTs) of programs and extracts them as vectors. Then, it encodes vectors and
employs the attention mechanism to further generate significant features for
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accurate defect prediction. In [14], the authors proposed an attention-based ap-
proach for statement-level software defect prediction. In this work, the authors
define a set of 32 statement-level metrics. Then each statement is labeled to make
a three-dimensional vector for automatic learning. The attention mechanism is
used to generate important features and improve accuracy. In [22], the authors
proposed an attention-based method for self-admitted technical debt detection.
Indeed, Self-Admitted Technical Debt (SATD) is a kind of technical debt that
seeks to capture technical debts that are intentionally introduced by developers
during the software development process. To extract the sequential properties of
self-admitted technical debts from code comments, the proposed solution uses
a positional encoder and a Bi-directional Long Short-Term Memory (Bi-LSTM)
network [26]. Then, it leverages a variety of attention techniques to emphasize
the importance of the automatically generated features that contributed to the
detection of SATDs.

5.2 Machine Learning-based pattern detection

The use of machine learning techniques for pattern detection was widely ad-
dressed in the literature. In [24], the authors proposed a machine learning-based
approach for the detection of security patterns in code. To be independent of the
programming language, the proposed solution split the code in two vectorial rep-
resentations: control flow and data flow. The control flow section is treated with
word embedding to preserve the semantics of the code, and by clustering of the
resulting embedding vectors to reduce the dependency on the lexical structure of
the program. The authors in [10] presents a machine learning-based approach for
the detection of architectural patterns, namely MVP (Model-View—Presenter)
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and MVVM (Model-View—ViewModel). In the paper, the authors performed
analysis using nine popular machine learning models and established a set of
source code metrics that can be used to detect MVVM and MVP architectural
patterns using machine learning. Various studies have been interested in GoF de-
sign pattern detection. In [4], the authors proposed a probabilistic approach for
GoF design pattern detection. In this work, the authors used neural networks and
regression analysis to measure the possibility of the presence of the design pat-
tern in the source code. The authors in [4] applied a correlation feature selection
method to match the system design to the design pattern. Indeed, the authors
describe in the paper a graph matching algorithm that uses a correlation-based
feature selection technique to identify design pattern instances in system design.
Different studies aim to train machine learning classifiers to detect GoF design
pattern participants [16][11]. These approaches used code features to construct a
text representation of Java classes. Indeed, they extract semantic and structural
features from call graphs (SCG), which are in turn embedded in a text file as a
natural language in a syntactic and semantic representation (SSLR) document.
Then, a text embedding algorithm on the SSLR representation is applied, such
as word2vec [16][11], to produce a vector representation for the Java source code.
This vector served to train a supervised machine learning classifier.

5.3 Discussion

In this paper, we aim to propose a fully automated approach for GoF design pat-
tern detection. Compared to related work [16][11], which include a pre-processing
step for source code embedding, the proposed solution in this paper is based on
a code embedding model, which eliminates this step. Indeed, as far as we know,
all the existing approaches that deal with feature-based pattern detection used
neural processing language techniques for the embedding step, such as word em-
bedding [16], which requires feature engineering efforts to increase the accuracy
of the design pattern detector. In fact, code features relevant to design pattern
implementations, in some cases manually performed [11][15], must be defined.
This stage can be hard and time-consuming since for a single design pattern that
can have multiple disjunctive variations, a set of features that describe each sin-
gle variant must be defined and a method to extract them must be implemented.
For instance, Nacef et al. [15] define 33 features for the singleton design pattern
only.

6 Conclusion

In this paper, we have presented a method for automatic detection of design pat-
terns. The proposed approach includes a transformer-based feature extraction
step. Features refer to code attributes that represent design pattern implementa-
tions and will help in detecting design patterns during the classification task. To
this end, we build the DPD 44; corpus, which consists of 1645 labeled Java files
covering 13 GoF design patterns. Then, following an unsupervised approach and
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considering the DPD 44 corpus as input, the feature extraction module learns
from the code to automatically extract syntactic and semantic features. The fea-
tures are then encoded as embedding vectors to train a classifier for the detection
task. To evaluate the efficacy of the proposed approach, we apply four commonly
used statistical measures, namely accuracy, precision, recall, and F1-Score. We
also build a heat-map to showcase the efficiency of our chosen classifier. Empiri-
cal evaluation shows that the DPD 44 approach shows promising results with an
accuracy score of 86%, precision of 87%, recall of 86%, and F1-score of 86%. The
comparison with the related work shows that the proposed approach outperforms
three existing methods.

While our results are promising, as future work, we aim to extend the DPD 44,
corpus to consider more variants and extend to more design patterns. We also aim
to use feature localization approaches to locate design pattern implementations
among participants in a source code.

Data Availability. The data that supports the findings is available through
Zenodo °
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