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Abstract

In uncertain environments in which resources fluctuate continuously, animals

must permanently decide whether to stabilise learning and exploit what they

currently believe to be their best option, or instead explore potential alterna-

tives and learn fast from new observations. While such a trade-off has been

extensively studied in pretrained animals facing non-stationary decision-

making tasks, it is yet unknown how they progressively tune it while learning

the task structure during pretraining. Here, we compared the ability of differ-

ent computational models to account for long-term changes in the behaviour

of 24 rats while they learned to choose a rewarded lever in a three-armed ban-

dit task across 24 days of pretraining. We found that the day-by-day evolution

of rat performance and win-shift tendency revealed a progressive stabilisation

of the way they regulated reinforcement learning parameters. We successfully

captured these behavioural adaptations using a meta-learning model in which

either the learning rate or the inverse temperature was controlled by the

average reward rate.
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1 | INTRODUCTION

Faced with an uncertain environment in which resources
fluctuate continuously, animals must repeatedly decide
whether to stabilise learning and exploit what they
currently believe to be their best option, or instead
explore potential alternatives and adapt fast in case better

opportunities are in fact available. Such a trade-off could
either reflect an equilibrium between exploration and
exploitation (Cohen et al., 2007), between learning fast or
slow (Behrens et al., 2007), or both, given these two
processes are known to be largely interdependent
(Daw, 2011). Such a trade-off could nevertheless itself be
tuned to the circumstances: if the animal is currently
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experiencing a high reward rate, then it would seem in
its best interest to keep exploiting its current strategy and
reduce the learning rate so as to be immune to noisy
feedback; in contrast, if the reward rate drops, this could
be a signal that it is time to start exploring new strategies
and adopt a high learning rate to adapt faster to environ-
mental changes.

While the exploration-exploitation trade-off has
attracted a lot of interest in recent years, the precise
mechanisms by which this trade-off is tuned to the
animal’s current experience are still unknown. This is
partly due to its tight intertwining with learning and
inference processes (Findling & Wyart, 2021), which
makes it difficult to disentangle them. In humans
facing stochastic decision-making tasks with non-
stationary reward probabilities, choice variability has
been investigated in terms of regulation of the learning
rate in response to volatility (Behrens et al., 2007;
Cazé & Van Der Meer, 2013). Importantly, if in a learn-
ing task, an animal’s performance is seen to deteriorate,
this can arguably be explained either by a decrease in
its ability to learn and identify the best action, or by a
reduced tendency to actually use what it has learnt to
guide its action. Furthermore, sub-optimal choices,
whether due to learning or decision-making defects,
necessarily impact the converse process: the animal can
only learn about actions that the decision-making
process has sampled, and conversely, if a learning
deficiency makes actions less discriminable, then even a
greedy decision-making strategy will produce apparently
random behaviour. Therefore, the current predomi-
nance of theories on the regulation of learning should
not close the door to the potential role of the regulation
of exploration as a mechanism of adaptation to the
environment.

Reinforcement learning (Sutton & Barto, 1998), a
class of algorithms for learning what actions to take
based on discrete outcomes in the form of rewards and
punishment, offers a very useful framework for tackling
this question, because it explicitly separates the learning
mechanism, controlled by a learning rate parameter,
from the decision-making process, typically modelled as
a softmax rule (Daw et al., 2006) controlled by a para-
meter called the inverse temperature. Although the two
parameters are still correlated, so that increasing one
can be partly compensated for by decreasing the other,
this compensation is not a strict equivalence. Thus, it
becomes possible to distinguish an effect on learning
from an effect on the exploration-exploitation balance.
For instance, when simulated, manipulation of the learn-
ing rate affects the slope of learning curves, while that of
the inverse temperature affects the value towards which
such learning curves converge.

In a previous paper (Cinotti et al., 2019), we indeed
showed through careful modelling of rat behavioural
adaptation to changing reward probabilities in a
three-armed bandit task that pharmacological inhibition
of dopamine via flupenthixol, a non-discriminative D1
and D2 receptor antagonist, caused an increase in explo-
ration without affecting learning itself. It remained to be
seen whether this relationship between dopamine and
the exploration-exploitation trade-off was a functional
one or merely an experimental artefact. It was at least
conceivable that even the lowest levels of inhibition did
not really mimic the natural fluctuations of dopamine
within the brain. Dopamine plays a well-established role
in its phasic form in signalling reward prediction errors,
which are crucial to reinforcement learning (Hart
et al., 2014; Schultz et al., 1997). In addition, it has been
postulated to carry information about uncertainty
(Gilbertson & Steele, 2021) or average reward rate
(Niv, 2007; Niv et al., 2007) in its background or tonic
activity. This led us to the hypothesis that animals might
regulate the exploration-exploitation trade-off via an
effect of the average reward rate on dopamine levels
(Humphries et al., 2012; Khamassi et al., 2011).

In this paper, we aim to explore this hypothesis by
looking at long-term changes in behaviour as rats learned
to choose a rewarded lever in a three-armed bandit task
across 24 days of the experiment. These days constitute
the pretraining phase of the experiment presented in
Cinotti et al. (2019). Here, we investigate how animals
adapted their behaviour while progressively learning the
task, and whether such an adaptation resulted from a
form of meta-learning (Schweighofer & Doya, 2003) in
which either the exploration-exploitation trade-off or the
learning rate was being regulated by the current perfor-
mance level.

2 | METHODS

2.1 | Experimental methods

Experimental methods are as reported in a previously
published study (Cinotti et al., 2019). Male Long Evans
rats (n = 24) were obtained from Janvier Labs (France)
at the age of two months. They were housed in pairs in
standard polycarbonate cages (49 � 26 � 20 cm) with
sawdust bedding. The facility was maintained at 21 ±
1�C, with a 12-hour light/dark cycle (7 AM/7 PM) with
food and water initially available ad libitum. Rats were
tested only during the light portion of the cycle. The
experiments were conducted in agreement with French
(council directive 2013–118, February 1, 2013) and
international (directive 2010-63, September 22, 2010,
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European Community) legislations and received approval
#5012064-A from the local Ethics Committee of
Université de Bordeaux.

Animals were trained and tested in eight identical
conditioning chambers (40 cm wide � 30 cm deep �
35 cm high, Imetronic, Pessac, France), each located
inside a sound and light-attenuating wooden compart-
ment (74 � 46 � 50 cm). Each compartment had a venti-
lation fan producing a background noise of 55 dB and
four light-emitting diodes on the ceiling for illumination
of the chamber. Each chamber had two opaque panels on
the right and left sides, two clear Perspex walls on the
back and front sides, and a stainless-steel grid floor (rod
diameter: 0.5 cm; inter-rod distance: 1.5 cm). Three
retractable levers (4 � 1 � 2 cm) could be inserted on the
left wall. In the middle of the opposite wall, a magazine
(6 � 4.5 � 4.5 cm) collected food pellets (45 mg, F0165,
Bio_Serv, NJ, USA) from a dispenser located outside the
operant chamber. The magazine was equipped with
infrared cells to detect the animal’s visits. Three LEDs
(one above each lever) were simultaneously lit as a signal
for trial onset. A personal computer connected to the
operant chambers via an Imetronic interface and
equipped with POLY software (Imetronic, Pessac,
France) controlled the equipment and recorded the data.

During the behavioural experiments, rats were main-
tained at 90% of their original weight by restricting their
food intake to �15 g/day. For pre-training, all rats were
trained for 3 days to collect rewards during 30 min maga-
zine training sessions. Rewards were delivered in the
magazine on a random time 60 sec schedule. The condi-
tioning cage was lit for the duration of each session. The
rats then received training for 3 days under a continuous
reinforcement, fixed ratio schedule FR1 (i.e. each lever
press was rewarded with one pellet) until they had earned
30 pellets or 30 min had elapsed. At this stage, each lever
was presented continuously for one session and the mag-
azine was placed adjacent to the lever (side counterba-
lanced across rats). Thereafter, all three levers were on
the left wall and the magazine was on the right wall. The
levers were kept retracted throughout the session except

during the choice phases. In the next two sessions, levers
were successively presented 30 times in a pseudo-random
order (FR1-trials). One press on the presented lever
produced a reward and retraction of the lever. In the next
eight sessions, levers were presented 30 times but each
time five presses were required to obtain the reward
(FR5-trials). As a result, all rats readily pressed the levers
as soon as they were presented. The rats then underwent
24 sessions of the probabilistic choice task, which make
up our experiment, 20 sessions of six trial blocks each
and four double sessions of 12 blocks each.

The experimental task (Figure 1) consisted of a three-
armed bandit task where rats had to select one of three
levers in order to receive the reward. A trial began with a
2 sec warning light, and then the three retractable levers
were presented to the rat. Pressing one of the levers could
immediately result in the delivery of a reward with various
probabilities. Two different risk levels were imposed: in the
low-risk condition (LR) one lever was designated as the
target lever and rewarded with probability 7/8 (87.5%)
while the other levers were rewarded with probability 1/16
(6.25%). In the high-risk condition (HR), the target lever
was rewarded with probability 5/8 (62.5%) and the other
two possibilities with probability 3/16 (18.75%), making dis-
crimination of the target lever much harder. After a lever
press, the levers were retracted and the trial (rewarded or
not) was terminated. Inter-trial intervals varied randomly
within a 4.5 to 8 second range. Trials were grouped into
unsignalled blocks of fixed length (24 trials each) charac-
terised by a constant combination of target lever and risk.
The target lever always changed between blocks. Therefore,
rats had to re-learn the target lever after each block change.
Blocks were ordered pseudo-randomly within a session
with all combinations of target and risk counterbalanced
and tested once (or twice in the last four double sessions).

2.2 | Data analysis

In order to smooth the appearance of block average per-
formance and win-shift, trials were binned into groups of

F I GURE 1 Outline of the

experimental task, reproduced from

Cinotti et al. (2019).
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4 trials. In the case of win-shift, the average was obtained
by pooling all potential win-shift events belonging to a
given bin between blocks (e.g., the ratio of the number of
win-shifts, which occurred in the first four trials of
low-risk blocks to the number of win trials in the same
period). Individual performance and win-shift curves
were calculated first, then the population average, so that
error bars correspond to inter-individual variability.

Smoothed performance and win-shift curves were
analysed using repeated-measures ANOVAs, the between
factor consisting of individual subjects and the within

factors being risk, session (grouped into bins of 6) and
trial bins. Post hoc t-tests with a Bonferroni correction
comparing sessions for trial x risk combinations were
performed whenever the interaction between trial, risk
and session was significant, the only exception being
experimental win-shift (Figure 2c,d) for which, because
the interaction between risk and session was still
significant, we compared average win-shift over all bins
instead, as shown in Figure 2c,d. These same methods
were used when analysing the different model
simulations.

F I GURE 2 Changes in behaviour across task sessions. (a,b) Mean performance ± s.e.m. (n = 24 subjects) increases between sessions in

low- and high-risk blocks, respectively. Trials are binned together into groups of four for smoothing purposes. Stars indicate that there is a

significant difference between at least two groups of sessions for a given bin of four trials. (c,d) Mean win-shift ± s.e.m. decreases between

sessions in low- and high-risk blocks, respectively. Because no significant trial x sessions x risk interaction was detected, win-shift is not

compared trial by trial as with performance, but we instead report significant session x risk differences. (e) Average logistic regression

weights for effects of past choices and rewards on current trial. Significance levels as follows: *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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To separate the effects of past choices and rewards on
choosing one of the three levers, we fitted individual
logistic regression models in which the dependent vari-
able was whether or not the lever in question had been
chosen on a given trial, and the independent variables
were whether or not that same lever had been chosen in
each of the past ten trials, and whether or not it had
received a reward in each of the past ten trials. We then
had 3 sets (1 for each lever) of 20 regression coefficients,
which we averaged between levers. We also attempted
but failed to fit a multinomial regression model, which is
why we adopted this approach instead. These models
were fit using the glmfit function in MATLAB and any
individual for which this function failed to converge
within the default maximum number of iterations was
removed from the analysis. The same method
was applied to simulations.

2.3 | Model fitting

With the exception of the two Thompson sampling
models, all other models relied on a softmax action selec-
tion process, which defines the trial-by-trial likelihood of
the model (Daw, 2011):

P atð Þ¼ eβQt atð ÞP
ie

βQt aið Þ

For the Thompson sampling models, we computed
the likelihood of selecting an action given the posterior
density functions f1, f2 and f3, and their corresponding
cumulative probability functions F1, F2 and F3, e.g. P
(at = action 1) is the probability that the sample from f1
is greater than the two other samples, which is the
integral over all possible sample values of the product
between f1 and the two cumulative distribution functions
F2 and F3:

P at¼ a1ð Þ¼
ð1
0
f1 xð Þ:F2 xð Þ:F3 xð Þdx

Likelihood over the entire 24 sessions of the
experiment is then defined as the product of these trial
likelihoods, and the log-likelihood as the total sum of the
trial log-likelihoods. Q-learning derived models were
optimised through minimisation of the negative log-
likelihood using the built-in fmincon function in
MATLAB, which implements a gradient descent method.
To avoid falling into a local minimum and missing the
global minimum, three different fixed initial points per
parameter were combined for different initialisations of

the gradient descent (i.e., 27 different initialisations for
the three-parameters forgetting model, 243 for the vari-
ous 5-parameters models and 729 for the six-parameters
sigmoid meta-learning model). The fixed initialisation
points for the different parameters and their bounds are
given in Table 1.

The two Thompson sampling models were not
optimised in this manner. Instead, because they only
have one free parameter, it was easy to explicitly compute
the log-likelihood for integer values of T and C between
2 and 100 to find an optimal parameter value.

2.4 | Model comparisons

It is possible to directly compare models with the same
number of parameters by looking at their log-likelihood,
the better model simply being the one with the highest
log-likelihood. When the number of parameters is differ-
ent, it is necessary to take this into account to avoid over-
fitting. Two well-known criteria were used in this study:
the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC). On an individual level, the
BIC, which also depends on the number of trials, proved
more conservative than the AIC, but when summed over
all individuals to select the best model at the population
level, both criteria were always in agreement, thus spar-
ing us a discussion over the different merits and draw-
backs of these criteria (Lebarbier & Mary-huard, 2006).

Ultimately, models were judged by their ability to pro-
duce simulations similar to the original experimental data
(Humphries & Gurney, 2007; Palminteri et al., 2017). For
each individual, we ran 100 independent simulations
using the optimised set of parameters and the same block
schedule as the individual subjects; in these simulations,
the agent’s choices were made stochastically based on
the distribution resulting from the softmax function
(or random samples taken from the posterior density
functions for the two Thompson sampling methods) and
rewards were randomly given according to the current
block reward distribution. We then averaged block
performance and win-shift of the 100 simulations to get
24 individual average simulations. These were then aver-
aged again to produce the different simulated performance
and win-shift curves shown in this study. The standard
error of the mean thus corresponds to the variability
between average individual simulations. Simulations were
judged based on how well they reproduced the experimen-
tal data, which we quantified using mean squared errors
(MSE) relative to the original average curves:

MSE¼ 1
n

Xn
i¼1

Yi� bYi

� �2
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With n the number of data points (i.e., 6 trial bins �
4 groups of sessions � 2 risk levels), Yi the experimental
values and bYi the simulation values.

For the staggered models, we tested the effect of
sessions on α, α2 and β with a Friedman ANOVA. The
Friedman ANOVA was used because out of the four
distributions of β, three were significantly different from
a normal distribution according to the Shapiro–Wilk test
(swtest MATLAB function written by Ahmed BenSaïda
[2014]), and the assumption of sphericity was also
violated according to a Mauchly test (p = 1.10�4).

3 | RESULTS

3.1 | Experimental results

The rats were presented with a three-armed bandit task,
which consisted of discrete trials in which they had to
choose one of three levers in order to get a reward
(Figure 1). Each session (a total of 24) was comprised of
six blocks of 24 trials, two blocks per lever: one high-risk
block in which the most rewarded lever had a probability
of reward of 5/8 while the other levers were rewarded
3/16th of the time; and one low-risk block in which the
best lever was rewarded 7 times out of 8 versus 1 out of
16 for the two other levers. Therefore, discrimination of
the correct lever was much easier in the low-risk than in
the high-risk condition. Blocks were ordered pseudo-
randomly within each session so that the same lever was
never the best twice in a row. The last four sessions
contained 12 blocks instead of 6, so that each lever x risk
combination was tested twice rather than once.

In Figure 2a,b, we tracked the rats’ average perfor-
mance within blocks, which is defined as the number of
times they selected the lever with the highest reward
probability in the current block. Average performance at
the beginning of blocks started at around 26% and 29% in
high-risk and low-risk blocks, respectively, which is
significantly below chance levels of 33% (t-test that the
average performance in either low- or high-risk blocks
equals 1/3: p < 10�6) indicating that rats were unaware
that a block change had occurred and were persisting
with the previously best-rewarded option. As rats learned
to find the best lever, performance then increased more
or less rapidly depending on risk condition, as expected,
but also depending on the stage within the experiment.
In the first six sessions, performance levels reached 45%
and 40% at the end of low- and high-risk blocks, respec-
tively, compared to 63% and 48% in the last six sessions.
These observations were supported by repeated-measures
ANOVA with significant trial (F[5115] = 112.1,
p < 10�4), session (F[3,69] = 29.4, p < 10�4) and riskT
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(F[1,23] = 98.4, p < 10�4) effects. All possible combina-
tions of these three main factors were also significant
(p < 0.0463). Post hoc Bonferroni t-tests on low-risk
blocks showed that, with the exception of the first four
trials, performance in the first six sessions was always sig-
nificantly worse than at least one other group of six ses-
sions. Similarly, performance in high-risk blocks did not
differ between any sessions in the first four trials but was
significantly worse for all subsequent trials in sessions
1–6 compared to at least one other group of sessions. To
summarise, in addition to the better performance in low-
risk blocks compared to the high-risk blocks as expected,
the analysis of performance reveals a long-term improve-
ment in performance. In contrast to the post-training
results in Cinotti et al. (2019), because here the curves do
not have time to visibly converge within the blocks of
24 trials, we cannot say at this point whether this is
attributable to an increased learning rate – which tends
to steepen the slopes of learning curves – or to an
increase in the inverse temperature – which causes
higher final performance levels.

Win-shift, an exploratory strategy, also changed
significantly throughout the experiment. It consists of the
probability of changing the lever, after being rewarded
for a correct choice of the current best lever. As depicted
in Figure 2c,d, win-shift decreased within blocks as
uncertainty surrounding the identity of the correct lever
also decreased (significant trial effect found with a
repeated-measures ANOVA: p < 10�4). Win-shift in
high-risk blocks was greater than in low-risk blocks (sig-
nificant effect of risk: F[1,23] = 63.9, p < 10�4). Contrary
to performance, the interaction between sessions and risk
was the only significant interaction (F[3,69] = 6.1,
p = 0.0021) involving sessions. Win-shift in the first six
sessions was significantly higher than for all subsequent
sessions in both low- (post hoc Bonferroni test, p < 0.025)
and high- (p < 0.006) risk blocks (Figure 2c,d). We also
analysed lose-shift behaviour, a corrective strategy
consisting of switching choices immediately after failing
to receive a reward, but found that this indicator was
affected neither by session nor by risk level, with an
average value of 54% (not shown).

To complete our analysis of experimental behaviour,
we performed logistic regressions on the choices made on
each trial using both past choices and past rewards in the
last ten trials as regressors (Hattori et al., 2023; Lau &
Glimcher, 2005). The average coefficients (excluding two
outlier subjects for which the fitting algorithm failed to
converge) are plotted in Figure 2e. In the first six ses-
sions, there was a strong tendency to repeat the previous
choice with log odds above 0.2 to repeat the exact same
choice as the previous trial. This tendency dropped as the
log odds fell to about 0.1 in the last six sessions. Even

more striking is the relationship between past rewards
and choices. In the first six sessions, the coefficients for
past rewards are small and their variation is quite flat
within the 10-trial window so that a reward at t-1 has
barely more impact than at t-10. In later sessions, how-
ever, there is a very strong tendency to repeat a choice
which has been rewarded, and this tendency quickly
drops the further back in time the reward occurred.
Therefore, behaviour in the first sessions tended to be
more persistent independently of rewards, while it
became increasingly guided by rewards in later sessions.

These results indicate that long-term changes in
behaviour occurred both in terms of performance and
win-shift. Because an increase in exploration comes at
the expense of picking the best action less often, there is
a reciprocal relationship between these two measure-
ments, which makes it impossible to say whether the
changes resulted from an increase in learning rate or a
decrease in exploration. Computational modelling can
help us more precisely address this issue.

3.2 | A forgetting Q-learning model with
fixed parameters is incapable of replicating
the experiment

Reinforcement learning provides a framework to disen-
tangle learning and exploration effects on behaviour.
These models rely on continuously updating estimates
for the value of the different possible actions, so-called
Q-values. One of the most popular of these algorithms,
Q-learning, states that given a trial t during which the
agent performs action at and receives a reward rt,
the learning rule should be written as:

Q atð Þ Q atð Þþα: rt�Q atð Þð Þ

The learning rate, α, determines the impact the
immediate outcome has on the previous estimate.
The higher it is, the more heavily the new information
weighs in the current value resulting in faster learning
with the risk of undesirable volatility in a stochastic
environment. We added a forgetting mechanism through
which the values of the two unchosen levers decrease
towards 0, the initial value all levers were set at:

Q a�tð Þ 1�α2ð Þ:Q a�tð Þ

with α2 the forgetting rate. Thanks to this additional
mechanism, the fit between model simulations and
experimental data in Cinotti et al. (2019) – which used
the same task structure – was significantly improved, and
this was again found to be the case here (data not
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shown). This mechanism has been linked to persistence
independently of reinforcement by Katahira (2015), with
values of the forgetting rate α2 smaller than α causing
increased persistence. Finally, at each trial, the decision
process is modelled using a softmax function of the
Q-values:

P atþ1¼ aið Þ¼ eβQ aið ÞP
je
βQ ajð Þ

in which the inverse temperature β determines the level
of randomness in the exploration-exploitation trade-off
by increasing the contrast between the action with the
highest Q-value and the other competing options.

We first examined how well this model fitted experi-
mental data when we allowed the acquired Q-values to
carry over from one session to the next. We therefore opti-
mised the three parameters – α, α2 and β – with initial
Q-values of 0, which were not reset in between sessions
thus allowing Q-values to gradually build up. We then ran
unconstrained simulations of this model using the same
sequences of blocks but allowing the model to choose its
actions at each trial randomly based on the softmax equa-
tion, rather than constraining it to the actions made by the
corresponding animal. As shown in Figure 3a,b, the simu-
lated average performance and win-shift are very different
from the corresponding experimental curves of Figure 2.
In the case of performance, although there is a significant
session effect (repeated-measures ANOVA: F[3,69] = 29.2,
p < 10�4), the differences between sessions are not only
far smaller but also inconsistent with the experimental
data. In particular, performance in the last six sessions is
worse than in earlier sessions, in complete contradiction
with the experimental data. Concerning win-shift, the sim-
ulated data completely fail to reproduce the effect of ses-
sions present in the experimental data. This analysis rules
out the possibility that inter-session effects are a simple
effect of accumulated learning without any changes to the
model parameters.

3.3 | Animals do not use Dynamic
Thompson Sampling to regulate
exploration

Thompson sampling provides a normative strategy for
balancing exploration and exploitation and has recently
gained popularity in neuroscience for stationary tasks
with normal reward probability distributions
(Gershman, 2018). After observing the inter-session
decline in win-shift, we tested whether this strategy
might explain our results. Briefly, when applied to a

bandit task with binomial rewards, Thompson sampling
consists of replacing single-point Q-values estimating
the expected reward of an action with a Beta distri-
bution defining the Bayesian posterior probability
distribution over the expected reward of each action. This
richer representation provides the agent with an estimate
of his subjective uncertainty of the value of each arm,
which is leveraged to guide his decision-making. Given
three posterior density functions for the three levers in
the task with distinct sets of shape parameters (α,β)1,2,3,
three random samples are drawn and the lever corre-
sponding to the highest sample is chosen. Actions that
have been sampled relatively little will have wide
posterior distributions, increasing the likelihood of
sampling a large value that will favour their selection.
The outcome that is observed is then used to update the
shape parameters of the corresponding lever:

αi αiþ rt
βi βiþ1� rt

�

This results in a narrowing of the beta distribution,
which quickly converges around the true probability of
reward of that lever. Of course, in this experiment where
reward probabilities change at the end of blocks of 24 tri-
als, an extra mechanism must be introduced to avoid
merely estimating the average reward over the whole
course of the experiment. Dynamic Thompson sampling
or DTS (Gupta et al., 2011) solves this problem by intro-
ducing a threshold C, which determines the minimum
variance of the beta distributions. A similar solution is
given by the Sliding Window Thompson Sampling
(SWTS) algorithm which, as the name indicates, only
counts rewarded and non-rewarded trials in a sliding
window of size T (Trovo et al., 2020). We tested these two
models by calculating their log-likelihood for different
values of C and T for each individual. For comparison,
we also calculated the log-likelihood of a naive model
selecting each lever with a fixed probability of 1/3, which
has a simple log-likelihood of

PNtrials
i¼1 log 1

3

� �
. Two repre-

sentative plots of these individual log-likelihoods are
shown in Figure 4a,d. for the DTS and SWTS methods,
respectively. In this example, the negative log-likelihood
of DTS decreases rapidly for small values of C and then
decreases far more slowly as C further increases. SWTS
on the other hand has a concave shape, with the best
value of T being the lowest bound of our tested values.
These observations were not made for all subjects, with
some for instance having an identifiable best value
for C. Nevertheless, most importantly, and this applied
to all individuals, for all tested values of C and T, the
negative log-likelihood is above that of the naive model,
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which means that these models are worse at predicting
the choice really made by the rats than randomly
selecting a lever with probability 1/3. This disastrous
performance can be explained by looking at simulations
of these models solving this task for different parameter
values in Figure 4b,c. for DTS and Figure 4e,f for SWTS.
For the DTS, the performance of these methods at the
beginning of blocks is far worse than animals at around
20%, but performance for small values of C quickly
increases to reach levels above 80% and 60% in low-risk
and high-risk blocks, respectively, which are far better
than the final performance levels of animals. Increasing
the value of C results in a lower final performance
curve, but the increase in performance remains linear in
time, contrary to the experimental data. Because this
increase effectively means allowing the Beta distribu-
tions to become narrower, this effect probably betrays
the tendency of the posterior density functions to track
the average reward probabilities over longer time scales
than the 24 trial blocks. Concerning the SWTS, a size
window of just two trials produce a surprisingly good
average performance of about 50 and 40% in low-risk
blocks and high-risk blocks, respectively, but the

simulations reach this biologically plausible value of
performance far faster than experimentally observed.
Increasing T allows the model to learn more slowly at
the cost of again increasing final performance well above
what the animals achieved. In conclusion, it seems that
the reason why DTS and SWTS are so bad at fitting the
data lies precisely in how much more efficient they are
in finding and honing in on the correct lever compared
to real animal subjects, justifying their use as normative
rather than descriptive models of behaviour. We thus
discarded these two models from the remaining
analyses.

3.4 | Distinct learning rates and inverse
temperatures but not forgetting rates can
replicate animal behaviour

Having ruled out the possibility that these session
effects are simply due to accumulated learning, we
tested our starting hypothesis that the exploration-
exploitation trade-off is regulated by optimising a “stag-
gered β” model, which has six parameters: a learning

F I GURE 3 Simulations of the forgetting Q-learning model. (a,b) Mean performance ± s.e.m. (n = 24 average simulations) in low- and

high-risk blocks, respectively. (c,d) Mean win-shift ± s.e.m. in low- and high-risk blocks, respectively. Stars indicate that there is a significant

difference between at least two groups of sessions for a given bin of four trials. Significance levels as follows: *: p < 0.05; **: p < 0.01; ***:

p < 0.001.
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rate and forgetting rate, and four inverse temperatures
β1, β2, β3 and β4 for sessions 1–6, 7–12, 13–18 and
19–24, respectively. Another possibility is that, rather
than the exploration-exploitation trade-off, it is one of
the other two parameters that is changing between
sessions. For this reason, we also optimised a “staggered
α” model and a “staggered α2” model. We compared
these models and the previously described forgetting
QL model using the Akaike (AIC) and Bayesian Infor-
mation Criterion (BIC) shown in Figure 5a,b, respec-
tively. Despite being more heavily penalised for having
three extra parameters, all three staggered models have
lower AIC and BIC scores than the forgetting QL
model with fixed parameters between sessions. Between
the three staggered models, the staggered α model has
the lowest AIC (17789) and BIC (17880) scores, while
the staggered α2 model is very slightly better than the
staggered β model.

Models with better optimisation scores may actually
prove less good when simulated (Palminteri et al., 2017;
Wilson & Collins, 2019), which is why we also ran
simulations of these models for comparison. Contrary to

simulations of the simple forgetting Q-learning model,
simulated performance of the staggered α and β models
were significantly different between sessions for later
trials of both low- and high-risk blocks (Figure 6a,b and
Figure 7a,b) in accordance with the experimental results.
The simulated win-shift curves of these two models also
fitted experimental data well, with win-shift in the first
six sessions being significantly higher than in subsequent
sessions (Figure 6c,d and Figure 7c,d). By contrast,
despite having a better AIC and BIC than the staggered β
model, the staggered α2 model produced simulations
that clearly failed to capture the inter-session changes of
interest (Figure 8). These simulations were more similar
to the forgetting QL model, with no effect of sessions on
win-shift difference, and effects on performance that
were most pronounced in the first trials of high-risk
blocks rather than the last. Given the fact that α2 controls
persistence (Katahira, 2015) and that we had previously
found a decrease in reward-independent persistence
(Figure 2e), this is a surprising result that suggests that a
dynamic α2 parameter is not sufficient to capture rats’
behaviour in our task.

F I GURE 4 (a) Negative log-likelihood of Dynamic Thompson Sampling (DTS) for a representative individual as a function of the

threshold parameter C. LL0: log-likelihood of a naïve model selecting a random lever with probability one-third on each trial. (b) Simulated

performance of DTS in low-risk blocks for different values of C. (c) Simulated performance of DTS in high-risk blocks for different values of

C. (d) Negative log-likelihood of Sliding Window Thompson Sampling (SWTS) for a representative individual as a function of T, the number

of trials in the sliding window. LL0: log-likelihood of a naïve model selecting a random lever with probability one-third on each trial.

(e) Simulated performance of SWTS in low-risk blocks for different values of T. (f) Simulated performance of SWTS in high-risk blocks for

different values of T.
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Thus, allowing either the learning rate or inverse tem-
perature to adapt between sessions while keeping other
parameters fixed is sufficient to replicate the animals’
improvements in performance and decrease in win-shift.
The between-session evolution of individual learning
rates and inverse temperatures are plotted in Figures 6e
and 7e, respectively. There is a significant effect of ses-
sions on the learning rate of the staggered α model
(Friedman ANOVA: p = 6.10�6), and the optimised
values of α in the first six sessions were indeed signifi-
cantly smaller than for all other sessions (Figure 6e). This
would mean that the changes in performance and
win-shift can be explained by a gradual increase in the
learning rate, session after session, so that Q-values
change more rapidly with respect to feedback in later ses-
sions. According to Figure 7e, the ability of the staggered
β model to replicate the experiment is also attributable to
an increase in the inverse temperature (Friedman
ANOVA, sessions effect: p = 0.004) as β in the first six

sessions is significantly smaller than in sessions 7–12 and
19–24. This result indicates that long-term changes in
behaviour might also be explained by an increased
tendency to exploit the action with the highest Q-value.
In contrast to the staggered α model, where the increase
in α seems linear (see black average curve in Figure 6e),
β seemed to quickly converge to a plateau after an initial
increase between the first six sessions and the next ones.
Variations of the forgetting rate for the staggered α2
model are shown in Figure 8e, and have no discernible
pattern, in line with the fact that this model is unable to
replicate inter-session changes.

To quantify how well these different models fitted the
original data, we computed for each the mean-squared
error, or MSE, as detailed in the methods, which mea-
sures the average distance between each point of a simu-
lated curve and a reference experimental curve. Results
are shown in Figure 5c,d for performance and win-shift,
respectively, and reveal that the staggered β model pro-
vides the best fit to performance, while it is the staggered
α model that is best at fitting win-shift. As expected, the
staggered α2 and forgetting QL give the worst fits to both
measurements.

3.5 | Models of meta-learning based on
an average reward rate

In Cinotti et al. (2019), we showed that dopamine inhibi-
tion causes an increase in random exploration without
impacting learning. In addition, tonic dopamine has been
hypothesised to integrate the reward prediction errors
and thus represent an average reward rate. For these rea-
sons, we were inspired to design a meta-learning model
in which random exploration, which is set by the param-
eter β, is controlled by a running average reward rate Rt:

Rtþ1¼RtþαR: rt�Rtð Þ

with αR the reward rate learning parameter. Because trial
outcomes are either 1 or 0 and αR < 1, Rt is itself bounded
between 0 and 1. We then model the dependence of β
on this reward rate as a simple linear function as in
Blackwell and Doya (2023):

βt¼ β0þm:Rt

The slope m of this function was not constrained to
be positive, so the tendency to exploit might either
increase or decrease with the average reward rate.

Having shown the potential of the staggered α
model, we also optimised a meta-learning on α model in
which it is the learning rate rather than the inverse

F I GURE 5 Comparison of the forgetting Q-learning and

staggered models using (a) the Akaike Information Criterion (AIC)

summed over all subjects, (b) the Bayesian Information Criterion

(BIC) summed over all subjects, (c) the Mean Squared Error (MSE)

of average simulated performance with respect to experimental

performance, and (d) the MSE of average simulated win-shift with

respect to experimental win-shift.
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temperature, which evolves as a linear function of the
average reward rate:

αt¼ α0þm:Rt

Just as with the meta-learning on β model, the slope
was not constrained to be positive or negative. This
means that as the average reward rate increases, α could
either increase or decrease depending on the values opti-
mised for each subject. A similar α2 meta-learning model
was also optimised.

An alternative to these meta-learning models is that
rats were simply increasing their tendency to exploit or
their learning rate over time irrespective of their perfor-
mance (Lloyd et al., 2023; Moin Afshar et al., 2020). To
confront our meta-learning models to these alternatives,
we also optimised monotonic trial-dependent regulation
models of α and β based on the shape of the evolution of
these parameters according to the staggered models. For
β, because this parameter appears to grow more quickly
at the beginning of sessions before converging
(Figure 7e), we designed a trial-dependent geometric
increase model in which:

βt¼ βt�1þm: βmax �βt�1ð Þ

This model has five unknown parameters to optimise,
the learning and forgetting rates α and α2, the initial
value of the inverse temperature β0, the maximum value
to which it converges βmax, and the rate mat which it
approaches this maximum. Other trial-dependent regula-
tion of β models such as a linear function of trial and a
logarithmic function were tested but we retained this one
as the best amongst these options.

In contrast, the learning rate apparently increases
more linearly over time (Figure 6e) so that a linear trial-
dependent function seemed more appropriate for this
parameter:

αt¼ α0þm:t

which has just four parameters, α0, m, β and α2. Other
tested models not presented here include meta-learning
models with a sigmoid function of the reward rate and
meta-learning models based on the running average of
squared RPEs as an estimate of uncertainty. All models
were optimised using the same procedure given in the

F I GURE 6 Simulations of the staggered αmodel. (a,b) Mean performance ± s.e.m. (n = 24 average simulations) in low- and high-risk

blocks, respectively. (c,d) Mean win-shift ± s.e.m. in low- and high-risk blocks, respectively. Stars indicate a significant difference between at

least two groups of sessions for a given bin of four trials. (e) Variations of the optimised values of the learning rate between sessions. Coloured

dashed lines represent individuals, and the black line is the mean. Significance levels as follows: *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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Methods and were then compared using the AIC
(Figure 12a) and BIC (Figure 12b), with the previously
discussed staggered α model also included as a refer-
ence. According to both criteria, the best model was the
β meta-learning model, and the worst was the α2 meta-
learning model. However, after running and averaging
100 simulations with optimised parameters, the model
with the best MSE for both performance and win-shift
was in fact the α meta-learning model (Figure 12c,d).
The distributions of optimised parameters of the α and
β meta-learning models are shown in Figure 13. The
slope m of the β meta-learning model was found to be
positive for all but two individuals, meaning that as the
average reward rate increases, so does the inverse
temperature leading to increased exploitation. In the
case of the α meta-learning model, the situation was
more ambivalent, with a majority of 16 rats for which
the slope was similarly positive. This means Q-values
update more quickly as the reward rate increases. But
the opposite was true for the remaining 8 rats. For both
meta-learning models, the reward rate learning parame-
ter αR tended to be very small (median: 0.0032 and
0.0243 for α and β meta-learning, respectively) in

comparison with the standard learning rate α (median
α0: 0.023 and 0.056 for α and β meta-learning, respec-
tively), indicating that the reward rate changes far more
slowly over time than the Q-values. This explains the
ability of these models to capture between-session
changes, as shown later. Finally, the forgetting rates α2
had very similar distributions between the two models
and were usually greater than the learning rates
(median 0.22 and 0.19 for α and β meta-learning,
respectively), which reflects a strong tendency to
persevere independently of reinforcement.

Simulations of the α meta-learning model, plotted in
Figure 9, successfully reproduced the between-session
increases in performance and decline in win-shift. In
addition, when we ran a logistic regression predicting the
probability of choices on each simulated trial given
the past ten choices and rewards, we found that choices
in the first six sessions were far less sensitive to the last
reward than in later sessions, as observed experimentally
(Figure 9e right). Contrary to the experimental data,
however, these simulations did not exhibit any obvious
decrease in the effect of past choices (Figure 9e left). In
fact, the regression coefficients for these effects were

F I GURE 7 Simulations of the staggered β model. (a,b) Mean performance ± s.e.m. (n = 24 average simulations) in low- and high-risk

blocks, respectively. (c,d) Mean win-shift ± s.e.m. in low- and high-risk blocks, respectively. Stars indicate a significant difference between at least

two groups of sessions for a given bin of four trials. (e) Variations of the optimised values of the inverse temperature between sessions. Coloured

dashed lines represent individuals, and the black line is the mean. Significance levels as follows: *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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smaller in size for all sessions than in the experimental
data, suggesting that the absence of decrease was due to a
floor effect and that an additional tendency to persistence
was present in the experimental data, which was absent
in the model.

Despite having a slightly worse total MSE, the β
meta-learning model was also very good at generating
simulations similar to the original data (Figure 10), with
similar improvements in performance and a decrease in
win-shift in both low- and high-risk blocks. In terms of
the logistic regression coefficients (Figure 10e), although
there was a tendency for the last reward to more signifi-
cantly bias decision-making as the experiment progressed
between sessions, this increase was less marked. Whereas
the curve of the coefficients over the last 10 rewards
tended to be quite flat for both the experimental and
simulated α meta-learning model in sessions 1–6, there is
already a stronger impact of the most recent rewards for
the β meta-learning model in these early sessions. Con-
cerning past choices, the evolution of these coefficients
between sessions was in fact opposite to that observed
experimentally as the tendency to persist actually
increased. In addition, as with the α meta-learning

model, the magnitude of the effects of past trials seemed
far smaller with log-odds all below 0.1.

Finally, simulations of the α2 meta-learning model
(Figure 11) did not replicate the inter-session effects of
interest. They showed very little inter-session changes,
apart from an unexpected decline in performance in the
first trials of high-risk blocks (Figure 11b), in parallel to
an increase in win-shift on these same trials (Figure 11d).
Logistic regression coefficients also did not show much
variation in between sessions (Figure 11e).

In a last attempt to separate the two standout meta-
learning models, we computed individual MSE by com-
paring individual simulations to individual performance
and win-shift curves (not shown). These comparisons
gave us distributions of MSE plotted in Figure 12e,f,
which could then be compared statistically. For both
performance and win-shift, we found no statistically sig-
nificant difference in MSE of the α and β meta-learning
model, using either a paired t-test (p = 0.64 and p = 0.89
for comparisons of performance and win-shift MSE,
respectively) or a Wilcoxon signed-rank test (p = 0.81
and p = 0.84 for performance and win-shift MSE,
respectively).

F I GURE 8 Simulations of the staggered α2 model. (a,b) Mean performance ± s.e.m. (n = 24 average simulations) in low- and high-risk

blocks, respectively. (c,d) Mean win-shift ± s.e.m. in low- and high-risk blocks, respectively. Stars indicate a significant difference between at

least two groups of sessions for a given bin of four trials. (e) Variations of the optimised values of the forgetting rate between sessions. Coloured

dashed lines represent individuals, and the black line is the mean. Significance levels as follows: *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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4 | DISCUSSION

In this work, we compared the ability of different compu-
tational models to account for rats’ progressive tuning of
reinforcement learning parameters while they were
learning the structure of a three-armed bandit task. Our
task included three levers with different reward proba-
bilities, and two risk conditions: a low-risk condition
and a high-risk condition. The task was moreover non-
stationary in that the reward probabilities of the levers
changed without signal every 24 trials.

We found that rats’ performance significantly
improved within- and between-sessions and that perfor-
mance improvement was sharper in low-risk conditions.

We moreover found that the percentage of exploratory
trials (i.e., win-shift trials after a rewarded choice of the
correct lever) was higher during the first 6 sessions, with-
out further significant changes during the remaining
18 sessions. This indicated that either the exploration-
exploitation trade-off or the trade-off between learning
fast or slow was progressively learned and stabilised in
adaptation to the task. Such behavioural tendencies can-
not be captured by a standard reinforcement learning
model with fixed parameters. Instead, we found that a
meta-learning model, which linearly tunes either the
inverse temperature or the learning rate parameter, based
on variations in the average reward rate, provided the
best account of these long-term variations in rats’

F I GURE 9 Simulations of the α meta-learning model. (a,b) Mean performance ± s.e.m. (n = 24 average simulations) in low- and high-

risk blocks, respectively. (c,d) Mean win-shift ± s.e.m. in low- and high-risk blocks, respectively. Stars indicate a significant difference

between at least two groups of sessions for a given bin of four trials. (e) Average logistic regression weights for effects of past choices and

rewards on current trial. Significance levels as follows: *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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behaviour. We further confirmed these modelling results
by model simulations and analyses. These results suggest
that rats progressively tune their reinforcement learning
parameters while learning the structure of new decision-
making tasks.

In this study, we tested the hypothesis that rat long-
term behavioural adaptation could be captured by a
meta-learning process dynamically tuning reinforcement
learning parameters session after session. We initially
focused on meta-learning concerning the inverse temper-
ature, which regulates the exploration-exploitation trade-
off. In making this choice, we pursued a line of inquiry
begun by Humphries et al. (2012), a theoretical study
which presented a model of the basal ganglia. In that

model, the entropy of action selection, i.e. random explo-
ration, decreased with average dopamine levels. This
hypothesis was investigated experimentally in Cinotti
et al. (2019), where we showed that systemic pharmaco-
logical inhibition of dopamine enhanced exploration
without affecting the learning rate. Together with the
assumption that tonic dopamine represents the average
reward rate (Hamid et al., 2016; Niv et al., 2007), this
leads to the idea that the reward rate might control explo-
ration through tonic dopamine levels. Another possibility
is that it is the learning rate or the forgetting rate or a
combination of these parameters that is being regulated
over time. While rat behaviour in our task was inconsis-
tent with the model with meta-learning of the forgetting

F I GURE 1 0 Simulations of the β meta-learning model. (a,b) Mean performance ± s.e.m. (n = 24 average simulations) in low- and

high-risk blocks, respectively. (c,d) Mean win-shift ± s.e.m. in low- and high-risk blocks, respectively. Stars indicate a significant difference

between at least two groups of sessions for a given bin of four trials. (e) Average logistic regression weights for effects of past choices and

rewards on current trial. Significance levels as follows: *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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rate, we found that the model with meta-learning of the
learning rate could not be discarded. While the meta-
learning model of the inverse temperature led to better
AIC and BIC scores, the post-optimisation simulations
revealed that meta-learning of the learning rate led to
better MSE fits (Figure 12). In terms of simulations, we
found no way to separate the two models. However, regu-
lation of the learning rate has previously been linked to
task volatility (Behrens et al., 2007) or uncertainty
(Jepma et al., 2016) rather than the reward rate, and
might depend on a different neurotransmitter than
dopamine such as serotonin (Iigaya et al., 2018) or
noradrenaline (Jepma et al., 2016). The difficulty we
encountered in separating meta-learning on learning rate

or inverse temperature may be due to the fact that online
estimation of uncertainty, like the reward rate, is depen-
dent on the past history of rewards, so there could be a
large overlap between the two signals. Taken together,
these data point towards a larger class of meta-learning
models in which uncertainty controls the learning rate
and the reward rate the inverse temperature.

Interestingly, we also tested Thompson Sampling
(TS) models and showed that they failed to capture
rat behaviour in our task. While this class of models
have recently been successfully applied to stationary
tasks with normal reward probability distributions
(Gershman, 2018), the non-stationarity of our task,
combined with binomial reward probability distributions,

F I GURE 1 1 Simulations of the α2 meta-learning model. (a,b) Mean performance ± s.e.m. (n = 24 average simulations) in low- and

high-risk blocks, respectively. (c,d) Mean win-shift ± s.e.m. in low- and high-risk blocks, respectively. Stars indicate a significant difference

between at least two groups of sessions for a given bin of four trials. (e) Average logistic regression weights for effects of past choices and

rewards on current trial. Significance levels as follows: *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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required extensions of classical TS models. We tested a
sliding-window TS model and a dynamic TS model, and
showed that they either learned too fast or converged

to too high performance plateaus, depending on the
employed parameters.

The idea that an increase in reward rate should cause
a change in reinforcement learning parameters could
have important implications in another field of decision-
making, the transition from goal-directed to habitual
behaviour. Goal-directed behaviour is characterised by
flexibility, the ease with which an organism adjusts
behaviour when its goal is manipulated (Robinson &
Berridge, 2013). On the other hand, animals display
habitual behaviour when they repeat previously rein-
forced actions, even when these actions are no longer
rewarded or are even punished. This is particularly rele-
vant for the study of addiction, which could, partly, be
explained by habitual modes of behaviour struggling for
control with higher-level goal-directed decision-making
(Everitt & Robbins, 2005; Redish et al., 2008). The com-
putational account for these two types of behaviour usu-
ally hinges on assigning habitual behaviour to a slower
model-free learning process such as the Q-learning algo-
rithm, and goal-directed behaviour to a model-based
learning algorithm in which the organism relies on a rep-
resentation of the task or environment structure to guide
its actions (Daw et al., 2005). The transition from goal-
directed to habitual behaviour could be explained as a
reduction in computational complexity when a certain
level of performance is achieved. The meta-learning
model we presented offers another possible and comple-
mentary explanation. In the first phase in which an
action reliably produces a reward, the accumulation of
rewards causes either an increase in the inverse tempera-
ture or a decrease in the learning rate, alongside the
increase of the value of that action. If the link between
action and reward is altered, the now very strong ten-
dency to stabilise learning and exploitation will cause the
animal to persevere longer in repeating that action
despite its falling value. This is because, as shown
through the slow inter-session effect on behaviour con-
trasted with the fast and efficient evolution of behaviour
within blocks, the dynamics of the inverse temperature
and learning rate are potentially much slower than those
of Q-values. Hence, an action could see its Q-value fall
dramatically, and still be selected. Of course, this
increased perseverance should occur only as long as the
Q-value of the previously rewarded action remains above
any alternative actions, the inverse temperature blindly
favouring whichever action currently has the highest
value.

A slow evolution of the inverse temperature or learn-
ing rate could explain a puzzling lack of effect on the risk
level of blocks. As the reward rate is lower in high-risk
blocks, we would expect this to have an effect on explora-
tion in addition to that on learning. Indeed, performance

F I GURE 1 2 Comparison of the trial-dependent and meta-

learning models using (a) the Akaike Information Criterion (AIC)

summed over all subjects, (b) the Bayesian Information Criterion

(BIC) summed over all subjects, (c) the Mean Squared Error (MSE) of

average simulated performance with respect to experimental

performance, and (d) the MSE of average simulated win-shift with

respect to experimental win-shift. (e) Distribution of individual MSEs

for performance of α and β meta-learning models. No significant

difference was found. (f) Distribution of individual MSEs for win-shift

of α and β meta-learning models. No significant difference was found.
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and win-shift are different in high- and low-risk blocks,
but simulations of a model with fixed inverse tempera-
ture and learning rate are entirely capable of producing
this type of behaviour (Figure 3), so that differences in
the Q-values in the two types of blocks are sufficient
explanation. Furthermore, we also optimised a model
with separate inverse temperatures for high- and low-risk
blocks, a strategy previously used by Eisenegger et al.
(2014) to compare human populations with different
type-2 dopamine receptors, and did find significantly
higher optimised values in low-risk blocks, consistent
with increased exploitation as predicted by the model
(analyses not shown). However, in a counterfactual test
where we optimised the same model with separate
inverse temperatures based on block risk level on data
simulated with a model using a single inverse tempera-
ture, we also found significant differences meaning that
such methods are not to be blindly trusted without carry-
ing out appropriate counterfactual checks. Maybe if the
blocks were longer than 24 trials, then variations in
exploration between risk conditions could unambigu-
ously be detected. To also distinguish meta-learning from
time-related increases in exploitation, a possible experi-
mental design would be to alternate low-risk and high-
risk periods for greater amounts of trials, perhaps even
entire sessions. We could then perhaps detect changes in
behaviour following long periods of low reward rates
corresponding to a predicted decrease in exploitation,
which would contradict the effect of time only.

In this paper, we propose that meta-learning – here
restricted to learning of meta-parameters (Khamassi
et al., 2011; Wang, 2021) – is an adaptive mechanism that
enables flexibility in variable environments. Counter this
proposal, Findling et al. (2019) and Findling et al. (2020)

showed that computational noise in the estimation of
Q-values paired with argmax selection mechanisms can
explain a majority of non-greedy choices in human
decision-making tasks, which are usually classified as
exploratory decisions and which are in fact, according to
this hypothesis, due to learning errors. Crucially, they pro-
pose that the noise introduced in the estimation of
Q-values be proportional to the RPEs. Thus, an unstable
environment in which RPEs fluctuate greatly causes
greater reversals in Q-values and produces more seemingly
explorative behaviour. While such a model could explain
variations between environments with different reward
probabilities, such as between the high-risk and low-risk
blocks of our experiment, it is hard to see how they could
explain long-term changes between sessions, which all
contain the same number of high-risk and low-risk blocks
and thus have the same average volatility. A potential
explanation might be that the relationship between RPEs
and the variance of the computational noise is evolving
over time, which could be the subject of future research.

In our β meta-learning model, we restricted ourselves
to the hypothesis that it is a random or undirected explo-
ration that might be regulated between sessions. An alter-
native form of exploration consists of deliberately
sampling choices with high uncertainty about their value.
This is called directed exploration and can be modelled
with an augmentation of Q-values with an uncertainty
bonus (Velentzas et al., 2017; Wilson et al., 2014). Inter-
estingly, a study by Gershman and Tzovaras (2018) links
both directed and random exploration to dopamine, with
higher dopamine in the prefrontal cortex associated
with a stronger bias towards uncertain actions, and, con-
trary to our expectation, higher dopamine in the striatum
associated with less random exploration.

F I GURE 1 3 Parameter distributions of the (a) α meta-learning model and (b) the β meta-learning model. Dots represent single

individuals, box plots show the median value, interquartile range and extreme values excluding outliers (red crosses).
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In the initial paper of Humphries et al. (2012), the
mechanism by which dopamine might regulate
the exploration-exploitation trade-off was situated in the
basal ganglia, in which tonic dopamine modulates
the contrast between activities related to alternative
actions represented within parallel channels. Alternatively
or complementarily, several lines of evidence point to the
prefrontal cortex as responsible for exploratory decisions
(Frank et al., 2009). Maybe this is limited to the previously
mentioned directed exploration but Hattori et al. (2023)
found that inhibition of plasticity in the orbitofrontal
cortex in mice impaired between session improvements in
performance on a probabilistic reversal task. These experi-
mental results were mirrored by a deep reinforcement
learning model with meta-learning capabilities in which a
fast reinforcement learning component controls trial-
by-trial decisions, while a slow reinforcement learning
critic changes connection weights in between sessions. It
is also possible that these meta-learning capabilities are
not dependent on dopamine but on another neuromodula-
tor like noradrenaline (Doya, 2002).

Overall, this work constitutes one of the rare attempts
to account for rats’ progressive adjustment of their rein-
forcement learning parameters while they are learning
the structure of a new task. This contributes to a promis-
ing line of research, which could help better understand
why animals behave according to a precisely tuned
trade-off between exploration and exploitation, or
between learning fast or slow, in the post-training phases
of decision-making tasks.
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