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ABSTRACT

In recent years, there has been an increasing interest in studying brain–heart interactions.
Methodological advancements have been proposed to investigate how the brain and the heart
communicate, leading to new insights into some neural functions. However, most frameworks
look at the interaction of only one brain region with heartbeat dynamics, overlooking that the
brain has functional networks that change dynamically in response to internal and external
demands. We propose a new framework for assessing the functional interplay between cortical
networks and cardiac dynamics from noninvasive electrophysiological recordings. We
focused on fluctuating network metrics obtained from connectivity matrices of EEG data.
Specifically, we quantified the coupling between cardiac sympathetic–vagal activity and brain
network metrics of clustering, efficiency, assortativity, and modularity. We validate our
proposal using open-source datasets: one that involves emotion elicitation in healthy
individuals, and another with resting-state data from patients with Parkinson’s disease. Our
results suggest that the connection between cortical network segregation and cardiac
dynamics may offer valuable insights into the affective state of healthy participants, and
alterations in the network physiology of Parkinson’s disease. By considering multiple network
properties, this framework may offer a more comprehensive understanding of brain–heart
interactions. Our findings hold promise in the development of biomarkers for diagnostic and
cognitive/motor function evaluation.

INTRODUCTION

There is strong clinical evidence indicating that various cardiovascular, neurological, and psy-
chiatric disorders can affect brain–heart interactions (Samuels, 2007; Silvani, Calandra-
Buonaura, Dampney, & Cortelli, 2016). These interactions are involved in multiple bodily
processes, including sensing, integration, and regulation of activity to maintain homeostatic
balance (Craig, 2002). The brain–heart communication is bidirectional and occurs through dif-
ferent neural mechanisms, such as the vagal and spinal pathways (Chen et al., 2021). Experi-
mental findings demonstrate that these afferent and efferent communications have a significant
impact on perception, information processing, action, and spontaneous cognition (Azzalini,
Rebollo, & Tallon-Baudry, 2019; Candia-Rivera, 2022; Skora, Livermore, & Roelofs, 2022).
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Recent advancements in neuroscience have highlighted the importance of adopting an
embodied perspective when investigating brain function (Chen et al., 2021; Quigley, Kanoski,
Grill, Barrett, & Tsakiris, 2021), some with a particular emphasis on studying the brain–heart
communication (Candia-Rivera, 2022; Valenza, Toschi, & Barbieri, 2016). These interactions
have traditionally been studied through the analysis of heartbeat-evoked responses (Coll,
Hobson, Bird, & Murphy, 2021; H.-D. Park & Blanke, 2019), that is, brain activity locked to
the cardiac cycle. Various methods have been developed to explore the relationship between
brain oscillations and the autonomic nervous system, such as signal processing techniques that
analyze correlation, directional coupling, co-occurrences, or phase synchronization (Candia-
Rivera, Catrambone, & Valenza, 2021). However, previous studies have predominantly
focused on the interaction between specific brain or scalp regions and heartbeat dynamics,
disregarding the dynamic nature of brain networks and their role in numerous cognitive func-
tions (Bashan, Bartsch, Kantelhardt, Havlin, & Ivanov, 2012; Bressler & Menon, 2010; Faes
et al., 2022; H.-J. Park & Friston, 2013).

In this article, we propose a new framework for studying brain–heart interactions that
explores the relationship between ongoing brain network organization and cardiac
sympathetic–vagal oscillations. Our framework goes beyond state-of-the-art approaches
(Candia-Rivera, Catrambone, & Valenza, 2021), which typically describe the relationship
between a single brain region and heartbeat dynamics. Instead, it provides biomarkers
related to large-scale brain–heart interaction by quantifying the intricate dynamics between
global brain activity and cardiac dynamics. This approach may be useful for understanding
certain conditions; for instance, in Parkinson’s disease, global brain dynamics are impacted
because of the neural damage caused in several parts of the nervous system (Candia-
Rivera, Vidailhet, Chavez, & De Vico Fallani, 2024; Hammond, Bergman, & Brown,
2007). Additionally, Parkinson’s disease causes the emergence of parallel autonomic symp-
toms (Sharabi, Vatine, & Ashkenazi, 2021). However, these physiological changes may not
necessarily serve as definitive hallmarks for characterizing the disease. This uncertainty
arises from the high heterogeneity of Parkinson’s disease and the lack of reliability of these
biomarkers, which is, in turn, rooted in our limited understanding of their underlying
mechanisms (Palma & Kaufmann, 2014). This further underscores the need to explore
global brain dynamics in order to understand the extent to which brain–heart interaction
measurements can uncover specific aspects of the disease (Iniguez et al., 2022).

In the realm of affective processing, brain–heart interactions have been previously
described in the role of visceral activity in arousal (Candia-Rivera, Catrambone, Thayer,
Gentili, & Valenza, 2022; Hsueh et al., 2023; Klein, Dolensek, Weiand, & Gogolla, 2021).
Our framework may serve to further explore the role of heartbeat dynamics in affective
processing, for instance, to unravel the intricate components defining affective states, such
as valence and dominance, whose neural correlates remain to be uncovered and may likely
correspond to large-scale neural dynamics (Lindquist, Satpute, Wager, Weber, & Barrett,
2016). Our framework serves as a proof-of-concept, showcasing how the study of brain–heart
interactions can be approached in various conditions where global neural dynamics are not
fully understood by solely examining the dynamics of specific brain regions.

We test our framework in two openly available EEG/ECG datasets: one on emotion elicita-
tion in 32 healthy participants (Koelstra et al., 2012) and another that includes 15 Parkinson’s
disease patients in a resting state (George et al., 2013). We delved into the variations in global
network dynamics, focusing on parameters such as efficiency, clustering, modularity, and
assortativity within EEG connectivity matrices. Our investigation aimed to understand the con-
nection between these dynamics and the fluctuations in cardiac sympathetic–vagal dynamics.

Network efficiency:
A measure of how much a network
shares information within all its
nodes.

Network clustering (or transitivity):
A measure of how much the
connections of a network tend to
form clusters.

Network modularity:
A measure of how much a network is
divided into densely connected
modules.

Network assortativity:
A measure of how much a network
tends to preferentially connect its
nodes to others with similar degrees.
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The conditions we examined included comparisons between resting states and emotion elic-
itation, as well as differences between the resting states of healthy individuals and those with
Parkinson’s disease. Additionally, we investigated the influence of dopamine medication on
the resting state of individuals with Parkinson’s disease. This intervention is designed to phar-
macologically replenish the disrupted dopamine levels resulting from the loss of dopamine-
producing cells. Furthermore, we investigated how changes in brain–heart coupling relate
to alterations in motor symptoms when dopamine medication is used.

The application of our framework to study the interaction between brain networks and car-
diac activity in Parkinson’s disease revealed significant potential. The development of new
frameworks to understand large-scale brain–heart interactions may provide a more compre-
hensive understanding of the functional brain–heart connection and may offer valuable
insights into the role of these interactions in health and disease.

RESULTS

We examined brain network metrics derived from EEG data, as well as cardiac sympathetic–
vagal activity obtained from ECG recordings in two datasets: one including healthy partici-
pants undergoing emotion elicitation, and another including patients with Parkinson’s disease
during resting state. Brain connectivity matrices were computed from the EEG time-frequency
representations and consecutive coherence computation for all pairs of EEG channels, sepa-
rately for alpha, beta, and gamma bands (Cattai et al., 2021). Then, connectivity matrices were
binarized using a efficiency–cost optimization algorithm (De Vico Fallani, Latora, & Chavez,
2017) to finally compute network metrics, including clustering, efficiency, modularity, and
assortativity (Rubinov & Sporns, 2010). Cardiac sympathetic–vagal activity was assessed using
a method that quantified successive changes in the interbeat intervals (IBI). To distinguish
between slow and fast changes in IBI over time, we employed Poincaré plots. These changes
are proposed to be indicative of cardiac sympathetic and vagal activities, respectively (Candia-
Rivera, 2023). The coupling between brain network metrics and cardiac activity was estimated
using the maximal information coefficient (MIC) method (Reshef et al., 2011), an alternative
method to the standard correlation coefficient accounting for potential nonlinearities of the
signals. A general scheme of our approach is displayed in Figure 1.

We computed time-varying values of network clustering, efficiency, assortativity, and mod-
ularity from EEG activities in the alpha (α), beta (β), and gamma (γ) bands. The changes in
brain–heart coupling, as estimated with MIC values, are presented in the four possible com-
parisons: resting state versus emotion elicitation in healthy participants; and healthy partici-
pants versus Parkinson’s disease patients, at rest (Table 1). We compared Parkinson’s disease
patients under their regular medications (on dopamine medication), and patients under at least
12 hr of suspended medications (off dopamine medication).

Results on emotion elicitation show a strong and generalized change of the brain–heart
interaction markers, indicating that the affective state causes a modulation to brain
network–cardiac couplings. In Parkinson’s disease patients, the comparison between on-
and off-dopamine medication conditions was significant when comparing gamma
clustering-sympathetic, gamma efficiency-sympathetic couplings and alpha clustering-
sympathetic. The gamma clustering-sympathetic coupling was larger in the off-dopamine
medication condition (paired Wilcoxon test, p = 0.001, Z = 3.0102), as well as in the gamma
efficiency-sympathetic coupling (paired Wilcoxon test, p = 0.001, Z = 2.9534) and in
the alpha clustering-sympathetic coupling (paired Wilcoxon test, p = 0.032, Z = 2.2151). The
changes in the coupling were not significant for assortativity and modularity, similar to the

Coherence:
A measure of linear correlation
between two signals, revealing their
synchronization in their cross-
spectral densities, accounting for
phase and amplitude matches.

Poincaré plot:
A method for visualizing and
analyzing the variability of a signal
by contrasting its consecutive
changes.

Maximal information coefficient:
A measure of linear and nonlinear
associations between two signals,
based on their mutual information
and joint entropy.
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comparisons with cardiac vagal activity and in the other frequency bands (Table 1). When
comparing Parkinson’s disease patients off dopamine medication with healthy participants,
we observed differences in alpha modularity-sympathetic and gamma efficiency-sympathetic
couplings. However, when comparing Parkinson’s disease patients on dopamine medication
with healthy participants, we did not find any significant differences in the measures we
studied.

We performed an additional analysis to control that our measurements of network-cardiac
couplings were not influenced exclusively by either the fluctuations of network metrics or car-
diac dynamics. We analyzed network metrics separately and controlled whether their means
were different when comparing on- against off-dopamine medication conditions (Table 2). It is
widely recognized that in certain scenarios, especially those involving emotions, cardiac
activity alone can be a reliable predictor. However, this is not always the case. In our study,
Parkinson’s disease demonstrated that incorporating brain activity, particularly brain–heart
coupling in the gamma frequency range, improves predictive accuracy for the conditions
on and off dopamine medication (see the Supporting Information).

Figures 2A and 2B illustrate the brain–heart coupling distribution during emotion elicitation
in healthy participants and in resting state in healthy participants and Parkinson’s disease
patients. The markers shown represent significant changes observed in Parkinson’s disease
patients on versus off dopamine medication, specifically alpha clustering-sympathetic, gamma
clustering-sympathetic, and gamma efficiency-sympathetic. Across all conditions investigated,

Figure 1. Brain network–cardiac coupling framework. The framework aims to estimate the coupling between brain network metrics and
cardiac autonomic dynamics. Estimation of cardiac sympathetic–vagal activity is computed from the successive changes in interbeat intervals
(IBI) gathered from the ECG, and estimation of the fluctuating network metrics is computed from connectivity matrices per each frequency
band of the EEG. The coupling quantification is achieved by assessing the similarities between two time series, regardless of the curvature of
the signals. The maximal information coefficient (MIC) method evaluates similarities between distinct segments individually, using an adjusted
grid as depicted in the figure. The overall measure combines the similarities observed throughout the entire time course.
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Table 1. Results on dopamine medication in Parkinson’s disease patients. Statistics correspond to the Wilcoxon tests on the changes in the
coupling between network metrics (in alpha, beta, and gamma bands) and cardiac sympathetic–vagal dynamics, on- versus off-dopamine
medication conditions. Bold indicates significance ( p < 0.05, which was confirmed by a permutation test); p < 0.001 indicates that none of the
1,000 random permutations surpassed the effect magnitude from the original samples. Z > 0 indicates Condition 2 > Condition 1.

Heart–brain coupling feature Rest vs. Emotion PD on vs. PD off HS vs. PD off HS vs. PD on

Cardiac sympathetic Alpha network Clustering p < 0.001,
Z = 3.7211

p = 0.032,
Z = 2.2151

p = 0.5936,
Z = 0.5336

p = 0.2280,
Z = −1.2056

Efficiency p < 0.001,
Z = 3.5715

p = 0.6496,
Z = 0.4544

p = 0.7073,
Z = 0.3755

p = 0.8279,
Z = −0.2174

Assortativity p < 0.001,
Z = 3.7211

p = 0.4603,
Z = 0.7384

p = 0.5401,
Z = −0.6127

p = 0.2131,
Z = −1.2451

Modularity p < 0.001,
Z = 3.4220

p = 0.6909,
Z = −0.3976

p = 0.0420,
Z = −2.1148

p = 0.4177,
Z = −0.8103

Beta network Clustering p < 0.001,
Z = 3.4406

p = 0.0783,
Z = −1.7607

p = 0.9842,
Z = 0.0198

p = 0.0855,
Z = 1.7195

Efficiency p = 0.001,
Z = 3.0853

p = 0.5321,
Z = 0.6248

p = 0.7073,
Z = 0.3755

p = 0.8900,
Z = −0.1383

Assortativity p < 0.001,
Z = 3.9642

p = 0.0995,
Z = −1.6471

p = 0.1854,
Z = −1.3242

p = 0.3529,
Z = 0.9289

Modularity p < 0.001,
Z = 3.7772

p = 0.0609,
Z = 1.8743

p = 0.2436,
Z = 1.1661

p = 0.1491,
Z = −1.4428

Gamma network Clustering p < 0.001,
Z = 3.7772

p = 0.001,
Z = 3.0102

p = 0.1280,
Z = 1.5218

p = 0.0604,
Z = −1.8776

Efficiency p = 0.002,
Z = 2.9170

p = 0.001,
Z = 2.9534

p = 0.0410,
Z = 2.1543

p = 0.3738,
Z = −0.8894

Assortativity p = 0.003,
Z = 3.2536

p = 1, Z = 0 p = 0.3328,
Z = −0.9684

p = 0.2436,
Z = −1.1661

Modularity p < 0.001,
Z = 3.4032

p = 0.3942,
Z = 0.8519

p = 0.7369,
Z = −0.3360

p = 0.3135,
Z = −1.0080

Cardiac vagal Alpha network Clustering p < 0.001,
Z = 3.3284

p = 0.4603,
Z = 0.7384

p = 0.9527,
Z = −0.0593

p = 0.3328,
Z = −0.9684

Efficiency p < 0.001,
Z = 4.4129

p = 0.3942,
Z = 0.8519

p = 0.9213,
Z = 0.0988

p = 0.7669,
Z = −0.2965

Assortativity p < 0.001,
Z = 4.0764

p = 0.8203,
Z = −0.2272

p = 0.5143,
Z = −0.6522

p = 0.7369,
Z = −0.3360

Modularity p < 0.001,
Z = 4.5251

p = 0.4955,
Z = 0.6816

p = 0.5401,
Z = 0.6127

p = 0.9213,
Z = −0.0988

Beta network Clustering p < 0.001,
Z = 4.1699

p = 0.3343,
Z = −0.9655

p = 0.2436,
Z = −1.1661

p = 0.8279,
Z = −0.2174

Efficiency p = 0.005,
Z = 2.7861

p = 0.8203,
Z = −0.2272

p = 0.3738,
Z = 0.8894

p = 0.6637,
Z = 0.4349

Assortativity p < 0.001,
Z = 3.7959

p = 0.6496,
Z = −0.4544

p = 0.7972,
Z = −0.2569

p = 0.9213,
Z = 0.0988
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it is evident that the coupling between the brain network and cardiac activity increases during
emotion elicitation compared with the resting state. Notably, Parkinson’s disease patients
exhibit an increase in this coupling compared with healthy participants when they are off
dopamine medication. However, when these patients are on dopamine medication, there
are no significant differences observed in this coupling compared with healthy participants.
Figure 2C illustrates the covariations in gamma clustering, efficiency, and cardiac sympathetic
activity under on- and off-dopamine medication conditions for one patient. In the on-
dopamine medication condition, the fluctuations in network metrics are faster and more
complex compared with the off-dopamine medication condition. In contrast, under the off-
dopamine medication condition there occurs a slowing in the network dynamics, which arises
in certain degree of synchrony with cardiac sympathetic dynamics.

We further explored whether the changes in on-off dopamine medication in network-
cardiac couplings were related to the changes in motor symptoms. The changes in motor
symptoms were evaluated by a specialist using the Unified Parkinson’s Disease Rating Scale
Part III, UPDRS-III (Movement Disorder Society Task Force on Rating Scales for Parkinson’s
Disease, 2003), which ranges from 0 to 132, with severity increasing as numbers go up.
We found that the increase in the coupling between cardiac vagal dynamics with different
network metrics was related to the improvement in motor symptoms. We found these effects
when correlating the improvement in motor symptoms (reduction in the UPDRS-III values)
with the cardiac vagal coupling with beta clustering (Spearman correlation, p < 0.001, R =
−0.5717), gamma clustering (Spearman correlation, p < 0.001, R = −0.5896), and gamma
modularity (Spearman correlation, p < 0.001, R = −0.6559), as shown in Table 3 and
Figure 3A.

Figure 3B illustrates the covariations between the clustering of networks from the beta band
and cardiac vagal activity under on- and off-dopamine medication conditions for one patient
with good motor outcome and another with bad motor outcome, as quantified with the
UPDRS-III. In the on-dopamine medication condition, the fluctuations in beta clustering are
more coupled to vagal dynamics, as compared with the off-dopamine medication condition,
in the patient with good motor outcome. In contrast, the patient with bad motor outcome did
not present this distinction when comparing on- against off-dopamine medication conditions.

Finally, we also controlled that the correlations of network-cardiac couplings with motor
outcomes were not influenced exclusively by the fluctuations of network metrics or cardiac

Table 1. (continued )

Heart–brain coupling feature Rest vs. Emotion PD on vs. PD off HS vs. PD off HS vs. PD on

Modularity p = 0.001,
Z = 3.3471

p = 0.0783,
Z = 1.7607

p = 0.9527,
Z = −0.0593

p = 0.1009,
Z = −1.6404

Gamma network Clustering p < 0.001,
Z = 4.3382

p = 0.1728,
Z = 1.3631

p = 0.9842,
Z = 0.0198

p = 0.1989,
Z = −1.2847

Efficiency p < 0.001,
Z = 3.9648

p = 1, Z = 0 p = 0.5665,
Z = −0.5732

p = 0.7669,
Z = −0.2965

Assortativity p < 0.001,
Z = 3.7211

p = 0.2805,
Z = −1.0791

p = 0.2436,
Z = −1.1661

p = 0.6212,
Z = −0.4941

Modularity p = 0.010,
Z = 2.6552

p = 0.6496,
Z = −0.4544

p = 0.6494,
Z = −0.4546

p = 0.9527,
Z = 0.0593
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activity. We observed a correlation between changes in alpha efficiency and changes in motor
symptoms, albeit with lower statistical power compared with the brain–heart coupling mea-
sures. However, when analyzing all other network metrics and cardiac activity separately
under on- and off-dopamine medication conditions, we did not find any significant correla-
tions with motor symptoms (Table 4).

DISCUSSION

The intricate interplay between the brain and heartbeat dynamics can dynamically change in
response to specific cognitive and pathological conditions (Candia-Rivera, 2022; Samuels,
2007; Silvani et al., 2016). To comprehend these changes, methodological frameworks have
been developed to study the role of brain–heart interactions. These frameworks rely on

Table 2. Control tests on the changes in network metrics and cardiac dynamics, separately. Bold indicates significance (p < 0.05, which was
confirmed by a permutation test).

Brain network feature Rest vs. Emotion PD on vs. PD off HS vs. PD off HS vs. PD on

Alpha network Clustering p = 0.2950,
Z = 1.0471

p = 0.5321,
Z = −0.6248

p = 0.8279,
Z = −0.2174

p = 0.6781,
Z = −0.4150

Efficiency p = 0.5372,
Z = −0.6171

p = 0.2560,
Z = 1.1359

p = 0.5665,
Z = 0.5732

p = 0.3328,
Z = 0.9684

Assortativity p = 0.5372,
Z = 0.6171

p = 0.2115,
Z = 1.2495

p = 0.1184,
Z = 1.5614

p = 0.0552,
Z = 1.9171

Modularity p = 0.7935,
Z = −0.2618

p = 0.1728,
Z = 1.3631

p = 0.2280,
Z = 1.2056

p = 0.0855,
Z = 1.7195

Beta network Clustering p = 0.1608,
Z = 1.4024

p = 0.2805,
Z = −1.0791

p = 1.0000,
Z = 0.0000

p = 0.3738,
Z = −0.8894

Efficiency p = 0.1782,
Z = −1.3463

p = 0.4955,
Z = 0.6816

p = 0.5936,
Z = 0.5336

p = 0.1280,
Z = 1.5218

Assortativity p = 0.7084,
Z = −0.3740

p = 0.5321,
Z = −0.6248

p = 0.7972,
Z = 0.2569

p = 0.9842,
Z = 0.0198

Modularity p = 0.8517,
Z = 0.1870

p = 0.1118,
Z = 1.5903

p = 0.1727,
Z = 1.3637

p = 0.0255,
Z = 2.2334

Gamma network Clustering p = 0.9107,
Z = 0.1122

p = 0.1728,
Z = −1.3631

p = 0.3328,
Z = 0.9684

p = 0.8279,
Z = 0.2174

Efficiency p = 0.7364,
Z = −0.3366

p = 0.1914,
Z = 1.3063

p = 0.1727,
Z = −1.3637

p = 0.6781,
Z = −0.4150

Assortativity p = 0.7364,
Z = −0.3366

p = 0.0609,
Z = −1.8743

p = 0.5401,
Z = 0.6127

p = 0.8588,
Z = −0.1779

Modularity p = 0.6268,
Z = −0.4862

p = 0.9096,
Z = −0.1136

p = 0.2436,
Z = −1.1661

p = 0.0661,
Z = −1.8381

Cardiac features Sympathetic p = 0.0004,
Z = 3.5341

p = 0.6909,
Z = 0.3976

p = 0.5143,
Z = −0.6522

p = 0.2770,
Z = −1.0870

Vagal p = 0.0016,
Z = 3.1601

p = 0.5701,
Z = −0.5680

p = 0.3954,
Z = −0.8499

p = 0.8279,
Z = −0.2174
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different signal processing techniques to quantify the presence of dynamic interactions
between two physiological signals (Candia-Rivera, Catrambone, & Valenza, 2021). However,
little is known about how brain network organization and heartbeats interact. Specifically,
whether cardiac sympathetic–vagal dynamics may influence the large-scale neural organiza-
tion in the brain remains to be tested. In this study, we aimed to provide a new framework to
study brain–heart interactions in order to estimate brain network–cardiac couplings. For this
analysis, we have considered network fluctuations, specifically on metrics quantifying cluster-
ing, efficiency, assortativity, and modularity, and their relationships with cardiac sympathetic–
vagal activity.

We have analyzed brain network metrics from EEG data and cardiac sympathetic–vagal
activity to compare healthy participants in resting state with high arousal emotion elicitation,
and to compare the resting-state dynamics of patients with Parkinson’s disease on and off
dopamine medication, with respect to the ones in healthy state. Our results on emotion elic-
itation showed a generalized increase in the network-cardiac couplings, with respect to resting

Figure 2. Brain network–cardiac sympathetic couplings. (A, B) Coupling in alpha clustering-sympathetic, in gamma clustering-sympathetic,
and in gamma efficiency-sympathetic activity. Individual values correspond to maximal information coefficient (MIC) values. Statistical tests
were performed to compare (A) resting state versus emotion elicitation in healthy participants and (B) healthy state (HS) versus Parkinson’s
disease (PD) in either on- or off-dopamine medication conditions. Statistical tests were performed using Wilcoxon tests, paired or unpaired as it
corresponds. * p < 0.05, ** p < 0.001, *** p < 0.0001. (C) Example of a Parkinson’s disease patient whose network-cardiac coupling changed
when comparing on- and off-dopamine medication conditions. Fluctuating network metrics were smoothed with a sliding mean window of 6 s
(six samples) for visualization purposes. The amplitude of the displayed signals was scaled for visualization purposes.
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state. These results indicate a high reactivity of the brain–heart interaction under the process-
ing of affective states. The heartbeat dynamics reactivity for emotions has been shown in dif-
ferent studies (Pace-Schott et al., 2019), with a convergence to indicate emotion intensity and
regulation (Candia-Rivera et al., 2022; Klein et al., 2021). It remains to be further explored

Table 3. Spearman correlation tests on the changes in motor symptoms and the coupling between network metrics (in alpha, beta, and
gamma bands) and cardiac sympathetic–vagal dynamics, on versus off conditions. Bold indicates significance (p < 0.05, which was confirmed
by a permutation test); p < 0.001 indicates that none of the 1,000 random permutations surpassed the effect magnitude from the original
samples.

Heart-brain coupling ΔClustering ΔEfficiency ΔAssortativity ΔModularity

Cardiac sympathetic Alpha network p = 0.3033,
R = −0.2849

p = 0.2067,
R = −0.3459

p = 0.9142,
R = 0.0305

p = 0.1180,
R = −0.4211

Beta network p = 0.9192,
R = 0.0287

p = 0.5186,
R = −0.1810

p = 0.3161,
R = 0.2778

p = 0.5746,
R = −0.1577

Gamma network p = 0.9444,
R = −0.0197

p = 0.2877,
R = −0.2939

p = 0.1944,
R = −0.3548

p = 0.3001,
R = 0.2867

Cardiac vagal Alpha network p = 0.9394,
R = −0.0215

p = 0.3001,
R = −0.2867

p = 0.3706,
R = −0.2491

p = 0.4854,
R = 0.1953

Beta network p < 0.001,
R = −0.5717

p = 0.6467,
R = −0.1290

p = 0.1380,
R = −0.4014

p = 0.1582,
R = −0.3835

Gamma network p < 0.001,
R = −0.5896

p = 0.2117,
R = −0.3423

p = 0.9646,
R = −0.0125

p < 0.001,
R = −0.6559

Figure 3. Brain network–cardiac vagal couplings. (A) Spearman correlations between changes in motor symptoms and the changes in
network-cardiac coupling, as quantified between on- and off-dopamine medication conditions. (B) Example of a Parkinson’s disease patient
with good motor outcome after dopamine medication and another patient with bad motor outcome after dopamine medication. Fluctuations of
network metrics were smoothed with a sliding mean window of 6 s (six samples) for visualization purposes. The amplitude of the displayed
signals was scaled for visualization purposes.
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whether the large-scale brain–heart relationships that can be identified with our framework are
associated with any specific aspect of the emotional state.

Our results on the Parkinson’s disease dataset suggest that patients have distinct cortical
network segregation that covaries with cardiac sympathetic–vagal activity. These covariations
were confirmed by comparing Parkinson’s disease patients under their traditional treatments
(on dopamine medication), which is mainly based on pharmacological dopamine replace-
ment, against suppressed treatment for at least 12 hr (off dopamine medication). Parkinson’s
disease patients off dopamine medication slowed their fluctuations in network segregation,
and this slowing got in a certain degree of synchrony with cardiac sympathetic activity. We
further showed that the increase in the network segregation–vagal coupling on dopamine
medication related to improvements in motor symptoms. Our results indicate that dopaminer-
gic therapy in Parkinson’s disease patients causes dynamic fluctuations in brain network orga-
nization, and these network dynamics are closely related to the autonomic nervous system.
This new evidence suggests further links between known changes in brain networks (Conti
et al., 2022; Hammond et al., 2007; Leviashvili et al., 2022) and autonomic dysfunction
(Sharabi et al., 2021) that have been reported in Parkinson’s disease.

We confirmed that the changes observed in network-cardiac couplings were not exclu-
sively triggered by changes in the EEG network. Instead, the changes appear as a result of
synergistic phenomena that were quantified through the brain network–cardiac couplings.
We controlled that when comparing the different conditions, the various network metrics
exhibited lower statistical power in comparison to their respective brain–heart coupling coun-
terparts. However, a previous study indicated that different network metrics could distinguish
early-stage Parkinson’s disease patients from healthy controls (Conti et al., 2022), suggesting a
potential relationship between dopaminergic levels and network organizations. These effects
were likely induced by the variations in network densities (De Vico Fallani et al., 2017), which
are known to occur in Parkinson’s disease patients owing to cortical hyper-synchronization
(McCarthy et al., 2011). To address the bias caused by the differences in network densities,
we utilized the efficiency–cost optimization algorithm (De Vico Fallani et al., 2017) to accu-
rately analyze the redistribution of connections in the different conditions; we did not find
significant differences between on- and off-dopamine medication conditions or with the
changes in motor symptoms.

The interplay between the brain and peripheral bodily systems involves various neural
pathways connected to the amygdala, thalamus, hypothalamus and prefrontal/frontal, insular,
somatosensory, and cingulate cortices (Cameron, 2009). The existing methodological pro-
posals to measure the brain–heart interaction include various signal processing methods, such

Table 4. Spearman correlation tests on the changes in motor symptoms and network metrics (in alpha, beta, and gamma bands), on versus off
conditions. Bold indicates significance (p < 0.05, which was confirmed by a permutation test).

Clustering Efficiency Assortativity Modularity

Alpha p = 0.0517, R = −0.5108 p = 0.0440, R = 0.5269 p = 0.6012, R = 0.1470 p = 0.2696, R = 0.3047

Beta p = 0.2274, R = 0.3315 p = 0.0985, R = −0.4427 p = 0.7076, R = 0.1057 p = 0.1944, R = −0.3548

Gamma p = 0.3886, R = 0.2401 p = 0.1540, R = −0.3871 p = 0.1896, R = 0.3584 p = 0.5143, R = −0.1828

Cardiac sympathetic p = 0.6147, R = −0.1416

Cardiac vagal p = 0.6981, R = 0.1093
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as physiological modeling-based approaches, synchronization measurement, and transient
neural responses to heartbeats (Candia-Rivera, Catrambone, & Valenza, 2021). Although the
identification of individual brain regions in the control of peripheral organs has helped to
define the components of the central autonomic network (Beissner, Meissner, Bär, & Napadow,
2013; Valenza, Passamonti, Duggento, Toschi, & Barbieri, 2020; Valenza et al., 2019), our
framework can potentially reveal large-scale functional relationships linking brain network
organization and autonomic dynamics. Furthermore, our results could provide new insights
about the role of ascending signals in shaping integration and segregation in the brain (Shine,
2019). Through these efforts, we could draw relationships between specific brain oscillations
and cardiac dynamics. Sympathetic and parasympathetic activities regulate heart rate dynam-
ics for maintaining physiological balance, with the sympathetic system typically associated
with preparing the body for action and the parasympathetic system with promoting relaxation
and recovery (Porges, 2007). However, the intricacies between these systems and their con-
nection to the brain under various conditions remain to be further described (Chen et al.,
2021). On the brain side, for instance, a wide range of brain wave activities reflect different
states of consciousness and cognitive engagement, with alpha typically associated with
inhibition/activation mechanisms, beta with alertness and motor synergies, and gamma with
active sensory processing (Cohen, 2017). By employing brain–heart interaction frameworks,
we can provide a comprehensive description from a nervous-system-wise perspective. This
approach may help us to better understand the specific connections and their functional roles.

Researching the brain–heart connection can yield valuable scientific discoveries and inno-
vative clinical applications, particularly in regard to autonomic dysfunctions present after neu-
rodegeneration (Iniguez et al., 2022; Sharabi et al., 2021). By these efforts, we may further
uncover that heartbeat dynamics may contribute to conditions traditionally associated with
the brain, and vice versa. For instance, recent findings have revealed the impact of cardiac
factors on depression (Penninx, 2017) and motor function (Agrimi et al., 2023; Heimler
et al., 2023). Numerous studies demonstrated the influence of heartbeat patterns on cognition
(Azzalini et al., 2019; Candia-Rivera, 2022; Skora et al., 2022). It is important to investigate
whether autonomic dysfunctions linked to certain diseases can affect neural dynamics at a
larger scale. Specifically, Parkinson’s disease has shown large-scale, multisystem network dis-
ruptions (Gratton et al., 2019; Wang, Zhang, Lei, & Guo, 2021). The intricate communication
between the brain and bodily systems highlights the significance of interoceptive mechanisms
on neural homeostasis, and any dysfunctions that emerge may have neurological, psychiatric,
or behavioral implications.

An important limitation of the study is the use of 32-channel EEG recordings. For this rea-
son, we performed electrode-based connectivity and network analysis, instead of performing
analyses on source-reconstructed signals. Nevertheless, our study may serve as a potential
development of tools to be utilized in easily accessible clinical setups. The potential of EEG
to comprehend the physiopathology of Parkinson’s disease is noteworthy, as it underscores the
immense possibility of using EEG-based measurements to evaluate the disease and its comor-
bidities (George et al., 2013; Jackson, Cole, Voytek, & Swann, 2019; Swann et al., 2015).
While changes in brain oscillations are potentially useful to evaluate dopamine medication
effectiveness (Litvak et al., 2012), our results suggest that brain–heart interactions may better
capture the improvement in motor symptoms triggered by dopaminergic replacement therapy.
It is important to highlight that revising the upper limit of the gamma band could have a con-
siderable impact on the calculation of metrics relating to the coupling between brain networks
and cardiac activity (see the Supporting Information). As such, the choice of frequency band
definitions should align with existing literature for each specific application.
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Our framework unraveled large-scale dynamics into the connection between cortical con-
nectivity and cardiac dynamics, shedding light on the network physiology in health and dis-
ease. These developments hold potential for the evaluation of cognitive and motor functions.
By examining the relationship of cardiac dynamics with various properties of brain network
organization, this framework may provide further insights into the role of the brain–heart net-
work physiology.

MATERIALS AND METHODS

Emotion Elicitation Dataset

The dataset includes 32 healthy participants (median age 27 years, 16 males and 16 females).
The data are part of the DEAP database for emotion analysis (Koelstra et al., 2012), available
at https://www.eecs.qmul.ac.uk/mmv/datasets/deap/. Data were acquired using 32-channel
EEG and three-lead ECG, sampled at 512 Hz. The dataset consisted of 40 video trials from
music videos. Videos had a duration of 60 s and were presented after an initial resting period
of 120 s.

The participants’ ratings of the emotional experience relied on the circumplex model of
affect (valence related to pleasantness and arousal related to intensity). Prior research using
this dataset has revealed that brain–heart interactions can function as biomarkers to distinguish
between high and low arousal based on brain–heart interactions. (Candia-Rivera et al., 2022).
Building upon those findings, we selected the trials based on group median arousal from the
self-assessment scores. Group median arousal scores ranged between 3.2 and 7 among the 40
trials. We selected the high-arousal group with scores ranging 6.1–7 (11 trials).

Parkinson’s Disease Dataset

The dataset includes 15 patients with Parkinson’s disease (7 males and 8 females, mean age =
63.2 ± 8.2 years) and 16 healthy participants (7 males and 9 females, median age = 60.5 ±
8 years). The data are part of a publicly available dataset, UC San Diego Resting State EEG
Data from Patients with Parkinson’s Disease, gathered from OpenNeuro.org on November
21, 2022 (Appelhoff et al., 2019; Pernet et al., 2019). Participants provided written consent
in accordance with the Declaration of Helsinki (Rockhill, Jackson, George, Aron, & Swann,
2021). Patients’ data were analyzed in the on-medication and off-medication conditions
(discontinued medication use at least 12 hr before the session). Dopaminergic medication
significantly improved motor symptoms, as measured by the motor section of the Unified
Parkinson’s Disease Rating Scale Part III, UPDRS-III (Ramaker, Marinus, Stiggelbout, & van
Hilten, 2002), as performed in a paired Wilcoxon test (Z = 2.9388, p = 0.0033).

EEG data were acquired using a 32-channel BioSemi ActiveTwo system, together with a
one-lead ECG, sampled at 512 Hz at rest for approximately 3 min. During data collection,
the participants were seated comfortably and told to fixate on a cross presented on a screen.

EEG and ECG Data Processing

The EEG and ECG data were preprocessed using MATLAB R2022b and FieldTrip Toolbox
(Oostenveld, Fries, Maris, & Schoffelen, 2011). The EEG and ECG data were bandpass filtered
with a Butterworth filter of order 4 between 0.5 and 45 Hz. Large movement artifacts were
removed from EEG using a wavelet-enhanced independent component analysis (ICA)
(Gabard-Durnam, Mendez Leal, Wilkinson, & Levin, 2018). ICA was then rerun to detect
and set to zero the components with eye movements and cardiac-field artifacts. One lead
of ECG was included in the ICA computation to improve the process of identifying cardiac
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artifacts. EEG channels were re-referenced using a common average (Candia-Rivera,
Catrambone, & Valenza, 2021).

The R-peaks from the ECG were identified using an automatized process, followed by an
automated inspection of misdetections and manual correction if required. The procedure was
based on a template-based method for detecting R-peaks (Candia-Rivera, Catrambone, &
Valenza, 2021). For the correction of misdetection, all the detected peaks were visually
inspected over the original ECG, along with the marks on potentially misdetected heartbeats
and the interbeat interval (IBI) histogram.

Computation of Cardiac Sympathetic and Vagal Indices

A method based on Poincaré plots was used for estimating cardiac sympathetic and vagal
activities. The method uses the fluctuating geometry of the Poincaré plot constructed from
IBI (Candia-Rivera, 2023). The Poincaré plot is a nonlinear approach used to analyze heart
rate variability by illustrating fluctuations in the duration of consecutive IBIs (Brennan,
Palaniswami, & Kamen, 2001; Woo, Stevenson, Moser, Trelease, & Harper, 1992). The
SD1 and SD2 are calculated from the Poincaré plot and represent the short- and long-term
fluctuations of heart rate variability, respectively. These values are obtained by determining
the ratios of the ellipse formed by consecutive changes in IBIs (Sassi et al., 2015). The ellipse
ratios for the whole experimental condition SD01 and SD02 are computed as follows:

SD01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
std IBI 0ð Þ2

r
; (1)

SD02 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 std IBIð Þ2 − 1

2
std IBI0ð Þ2

r
; (2)

where IBI0 is the derivative of IBI and std() refers to the standard deviation.

The time-varying fluctuations of the ellipse ratios are computed with a sliding time window,
as shown in Equations 3 and 4:

SD1 tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
std IBI0Ωt

� �2
r

; (3)

SD2 tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 std IBIΩtð Þ2 − 1

2
std IBI0Ωt

� �2
r

; (4)

where Ωt: t − T ≤ ti ≤ t, and T is fixed in 15 s as proposed in previous simulation studies
(Candia-Rivera, Catrambone, Barbieri, & Valenza, 2021).

The Cardiac Vagal Index (CVI) and Cardiac Sympathetic Index (CSI) are computed as
follows:

CVI tð Þ ¼ SD01 þ SD1
� tð Þ; (5)

CSI tð Þ ¼ SD02 þ SD2
� tð Þ; (6)

where SDx
� is the demeaned SDx.
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Note that other measures of autonomic outflow can be used in our framework, such as
oscillations gathered from standard low or high frequency (Orini, Bailón, Mainardi, Laguna,
& Flandrin, 2012) or Laguerre expansions of heart rate variability series (Valenza, Citi, Saul, &
Barbieri, 2018).

For a comprehensive description of the model, see Candia-Rivera (2023). The software can
be gathered from https://github.com/diegocandiar/brain_heart_psv_sdg.

Brain Network Construction and Metrics

EEG connectivity matrices were gathered from EEG spectral coherence (Carter, 1987). EEG
power and cross-spectral densities were computed using the short-time Fourier transform with
a Hanning taper. Calculations were performed through a sliding time window of 2 s with a
50% overlap. For each pair of EEG time series xi(t) and xj(t), and their respective complex Fou-
rier transform xi[f ] and xj[f ], the coherence COHi,j[f ] at the frequency f is defined as follows:

COHi;j f½ � ¼
Pi;j f½ �
�� ��

Pi f½ � _Pj f½ �
� �0:5; (7)

where Pi,j[f ] is the cross-spectrum of xi[f ] and xj[f ] and Pn={i,j}[f ] is the power spectral density of
xn={i,j}(t). The output’s absolute value was considered for the network analyses. Coherence
matrices were integrated within three frequency bands (alpha: 8–12 Hz, beta: 12–30 Hz,
gamma: 30–45 Hz), based on previous findings on cortical connectivity in Parkinson’s
disease (Conti et al., 2022). The connectivity matrices were fi ltered using the
efficiency–cost optimization algorithm to obtain binary and undirected connectivity
graphs (De Vico Fallani et al., 2017).

Different network metrics were computed per each connectivity graph. Network metric
calculations were performed in each connectivity sample, resulting in fluctuating network
characterizations with 1-s resolution. In this study we have focused on global network met-
rics: clustering, efficiency, assortativity, and modularity. Efficiency is a measure that indi-
cates the amount of information by assuming that the less connected the nodes are in the
network, the less efficient their communication is (Latora & Marchiori, 2001). Therefore,
efficiency can be considered a measure of network integration. Efficiency was computed as
shown in Equation 8:

E ¼ 1
n

X
i2N

Ei ¼ 1
n

X
i2N

P
j2N;j≠idij

−1

n − 1
; (8)

where n is the number of nodes in the network and dij is the distance between the nodes i
and j. In this study, the connectivity matrices are binary and the distance between the
nodes is quantified by the shortest path.

Clustering was measured using network transitivity, a measure that indicates the tendency
of the nodes of the network to be grouped, meaning that a high transitivity indicates that the
network contains a high amount of groups of nodes, based in their connectivity (Humphries &
Gurney, 2008; Newman, 2003). Transitivity was computed as shown in Equation 9:

T ¼ Tr a3ð ÞP
i;j;k2Naijajkaki

; (9)

where Tr is the trace function and aij is a connectivity value between the nodes i and j.
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Assortativity is a measure that indicates the preference of the nodes of the network to be
connected with other nodes with similar connectivity (Newman, 2002). Assortativity was com-
puted as shown in Equation 10:

A ¼ M−1 P
i ji ki − M−1 P

i0:5 ji þ kið Þ� 	2
M−1

P
i0:5 ji

2 þ ki
2� �

− M−1
P

i0:5 ji þ kið Þ� 	2; (10)

where ji, ki are the degrees of the vertices at the ends of the ith edge, with i = 1, …, M.

Modularity is a measure that indicates the network’s amount of division into groups (mod-
ules). High modularity indicates a dense connection between the nodes within groups and
sparse connections between nodes in different groups (Newman, 2006). Modularity was com-
puted as shown in Equation 11:

Q ¼ 1
2L

X
i;j2N aij −

kikj
2L


 �
δ si ; sj
� �

; (11)

where L is the sum of all connectivity values, aij is a connectivity value between the nodes i
and j, ki is the degree of node i, and si indicates the group to which node i belongs. The term
δ(si, sj) is the Kronecker delta function, which is equal to 1 if si = sj, and 0 otherwise. The
optimal definition of groups or community structures were defined as network subdivisions
with nonoverlapping groups of nodes, in which the number of within-group edges is
maximized, and the number of between-group edges is minimized.

The computation of the network metrics was performed per each time stamp, to gather a
time-varying estimation of the global network organization. The network metrics were com-
puted using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010) and followed the
default procedures defined in the toolbox. Note that further network metrics can be analyzed
under this framework, such as clustering coefficient (Watts & Strogatz, 1998), closeness cen-
trality (Freeman, 1978), or betweenness centrality (Freeman, 1978).

Brain Network–Cardiac Coupling Estimation

To quantify the coupling between the fluctuations of brain network metrics and cardiac
dynamics, we used the maximal information coefficient (MIC). MIC is a method that quantifies
the coupling between two time series (Reshef et al., 2011). MIC may capture nonlinear cor-
relations, as it considers the similarities between two time series irrespective of signal curva-
tures. MIC evaluates similarities between different segments separately at an adapted time
scale that maximizes the mutual information, with a final measure that wraps the similarities
across the whole time course. Equations 12 and 13 show the MIC computation between two
time series X and Y. The mutual information Ig is computed for different grid combinations g 2
Gxy. The mutual information values are normalized by the minimum joint entropy log2 min
{nx, ny}, resulting in an index in the range 0–1. Finally, the quantified coupling between X
and Y corresponds to the normalized mutual information resulting from the grid that maxi-
mizes the MIC value.

m X;Yð Þ ¼ maxg2Gxy Ig
log2 min nx ; ny

� ; (12)

MIC X;Yð Þ ¼ maxnx�ny<Bm X ;Yð Þ; (13)

Mutual information:
A measure of the mutual dependence
between two signals, capturing
shared information and associations.

Joint entropy:
A measure of uncertainty in a system
by accounting for the total
information content.
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where B = N0.6, and N is the dimension of the signals (Reshef et al., 2011). The source code
implementing MIC is available online at https://github.com/minepy.

Statistical Analysis

Statistical comparisons were based on Wilcoxon tests and Spearman correlations. Wilcoxon
signed rank tests for paired comparisons were performed between the biomarkers comparing
resting state and emotion elicitation in healthy participants, and Parkinson’s disease in the on-
and off-dopamine medication conditions. Wilcoxon rank sum tests for unpaired comparisons
were performed between the biomarkers comparing healthy participants and Parkinson’s dis-
ease patients. Spearman correlation coefficients were calculated for the changes in motor
symptoms (quantified with the UPDRS-III scale) and the changes in network-cardiac coupling.
P values associated with the Spearman correlation coefficients were derived by a t Student
distribution approximation. Significance of the statistical tests was considered at α = 0.05.
To assess the significance of the comparisons that resulted in p < 0.05, we performed Monte
Carlo permutations to reject the hypothesis of a random effect. Monte Carlo p values ( pmc)
were calculated by determining the proportion of permutations that exceeded the original sta-
tistical significance, out of 1,000 random permutations (Maris & Oostenveld, 2007). Signifi-
cance was then confirmed if pmc < 0.05.
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