
HAL Id: hal-04643797
https://hal.sorbonne-universite.fr/hal-04643797

Submitted on 10 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Accelerating QM/MM simulations of electrochemical
interfaces through machine learning of electronic charge

densities
Andrea Grisafi, Mathieu Salanne

To cite this version:
Andrea Grisafi, Mathieu Salanne. Accelerating QM/MM simulations of electrochemical interfaces
through machine learning of electronic charge densities. The Journal of Chemical Physics, 2024, 161
(2), pp.024109. �10.1063/5.0218379�. �hal-04643797�

https://hal.sorbonne-universite.fr/hal-04643797
https://hal.archives-ouvertes.fr


Accelerating QM/MM simulations of electrochemical interfaces through
machine learning of electronic charge densities
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2)Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, CNRS, F-75005 Paris,
France
3)Institut Universitaire de France (IUF), F-75231 Paris, France

A crucial aspect in the simulation of electrochemical interfaces consists in treating the distribution of electronic
charge of electrode materials that are put in contact with an electrolyte solution. Recently, it has been shown
how a machine-learning method that specifically targets the electronic charge density, also known as SALTED,
can be used to predict the long-range response of metal electrodes in model electrochemical cells. In this work,
we provide a full integration of SALTED with MetalWalls, a program for performing classical simulations of
electrochemical systems. We do so by deriving a spherical harmonics extension of the Ewald summation method,
which allows us to efficiently compute the electric field originated by the predicted electrode charge distribution.
We show how to use this method to drive the molecular dynamics of an aqueous electrolyte solution under
the quantum electric field of a gold electrode, which is matched to the accuracy of density-functional theory.
Notably, we find that the resulting atomic forces present a small error of the order of 1 meV/Å, demonstrating
the great effectiveness of adopting an electron-density path in predicting the electrostatics of the system.
Upon running the data-driven dynamics over about 3 ns, we observe qualitative differences in the interfacial
distribution of the electrolyte with respect to the results of a classical simulation. By greatly accelerating
quantum-mechanics/molecular-mechanics approaches applied to electrochemical systems, our method opens
the door to nanoseconds timescales in the accurate atomistic description of the electrical double layer.

I. INTRODUCTION

Understanding the interface between a metallic elec-
trode and a liquid electrolyte has become an important
objective in chemical physics.1 This interest is driven
by the many underlying applications in electrochemistry,
electrocatalysis, and energy storage, but it is also a chal-
lenging problem from a fundamental point of view. Most
of the time, the conventional simulation methods cannot
easily be adopted due to the highly heterogeneous nature
of the system, the difficulties associated with the applica-
tion of a voltage between two electrodes, and the large
time and length scales required to simulate a representa-
tive portion of the electrochemical interface.2,3

In the absence of chemical reactions, intermolecular
interactions in bulk electrolytes are often well handled
using molecular mechanics (MM) approaches.4 The main
difficulty is therefore to account for the electronic struc-
ture of the metal. For this purpose, performing quantum
mechanics (QM) calculations, most notably at the density
functional theory (DFT) level, appears as the most ac-
curate available approach. Although it is possible to use
DFT to calculate atomic forces within a molecular dynam-
ics (MD) simulation, the large computational cost limits
its application to relatively simple systems.5–7 Typically,
having an electrolyte including a salt at finite concentra-
tion remains a hurdle for such simulations. A possible
solution is to use a purely classical approach, which leads

a)Electronic mail: andrea.grisafi@sorbonne-universite.fr
b)Electronic mail: mathieu.salanne@sorbonne-universite.fr

to the family of constant-potential MD simulations.8 In
this case, the polarization of the metal is treated using
fluctuating atomic Gaussian charges, which depend on
both the electrolyte positions and the applied potential.
This approach was refined to effectively include some
electronic structure effects,9,10 but the electrode repre-
sentation remains highly simplified when compared to an
explicit QM-based method.

An alternative is to mix the QM/MM approaches by
partitioning the system. In fact, by performing the QM
calculation on the electrode subsystem only, it is possi-
ble to greatly decrease the computational burden. Such
calculations were for example used to study supercapaci-
tors,11 metal-organic frameworks,12, electrowetting,13 and
electrocatalytic phenomena.14–16 There are however sev-
eral limitations. Firstly, performing a QM calculation at
every timestep of a MD simulation (≈ 1fs) is not very
efficient, so that multi-stepping techniques have to be
introduced by updating the QM system every few thou-
sands steps. Secondly, while the energy of the system
can be recovered by adequately summing up the energies
of the sub-systems, the same is not always true for the
forces. In particular, calculating the electrostatic forces
acting on the MM subsystem due to the QM subsystem
is not straightforward. The problem is generally tackled
by introducing equilibrated partial charges on the elec-
trode atoms,17 which are computed following a quadratic
functional form of the electrostatic energy. Beside the
assumed quadratic approximation, this type of charge
partitioning is not rigorously defined, so that some impor-
tant physical effects associated with the local anisotropy
of the charge distribution may be lost in the process.
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2

In this work, we introduce a data-driven method that
allows us to improve both the efficiency and the accu-
racy of QM/MM simulations of electrochemical interfaces.
This method is grounded on recent developments in a
machine-learning (ML) approach capable of predicting
the electronic charge density of metal electrodes, includ-
ing its non-local response to far-field perturbations.18

In particular, we implement an interface between the
SALTED ML program19 and the MetalWalls MD code
for electrochemical simulations.20 As a key aspect of this
interface, we provide an efficient calculation of the electric
field generated by the predicted electronic charge distri-
bution, which we derive following a spherical harmonics
generalization of the Ewald summation method. In turn,
this allows us to compute accurate electrostatic forces
acting on the electrolyte atoms, positioning our method in
stark contrast with approaches that are based on partial
charges. By shifting the largest share of the computa-
tional costs on the learning stage, simulation times of the
order of nanoseconds can be achieved with a relatively
small overhead compared to conventional full MM simu-
lations. As an application of our method, we study the
interface between a gold electrode and an aqueous solu-
tion of NaCl at 5 M concentration under applied electric
potentials of 0 and 1 V. The structure of the liquid phase
as well as interfacial properties such as the capacitance
are calculated and compared to previous approaches.

II. GENERAL METHOD

We adopt a finite-field simulation setup, where a single
electrode is put in contact with an electrolyte solution
under three-dimensional periodic boundary conditions.
This setup can be conveniently used to simulate a pair
of equivalent electrodes that are kept at a constant po-
tential difference.21 In particular, a uniform and constant
electric field, εz, is applied along the direction normal
to the electrode surface, such that ∆V = −εz Lz, with
Lz the length of the simulation box, corresponds to a
physical electrochemical cell potential. The representa-
tion of the electrode/electrolyte interface follows the ap-
proach already presented in Ref. 18. Specifically, we adopt
a quantum-mechanics/molecular-mechanics (QM/MM)
strategy, where an ab initio representation of the electrode
is used in combination with a classical representation of
the electrolyte defined via fixed Gaussian charges. We aim
to rely on SALTED predictions of the electrode charge
density in order to compute accurate electrostatic forces
that can be used to drive the dynamics of the system.

A. Representation of the electrode charge density

Within SALTED, the electronic charge density of the
electrode is represented as a linear spherical harmonics ex-
pansion that follows density-fitting (DF) approximations

commonly adopted in electronic-structure methods:22,23

ne(r) =
∑
inlm

cnlmi
∑
u

Rnl(|r − ri − u|)Y lm( ̂r − ri − u) .

(1)
Here, the index i identifies the electrode atoms, nlm
the basis function indexes, while u represent the three-
dimensional translation vectors over the periodic images
of the system. We assume that radial auxiliary functions

are of Gaussian-type, i.e., Rnl ∝ rle−r
2/(2σ2

n), while Y lm
are defined as orthonormalized real spherical harmonics.

Reference calculations of ne in the presence of the
classical electrolyte field are performed using the CP2K
simulation program.24 Specifically, quantum-mechanical
calculations are performed at the Kohn-Sham DFT level
using the PBE functional25 with DZVP-MOLOPT-SR
basis sets26 and GTH pseudo-potentials.27 To extract the
expansion coefficients, cnlmi , we adopt a density-fitting
approximation that makes use of a truncated Coulomb
metric,28,29 a choice that is especially suitable to represent
the electrostatic properties of the system.

The total electrode charge density is obtained by adding
to ne the effective nuclear-charge density associated with
the classical local part of the GTH pseudopotential. For
each electrode atom i, this is simply defined by an isotropic
Gaussian charge, i.e.,

nion(r) =
Zeff√

8π3/2 r3
loc

exp

[
−1

2

(
r

rloc

)2
]
, (2)

where Zeff is the effective nuclear charge of the electrode
atoms and rloc is the local pseudopotential cutoff.

B. SALTED electrode model

In analogy with the prescription adopted in Ref. 18,
we will assume that the positions of the electrode atoms
are kept fixed, so that the learning can be focused on
the sole electrolyte-induced variations of the electrode
charge density. Moreover, as the applied voltage ∆V
is typically of the order of a few volts over a cell that
covers several nanometers along z, we can further assume
that the external electric field, defined as εz ≡ −∆V/Lz,
introduces a small linear perturbation to ne. Under these
assumptions, we can conveniently define the SALTED
prediction target as the following density difference,

∆ne(r) = ne(r; εz)− n0
e(r; εz) , (3)

where n0
e is the electron density of the isolated electrode

under εz, used as a constant baseline for the regression
procedure. Upon training, n0

e is eventually added back to
the predicted ∆ne in order to recover the total electron
density ne. Notably, the possibility of treating the exter-
nal field as a small perturbation implies that ∆ne can
be considered independent from εz. From a ML point of
view, this represents a great advantage, as it allows us to
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3

simulate a continuum spectrum of cell potentials without
the need to retrain a new SALTED model whenever a
different value of εz is applied.

Consistently with the density-fitting metric used to gen-
erate the reference quantum-mechanical data, SALTED
models can be trained by minimizing a loss function that
makes use of a (truncated) Coulomb metric.30 In compact
notation, this reads as follows,

L(w) =

N∑
I=1

〈
nML
e (w)− nDF

e

∣∣ 1

r − r′
∣∣nML
e (w)− nDF

e

〉
I

=

N∑
I=1

[
cML
I (w)− cDF

I

]T
JI
[
cML
I (w)− cDF

I

]
,

(4)

where N is the number of training configurations. In the
second line of this equation, J is the matrix of 2-centers
Coulomb integrals between the auxiliary functions, i.e.,
〈i′n′l′m′| r−1 |inlm〉, as computed by CP2K, cDF and cML

are the density-fitting and machine-learning vectors of
density coefficients associated with the expansion of ∆ne,
respectively, and w is the vector of regression weights. In
practice, a regularization term is also added to the loss
function to avoid overfitting; we refer to Ref. 22 for an
in-depth discussion of the SALTED method.

Following Ref. 18, the symmetry-adapted kernels used
for the approximation of the cML density coefficients can
be defined to include long-range information. In par-
ticular, kernel functions between atomic environments
are constructed from long-distance equivariant (LODE)
structural descriptors,31–33 as implemented in the “ras-
caline” atomistic representations package.34 This feature
of the method is fundamental to capture the non-local
variations of the electron density induced by electrolyte
charges that are located arbitrarily far from the electrode
surface.18 We remark that, unlike charge equilibration
schemes, this is made possible without relying on any
self-consistent procedure. In fact, the use of long-range
descriptors allows us to learn directly the self-consistent
electronic polarization of the system, thus bypassing the
need to incorporate self-consistency at the ML level. This
would still hold true in the scenario where the electrolyte
is also undergoing an electronic polarization.

III. ELECTRIC FIELD CALCULATION

From the predicted electrode charge distribution, a
nontrivial problem is that of performing an efficient cal-
culation of the electric field needed to drive the dynamics
of the electrolyte. To achieve this goal, we provide in
this section an original analytical derivation of the Ewald
summation method, properly extended to account for the
spherical harmonics expansion of the electron density.

Following the representation of Eq. (1), we start by
introducing a fictitious electron density, newald

e , obtained
by combining the physical density coefficients, cnlmi , with

a new set of smooth radial functions, Rewald
nl . Crucially,

these functions are defined from a Gaussian width σewald

that is larger than those entering the definition of Rnl.
Following the conventional Ewald summation method, we
then separate from the electron density a charge-neutral
(screened) contribution, defined as

nscreen
e (r) ≡ ne(r)− newald

e (r) . (5)

By construction, the electric field generated by nscreen
e is

short-ranged, and can be efficiently computed in real space.
Conversely, the remaining (unscreened) newald

e density
will contribute to a long-range electric field that can be
efficiently computed in reciprocal space. In what follows,
we outline the derivation of both electronic and nuclear
contributions to the electric field, as newly implemented
in the MetalWalls simulation program.

A. Short-range electronic contribution

Starting from nscreen
e , the short-range part of the

Hartree electronic potential can be analytically computed
in real space by relying on the Laplace expansion of the
Coulomb operator. After some calculations, detailed in
the Supplementary Material, we obtain

φSR
H (r) =

∫
R3

dr′
nscreen
e (r′)

|r − r′|

= 4π

Nat∑
i=1

∑
nlm

cnlmi
2l + 1

∑
u

Ylm( ̂r − ri − u)

×
[
I<nl(|r − ri − u|)
|r − ri − u|l+1

+ |r − ri − u|lI>nl(|r − ri − u|)
]
.

(6)

Here, Inl indicate radial integrals performed within (<)
and outside (>) a sphere of radius r ≡ |r − ri − u|:

I<ln(r) =

∫ r

0

ds s2+l
[
Rnl(s)−Rewald

nl (s)
]
,

I>ln(r) =

∫ ∞
r

ds s1−l [Rnl(s)−Rewald
nl (s)

]
.

(7)

While the individual terms of I>ln are quickly vanishing for
r →∞, the requirement that I<ln vanishes sufficiently fast
for increasing values of r implies that the normalization
of the Ewald radial functions must be chosen so that to
satisfy the following equality:∫ ∞

0

ds s2+lRewald
nl (s) =

∫ ∞
0

ds s2+lRnl(s) . (8)

This choice guarantees that both types of radial integrals
in Eq. (7) tend to zero with superexponential rapidity,
thus dominating over the algebraic terms of the order of
1/rl+1 and rl in Eq. (6). Crucially, this screening effect
allows us to compute the short-range part of the Hartree
potential by only collecting contributions of electrode
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4

atoms that fall within a finite cutoff distance. In particu-
lar, we select a cutoff of rlcut = 4

√
2 + l σEwald, which is

defined to account for the spatial range covered by the
Ewald Gaussian-type functions.

To compute the electric field as ESR
H = −∇φSR

H , it is
convenient to adopt the substitution r− ri−u ≡ (r, θ, φ)
in Eq. (6), so that to make use of the gradient in spherical
coordinates, i.e.,

∇̃ ≡
(
∂

∂r
,

1

r

∂

∂θ
,

1

r sin θ

∂

∂φ

)
.

Upon this change of variables, the contribution to the
short-range part of the electric field brought by each
electrode atom can be analytically computed. In compact
notation, we have

ESR
H (r) = 4π

Nat∑
i=1

∑
nlm

cnlmi
2l + 1

∑
u

U( ̂r − ri − u)

· ∇̃
[(

1

rl+1
I<ln(r) + rl I>ln(r)

)
Y lm(θ, φ)

]
,

(9)

where

U =

sin θ cosφ cos θ cosφ − sinφ

sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0

 , (10)

represents the unitary transformation matrix between the

Cartesian and spherical unit vectors (x̂, ŷ, ẑ)→ (r̂, θ̂, φ̂),

such that ∇ = U · ∇̃ recovers the Cartesian gradient.
Explicit analytical expressions of radial integrals and
spherical harmonics derivatives are reported in the Sup-
plementary Material.

B. Long-range electronic contribution

From a smooth choice of newald
e , the long-range part

of the Hartree potential can be conveniently written
as a plane-waves expansion compatible with the three-
dimensional periodicity of the system:

φLR
H (r) =

∑
k 6=0

4π

k2
ñewald
e (k) eik·r . (11)

Note that we excluded the k = 0 term because of the
assumed charge neutrality of the overall system, i.e., elec-
trons and nuclei. From the expansion of the plane wave
in spherical harmonics, the Fourier components of the
electron density are found to get the form of

ñewald
e (k) =

1

Ω

∫
Ω

dr e−ik·rnewald
e (r)

=
4π

Ω

Nat∑
i=1

e−ik·ri

∑
nlm

cnlmi (−i)lY lm(k̂) Înl(k) ,

(12)

where Ω is the cell volume. Here, Înl are defined as the
following radial integrals,

Înl(k) =

∫ ∞
0

dr r2jl(kr)R
ewald
nl (r) , (13)

with jl a spherical Bessel function of the first kind. Upon
plugging Eq. (12) into Eq. (11), the final analytical ex-
pression for the long-range Hartree potential is

φLR
H (r) =

32π2

Ω

half∑
k 6=0

1

k2

Nat∑
i=1

∑
nlm

cnlmi Înl(k)Y lm(k̂)

×

{
(−1)

l
2 cos [k · (r − ri)] , l%2 = 0

(−1)
l+3
2 sin [k · (r − ri)] , l%2 6= 0

.

(14)

Note that we exploited the real nature of the electron den-
sity to sum k-vectors only over a semisphere in reciprocal
space of radius kcut. In practice, kcut is indirectly defined
by the chosen value of σEwald, following the numerical
convergence criterion implemented in MetalWalls.35

Upon Cartesian differentiation of Eq. (14), the long-
range part of the electronic electric field is finally given by

ELR
H (r) =

32π2

Ω

half∑
k 6=0

k

k2

Nat∑
i=1

∑
nlm

cnlmi Înl(k)Y lm(k̂)

×

{
(−1)

l
2 sin [k · (r − ri)] , l%2 = 0

(−1)
l+1
2 cos [k · (r − ri)] , l%2 6= 0

.

(15)

An explicit expression of the radial integrals, together
with additional implementation details, are reported in
the Supplementary Material.

C. Pseudopotential nuclear contribution

From Eq. (2), computing the nuclear contribution to
the electric field is well established,36 and it reduces to
the problem of treating a set of classical Gaussian charges.
Following the conventional Ewald method, this amounts
to compute a screened short-range potential as

φSR
ion(r) =

Zeff

r

[
erf

(
r√

2rloc

)
− erf

(
r√

2σewald

)]
,

(16)
and a long-range contribution in reciprocal space, whose
Fourier components are given by

φ̃LR
ion(k) =

4π

Ω

Zeff

k2
exp

(
−1

2
k2σ2

ewald

)
. (17)

For consistency, we select a value of σewald equivalent to
that adopted for the electronic field calculation.

The short-range part of the electric field can be com-
puted by relying on the same transformation matrix be-
tween Cartesian and spherical unit vectors already in-
troduced in Eq. (10). Considering that Eq. (16) has no
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5

angular components, we can write

ESR
ion(r) =

Nat∑
i=1

∑
u

U( ̂r − ri − u) ·
[
− ∂

∂r
φSR

ion(r), 0, 0

]
.

(18)

The long-range part of the nuclear electric field is finally
computed as follows,

ELR
ion(r) = 2

half∑
k 6=0

k φ̃LR
ion(k)

Nat∑
i=1

sin [k · (r − ri)] . (19)

IV. SALTED/METALWALLS INTERFACE

Upon implementing the electric field just derived
into the MetalWalls molecular dynamics engine, the
SALTED/MetalWalls simulation can be easily run thanks
to a Python-based interface between the two programs.
In what follows, we report a description of the simulation
workflow, including pseudocode of the relevant steps.

1. Import SALTED and MetalWalls modules:

import salted, metalwalls

2. Load pretrained SALTED information:

salted info = salted.init pred.build()

3. Load isolated electrode information:

structure = ase.io.read("init.xyz")

coords electrode =
structure.get positions()[640:]

coefs 0 = np.loadtxt("coefs isolated.txt")

4. Define MetalWalls variables.

my system =
metalwalls.mw system.MW system t()

my algorithms =
metalwalls.mw algorithms.MW algorithms t()

my parallel =
metalwalls.mw parallel.MW parallel t()

5. Initialize electrode charge density:

coords electrolyte = my system.xyz ions

coords = np.vstack((coords electrolyte,
coords electrode))

structure.set positions(coords)

my system.coefs = salted.salted prediction
.build(salted info,structure)

my system.coefs += coefs 0

6. Initialize MetalWalls simulation:

metalwalls.mw tools.run step(my system,
my parallel, my algorithms, 0, 0,
do output, step output frequency)

7. Start the dynamics:

for step in range(my system.num steps):

8. Update electrolyte atomic positions:

metalwalls.mw tools.step setup(my system,
my algorithms, my parallel, step)

coords electrolyte = my system.xyz ions

coords = np.vstack((coords electrolyte,
coords electrode))

structure.set positions(coords)

9. Update electrode charge density:

my system.coefs = salted.salted prediction
.build(salted info,structure)

my system.coefs += coefs 0

10. Compute atomic forces:

metalwalls.mw tools.step compute forces
(my system, my parallel, step)

11. Continue from point 8.

Importantly, the electrostatic forces acting on the elec-
trolyte atoms j are computed at step 10 as follows,

f j = qj E(rj) , (20)

where qj are the electrolyte partial atomic charges, while

E = ESR
H + ELR

H + ESR
ion + ELR

ion , (21)

is the total electric field generated by the predicted elec-
trode charge distribution, as decomposed from the deriva-
tion carried out in Sec. III.

V. RESULTS

To test the simulation workflow previously described,
we revisit the example of ionic capacitor introduced in
Ref. 18. In particular, we consider a Au(100) electrode
made of 4 unit cell repetitions along the xy plane and 7
atomic layers along z, which is put in contact with an
aqueous solution of NaCl 5 M under 3D periodic boundary
conditions (Fig. 1). The electrolyte is made of 200 water
molecules and 20 NaCl ions pairs, which, together with
the gold electrode, occupy a box size of Lx/y = 11.54 Å

and Lz = 64.34 Å. Classical electrolyte interactions are
defined using a TIP4P/2005 water model37 with Na+

and Cl− Lennard-Jones parameters taken from Ref. 38;
fixed classical atomic charges are given by qM = −1.1128,
qH = +0.5564 and qNa/Cl = ±1.0.

Following the discussion reported in Sec. II, we apply a
uniform electric field along the direction orthogonal to the
Au(100) surface, allowing us to mimic a pair of equivalent
gold electrodes that are kept at a constant voltage drop.
In particular, we consider two different cell potentials,
namely ∆V = 0 V and ∆V = 1 V, which correspond to
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FIG. 1. Representation of an ionic capacitor made of a Au(100)
gold electrode put in contact with a water/NaCl electrolyte
solution under 3D periodic boundary conditions. According to
Ref. 21, a finite electric field εz is applied along z to mimic a
voltage drop of ∆V = −εzLz between two parallel electrodes.

applied fields of εz = 0.0 V/Å and εz = 0.016 V/Å, respec-
tively. Reference QM/MM calculations are performed for
2000 uncorrelated frames selected from a classical Metal-
Walls trajectory obtained running a finite-field simulation
at a cell voltage of 1 V. The basis set used for the gold
electron density representation is defined from an uncon-
tracted version of the automatically generated auxiliary
functions implemented in CP2K.39 In particular, we adopt
an auxiliary basis set that includes up to lmax = 4 spheri-
cal harmonics, accounting for a total of 182 Gaussian-type
functions per gold atom.

A. Validation of SALTED electrode model

From the QM/MM dataset so generated, SALTED
models of the electrode charge density are trained fol-
lowing the discussion of Sec. II-B. In practice, a subset
of M = 400 gold atomic environments is selected to re-
cast the learning problem into a low dimensional space.22

Symmetry-adapted kernel functions are computed from
LODE descriptors that include both atom-density and
potential-like structural features.18,32 In this work, these
are defined using Gaussian widths of σ = 0.5 Å and
σ = 2 Å, respectively, together with a radial cutoff of
rcut = 10 Å. To validate the model, we select 1600 random
configurations for training and retain the remaining 400
for testing. The prediction error is measured consistently
with the definition of the SALTED loss function reported
in Eq. (4). In particular, we compute the percentage root
mean square error as

%RMSE =

√
Ltest(w)

σ2
test

× 100 , (22)

where Ltest(w) follows from Eq. (4), while

σ2
test =

Ntest∑
I=1

[
cDF
I

]T
JI c

DF
I , (23)

represents the variance of the learning target computed
over the test set. Learning curves are reported in the
Supplementary Material.
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SALTED
KS-DFT

a)

b)

FIG. 2. Electrode charge density response (a) and derived
electric field (b) induced by the classical charges of a test elec-
trolyte configuration. Red lines: SALTED prediction results.
Black dashed lines: Kohn-Sham DFT reference. Shaded gray
area indicates the region occupied by the gold electrode.

With as few as 200 training structures, the SALTED
error saturates at ∼3% RMSE, demonstrating the capabil-
ity of the model of capturing the non-local fluctuations of
the electronic charge induced by different spatial arrange-
ments of the electrolyte atoms. This result is confirmed
by the excellent agreement between the Kohn-Sham and
predicted electron density variation ∆ne, as depicted in
Fig. 2-a for a representative test configuration. Despite
the slightly less accurate prediction of the charge density
profile with respect to what reported in Ref. 18, we find
that the use of a Coulomb metric in the SALTED loss
function allows us to obtain a highly accurate electric
field. This is illustrated in Fig. 2-b, where the longitudi-
nal variation of the predicted electric field with respect
to the field of the isolated electrode, ∆Ez, is reported
against the quantum-mechanical reference. Notably, we
observe that the agreement with DFT is especially good
outside the electrode region, being the most relevant for
driving the dynamics of the electrolyte.

As an ultimate proof of the model accuracy, we com-
pute the predicted Cartesian components of the electro-
static atomic forces associated with the 400 electrolyte
configurations used for testing, as compared against the
quantum-mechanical reference. Both reference and pre-
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7

FIG. 3. Correlation plot between the predicted and reference
electrostatic forces generated by the electric field of a gold
electrode, as computed over 256’000 electrolyte atoms belong-
ing to 400 test configurations. Red dots: SALTED prediction.
Black dashed line: KS-DFT reference. Predicted forces are as-
sociated with a RMSE = 1.0 meV/Å over a standard deviation
of σf = 141.9 meV/Å.

dicted forces are computed as in Eq. (20), starting from
the DFT and SALTED electron-density coefficients, re-
spectively. Consistently with the high level of statistical
correlation shown in Fig. 3, we obtain a remarkably small
root mean square error of 1.0 meV/Å, which amounts to
about 0.7% of the standard deviation of the DFT forces
in the test set. By and large, these results highlight the
intrinsic effectiveness of a machine learning model that
has the electron density as a prediction target to compute
the electrostatic properties of the system.

B. Simulation of ionic capacitor

We now report the results of the data-driven molecular
dynamics, which is run following the simulation workflow
described in Sec. IV. Finite-field simulations associated
with applied cell potentials of ∆V = 0 V and −1 V are
performed at room temperature in timesteps of 2 fs using
a Nosé-Hoover thermostat.40 Predictions of the electro-
static atomic forces are obtained from a SALTED model
trained on N = 2000 configurations, as validated from
the discussion previously carried out. By parallelizing the
calculation over an Intel i9-12900 CPU, we find that each
step of the dynamics takes about 0.5 s, corresponding to
a speedup > 103 with respect to first-principles QM/MM
calculations. This substantial increase in computational
efficiency results to be decisive for achieving timescales
of the order of nanoseconds, thus making it possible to
access the slow dynamics of the electrolyte while preserv-
ing a highly accurate representation of electrode charge
density. For both applied voltages, in particular, we are
able to reach long simulation times of ≈ 3 ns.

6 8 10 12 14 16
z [Å]

0.00

0.05

0.10

0.15

0.20

O
[Å

3
]

MetalWalls
SALTED/MetalWalls

FIG. 4. Longitudinal density profiles of oxygen atoms on the
right hand side of the ionic capacitor studied in this work,
subject to a null cell potential of ∆V = 0 V. Dashed line: clas-
sical MetalWalls simulation. Full line: SALTED/MetalWalls
simulation. Shaded gray area indicates the gold electrode.

It is instructive to compare our results against those of
a classical MetalWalls simulation. In this case, the elec-
tronic polarization of the gold electrode is approximated
through a charge-equilibration scheme that makes use of
fluctuating Gaussian charges.35 Specifically, we represent
the partial charges on the gold atoms through a Gaussian
width of σMW = 1.06 Å, and simulate classical trajecto-
ries for a total time that is, once again, of about 3 ns.
We note that similar simulations are only 50 times faster
than those performed through our method. This is re-
markable if considering that, in addition to the SALTED
predictions, quantum electrostatic forces are computed
from the charge density generated by 182 spherical har-
monics functions per gold atom, rather than from a single
isotropic Gaussian function.

Regardless from the applied potential, we find that the
thermal distribution of water molecules obtained through
our method displays a systematic shift with respect to the
result of a classical simulation. In particular, we observe
a distancing of about 0.5 Å of the first adsorption peak,
which comes along with overall smoother density profiles.
This is shown in Fig 4 in the case of a vanishing applied
voltage, indicating that a classical electrode model tends
to give a stiffer potential of mean force with respect to
what expected from a first-principles approach.

More striking differences between the classical and data-
driven simulations emerge when looking at the results
obtained under an applied potential ∆V = 1 V. As an
example, we report in Fig. 5-a the ionic density profiles
of Na+ and Cl− associated with the screening of the
negatively charged metal surface. While the distribution
of chlorine shows an overall agreement between the two
methods, a qualitative difference is found in the adsorption
of sodium cations. In particular, a double pick is produced
as a result of the classical simulation, which does not
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a)

b)

FIG. 5. Longitudinal density profiles of sodium chloride (a),
and hydrogen atoms (b) at the negatively charged electrode
surface of the ionic capacitor studied in this work, subject to
an applied cell potential of ∆V = 1 V. Dashed lines: classical
MetalWalls simulation. Full lines: SALTED/MetalWalls simu-
lation. Red and blue color codes refer to Na+ and Cl− ions,
respectively. Shaded blue area indicates the gold electrode.

appear when using SALTED to predict the quantum-
mechanical response of the electrode. This artifact of
the classical model can be associated with the rigidity by
which the distribution of the metal charge is represented,
which mostly affects the accuracy of the electric field in
the proximity of the gold electrode. In fact, it has already
been shown that, depending on the chosen value of σMW,
MetalWalls simulations can yield substantial variations
in the distribution of Na+ at the Au(100) surface.41

In addition to the ionic profiles, a clear-cut discrepancy
is also observed in the distribution of hydrogen atoms;
this is illustrated in Fig. 5-b. Interestingly, we find that a
prepeak is produced by the classical simulation at about
2 Å from the gold slab. This prepeak is associated with
an occasional reorientation of the water molecules that
expose the hydrogen atoms towards the electrode, a phe-
nomenon that is however not predicted by our method.
This is confirmed by an analysis of the orientation of the
water dipoles with respect to the normal to the electrode
surface, as reported in the Supplementary Material.

MetalWalls: 0 V
SALTED/MetalWalls: 0 V

MetalWalls: 1V
1VSALTED/MetalWalls:

0.5 1.0 1.5 2.0 2.5 3.0
Simulation time [ns]

0.5

0.0

0.5

1.0

1.5

Q
[e

]

FIG. 6. Evolution of the electrode surface charge in the ionic
capacitor studied in this work. Black and blue lines refer
to SALTED/MetalWalls simulations at 0 and 1 V, respec-
tively. Gray and light blue lines refer to classical MetalWalls
simulations at 0 and 1 V, respectively.

A further benefit of driving the dynamics of the electro-
chemical interface through electron-density predictions is
that of giving access to the total charge ±Q accumulated
at the electrode surfaces. In a finite-field simulation setup,
Q can be computed by integrating ∆ne from the mid-
dle of the metal slab to the classical electrolyte region.18

In Fig. 6, we report the time evolution of Q, computed
every picosecond, for both null and finite cell potentials.
When considering the results at ∆V = 0 V, we observe
a fluctuation of the electrode charge around 0 for both
classical and SALTED-based simulations. This is to be
expected from the symmetry of the isolated metallic slab,
implying that no net polarization can be found at ther-
mal equilibrium without an externally applied electric
bias. Conversely, simulations run at ∆V = 1 V lead to
a finite average charge 〈Q〉. In particular, we find that
the computed classical value of 〈Q〉 is about twice as
large than what predicted through our method, i.e., 1.16e
versus 0.63e, respectively. This difference in the system’s
electric capacitance is due to a substantial overestimation
of the electronic polarization of the metallic slab obtained
through the classical model, a result that was already
hinted in Ref. 18 when comparing predictions of ∆ne per-
formed on a test classical trajectory. Although a better
agreement might be obtained by tuning the value of the
classical Gaussian width σMW, the observed discrepancy
suggests that disposing of a physically sound electrode
model is preferable to obtain reliable results.

In addition to 〈Q〉, having access to the thermal fluc-
tuations of Q allows us to provide an estimate of the
differential capacitance associated with the formation of
the electrical double layer:42

CEDL
diff = β

〈
(Q− 〈Q〉)2

〉
. (24)
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At ∆V = 0 V, a similar differential capacitance is ob-
tained for both type of simulations, resulting in a value of
CEDL

diff = 8.9µF/cm2 for the classical model, and a slightly
reduced value of CEDL

diff = 7.4µF/cm2 for the data-driven
model. This discrepancy is magnified when looking at
the results at ∆V = 1 V. In line with what already
computed in Ref. 18, the classical simulation is associ-
ated with a value of CEDL

diff = 10.1µF/cm2. Conversely,
our SALTED/MetalWalls simulation comes along with
much more attenuated charge fluctuations, yielding a dif-
ferential capacitance that is about twice as small, i.e.,
CEDL

diff = 4.6µF/cm2. While simulations longer than 3 ns
would be required to provide a tighter convergence of
CEDL

diff , these results remark, once again, the need of intro-
ducing an accurate representation of the electrode in the
description of the electrochemical interface.

VI. CONCLUSIONS

The presented method represents a relevant example
of how to incorporate a machine-learning approach that
addresses the prediction of electronic-structure properties
into the atomistic study of complex materials. By provid-
ing a formally rigorous integration between the SALTED
and MetalWalls programs, we have shown how to extend
the reach of applications of QM/MM approaches that aim
at preserving a quantum description of metal electrodes in
the simulation of electrochemical interfaces. Most notably,
the possibility of driving the dynamics of the electrolyte
over nanoseconds timescales represents a great leap for-
ward towards obtaining a thermally relaxed, yet accurate,
description of the electrical double layer.

By taking an ionic capacitor as an example, we have
found that disposing of a quantum treatment of the elec-
trode charge density represents a critical aspect for pre-
dicting the structural properties of the electrolyte at the
interface. In particular, our results remark how a classical
electrode model cannot reproduce the complex nature of
the system’s electrostatics close to the metal surface. This
is not surprising considering that strong electric fields are
known to be encountered whenever an electrolyte atom
penetrates the electronic cloud of the metal electrode,43

an effect that is especially difficult to include through
the use of classical atomic charges. In this regard, an
interesting question will be that of understanding how our
method compares against data-driven charge equilibration
schemes based on partial charges, where a ML represen-
tation of atomic electronegativies,44 electric dipoles,45

and/or polarizabilities,46 is adopted to predict the electro-
statics of the system. We mention, in particular, a recent
ML interface with MetalWalls that can be used to refine
the atomic Gaussian charges of the electrode by relying
on a linear density-response formalism.47

In perspective, training SALTED on the electron den-
sity of different types of (possibly defected) metal surfaces
will make it possible to exploit the transferability of the
ML model to predict the electrical double layer structure

of realistic energy materials. Moreover, a notable exten-
sion of our method could involve promoting redox active
molecular species to the QM region, thus enabling the
simulation of electrochemical reactions in the presence
of an explicit ionic solution. In this context, an impor-
tant aspect will be that of integrating our approach with
already existing ML interatomic potentials that purely
rely on the local structural information around the atoms
of the system.48,49 This possibility would be especially
attractive both for studying the charging mechanisms in
pseudocapacitive materials,50 as well as for rationalizing
the role of the electrolyte in electrocatalytic processes.51

Furthermore, disposing of a three-dimensional map of the
electronic charge density will constitute an added value
of our method in view of predicting the regioselectivity
of the catalyst to electron-transfer phenomena.

SUPPLEMENTARY MATERIAL

See the Supplementary Material for a complete deriva-
tion of the electronic electric field, together with comple-
mentary results.
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S. Bonella, and M. Salanne, J. Chem. Phys. 157, 184801 (2022).

21T. Dufils, G. Jeanmairet, B. Rotenberg, M. Sprik, and M. Salanne,
Phys. Rev. Lett. 123, 195501 (2019).

22A. Grisafi, A. M. Lewis, M. Rossi, and M. Ceriotti, Journal of
Chemical Theory and Computation 19, 4451 (2023).

23A. M. Lewis, A. Grisafi, M. Ceriotti, and M. Rossi, Journal of
Chemical Theory and Computation 17, 7203 (2021).

24T. D. Khne, M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. See-
wald, F. Stein, T. Laino, R. Z. Khaliullin, O. Schtt, F. Schiff-
mann, D. Golze, J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian,
V. Weber, U. Bortnik, M. Taillefumier, A. S. Jakobovits, A. Laz-
zaro, H. Pabst, T. Mller, R. Schade, M. Guidon, S. Andermatt,
N. Holmberg, G. K. Schenter, A. Hehn, A. Bussy, F. Belleflamme,
G. Tabacchi, A. Gl, M. Lass, I. Bethune, C. J. Mundy, C. Plessl,
M. Watkins, J. VandeVondele, M. Krack, and J. Hutter, The
Journal of Chemical Physics 152, 194103 (2020).

25J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

26J. VandeVondele and J. Hutter, The Journal of Chemical Physics
127, 114105 (2007).

27S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703
(1996).

28M. Guidon, J. Hutter, and J. VandeVondele, Journal of Chemical
Theory and Computation 5, 3010 (2009), pMID: 26609981.

29A. Bussy, O. Schtt, and J. Hutter, The Journal of Chemical
Physics 158, 164109 (2023).

30K. R. Briling, A. Fabrizio, and C. Corminboeuf, The Journal of
Chemical Physics 155, 024107 (2021).

31A. Grisafi and M. Ceriotti, J. Chem. Phys. 151, 204105 (2019).
32A. Grisafi, J. Nigam, and M. Ceriotti, Chem. Sci. 12, 2078 (2021).
33K. K. Huguenin-Dumittan, P. Loche, N. Haoran, and M. Ceriotti,

The Journal of Physical Chemistry Letters 14, 9612 (2023).
34G. Fraux, P. Loche, S. Kliavinek, K. K. Huguenin-Dumittan,

D. Tisi, and A. Goscinski, “rascaline,” .
35A. Marin-Laflche, M. Haefele, L. Scalfi, A. Coretti, T. Dufils,

G. Jeanmairet, S. K. Reed, A. Serva, R. Berthin, C. Bacon,
S. Bonella, B. Rotenberg, P. A. Madden, and M. Salanne, Journal
of Open Source Software 5, 2373 (2020).

36D. Marx and J. Hutter, Ab Initio Molecular Dynamics: Ba-
sic Theory and Advanced Methods (Cambridge University Press,
2009).

37J. L. F. Abascal and C. Vega, The Journal of Chemical Physics
123, 234505 (2005).

38T. Yagasaki, M. Matsumoto, and H. Tanaka, Journal of Chemical
Theory and Computation 16, 2460 (2020).

39G. L. Stoychev, A. A. Auer, and F. Neese, Journal of Chemical
Theory and Computation 13, 554 (2017).
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