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Abstract:

Behavioral differences between men and women have been studied extensively, as have
differences in brain anatomy. However, most studies have focused on differences in gray
matter, while white matter has been much less studied. We conducted a comprehensive
study of 77 deep white matter tracts to analyze their volumetric and microstructural variability
between men and women in the full Human Connectome Project (HCP) cohort of 1065
healthy individuals aged 22-35 years. We found a significant difference in total brain volume
between men and women (+12.6% in men), consistent with the literature. 16 tracts showed
significant volumetric differences between men and women, one of which stood out due to a
larger effect size: the corpus callosum genu, which was larger in women (+7.3% in women, p
= 5.76x10"). In addition, we found several differences in microstructural parameters
between men and women, both using standard Diffusion Tensor Imaging (DTI) parameters
and more complex microstructural parameters from the Neurite Orientation Dispersion and
Density Imaging (NODDI) model, with the tracts showing the greatest differences belonging
to motor (cortico-spinal tracts, cortico-cerebellar tracts) or limbic (cingulum, fornix,
thalamo-temporal radiations) systems. These microstructural differences may be related to
known behavioral differences between the sexes in timed motor performance,
aggressiveness/impulsivity, and social cognition.






Introduction:

In recent decades, the study of brain differences between men and women has been a topic
of controversy. This research stems from and continues the logical progression of cognitive
and behavioral studies examining purported sex differences conducted in the latter part of
the 20th century. Following extensive debate, a global consensus has emerged suggesting
that men and women function similarly across the vast majority of brain functions, with only a
few specific exceptions (1—4): men exhibit slightly faster motor responses in time-limited
tasks, a greater propensity towards aggressive behavior and violence, and a higher level of
sexual interest, whereas women tend to have higher social interests and abilities. The cause
of these differences remains under debate, with questions lingering regarding whether they
arise from distinct social expectations based on gender, variances in brain anatomy, or a
combination of both factors.

Numerous studies have investigated brain anatomical differences between men and women,
as summarized in three recent meta-analyses (5-7). One of the primary distinctions is the
larger intracranial volume (8) and total brain volume (9) observed in men, a phenomenon
evident not only in adults but also in children and adolescents (9), with a relative difference
of 9 to 12% between men and women. This variance in total brain volume necessitates
consideration when examining and comparing regional brain volumes. Many initially reported
differences, such as a purportedly higher white matter/gray matter ratio in women (10,11),
became either insignificant or of very small effect size after adjusting for brain volume
(12-14). Extensive research has also been conducted on focal gray matter volume
differences between men and women. For instance, an analysis of 200 subjects from the
Human Connectome Project (HCP) cohort (15) revealed slightly greater cortical thickness in
men after correcting for intracranial volume. Moreover, a morphological gray matter analysis
of the entire HCP cohort (16) demonstrated high sex classification accuracy (96.77%),
primarily attributable to differences in frontal areas. While many cortical and subcortical
areas exhibited slight differences between men and women, these effects were
predominantly small (6,8,17). Large meta-analyses conducted by the ENIGMA (Enhancing
Neuro Imaging Genetics through Meta-Analysis) consortium (18-20), encompassing
between 16,683 and 18,605 healthy individuals depending on the study, confirmed lower
cortical thickness in women in most areas after adjusting for total brain volume. Additionally,
these analyses indicated greater volume in men across most subcortical areas, along with
increased interindividual variability in men for both cortical and subcortical measures. In
summary, gray matter differences between men and women exhibit small effect sizes and
are notably less pronounced than interindividual differences.

Unfortunately, there are significantly fewer studies investigating the same question for white
matter. One notable exception is the examination of differences in corpus callosum volume
between both sexes. This issue emerged from postmortem dissection studies (21,22), which
indicated a larger corpus callosum in women after adjusting for brain weight or size.
Subsequent studies, particularly in larger cohorts facilitated by MRI advancements, have
suggested that differences in corpus callosum volume are primarily influenced by the total
brain volume (23,24). Nevertheless, when comparing men and women with identical
intracranial volume, the corpus callosum was still found to be larger in women (25,26).
Ultimately, sex was estimated to account for approximately 1% of the variance in corpus
callosum volume (27). Regarding diffusion MRI metrics, such as the simplest ones derived
from the diffusion tensor imaging (DTI) model (28) like fractional anisotropy (FA) or other
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metrics derived from more complex models, results generally lack consensus. Depending on
the study, FA has been reported to be higher overall in women (29-31), higher overall in
men (17,32,33), or with variable results depending on specific tracts (29,34) or areas
(35-37). The ENIGMA consortium also examined white matter (38) and concluded in its
meta-analysis that FA is slightly higher in women overall (relative difference: +2%). However,
comparing studies is challenging due to methodological differences: some have examined
FA and other diffusion metrics globally, across the entire white matter; others have
investigated these parameters regionally (e.g., frontal white matter); and still others,
particularly the more recent ones, have analyzed these parameters along reconstructed
white matter tracts. Moreover, cohorts vary in terms of age and size, with age being a critical
factor in such studies as white matter microstructural parameters tend to develop differently
in men and women during childhood/adolescence (39), adulthood (40), and aging (33).
Cohort size is also pivotal in this context, as highlighted in a dedicated meta-analysis (8): the
influence of sex on white matter is minor, and there is no clear dichotomy between men and
women in white matter tracts, but rather an overlap between the two groups. Hence, large
cohorts are mandatory to robustly detect these differences, potentially explaining why
studies with smaller cohorts have reached differing conclusions.

Therefore, it is of great importance to further investigate the structural differences in brain
connectivity between men and women from a large homogeneous cohort. In this study, we
systematically compared all deep white matter tracts between the sexes in a large cohort of
healthy young adults: the Human Connectome Project (HCP) cohort, which comprises 1065
individuals aged 22 to 35 years old. After conducting whole-brain tractography and
atlas-based extraction of deep white matter tracts in all subjects, we conducted a volumetric
analysis of each tract normalized to the subject's total brain volume. Additionally, we
analyzed microstructural parameters derived from Diffusion Tensor Imaging (DTI), Q-ball
Imaging (QBI), and Neurite Orientation Dispersion and Density Imaging (NODDI) models.
This approach allowed us to provide a comprehensive overview of both morphological and
microstructural differences in deep white matter tracts between the sexes in young healthy
individuals.
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Methods:

Database

We used the brain MRI dataset from the Human Connectome Project (Q1-Q4 release, 2015)
acquired by Washington University in Saint Louis and the University of Minnesota (41). This
database includes 1065 healthy individuals aged 22 to 35 years old, 490 men and 575
women with a similar age distribution, all of whom underwent an anatomical T1-weighted
(T1w) scan and series of diffusion MRI (dMRI) scans on a Connectome Skyra 3T MRI
scanner. The T1w acquisition was performed using a 3D MPRAGE sequence, with a 0.7mm
isotropic spatial resolution and TR/TE = 2400/2.14 ms. The dMRI acquisitions were
performed with a 2D monopolar pulsed gradient spin-echo (PGSE) single-shot multi-band
EPl sequence with a multi-band factor of 3, a 1.25 mm isotropic spatial resolution,
TR/TE =5520/89.50 ms, and a multiple-shell sampling of the g-space based on 3 b-values
of 1000, 2000, and 3000 s/mm2 along 90 uniformly distributed diffusion directions per shell,
plus 6 non-diffusion-weighted b=0s/mm? reference images. The dataset was already
pre-processed and corrected for eddy current and susceptibility artifacts and the dMRI scans
of each subject were already aligned to the corresponding T1w scan.

Individual analysis pipeline

For all subjects, brain parcellation and volumetric segmentation were performed from the
anatomical T1-weighted MRI, using the Freesurfer image analysis suite, documented and
freely available for download online (http://surfer.nmr.mgh.harvard.edu/)

To process the dMRI data, we designed an analysis pipeline based on the Ginkgo toolbox
developed by the CEA/NeuroSpin team and freely available online at
https://framagit.ora/cpoupon/gkg, which performed four sequential steps for each subject. A
global overview of this diffusion analysis pipeline is provided in the Supplementary Material
(Fig. S1).

1. dMRI processing by computing the Diffusion Tensor Imaging (DTI) model (28) and
the Orientation Distribution Functions (ODF) for each voxel of the brain using the
analytical Q-ball model (42) within constant solid angle (43). These models also
provided several quantitative diffusion metrics, such as mean, axial, and radial
diffusivities, as well as generalized fractional anisotropy, which was used to
regularize fiber trajectories (44). The ODF maps were computed using all 3 shells,
and the quantitative DTI metrics were computed using only the b=1000 s/mm? shell.
We also computed the Neurite Orientation Dispersion and Density Imaging (NODDI)
model (45) from all 3 shells, which allows the estimation of additional microstructural
parameters.

2. Computation of a whole-brain tractogram from the ODF map using a regularized
probabilistic algorithm (44) (parameters: 8 seeds per voxel over a predefined
propagation domain computed from the T1w image, aperture angle of 30°, fiber
length range of 1.25 - 300 mm, forward and backward integration step of 0.3 mm,
Gibb’s sampler temperature of 1). The fiber length range allowed us to discard some
artifactuals streamlines (too short streamlines or infinite loops).

3. Registration of the deep white matter atlas into native space, using the subject’s
anatomical T1-weighted acquisition and the MNI (Montreal Neurological Institute)
ICBM 2009c nonlinear asymmetric template as a reference template. Registration


https://www.zotero.org/google-docs/?wbZkBl
https://framagit.org/cpoupon/gkg
https://www.zotero.org/google-docs/?KUbfnv
https://www.zotero.org/google-docs/?yYjR4G
https://www.zotero.org/google-docs/?qBW0UX
https://www.zotero.org/google-docs/?RMDOWC
https://www.zotero.org/google-docs/?vNNERT
https://www.zotero.org/google-docs/?lLijGz

was performed using the Advanced Normalization Tools (ANTs) toolbox, with a
diffeomorphic transformation based on the Symmetric Normalization (SyN) approach
(46,47), which computes both the subject-to-MNI and the MNI-to-subject transform.
The MNI-to-subject transform is then used to register the deep white matter atlas,
located in the MNI space, to the subject space.

Automatic bundle segmentation from each tractogram based on a predefined deep
white matter atlas (48,49), using a maximum pairwise distance threshold algorithm
between streamlines from the tractogram and labeled white matter bundles from the
atlas. This atlas contains 77 tracts (see Table 1): 15 association tracts for each
hemisphere, 19 projection tracts for each hemisphere, 8 interhemispheric tracts, and
1 intracerebellar tract. Additional information on the atlas construction is also
provided in Supplementary Material, along with an overview of this atlas
(supplementary figures 1 and 2). Automatic bundle segmentation is performed in the
subject space from the the subject's tractogram, after transformation of the deep
white matter atlas (expressed in the MNI space) into the subject's space using the
inverse diffeomorphic transformation calculated between the T1-weighted MRI and
the MNI template. The fiber labeling algorithm iterates over streamlines and
computes the minimum pairwise distance between each streamline and the centroid
of each white matter tract in the atlas. For a streamline to be assigned to a tract, its
distance must be below a predetermined threshold. If a streamline is below the
distance threshold of two (or more) different tracts, it is assigned to the one it is the
closest to. A streamline can only be assigned to a single tract, thereby eliminating
any potential redundancy in adjacent tracts.

Association fiber

bundles (bilateral:

2 x 15 tracts)

Projection fiber
bundles (bilateral:
2 x 19 tracts)

Interhemispheric
fiber bundles
(8 tracts)

Other
(1 tract)

Arcuate fasciculus

Fornix

Anterior commissure

Parallel fibers of the
cerebellum

Cortico-spinal tract
(CST)

Centro-caudate tract

Corpus callosum:
anterior midbody

Cingulum (long)

Cingulo-caudate tract

Corpus callosum: genu

Dorsal cingulum

Fronto-caudate tract

Corpus callosum:
isthmus

Ventral cingulum

Parieto-caudate tract

Corpus callosum:
posterior midbody

External capsule

Centro-lenticular tract

Corpus callosum: rostral
midbody

Extreme capsule

Fronto-lenticular tract

Corpus callosum:
rostrum

Frontal aslant

Occipito-lenticular tract

Corpus callosum:
splenium

Inferior fronto-occipital

Parieto-lenticular tract
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fasciculus (IFOF)

Inferior longitudinal Temporo-lenticular tract
fasciculus (ILF)

Middle longitudinal Inferior cerebellar
fasciculus (MLF) peduncle:
spino-cerebellar tract

Superior longitudinal Middle cerebellar
fasciculus 1 (SLF1) peduncle:
cortico-cerebellar tract

Superior longitudinal Superior cerebellar
fasciculus 2 (SLF2) peduncle:
cortico-cerebellar tract

Superior longitudinal Optic radiations
fasciculus 3 (SLF3)

Uncinate fasciculus Thalamo-central
radiations

Thalamo-frontal
radiations

Thalamo-occipital
radiations

Thalamo-parietal
radiations

Thalamo-temporal
radiations

Table 1. Deep white matter fiber atlas established using the whole HCP cohort

Statistical analysis

Total brain volume (TBV) and white matter volume (WMV) were established from the
Freesurfer brain mask. Each white matter tract volume was measured in the subject space
by computing the density mask of each bundle and measuring the volume of this mask with
a minimum threshold of 5 fibers/voxel. All white matter tract volumes were then normalized
to the respective subject’'s TBV and expressed as a percentage of the TBV. In addition, all
white matter tract volumes were also normalized to the subject’s white matter volume.

The following microstructural parameters were computed for each voxel of the brain,
creating a 3D quantitative map for each parameter: fractional anisotropy FA, mean diffusivity
MD, axial diffusivity and radial diffusivity (from the DTI model, using only the b=1000 s/mm?
shell for the computation of these quantitative parameters); generalized fractional anisotropy
GFA (from the Q-ball model); neurite density index NDI, isotropic water volume fraction
IWVF, and orientation dispersion index ODI (from the NODDI model). For each white matter
tract and each quantitative map, we computed the mean of the values (after testing for
normality using Shapiro-Wilk test) obtained by trilinear interpolation of the quantitative map
at all fiber points, resampled to 0.1 mm.



Statistical analyses for group comparisons were performed using Student’s t-test after
testing for normality using Shapiro-Wilk test and for homogeneity of variance using Levene’s
test. Correction for multiple comparisons was performed using the Bonferroni correction:
starting from p=0.05, after correction for 772 comparisons, the significance threshold was p
= 0.000064767 (6.4767.10°).

The effect size was estimated using Cohen's d test. The following ranges were used for its
interpretation: |d| < 0.2: negligible effect size; 0.2 < |d| < 0.5: small effect size, 0.5 < |d| < 0.8:
medium effect size; |d| > 0.8: large effect size.

To examine the relationship between sex, normalized corpus callosum tract volume and total
brain volume, we conducted a linear regression between normalized corpus callosum
volume and total brain volume in men and women, as described by Leonard et al (12), using
least squares method. Further analyses of the interaction of normalized tract volume, total
brain volume, and sex were performed using analysis of covariance (ANCOVA) with the
Ordinary Least Squares (OLS) model.

Results:
Volumetric comparisons

Total brain volume was significantly different between men and women (Figure 1), with a
mean +/- standard deviation of 1128 +/- 90 cm?® in women and 1290 +/- 102 cm? in men, i.e.
a mean relative difference of 12.6% between men and women (p = 1.3x10"'%"). The effect
size was large (d = 1.7).

White matter volume was also significantly different between men and women (Figure 1),
with a mean +/- standard deviation of 409 +/- 42 cm® in women and 476 +/- 49 cm?® in men,
i.e. a mean relative difference of 13.6% between men and women (p = 4.0x10°7). The effect
size was large (d = 1.4).
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Distribution of total brain volume by sex within the HCP cohort

Sex
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Distribution of white matter volume by sex within the HCP cohort
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Figure 1. Distribution of total brain volume and white matter volume according to sex within
the HCP cohort

16 of the 77 white matter tracts showed a significant difference between men and women in
their volume normalized to the total brain brain volume. These results are summarized in
Table 2 and Figure 2, where only the 16 statistically different tracts are shown. The relative
difference and Cohen’s d are negative when the volume is greater in women and positive
when it is greater in men. Among these significantly different tracts, only one had a Cohen’s
d effect size greater than 0.5, i.e., a medium effect size: the corpus callosum genu bundle,
which had a greater relative volume in women (7.3 %); all the other 15 tracts had a small
effect size with a Cohen’s d between 0.2 and 0.5.
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Total Brain Volume | 1200 * 10T | 1127+ 90 | 49 67 o, 13107 |17
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Table 2. Detailed values of total brain volume and the 16 white matter tracts with a significant
difference in volume normalized to total brain volume between men and women, ranked by
their Cohen's d value in descending order. A positive relative difference and Cohen's d value
indicates greater volume in men, and a negative relative difference and Cohen's d value
indicates greater volume in women.
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Figure 2. Representation of the 16 white matter tracts with a significant difference in volume
normalized to total brain volume. All of these tracts showed a significant difference in their
normalized volume between men and women after Bonferroni correction (p < 6.4767.10°).
Top: The 16 white matter tracts are represented by their centroid superimposed on a 3D
mesh of the brain surface. Left hemisphere tracts are shown on the left side, right
hemisphere tracts are shown on the right side, and interhemispheric tracts are shown on
both sides. The color represents the direction of the difference (red: greater in women, blue:
greater in men), and the color intensity is proportional to the effect size measured by
Cohen's d.

Bottom: Distribution of volume normalized to total brain volume of the 16 white matter tracts
with a significant difference between men and women, ranked by their Cohen's d value. 15
tracts showed a small effect size (0.2 < d < 0.5), in light blue (when larger in men) or light red
(when larger in women), and only one (the corpus callosum genu bundle) showed a medium
effect size (0.5 < d < 0.8), larger in women, in deep red.

We then performed the same analysis after normalizing the individual tract volumes to the
individual white matter volume, instead of the individual total brain volume. This yielded
similar results: 18 of the 77 white matter tracts also showed a significant difference in white
matter-normalized volume between men and women. These results are summarized in Table
3 and Figure 3, where only the 18 statistically different tracts are shown. As with the tract
volumes normalized to total brain volume, only one had a Cohen’s d effect size greater than
0.5, i.e., a medium effect size: the corpus callosum genu bundle, which had a greater
relative volume in women (8.5 %).
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Corpus Callosum 0.52 % 0.60 % o 05
Rostrum (+/-0.29) (+/-0.31) 14.5% 4.17.10 0-25
Left Caudate o o
Radiations Central 0.67 % 0.76 % -13.0 % 5.95.10% [-0.25
Cortex (+/-0.32) (+/-0.37)
Left Caudate o o
Radiations Parietal 1.02 % 1.13 % -11.6 % 1.99.10% | -0.26
Cortex (+/-0.45) (+/-0.45)
Corpus Callosum [ 5.13 % 5.36 % o 05
Rostral Body (+/-0.88) (+/-0.88) 4.6 % 164.10 0.27
Corpus Callosum [ 5.93% 6.21 % o 06
Posterior Midbody | (+/-0.95) (+/-0.96) 47 % 2.05.10 0.29
. 0.73 % 0.86 % o o7
Left Fornix (+/-0.38) (+/-0.38) 16.8 % 1.24.10 0.33
Right Thalamic o o
Radiations ?;% fg) ?ﬁ_% f;’G) 4.4 % 1.05.10% |-0.38
Temporal Cortex ) '
Left Thalamic o o
Radiations ?j% 4/:)7) ?:/1% ‘/105) -4.8 % 5.69.10" |[-0.45
Temporal Cortex ’ )
Corpus Callosum 5.57 % 6.05 % o 26
Genu (+/-0.70) (+/-0.70) 8.5 % 1.08.10 0.68

Table 3. Detailed values of total white matter volume and the 18 white matter tracts with a
significant difference in volume normalized to white matter volume between men and
women, ranked by their Cohen's d value in descending order. A positive relative difference
and Cohen's d value indicates greater volume in men, and a negative relative difference and

Cohen's d value indicates greater volume in women.




Corpus

callosum " 1
; Thalamic Cohen's d
Left Corpus posterior Ca‘ud.ate radiations
anterior (" (central (parietal crtex) 1. 1
Corpus midbody v cortex)
callosum 1\
rostral c:."?_ate 0 8
by SLF 2 radiations
(parietal
cortex) 0 5
\
Corpus
callosum
genu
Lenticular —0 . 2
radiations Corpus
(frontal cortex) callosum (-
rostrum -0.5
Thalamic Middle
radiations corticocerebellar —0.8
(temporal "
cortex) B

Corpus  Corpus
Thalamic callosum__callosum .
radiations posterior  anterior ng ht
(parietal cortex) midbody midbody
Corpus
callosum
rostral
SLF 2 Hgdy
Corpus
SLF 3 callosum
genu

Lenticular
radiations
.. Corpus  (frontal cortex)
/ callosum

rostrum

Thalamic

radiations

(temporal
cortex)

Right Lenticular Radiations
Frontal Cortex

Left Middle
CorticoCerebellar Tracts
Right SLF2

Left Lenticular Radiations
Frontal Cortex

Right Thalamic Radiations
Parietal Cortex

Left SLF2

Right SLF3
Left Thalamic Radiations
Parietal Cortex

Corpus Callosum
AnteriorMidbody

Corpus Callosum
Rostrum

Left Caudate Radiations
Central Cortex
Left Caudate Radiations
Parietal Cortex

Corpus Callosum
RostralBody

White matter tract

Corpus Callosum
PosteriorMidbody

Left Fornix
Right Thalamic Radiations
Temporal Cortex

Left Thalamic Radiations
Temporal Cortex

Corpus Callosum
Genu

Distribution by sex

White matter tract volume normalized to total white matter volume

Sex

1 M(d<0.5)
[ W(d<0.5) -
Il M(d>0.5)

I W(d=>0.5)

Normalized volume (% of the total white matter volume)

Figure 3. Representation of the 18 white matter tracts with a significant difference in volume
normalized to white matter. All of these tracts showed a significant difference in their
normalized volume between men and women after Bonferroni correction (p < 6.4767.10°).

Top: The 18 white matter tracts are represented by their centroid superimposed on a 3D
mesh of the brain surface. Left hemisphere tracts are shown on the left side, right
hemisphere tracts are shown on the right side, and interhemispheric tracts are shown on
both sides. The color represents the direction of the difference (red: greater in women, blue:




greater in men), and the color intensity is proportional to the effect size measured by
Cohen's d.

Bottom: Distribution of volume normalized to total brain volume of the 18 white matter tracts
with a significant difference between men and women, ranked by their Cohen’s d value. 17
tracts showed a small effect size (0.2 < d < 0.5), in light blue (when larger in men) or light red
(when larger in women), and only one (the corpus callosum genu bundle) showed a medium
effect size (0.5 < d < 0.8), larger in women, in deep red.

To further examine the relationship between the normalized volume of the most statistically
significant tracts (the corpus callosum genu), total brain volume, and sex, and to rule out the
possibility that this difference between the sexes was simply a function of total brain volume,
we performed a linear regression of the normalized volume of these tracts as a function of
the total brain volume. The results are shown in Figure 4, which shows different slopes
between men and women. We then performed an ANCOVA analysis with the normalized
volume of the corpus callosum genu as the dependent variable, total brain volume as the
continuous variable, and sex as the categorical variable. This revealed a statistically
significant interaction between normalized volume of the corpus callosum genu and sex,
even when the total brain volume was taken into account (F-statistic = 32.47, p-value = 4.41
x 10%).
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Figure 4. Linear regression of the normalized volume of the corpus callosum genu bundle as
a function of the total brain volume

Microstructural comparisons

We performed comparisons between men and women for the various microstructural
parameters computed from the DTI, QBI and NODDI models for all tracts. The complete
results of these comparisons are shown in Supplementary Table 1.

For fractional anisotropy (FA) estimated from the DTl model, 41 of the 77 tracts were
statistically different between men and women (40 showed higher FA in women and 1
showed higher FA in men). Among these, 12 had an effect size greater than 0.5 (all had
higher FA in women), and 2 of them had an effect size greater than 0.8: the left fornix, and
the left middle cortico-cerebellar tract. The statistical results for these 12 tracts (with a
statistically significant difference and a Cohen’s greater than 0.5) are summarized in Figure
5.
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Figure 5. Representation of the 12 white matter tracts with a significant difference in their FA
values between men and women and an effect size greater than 0.5.
Top: The 12 white matter tracts are represented by their centroid superimposed on a 3D
mesh of the brain surface. Left hemisphere tracts are shown on the left side, right
hemisphere tracts are shown on the right side, and interhemispheric tracts are shown on
both sides. The color represents the direction of the difference (red: greater in women, blue:
greater in men), and the color intensity is proportional to the effect size measured by

Cohen's d.

Bottom: Distribution of FA values in men (blue) and women (red) of the 12 white matter
tracts with a significant difference between men and women and an effect size greater than




0.5, ranked by their Cohen’s d value. Light colors indicate a medium effect size (0.5 < d <
0.8), dark colors indicate a large effect size (d > 0.8).

Generalized fractional anisotropy (GFA) calculated from the Q-ball model yielded similar
results, with slightly higher p-values and smaller effect sizes. Thus, 32 tracts were
significantly different between men and women, 7 of which had an effect size greater than
0.5 (6 had higher GFA in women and 1 in men), and none greater than 0.8. The results of
these 7 tracts are summarized in Figure 6.
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Figure 6. Representation of the 7 white matter tracts with a significant difference in their GFA
values between men and women and an effect size greater than 0.5.

Top: The 7 white matter tracts are represented by their centroid superimposed on a 3D mesh
of the brain surface. Left hemisphere tracts are shown on the left side, right hemisphere
tracts are shown on the right side, and interhemispheric tracts are shown on both sides. The
color represents the direction of the difference (red: greater in women, blue: greater in men),
and the color intensity is proportional to the effect size measured by Cohen's d.



Bottom: Distribution of GFA values in men (blue) and women (red) of the 7 white matter
tracts with a significant difference between men and women and an effect size greater than
0.5, ranked by their Cohen’s d value. Light colors indicate a medium effect size (0.5 < d <
0.8), dark colors indicate a large effect size (d > 0.8). GFA was found to be higher in women
versus men in all those tracts except for the left dorsal cingulum tract.

For mean diffusivity (MD), 34 tracts were significantly different between men and women. 13
had an effect size greater than 0.5 (and none was greater than 0.8), all greater in men. The
results of these 13 tracts are shown in Figure 7.
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Figure 7. Representation of the 13 white matter tracts with a significant difference in their MD
values between men and women and an effect size greater than 0.5.
Top: The 13 white matter tracts are represented by their centroid superimposed on a 3D
mesh of the brain surface. Left hemisphere tracts are shown on the left side, right
hemisphere tracts are shown on the right side, and interhemispheric tracts are shown on
both sides. The color represents the direction of the difference (red: greater in women, blue:




greater in men), and the color intensity is proportional to the effect size measured by
Cohen's d.

Bottom: Distribution of MD values in men (blue) and women (red) of the 13 white matter
tracts with a significant difference between men and women and an effect size greater than
0.5, ranked by their Cohen’s d value. Light colors indicate a medium effect size (0.5 < d <
0.8), dark colors indicate a large effect size (d > 0.8).

For both axial and radial diffusivities, the results were similar to those obtained for MD
values.

For axial diffusivity, 28 tracts were statistically significantly different between men and
women. Among these, 6 had an effect size greater than 0.5, and none had an effect size
greater than 0.8; all were greater in men. The results of these 6 tracts are shown in figure 8.
For radial diffusivity, 34 tracts were statistically significantly different between men and
women. Among these, 8 had an effect size greater than 0.5, and none had an effect size
greater than 0.8. The results of these 8 tracts are shown in Figure 9.
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Figure 8. Representation of the 6 white matter tracts with a significant difference in their
mean axial diffusivity values between men and women and an effect size greater than 0.5.
Top: The 6 white matter tracts are represented by their centroid superimposed on a 3D mesh
of the brain surface. Left hemisphere tracts are shown on the left side, right hemisphere
tracts are shown on the right side, and interhemispheric tracts are shown on both sides. The
color represents the direction of the difference (red: greater in women, blue: greater in men),
and the color intensity is proportional to the effect size measured by Cohen's d.

Bottom: Distribution of mean axial diffusivity values in men (blue) and women (red) of the 6
white matter tracts with a significant difference between men and women and an effect size
greater than 0.5, ranked by their Cohen’s d value. Light colors indicate a medium effect size
(0.5 < d < 0.8), dark colors indicate a large effect size (d > 0.8).
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Figure 9. Representation of the 8 white matter tracts with a significant difference in their
mean radial diffusivity values between men and women and an effect size greater than 0.5.

Top: The 8 white matter tracts are represented by their centroid superimposed on a 3D mesh
of the brain surface. Left hemisphere tracts are shown on the left side, right hemisphere
tracts are shown on the right side, and interhemispheric tracts are shown on both sides. The



color represents the direction of the difference (red: greater in women, blue: greater in men),
and the color intensity is proportional to the effect size measured by Cohen's d.

Bottom: Distribution of mean radial diffusivity values in men (blue) and women (red) of the 8
white matter tracts with a significant difference between men and women and an effect size
greater than 0.5, ranked by their Cohen’s d value. Light colors indicate a medium effect size
(0.5 < d < 0.8), dark colors indicate a large effect size (d > 0.8).

The NODDI model allowed us to estimate 3 additional microstructural parameters: the
neurite density index, the isotropic water volume fraction, and the orientation dispersion
index.

For the neurite density index (NDI), 21 tracts were statistically different between men and
women. Of these, 6 had an effect size greater than 0.5 (the left dorsal cingulum, the left and
right lenticulo-temporal radiations, the left dorso-ventral cingulum, the left cingulo-caudate
radiations and the right cingulo-caudate radiations). None had an effect size greater than
0.8. All 6 tracts showed a higher intracellular water fraction in men. The results of these 6
tracts are shown in Figure 10.
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Figure 10. Representation of the 6 white matter tracts with a significant difference in their
neurite density index between men and women and an effect size greater than 0.5.



Top: The 6 white matter tracts are represented by their centroid superimposed on a 3D mesh
of the brain surface. Left hemisphere tracts are shown on the left side, right hemisphere
tracts are shown on the right side, and interhemispheric tracts are shown on both sides. The
color represents the direction of the difference (red: greater in women, blue: greater in men),
and the color intensity is proportional to the effect size measured by Cohen's d.

Bottom: Distribution of neurite density index in men (blue) and women (red) of the 6 white
matter tracts with a significant difference between men and women and an effect size
greater than 0.5, ranked by their Cohen’s d value. Light colors indicate a medium effect size
(0.5 < d < 0.8), dark colors indicate a large effect size (d > 0.8).

The isotropic water volume fraction showed statistically significant differences between men
and women for almost all tracts (76/77). 57 had an effect size greater than 0.5, and 35 of
these were greater than 0.8. For all tracts, the isotropic water volume fraction was higher in
men. The results are shown in Supplementary Figure 3.

For the orientation dispersion index (ODI), 46 tracts showed a statistically significant
difference between men and women. 22 of these had an effect size greater than 0.5, and 3
of these had an effect size greater than 0.8: the left fornix, and the left and right
thalamo-temporal radiations, all of which were higher in men. The results of these 22 tracts
are shown in Figure 11.
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Figure 11. Representation of the 22 white matter tracts with a significant difference in their
orientation dispersion index between men and women and an effect size greater than 0.5.

Top: The 22 white matter tracts are represented by their centroid superimposed on a 3D
mesh of the brain surface. Left hemisphere tracts are shown on the left side, right



hemisphere tracts are shown on the right side, and interhemispheric tracts are shown on
both sides. The color represents the direction of the difference (red: greater in women, blue:
greater in men), and the color intensity is proportional to the effect size measured by
Cohen's d.

Bottom: Distribution of orientation dispersion index in men (blue) and women (red) of the 22
white matter tracts with a significant difference between men and women and an effect size
greater than 0.5, ranked by their Cohen’s d value. Light colors indicate a medium effect size
(0.5 < d < 0.8), dark colors indicate a large effect size (d > 0.8).



Discussion:

This study provides a detailed and unprecedented overview of white matter tract differences
between the sexes in a homogeneous cohort of young healthy adults. While, as expected,
there exists a large overlap between men and women across most parameters, including
those with the most significant differences, we have identified several robust disparities in
white matter tracts between males and females, both in terms of volume and microstructure,
some of which exhibit a substantial effect size.

Notably, the tracts displaying the most pronounced differences are those associated with the
motor system (such as cortico-spinal tracts and cerebellar tracts) and tracts of the limbic
system (including the fornix, cingulum, and tracts connecting the temporal cortex to the basal
ganglia, particularly the thalamo-temporal radiations). These findings may be linked to the
well-established behavioral distinctions between men and women (2) observed in
time-limited motor tasks, levels of aggressiveness, and prosocial behavior.

Volumetric differences

Total brain volume and white matter volume

We found a significantly higher total brain volume in men, with a relative difference of
+12.6% compared to women. This is a well known and studied fact. Our results are
consistent with the meta-analysis by Ruigrok et al (8) who found a relative difference of 12%
between men and women and with a more recent study (17), including included 5216
participants from the UK Biobank, that found a relative difference in total brain volume of
+9.6% in men.

Concerning white matter volume, we also found a greater volume in men (+13.6%), which is
consistent with the 12.9% relative difference in the meta-analysis by Ruigrok et al (8) and the
12.0% relative difference in the study by Ritchie et al (17) in the UK Biobank cohort.

White matter tract volume

In contrast to global volumetric comparisons, fewer volumetric analyses of white matter
tracts have been published in the past. Most white matter analyses have examined regional
volumes or focused on a single tract. Since the 1980s, the corpus callosum has been one of
the most extensively studied white matter structures. Most studies focusing on it have
approximated its volume by measuring its area in a midsagittal section (21,22,25). However,
this approach has several limitations, prompting the use of alternative methods to estimate
the corpus callosum volume. These methods include voxel-based morphometry (26) or
surface-based mesh modeling (23), each with its own set of advantages and drawbacks.
Another approach, as demonstrated by Pietrasik et al. (24) in their study on the volumetric
and microstructural aging of the corpus callosum, involves conducting tractography first and
then measuring the volume of the entire bundle traversing the corpus callosum (or its
subparts). This method offers the advantage of assessing the entire tract rather than just the
voxels of the callosal midsagittal area, providing more comprehensive information about the
extent of the tract and its hemispheric connections. However, it requires more elaborated
dMRI scans to acquire high-resolution diffusion MRI, and is computationally more
demanding to reconstruct the corpus callosum more reliably.

In this study, we employed a methodology similar to the latter approach to measure the
volume of all major white matter tracts. Therefore, our tract labeled "corpus callosum genu”
refers to the entire tract passing through the corpus callosum genu and connecting the left
and right frontal cortices.
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Because the gray matter/white matter volume ratio also differs between the sexes
(12,13,23), we performed normalization to both total brain volume and white matter volume.
Although the results were close, the tracts that ended up being significant were not strictly
similar using the two normalization methods. In particular, slightly more tracts were
statistically significant after normalization to white matter volume (18 tracts versus 16 after
normalization to total brain volume). Notably, other sections of the corpus callosum, not just
the genu, were significant with this second normalization, but not with the first. However,
since normalization to white matter volume seems to increase the differences between the
groups, differences that are significant with this method but not after normalization to total
brain volume should be interpreted with caution.

While early studies on this topic initially reported a larger corpus callosum volume in women
relative to their brain size (21,22), subsequent research suggests that much of this difference
is attributable to total brain volume (6,23). However, this does not contradict the hypothesis
that a small proportion of the differences observed in corpus callosum volume may indeed
be influenced by sex, as indicated by recent studies where sex explained some variance in
its volume (24,27). This is further supported by investigations involving men and women
matched for identical intracranial volume, which demonstrated slightly greater corpus
callosum volume in women (25,26). In our study, the corpus callosum genu exhibited the
most significant difference between men and women in its normalized volume, whether
normalized to total brain volume or white matter volume, with strong statistical significance
and a medium effect size, indicating greater normalized volume in women. This finding
aligns with the aforementioned studies, as well as a connectomic study (50) which identified
greater inter-hemispheric connectivity in women and greater intra-hemispheric connectivity
in men. However, subsequent research (51,52) has tempered these findings, attributing
much of the difference in intra- and inter-hemispheric connectivity to brain size rather than
gender.

To further explore the association between normalized corpus callosum volume and total
brain volume, a linear regression analysis in both sexes was conducted, similar to the
approach taken by Leonard et al. (12), and differing slopes between men and women were
noticed. An ANCOVA confirmed this association, revealing a strong statistically significant
interaction (p = 3.49.10%) between sex and normalized corpus callosum volume after
adjusting for total brain volume. Ultimately, while brain volume undoubtedly serves as the
primary determinant of normalized corpus callosum volume, we can confidently conclude
that sex also exerts an independent effect on it.

One hypothesis to explain these differences is that the greater intra-hemispheric connectivity
observed in men promotes fast goal-directed actions, potentially contributing to faster
reaction time and higher sensorimotor speed (53), as well as the stronger lateralization in
men. Conversely, the corpus callosum facilitates interhemispheric communication and
enhances bilateral integration of information processed by each hemisphere. This is critical
for many high-order cognitive processes that rarely rely on unilateral areas, and may
contribute to better performance in certain high-order cognitive functions in women,
particularly in areas such as social cognition.

In addition to the corpus callosum genu, 15 other white matter tracts showed a significant
difference in normalized volume, but their effect size was smaller than that of the corpus
callosum genu, and a greater overlap was found between the two groups. Specifically, we
observed that men tended to have larger tracts connecting the frontal areas and the basal
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ganglia, particularly the lenticular nuclei. These findings may be relevant to certain
behavioral differences observed between the sexes, such as higher impulsivity and
aggressiveness in men. Contrary to the corpus callosum, the lack of literature on this topic
makes it difficult to compare with other results, as only some rare studies, mostly focusing on
a single tract (such as the fornix (31) or the anterior commissure (54)), included a volumetric
analysis. Consequently, reproducibility of these findings would be necessary to confirm their
significance.

Microstructural analysis

In our study, we found a statistically significant difference in FA values (after correction for
multiple comparisons) in 41 of the 77 tracts, with an overall higher FA in women (40 of these
41 tracts had higher FA in women, while only one had higher FA in men with a small effect
size). This result was consistent for both FA from the traditional DTl model and GFA
calculated using the HARDI diffusion solid-angle corrected Q-ball model. Microstructural
studies of white matter differences according to sex are heterogeneous and not as
numerous as studies of gray matter differences. The parameters measured from the DTI
model are the most commonly studied, and among them the most studied is FA. However,
the studies reported so far are rather contradictory:

- Consistent with our findings, some cohort studies reported higher overall FA in
women (30,34). In particular, one study was performed in the same HCP cohort as
ours, with a focus on the fornix (31), and reported higher total white matter FA in
women (and their results regarding the fornix were comparable to ours). A recent
meta-analysis (38) concluded that women had higher overall FA than men, with a
relative difference of +2%.

- Conversely, three studies (17,32,33) conducted on large numbers of subjects (3513,
5216 and 15628 subjects) from the UKBiobank cohort found an overall higher FA in
men in most white matter regions. However, these differences were greatly reduced
or eliminated after adjustment for TBV (17), and only few remained significant after
this adjustment: higher FA in women in the left inferior longitudinal fasciculus (d =
0.14) and posterior thalamic radiation (d = 0.12); and higher FA in men in the right
arcuate fasciculus (d = 0.26), bilateral corticospinal tract (right: d = 0.22, left: d =
0.15), and bilateral superior thalamic radiation (right: d = 0.16, left: d = 0.15).

- Other studies have reported mixed results, with FA values being higher in either men
or women depending on the examined tracts (29,34) or voxels across the brain
(35-37). In children and adolescents, a recent study performed on 6797 children
aged 9-10 years (39) found regional variations when comparing FA between boys
and girls (with some regions demonstrating higher FA in girls and others in boys),
and overall higher MD, axial and radial diffusivity in boys, which is consistent with our
results in young adults.

The disparities among these results may stem from differences in methodology. Unlike many
older studies that measured and compared these parameters in broad brain regions (e.g.,
assessing the mean fractional anisotropy (FA) of the white matter in the frontal lobe), we
computed the mean of these parameters along specific white matter tracts. Our approach
focuses on these individual white matter tracts and their associated functions, rather than
employing a global regional measure with less specific significance. Additionally, measuring
the mean values of these microstructural features along the tract, as we did, is not
influenced by tract length or total brain volume (TBV), factors that are crucial for such
analyses and were not consistently accounted for in previous studies.
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The parameters measured using the DTI model (FA, MD, axial and radial diffusivity) are
relevant and have been associated with many important white matter changes during aging
(55) or neuropsychiatric diseases (56). However, DTl has many limitations, and other
alternative models have been developed to overcome them. Among them, the NODDI model
separately models restricted, hindered, and free water diffusion, which refer to intraneurite,
extracellular, and isotropic (free) water components, respectively (45). It thus provides good
estimates of some microstructural aspects of the neurites that DTl cannot assess, by
measuring neurite density (from the intracellular volume fraction), neurite complexity and
fanning (from the orientation density index), or the isotropic water fraction (which, in the
brain, is particularly important to consider for areas close to the ventricles or the convexity of
the brain, where cerebrospinal fluid, a prototypical isotropic water, may be responsible for
partial volume effects in voxels). To our knowledge, the only studies using this model to
compare white matter microstructure between males and females were those performed
using the UKBiobank cohort (17,32,33), which reported higher ODI in women for most tracts.
Lawrence et al (39) used another model, the Restriction Spectrum Imaging (RSI) model, to
examine white matter microstructure in young healthy subjects (9-10 years) and reported
greater NDlI in girls.

In our study, among the tracts showing statistically significant differences between men and
women using these advanced microstructural parameters, 4 had a large effect size: the left
cortico-spinal tract (d = 0.83), the left fornix (d = 0.98), and the left (d = 1.0) and right (d =
0.97) thalamo-temporal radiations. The right cortico-spinal tract and the right fornix were also
significantly different between men and women with a slightly smaller effect size, just above
the threshold of 0.8 for a large effect size: their Cohen's d was 0.75 and 0.71, respectively.
These tracts were among those with the largest differences in all microstructural parameters,
as well as other tracts from the motor (cortico-cerebellar tracts) or limbic (cingulum) systems.
These microstructural differences in such tracts that are key components of the motor
task-based network (cortico-spinal and cortico-cerebellar tracts, as well as tracts connecting
the frontal and central cortices to the basal ganglia) and the social cognition network (57)
(cingulum, fornix, and thalamo-temporal radiations) are particularly interesting because they
relate to some of the functions that differ most between men and women (2):
time-constrained motor tasks and social interests and skills. The fact that the differences
between men and women in these tracts can be found in nearly all diffusion parameters
suggests that the underlying differences in white matter structure extend to multiple aspects
of microstructure. This highlights the importance of considering microstructure when
studying sex differences in the brain, as they can provide deeper insights in the underlying
neural mechanisms specific to women and men.

Limitations of the study

The main limitation of our study is the lack of histological data in the HCP cohort, which
prevents a direct comparison between the fiber tracts visualized by Klinger’s dissection (58)
or more recent dissection techniques (59), and those reconstructed by dMRI tractography.
On the other hand, although dissection studies provide detailed anatomical information, they
are typically performed in a limited number of subjects, and would likely lack the statistical
power to reach significance given the small differences between the two groups. The
agreement between our volumetric analysis and published histological data (21) supports
the validity of our method.
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The methodology of tractography and fiber tract labeling also has some limitations. In
particular, the choice of white matter atlas and the degree of tract subdivision may have
some implications when performing tract-based measurements. For example, in the present
studies, we analyzed and performed measurements on the inferior longitudinal fasciculus
(ILF) as a whole, whereas other studies (60) have divided this tract into three components:
the fusiform, the lingual, and the dorsolateral-occipital ILF. Performing measurements of
microstructural parameters on these subdivisions rather than on the entire tract may vyield
different results because it is possible that, for a given microstructural parameter, only one
subdivision of the tract differs between men and women, potentially underestimating the sex
effect in some tracts investigated as a whole. However, this increases our confidence in the
differences we actually identified, because such a hypothesis would lead to an
underestimation, not an overestimation, of the difference between the groups.

The possibility of a partial volume effect, especially for tracts near the ventricles, is also a
limitation of the method used. The cerebro-spinal fluid compartment and the ventricle volume
are larger in men than in women (8). This means the partial volume effect is stronger in men,
which might affect some of the microstructural parameters. The NODDI model takes this into
account by modeling the isotropic water fraction, which we indeed found to be higher in men.
The other two compartments (intracellular and extracellular water fraction) are thus not
affected, and neither are the computed ODI and NDI. However, parameters computed using
the DTl and Q-ball models are susceptible to partial volume effects. Due to their anatomical
location near the lateral ventricles, the fornices and cingulum are the tracts most susceptible
to this effect. We found no differences in these tracts in MD, axial and radial diffusivities.
However, we found that women had higher FA and GFA values in both fornices, while men
had higher GFA values in the dorsal cingulum. A greater partial volume effect in men would
make anisotropy seem lower in men, leading to an overestimation of the difference found in
the fornices and an underestimation of the difference found in the dorsal cingulum. A study
that specifically focused on the diffusion parameters of the fornix (31) in a subset of subjects
from the HCP cohort found results that were comparable to those observed in our study. The
authors acknowledged that, even at the relatively high (1.25mm isotropic) spatial resolution
of the HCP cohort, partial volume effect had indeed an influence on the results. Therefore, it
is important to consider that the differences observed in FA and GFA values in the fornices
may be slightly overestimated.

Another limitation is that the HCP cohort is quite homogeneous, consisting of healthy adults
between 22 and 35 years old. Therefore, our results cannot be generalized to other age
groups, especially to the elderly. Age-related changes in white matter microstructure may
influence the observed sex differences, as has been reported in different age groups (33,40),
with earlier aging of white matter microstructural parameters in men than in women.

It is noteworthy that the measured differences between the sexes remained small in our
study, with substantial overlap in the parameter distributions. This small effect size may
explain why other studies, especially those with smaller sample sizes, may find different
results. We emphasize the importance of working with large datasets to perform such
analyses, as was done here and in similar studies of the UKBiobank cohort (17,32,33). In the
future, meta-analyses that aggregate the results of similar studies conducted in different
cohorts of subjects of different ages and origins, with the necessary correction for site
effects, may help to resolve remaining inconsistencies in the field.
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Finally, it is important to mention the issue of reproducibility and comparability between
studies. The other studies on the same topic used different acquisition protocols and
diffusion processing pipelines, and possibly measured different parameters. The present
study was performed on the HCP cohort, whose diffusion protocol was refined during the
first two years of the HCP project to achieve a standardized and state-of-the-art acquisition
protocol for high angular resolution diffusion imaging (61). Since then, the HCP cohort has
inspired numerous "HCP-style" studies using a similar acquisition protocol, thus facilitating
the comparison of their results. In addition, harmonization methods to account for inter- and
intra-site variability (62,63) have been developed in recent years to improve the
comparability of the technique. However, reproducibility on topics such as tractography
algorithm (64) or white matter tract segmentation (65-67) is still imperfect, and the
development and use of standardized diffusion preprocessing and analysis methods should
be an important goal to facilitate comparability between studies (68).

Conclusion

Our study has demonstrated that while there are numerous similarities in white matter tracts
and structural connectivity between men and women, there are also discernible differences
related to sex. These disparities were strongly significant in certain white matter tract
volumes, even after normalization to total brain volume, as well as in microstructural
parameters, and demonstrated medium to high effect size. The tracts exhibiting the most
differences were tracts from motor (cortico-spinal tracts, cortico-cerebellar tracts) or limbic
(cingulum, fornix, thalamo-temporal radiations) systems. Future research can expand upon
our findings to delve deeper into the intricate relationship between brain connectivity and the
cognitive and behavioral traits that exhibit differences between men and women.
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e_Cortico 1.11.10%, 3.69.10%; | = 2.79.10°;
Cerebellar d=0.27 d=0.28 1.56.10%; | d=0.49
_Tracts d=0.64
Left Middl | -4.7 %;p=| -2.5 %; p= | NS NS NS NS 85 %;p=148 %;p=
e_Longitud | 4.96.10%; | 5.96.10%; 2.17.10%; | 3.12.10%;
inal_Fasci | d=-0.81 d=-0.64 d=1.02 d=0.74
culus
Left Optic | -2.3 %;p=| -1.9 %;p=| NS NS NS NS 13.6 %; p | NS
Radiations | 4.05.10%; | 9.48.10%; =
d=-0.34 d=-0.33 6.69.10%
d=0.96
Left SLF1 | -3.7 %;p=| 22 %;p=] 2.6 %; p = | NS 4.8 %; p=| NS 144 %; p | 31 %; p =
2.21.1078; | 3.28.10%°; | 2.10.107% 7.14.1078, = 7.22.10™",
d=-0.55 d=-0.37 d=043 d=0.53 6.89.10%; | d=0.41
d=0.81
Left SLF2 | NS 26 %; p=| NS 16 %; p= | NS 31 %;p=1|16.7 %; p | NS
8.98.10%; 4.89.10; 6.74.10",; =
d=0.35 d=0.34 d=04 4.14.10°%;
d=0.72
Left SLF3 | NS NS NS NS NS NS 8.2 %; p= | NS
1.60.10%;
d=0.37
Left_ Super | NS NS 15 %;p=|10%;p=1|20 %;p=| NS 9.3 %; p= | NS
ior_Cortico 2.34.10°%; | 2.66.10%; | 4.84.10%; 1.63.107"%;
Cerebellar d=0.29 d=0.29 d=0.25 d=0.46
_Tracts
Left Thala | -2.8 %;p=| -1.4 %;p=| NS NS NS NS 127 %; p | 2.7 %; p =
mic_Radia | 4.65.107%; | 2.13.10°; = 9.39.10°3;
tions_Cent | d =-0.56 d=-0.37 5.82.10%; | d=0.48
ral_Cortex d=1.32




Left Thala | -2.7 %;p= | NS 1.7 %; p= | NS 28 %;p=|-15%;p=]|99 %;p=129 %; p=
mic_Radia | 2.39.10°%; 3.12.10; 1.04.10°7; | 4.18.10°%; | 5.42.10%; | 3.65.10;
tions_Fron | d =-0.29 d=0.26 d=0.33 d=-0.25 d=0.58 d=0.26
tal_Cortex
Left Thala | NS NS 25 %;p=125%;p=1|24 %;p=| NS 15.7 %; p | NS
mic_Radia 3.11.107; 3.63.10%; | 2.59.10% =
tions_Occi d=0.56 d=0.72 d=0.39 3.12.10°%;
pital_Corte d=1.03
X
Left Thala | -3.0 %;p=| -1.7 %;p=| 2.3 %; p= | NS 4.0 %; p= | NS 154 %; p | 29 %; p =
mic_Radia | 1.06.10"; | 8.04.10%; | 2.61.10%; 3.88.10%, = 5.42.10%,
tions_Pari | d=-0.48 d=-0.33 d=0.64 d=0.69 4.09.10%%; | d=0.34
etal_Corte d=1.05
X
Left Thala | -3.5 %;p=| -1.7 %;p=]| 3.0 %;p= |13 %;p=| 4.8 %;p=| NS 176 %; p | 34 %; p =
mic_Radia | 2.72.10%; 1.79.10"; 1.11.107; 3.16.10%; | 2.12.10%"; = 1.39.10%;
tions_Tem =-0.7 =-0.42 d=0.5 d=0.28 d=0.58 1.63.10%; | d=0.6
poral_Cort d=145
ex
Left_ Uncin | -8.0 %;p=] -3.9 %; p= | NS NS NS NS 158 %; p | 6.6 %; p =
ate 2.28.10°%; | 6.96.10; = 1.57.10%;
d=-0.78 d =-0.56 1.04.10%; | d=0.95
d=1.16
Left Ventr | -3.0 %;p= | NS NS NS NS 23 %;p=|78 %;p=132%;p=
al_Cingulu | 1.68.10%; 1.51.10%; | 2.49.10%; 1.15.10%;
m d=-0.27 d=0.37 d=0.46 d=0.35
ParallelFib | -4.1 %; p= | NS NS NS NS 13 %;p=]|158 %; p | 53 %; p =
ers 7.14.1073; 4.31.10°; = 2.45.107°;
d=-0.45 d=0.25 7.95.10%%;, | d=0.56
d=0.93
Right_Arcu | NS 22 %;p=| NS NS NS 86 %;p=|109 %; p | 83 %;p=
ate 4.88.10; 3.82.10%; | = 3.28.107%
d=0.36 d=1.16 8.93.10%;, | d=1.2
d=0.61
Right CST | -2.3 %;p=| -1.0%;p=| 14 %; p= | NS 28 %;p=[10%;p=|98 % p=|42 % p=
3.62.10%; | 6.99.107%; 1.42.10%; 1.75.10%; | 3.21.10°7; | 6.70.107%, | 6.10.10"¢
d=-0.34 d=-0.28 d=0.6 d=0.61 d=0.32 d=1.25 d=0.54
Right Cau | -3.9 %;p=| -21 %;p=] 36.3 %; p | 35.7 %; p | 36.6 %; p | NS 109 %; p | 54 %; p =
date_Radi | 2.11.10%; 5.54.10"; | = = = = 6.34.10%,
ations_Ce | d=-0.66 d=-0.52 1.08.10°"7; 1.15.107"7; 1.05.10"7; 3.54.10%7; | d=0.69
ntral_Corte d=0.53 d=0.53 d=0.53 d=1.14
X
Right_Cau | NS NS 28 %;p= |23 %; p=1]33%; p=|NS 11.9 %; p | NS
date_Radi 1.41.10°7; | 2.69.1077; 1.62.10%; =
ations_Cin d=0.33 d=0.32 d=0.3 4.74.1077;
gular_Cort d=0.52
ex
Right Cau | -3.9 %;p= | NS NS -22 %;p=| NS 23 %;p=|74%;p= 142 %;p=
date_Radi | 1.44.10, 8.51.10; 3.03.10%; | 8.99.10%; | 1.55.10%;
ations_Fro | d=-0.3 d=-0.38 d=0.36 d=0.35 d=0.6
ntal_Corte

X




Right_ Cau | -2.7 %; p= | NS NS NS 23 %; p=| NS 49 %;p=121%;p=
date_Radi | 3.66.10%; 2.25.10, 3.31.10"% | 3.33.10°%;
ations_Par | d=-0.34 d=0.32 d=043 d=0.29
ietal_Corte
X
Right_Cing | NS NS 27 %;p=126 %;p=1|28 %;p=| NS 14.0 %; p | NS
ulum_Long 5.70.10%°;, | 7.07.107"; | 1.17.10%; =
d=0.71 d=0.52 d=0.58 1.60.10°%;
d=1.03
Right_Dor
sal_Cingul
um
Right_Exte | NS NS 1.3 %; p= | NS 1.9 %;p=119 %;p=1] 136 %; p | NS
rnal_Caps 5.08.10; 4.49.10°; | 575.10%; | =
ule d=0.38 d=0.34 d=0.34 6.15.10,
d=0.95
Right_Extr | -2.6 %; p= | NS NS NS NS NS 147 %; p |41 %;p =
eme_Caps | 3.89.10; = 2.29.10™";
ule =-0.29 6.43.10%°;, | d=0.42
d=1.06
Right_Forn | NS 11 % p=112%; p=116 % p=| NS NS 104 %; p | NS
ix 3.40.10%; | 4.40.10™; 1.57.107; =
d=0.26 d=0.41 d=0.51 7.99.10
d=0.84
Right_Fron | NS NS NS NS NS 14 %, p=|78 %;p=| NS
tal_Aslant 2.60.10°; | 7.80.10%;
d=0.29 d=0.57
Right IFO | -9.8 %;p=| -5.4 %;p=| NS NS NS NS 13.8 %; p | 89 %; p =
F 1.08.10%; | 3.53.107%; = 2.02.10%,
d=-0.71 d=-0.57 1.05.10%; | d=0.66
d=0.66
Right_Infer | NS NS 12 %;p=108 %;p=1|16 %;p=| NS 6.4 %; p= | NS
jor_Longitu 2.61.10°7; | 3.32.10%, 1.93.10%; 2.55.107"3;
dinal_Fasc d=0.32 d=0.26 d=0.3 d=0.46
iculus
Right_Infer | -5.1 %; p=| -2.2 %;p=| NS -1.8 %;p= | NS 12 %;p=198 %, p=159 %; p=
jor_SpinoC | 4.58.10"%; | 1.13.1077; 2.30.10; 6.33.10%; | 6.70.107%;, | 4.08.10°%,
erebellar_ | d =-0.49 d=-0.33 d=-0.35 d=0.25 d=1.25 d=0.65
Tracts
Right_Lent | -3.1 %;p=| -1.7 %;p=| NS NS NS NS 91 %;p= |37 %;p=
icular_Rad | 4.53.10%; | 5.85.10°; 2.73.10"; | 2.12.107°;
iations_Ce | d =-0.36 d=-0.25 d=0.56 d=0.39
ntral_Corte
X
Right_Lent | -6.4 %;p=| -3.5%;p=] 398 %; p | 39.3 %; p | 40.1 %; p | NS 69 %;p=|77 %;p=
icular_Rad | 3.37.10%; 1.22.10™; | = = = 2.13.10"%;, | 3.00.10%;
iations_Fro | d =-0.59 d=-048 4.34.10"% | 4.63.107°; | 4.21.10, d=0.44 d=0.72
ntal_Corte d=0.38 d=0.38 d=0.38

X




Right_Lent | NS NS 19 %;p= |19 % p=|19 %;p=| NS 13.3 %; p | NS
icular_Rad 1.07.107'; 1.57.10%; | 5.76.107'%; =
iations_Oc d=0.53 d=0.33 d=0.39 1.56.10*";
cipital_Cor d=0.89
tex
Right_Lent | NS NS NS NS NS 15 %;p=| 41 %; p=| NS
icular_Rad 1.44.10°; | 2.10.10°%;
iations_Pa d=0.27 d=0.26
rietal_Cort
ex
Right_Lent | -2.3 %;p=| -1.5 %;p=| NS NS 22 %;p=| NS 7.5 %; p= | NS
icular_Rad | 2.09.107"%; | 3.06.10; 1.71.10°; 3.32.107,
iations_Te | d=-0.39 d=-0.29 d=0.37 d=0.51
mporal_Co
rtex
Right Mid | NS NS 17 %;p= |13 %;p=1|21 %;p=| NS 12.9 %; p | NS
dle_Cortic 6.20.10"7; | 7.85.10%; | 7.85.10", =
oCerebella d=0.52 d=0.33 d=0.46 4.28.108;
r_Tracts d=0.94
Right Mid | -2.5 %; p= | NS NS NS NS 20 %;p=182%;p=1|31%p=
dle_Longit | 6.21.10%; 4.97.10%; | 3.39.10"; | 5.96.10%;
udinal_Fas | d =-0.25 d=0.34 d=0.51 d=0.6
ciculus
Right Opti | -3.1 %;p=| -1.1 %;p=| NS NS NS 15 %;p=|85%;p= 1|41 %;p=
cRadiation | 7.28.107%; | 4.53.10°%; 2.46.10%; 1.76.10%"; | 5.18.107%;
s d=-0.54 d=-0.28 d=0.37 d=0.98 d=0.67
Right SLF | NS NS 1.2 %; p= | NS 2.0 %;p=| NS 8.5 %; p= | NS
1 4.46.10; 1.45.10°7; 2.60.10°%;
d=0.28 d=0.32 d=0.65
Right SLF | NS NS NS NS NS NS 10.0 %; p | NS
2 =
1.87.10%;
d=0.61
Right SLF | -2.0 %; p= | NS 19 %;p= 109 % p=1|28 %;p=| NS 16.0 %; p | NS
3 1.64.10%; 3.05.107¢; | 2.85.10%; | 3.04.10", =
d=-0.27 d=0.51 d=0.26 d=047 1.10.10°%;
d=0.84
Right_Sup | NS NS 1.5 %;p=116 %; p=| NS NS 113 %; p | -2.7 %;p =
erior_Corti 6.69.10; | 2.27.10; = 2.99.10%,
coCerebell d=0.34 d=042 2.34.10";, | d=-0.37
ar_Tracts d=0.57
Right_Thal | NS NS 19 %;p=120%;p=|19 %;p=| NS 96 %;p=|-25%;p=
amic_Radi 1.34.10™, 9.93.107%; | 5.70.10°7; 5.14.10%;, | 4.06.107,
ations_Ce d=042 d=0.54 d=0.28 d=0.54 d=-0.39
ntral_Corte
X
Right_Thal | -1.8 %; p= | NS NS NS NS NS 109 %; p | 24 %; p =
amic_Radi | 7.33.10%, = 2.36.10™";
ations_Fro | d =-0.33 2.45.10%; | d=0.42
ntal_Corte d=1.14

X




Right_Thal | -2.9 %; p= | NS 26 %; p=| NS 37 %;p=1|-21%;p=| 125 %; p | NS

amic_Radi | 2.91.107; 1.51.10°%; 6.83.10"; | 2.11.10%; =

ations_Oc | d =-0.32 d=0.38 d=0.38 d=-0.35 6.89.10%;

cipital_Cor d=0.68

tex

Right_Thal | NS NS 16 %;p=|12%;p=1]|20%;p=| NS 1.1 %; p | 1.9 %; p =

amic_Radi 1.72.1075; | 3.42.10"%; | 8.44.107% = 2.33.10°%;

ations_Par d=0.5 d=043 d=0.42 7.50.10%; | d=10.37

ietal_Corte d=1.02

X

Right_Thal | NS NS 1.7 %; p= | NS 26 %;p=| NS 12.0 %; p | NS

amic_Radi 2.67.10™; 8.71.10™; =

ations_Te d=0.41 d=04 1.46.10°%";

mporal_Co d=0.74

rtex

Right_Unci | -2.7 %;p=| -1.2%;p=| 24 %;p= |11 %; p=| 3.6 %;p=| NS 1563 %; p | 3.0 %; p =

nate 1.16.10"5; | 2.74.10%; | 4.03.10%; | 7.37.10%; | 7.45.10%, = 4.93.107;

=-0.5 d=-0.29 d=0.62 d=0.36 d=0.65 1.06.10%"; | d=0.51

d=1.09

Right_Vent | -7.1 %;p=| -3.2 %;p=| NS NS NS NS 14.8 %; p | 6.6 %; p =

ral_Cingul | 7.21.10%; | 3.12.107; = 8.95.10°%%

um d=-0.76 d=-0.51 3.17.10%; | d=0.98
d=1.05

Supplementary table 1. Complete results of comparisons between men and women for all
tracts and all microstructural parameters: FA, GFA, MD, axial diffusivity, radial diffusivity,
neurite density index, isotropic water volume fraction and orientation dispersion index. For
each tract, if a significant difference was found, the percentage difference between the sexes
is shown with the associated p-value and Cohen's d. If the comparisons were not significant,
"NS" is shown.



Deep white matter atlas constitution

The white matter atlas was constructed using all 1065 subjects from the HCP cohort. It was
performed by first performing a dimensionality reduction on each subject’s tractogram, using
an intra-subject clustering algorithm in order to reduce the number of fiber, then an
inter-subject fiber clustering at the level of the entire HCP cohort in order to reliably extract
the deep white matter tract.

The dimensionality reduction step used the intra-subject clustering algorithm described by
Guevara et al. (69), which groups streamlines together according to their geometric
properties. Fibers are first clustered into 4 different regions (left hemisphere, right
hemisphere, interhemispheric, and cerebellum). Fibers from each region are then grouped
by length range (10 length groups), and for each resulting group, a fiber density map is
computed from the voxels crossed by the fibers. Each density map is then finely parcellated
using a k-means algorithm, and a connectivity matrix is computed from the reconstructed
white matter fibers to determine the structural connectivity profile of each pair of parcels. A
lower threshold is applied to discard pairs of parcels with low connectivity (< 1 %). Finally, an
average-link hierarchical clustering algorithm is applied to the connectivity matrix to extract
clusters of connected parcels. The resulting parcel clusters are then used to identify white
matter fiber clusters corresponding to fibers that intersect the parcel clusters for at least 60
% of their length, representing groups of fibers (also called fascicles) of similar length that
strongly connect adjacent voxels. A final watershed step is performed to differentiate fiber
clusters according to their extremities. To further reduce the representation of the entire set
of fiber clusters obtained at an individual scale, each fiber cluster (or fascicle) is represented
by its centroid, which corresponds to the fiber that represents the shortest distance to all
other fibers belonging to the cluster. This last step results in a centroid map that provides a
sparse (and efficient) representation of all fascicles at an individual scale.

After intra-subject clustering were performed on the 1065 subjects, a cross-subject fiber
clustering algorithm was applied to all the individual cluster centroid maps registered in the
MNI template, in order to generate maps of fascicles common to the population, using the
HDBscan algorithm (70) with the following parameters (optimized by a grid search to
maximize the number of clusters obtained): normalization factor 6, neighbor count 5,
minimum cluster size 10, minimum subject percentage 2.5 %.

From the results of this cross-subject fiber clustering, deep white matter tracts were
independently identified by two trained neuroanatomists using manual ROI selection based
on the neuroanatomical literature. All resulting tracts were manually curated to remove
residual artifactual fibers. This allowed the construction of a deep white matter fiber atlas
from the entire HCP cohort, containing 77 tracts: 15 association tracts for each hemisphere,
19 projection tracts for each hemisphere, 8 interhemispheric tracts, and 1 intracerebellar
tract. The anatomical T1 volume was used to segment the corpus callosum into 7 parts
according to Witelson's segmentation (71), and these ROls were used to divide the corpus
callosum fibers into the same 7 parts. Projection fibers connecting the cortex and the basal
ganglia were segmented according to the cortical areas they connect (i.e., central, cingulate,
frontal, parietal, occipital, temporal, and insular). Cortico-cerebellar tracts were segmented
according to the cerebellar peduncle through which they pass.


https://www.zotero.org/google-docs/?H2lXT3
https://www.zotero.org/google-docs/?ZrdpVF
https://www.zotero.org/google-docs/?cdIQTP
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Supplementary figure 1. Overview of the diffusion pipeline analysis. Left column: Individual
analysis performed for each of the 1065 subjects: from the raw diffusion-weighted images

DWi, computation of the generalized fractional anisotropy (GFA) maps and the orientation
density function (ODF) fields; computation of a whole-brain tractography; and computation of
an intra-subject fiber clustering. Right column: group analysis: computation of a
cross-subject clustering with the HDBscan algorithm on the whole 1065 subjects cohort, and
extraction of the white matter tracts by ROl selection by 2 independent trained
neuroanatomists. Using this deep white matter atlas, fibers from each tractogram are labeled

using a maximum pairwise distance algorithm.




Cerebellar
. N&
& 2

Ventral and
dorsal cingulum

Corpus callosum segmented in 7 parts
(according to Wittelson et al.)

& s.-/.’-‘d%

IFOF

A

Frontal aslant SLF1 SLF2 SLF3 Optic radiations

Supplementary figure 2. Overview of the deep white matter atlas. Left: samples of
association and projection white matter tracts (ILF: inferior longitudinal fasciculus, MLF:
middle longitudinal fasciculus, SLF: superior longitudinal fasciculus, IFOF: inferior
fronto-occipital fasciculus). Right: segmentation of the corpus callosum bundles according to
the corpus callosum geometrical segmentation by Wittelson et al.



White matter tract

Distribution of isotropic water volume fraction values by tract and
Significantly different tracts with d > 0.5
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Supplementary figure 3. Distribution of isotropic water volume fraction values of the 57 white
matter tracts with a significant difference between men and women and an effect size
greater than 0.5, ranked by their Cohen’s d value.
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