
HAL Id: hal-04670146
https://hal.sorbonne-universite.fr/hal-04670146

Preprint submitted on 11 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Under-approximating Memory Abstractions
Marco Milanese, Antoine Miné

To cite this version:

Marco Milanese, Antoine Miné. Under-approximating Memory Abstractions. 2024. �hal-04670146�

https://hal.sorbonne-universite.fr/hal-04670146
https://hal.archives-ouvertes.fr
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Abstract. This work presents a sound backward analysis for sufficient
pre-conditions inference in C programs, by abstract interpretation. It
utilizes the under-approximation abstract operators studied by Milanese
and Miné [35,32] for a purely numeric subset of C, and extends them
to support the C memory model. Pointer dereferences are handled with
the cell abstraction [34] and dynamic memory allocations with the re-
cency abstraction [3]. A direct usage of the abstract operators proposed
in these previous works in an under-approximation framework is not pos-
sible as either internally they rely on over-approximated operators (e.g.,
cell removal) or an extension to this framework is not straightforward
(e.g., under-approximating join). In this work we propose new operators
that are under-approximating, and on top of this we design a backward
semantics. The analysis is implemented in the MOPSA analyzer and
its performance is assessed in detection of sufficient pre-conditions for
runtime errors in 13,261 C tasks from NIST Juliet test suite [5].

Keywords: Abstract Interpretation · Software Verification · Program
Analysis · Bug Catching · Under-approximation.

1 Introduction

Traditionally, static analyses based on abstract interpretation [13,14,15] focused
on computing over-approximations of the concrete semantics of programs. This
allows to formally certify that programs satisfy some specification but, by the
virtue of the analysis, can introduce false positives. This may not be acceptable
in contexts where static analysis tools are deployed to help developers catching
bugs. In these contexts it is more important to raise only true alarms than
to raise alarms for all possible bug conditions. For this purpose, we need an
under-approximating rather than over-approximating analysis. Additionally, to
maximize the information content provided to developers, the analyzer should
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1 union num {
2 int i;
3 float f;
4 };
5 union num *p = malloc(sizeof(union num));
6 p->i = 0;
7 assert(p->f == 0);

Fig. 1: Simple C program requiring a precise representation of memory.

provide input cases, possibly as simple as possible, which can trigger the bug.
For instance in the following C program

1 int arr[10];
2 arr[getchar()] = 0;

the analysis tool should report that the array access is unsafe, and more specif-
ically that it is sufficient for getchar() to return a value greater than 9 for the
access to be unsafe.

The authors of [32,35] studied a backward analysis based on abstract inter-
pretation allowing to infer sufficient pre-conditions. This class of pre-conditions
differs from classic necessary pre-conditions in the handling of non-determinism.
For a post-condition S, sufficient pre-conditions contain states σ such that ∀σ′.
(σ → σ′) =⇒ σ′ ∈ S whereas necessary pre-conditions contain states σ such
that ∃σ′ ∈ S. σ → σ′, where we model the program as a transition system
and → denotes the transition relation. In other words, sufficient pre-conditions
ensure that no matter the non-deterministic trajectory of the program, if the
program terminates, it terminates in a state satisfying the post-condition. Vice
versa, necessary pre-conditions ensure that there exists a program trajectory
which terminates in the post-condition. Because of this property, sufficient pre-
conditions are more appealing in a bug catching context as they allow finding
bugs that occur for any program run.

Motivation. Previous work on sufficient pre-condition computation by abstract
interpretation focuses on programs with only numeric types. Unfortunately this
falls short of the analysis of C programs, where non-scalar types, memory allo-
cations, and pointers are commonly used. Moreover, in C, due to type punning,
it is possible to access to the same memory location with different types. For
example the code of Fig. 1 accesses the same memory location with fields i and
f. In order to handle these features, abstractions beyond numeric domains are
required. In this work we aim at filling this gap by studying how well-known
abstractions for pointers, namely the cell abstraction [34], and dynamic mem-
ory allocations, namely heap-recency abstraction [3] (at allocation sites), can be
employed in an under-approximation sufficient pre-conditions analysis.
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Contribution. The backward analysis considered in this work requires under-
approximated operators. This poses several challenges, especially in the cell ab-
straction, as some operators, namely join and cell removal, can over-approximate
the state. In particular, this occurs in the join because the cell domain is con-
structed as a Cartesian product of subdomains, and the usual construction of the
join as a point-wise lift of the joins of the subdomains can yield spurious states.
Consider for instance under-approximating the join of pointers &a+1 and &b+2:
handling separately the join of variables {&a}∪{&b} and offsets {1}∪{2} leads to
{&a,&b}+[1, 2], which is not a sound under-approximation of {&a+1}∪{&b+2},
although {&a,&b} and [1, 2] are valid under-approximations of {&a}∪{&b} and
{1} ∪ {2} respectively as they represent the exact join. In general, the Carte-
sian product of over-approximations is an over-approximation, but the Carte-
sian product of under-approximations may not be an under-approximation. To
overcome this difficulty, we study a special join which under-approximates its ar-
guments so that the point-wise construction can be used while still retaining an
under-approximation of the concrete union. Similarly, the cell removal operator
can introduce over-approximations as it removes cells by simply dropping them
from the state. In the cell domain, cells act as constraints on the invariant: re-
moving them enlarges the set of represented states, and thus over-approximates.
To overcome this limitation, we show how the information contained in the cell
to be removed can be first transferred to other cells, so that the cell can be later
removed safely.

In summary, the contribution of this work is threefold:

– In Sect. 2, we extend the cell abstraction with under-approximated lattice
operators and design a backward semantics based on this domain which can
handle the C semantics of pointers and memory;

– In Sect. 3, we design a backward semantics for memory allocation and free
operators based on the heap-recency abstraction;

– In Sect. 4, we implement this backward analysis in the MOPSA [26] static
analysis platform and evaluate experimentally the accuracy of the analysis by
analyzing 13,261 C tasks from the NIST Juliet collection of benchmarks [5].

Section 5 presents related works and Section 6 concludes.

2 Memory Abstractions

Previous works on sufficient pre-conditions inference by abstract interpretation
such as [32,35] were limited to purely numeric semantics. Here, we focus on ex-
tensions of this semantics to handle memory and non-scalar types of the C pro-
gramming language, i.e., aggregate types (e.g., structs, unions, arrays), pointers
and casts. This section is organized as follows: Sect. 2.1 recalls a low-level se-
mantics of memory, Sect. 2.2 recalls the cell abstraction and its semantics and
Sect. 2.3 recalls the abstract semantics with cells, Sect. 2.4 focuses on a back-
ward semantics for the cell concrete semantics, Sect. 2.5 focuses on the design of
under-approximated lattice operators for the cell abstract domain and Sect. 2.6
focuses on a backward semantics for the cell abstract domain.
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int-sign ::= unsigned | signed
int-size ::= char | short | int | long

int-type ::= int-sign int-size
float-type ::= float | double

scalar-type ∋ τ ::= int-type | float-type | ptr
Expr ∋ a ::= [v1, v2] v1, v2 ∈ R

| V V ∈ V
| &V V ∈ V
| ∗τ a

| ◦ a ◦ ∈ {−, !, . . .}
| a1 ⋄ a2 ⋄ ∈ {+,≤,&, . . .}

Stat ∋ s ::= ∗τ p := a | assume(a) p ∈ Vp

Fig. 2: Language Syntax.

2.1 Low-level Semantics

In this section we recall the semantics studied in [34].

Notation. Given a set S, then P(S) denotes its power-set, that is the collection
of all subsets of S. We denote with f : X ⇀ Y a partial function f , where
elements of a domain X may be mapped to a co-domain Y . If ρ denotes a state
(or environment), then ρ(v) indicates the lookup of the variable v in ρ, and
ρ[v 7→ x] indicates the replacement of the content of the variable v with the
value x.1

Language. Let V be a set of (typed) variables and Vp ⊆ V the subset of vari-
ables with pointer type. We support a simple C-like language with scalar types,
i.e., numeric types and pointer types, and non-scalar types, i.e., arrays, structs,
unions. For simplicity, we assume that all memory accesses to non-scalar types
are translated into scalar accesses, therefore in our formalization we only focus
on the latter. In Fig. 2 we report the syntax of the language. Scalar types can
be either numeric types (integers and floats) or pointer types. Expressions can
be either atomic or compositions of other expressions. Finally, we provide two
atomic statements: assignments and boolean filters. For simplicity, the left-hand
side of assignments is a dereference of a pointer variable, but it is easy to gener-
alize this to a generic expression (as we do in the implementation). For the sake
of brevity we omit inductive statements such as if-then-else blocks, statement
concatenation and while loops, but they are supported and their semantics is
the same as in [35].

1 More formally: ρ[v 7→ x] ≜ λw.

{
x if v = w

ρ(w) otherwise
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Eb[[[v1, v2]]]ρ ≜ {v | v1 ≤ v ≤ v2}

Eb[[V ]]ρ ≜ {v | v ∈ bdectypeof(V )⟨ρ⟨V, 0⟩, . . . , ρ⟨V, sizeof(V )− 1⟩⟩}

Eb[[&V ]]ρ ≜ {⟨V, 0⟩}

Eb[[∗τa]]ρ ≜ {v | ∃⟨V, o⟩ ∈ Eb[[a]]ρ. safe-accessτ (⟨V, o⟩),
v ∈ bdecτ ⟨ρ⟨V, o⟩, . . . , ρ⟨V, o+ sizeof(τ)− 1⟩⟩}

Eb[[◦ a]]ρ ≜ {◦ v | v ∈ Eb[[a]]ρ}

Eb[[a1 ⋄ a2]]ρ ≜ {v1 ⋄ v2 | v1 ∈ Eb[[a1]]ρ, v2 ∈ Eb[[a2]]ρ}

τb[[∗τp := a]]ρ ≜ {ρ[⟨V, o⟩ 7→ b0, . . . , ⟨V, o+ sizeof(τ)− 1⟩ 7→ bsizeof(τ)−1] |
⟨V, o⟩ ∈ Eb[[p]]ρ, safe-accessτ (⟨V, o⟩),
∃v ∈ Eb[[a]]ρ. ⟨b0, . . . , bsizeof(τ)−1⟩ ∈ bencτ (v)}

τb[[assume(a)]]ρ ≜ {ρ | ∃v ∈ Eb[[a]]ρ. (v ∈ R =⇒ v ̸= 0) ∧ (v ∈ Ptr =⇒ v ̸= NULL)}

where safe-accessτ (p) ≜ ∃⟨V, o⟩ = p. ∀ i < sizeof(τ). ⟨V, o+ i⟩ ∈ Addr.

Fig. 3: Byte-level semantics.

Byte-level Semantics. We start from a low-level semantics where memory is
represented at byte level and accessed via pointers. Pointers span in a domain
Ptr ≜ (V×N)∪{NULL, invalid} where ⟨V, i⟩ represents the ith byte of the vari-
able V , invalid represents a pointer that does not point to a variable (obtained
for example from casting a non-zero number) and NULL represents a special kind
of invalid pointer obtained from the cast of 0. We denote by Addr the set of
addressable pointers, that is {⟨V, i⟩ | V ∈ V, i < sizeof(V )}, where sizeof(τ)
denotes the size of the type τ and sizeof(V ) denotes the size of the type of V .
States contain byte-values from a domain B ≜ [0, 255] ∪ (Ptr × N), hence they
can be either a byte or a pair ⟨p, i⟩ ∈ Ptr×N which is a symbolic value denoting
the ith byte in the memory representation of the pointer value p (a symbolic
encoding is needed because the precise encoding depends on the system, not the
program). Therefore, program states are in Eb ≜ Addr→ B.

The semantics of expressions is a function Eb[[a]] : Eb → P(I) where I ≜ R ∪
Ptr. The semantics of statements is a function τb[[s]] : Eb → P(Eb). As expressions
return values in I and states store byte-values we need a way to convert between
the two formats. The conversion is ABI-specific (e.g., due to endianness) and can
be non-deterministic to account for invalid cases (e.g., decoding a pointer with
integer type). For illustration purposes, without loss of generality, we assume the
ABI of Intel x86 CPUs. Formally, the semantics is parametric with respect to a
value encoding function bencτ : I→ P(B∗) and a value decoding function bdecτ :
B∗ → P(I). See [34] for further details. Value operators ◦ and ⋄ are defined
according to their C semantics.2 typeof(V ) denotes the type of the variable V .

2 Pointer arithmetic is supported too. For instance ⟨V, o⟩+ i = ⟨V, o+ i⟩.
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Ec[[[v1, v2]]]σ ≜ {⟨σ, v⟩ | v1 ≤ v ≤ v2}

Ec[[V ]]σ ≜ {⟨⟨C′, r′⟩, r′(⟨V, 0, typeof(V )⟩)⟩ |
⟨C′, r′⟩ ∈ add-cell(⟨V, 0, typeof(V )⟩, σ)}

Ec[[&V ]]σ ≜ {⟨σ, ⟨V, 0⟩⟩}

Ec[[∗τa]]σ ≜ {⟨⟨C′′, r′′⟩, r′′(⟨V, o, τ⟩)⟩ |
∃σ′. ⟨σ′, ⟨V, o⟩⟩ ∈ Ec[[a]]σ ∧ safe-accessτ (⟨V, o⟩),
⟨C′′, r′′⟩ ∈ add-cell(⟨V, o, τ⟩, σ′)}

Ec[[◦ a]]σ ≜ {⟨σ′, ◦ v⟩ | ⟨σ′, v⟩ ∈ Ec[[a]]σ}

Ec[[a1 ⋄ a2]]σ ≜ {⟨σ′′, v1 ⋄ v2⟩ | ∃σ′. ⟨σ′, v1⟩ ∈ Ec[[a1]]σ, ⟨σ′′, v2⟩ ∈ Ec[[a2]]σ
′}

τc[[∗τp := a]]σ ≜ {σ′′′′ | ∃σ′. ⟨σ′, v⟩ ∈ Ec[[a]]σ,

∃⟨⟨C′′, r′′⟩, ⟨V, o⟩⟩ ∈ Ec[[p]]σ
′. safe-accessτ (⟨V, o⟩),

c = ⟨V, o, τ⟩, σ′′′ = ⟨C′′ ∪ {c}, r′′[c 7→ v]⟩,
σ′′′′ ∈ remove-overlapping-cells(c, σ′′′)}

τc[[assume(a)]]σ ≜ {σ′ | ∃v. ⟨σ′, v⟩ ∈ Ec[[a]]σ,

(v ∈ R =⇒ v ̸= 0) ∧ (v ∈ Ptr =⇒ v ̸= NULL)}

Fig. 4: Cell concrete semantics.

For the sake of brevity, we skip error handling from the presentation of the
semantics. The complete semantics would include an error state ω, reached by
illegal operations (e.g., dereferencing a non-addressable pointer). The (simplified)
semantics is reported in Fig. 3.

2.2 Cell-based Semantics

Byte-level semantics is not a convenient starting point for designing an abstract
semantics, because an abstract semantics based on it would have to require fre-
quent conversions between values and byte-based representations. This requires
more expressive (and costly) domains to represent even simple properties of
multibyte integers (e.g., the range of a 32-bit integer is expressed as a linear
inequality relation on its bytes).

To sidestep these limitations [34] proposes a less concrete semantics where
program states represent memory not directly byte-by-byte, but instead by track-
ing the value contained in some multibyte memory cells. A cell represents a
memory region containing a scalar value, together with its type (specifying the
encoding of the value). Formally, it is a triple ⟨V, o, τ⟩ where V ∈ V is a variable,
o ∈ N is the cell’s offset, so that the base of the cell is given by the address of
V plus the offset o and τ ∈ scalar-type is the type used to access the cell (which
defines also its size). The universe of valid cells is Cells ≜ {⟨V, o, τ⟩ | V ∈ V, o ∈
N, τ ∈ scalar-type, o + sizeof(τ) ≤ sizeof(V )} and Cellsptr denotes cells with
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pointer type. Program states are pairs ⟨C, r⟩ where C is a set of cells and r an en-
vironment with domain C. More formally Ec ≜ {⟨C, r⟩ | C ⊆ Cells, r ∈ C → I}.
If an address is covered simultaneously by multiple cells, its byte values are com-
puted as the intersection of the byte values contributed by each cell. The state
⟨C, r⟩ ∈ Ec is mapped by the concretization function γCell to the set of byte-
level states γCell⟨C, r⟩ ≜ {ρ ∈ Addr→ B | ∀⟨V, o, τ⟩ ∈ C. ∃⟨b0, . . . , bsizeof(τ)−1⟩ ∈
bencτ (r⟨V, o, τ⟩). ∀i < sizeof(τ). ρ⟨V, o+ i⟩ = bi}. We denote with γCell⟨C, r⟩(c)
the set of byte strings in the memory region c = ⟨V, o, τ⟩ in the state ⟨C, r⟩, that
is {⟨b0, . . . , bsizeof(τ)−1⟩ | ∃ρ ∈ γCell⟨C, r⟩. ∀i < sizeof(τ). bi = ρ⟨V, o+ i⟩}.

Example 1. Let c1 ≜ ⟨V, 0, unsigned int⟩ and c2 ≜ ⟨V, 0, unsigned char⟩ be
two overlapping cells. Consider a state σ1 ≜ ⟨{c1, c2}, [c1 7→ 0, c2 7→ 0]⟩. The
byte-level concretization of σ1 is a singleton byte-memory: {[⟨V, 0⟩ 7→ 0, ⟨V, 1⟩ 7→
0, ⟨V, 2⟩ 7→ 0, ⟨V, 3⟩ 7→ 0]}. However, the concretization of the state σ2 ≜ ⟨{c1, c2},
[c1 7→ 0, c2 7→ 1]⟩ is ∅ as the two cells have different values on the overlapping
part. ⊓⊔

In order to avoid the encoding and decoding of values from and into bytes,
this semantics implements memory accesses by reading and writing values to
cells at the location of the memory access. However, since it is not possible
to know in advance the set of cells that will be used during the analysis (e.g.,
due to type-punning), cells must be added dynamically, during the analysis, on-
demand. In particular, the analysis starts with an empty set of cells, and then if
a memory access targets a cell that is missing from the state, the cell is added
so that its value can be retrieved or updated. Because of this, if the same part
of memory is read with different types, overlapping cells can be created. This
configuration requires special attention if a portion of the overlapping region is
written. In this case it is not enough to write the cell target of the write, but
also the overlapping cells must be updated with the new value.

Example 2. Continuing Example 1, the assignment ∗unsigned int&V := 5 updates
the value in the cell c1, but also c2 must be updated because the region of
memory it represents is also affected by the assignment (or its value can be
forgotten altogether, which is a simple and sound way to update c2 and can be
efficiently implemented by removing c2 thanks to the intersection semantics of
overlapping cells). ⊓⊔

For this purpose we introduce two operators allowing to add and remove cells
to and from the state, while ensuring that the result over-approximates the initial
state (according to the byte-level semantics). Notice that it is always sound to
create and initialize a new cell with ⊤ as ⊤ does not impose any constraints
on the set of values stored in memory, thus it leaves the concretization of the
state unchanged. However, because of the overlapping with other cells, it may be
sound to initialize the cell with a set of values smaller than ⊤ (crucial to avoid
losses of precision). Given a cell c, we denote with ϕ(c, C) an expression (where
C is the current set of cells) which summarizes the values stored by the other
cells in the region identified by c. By construction, ϕ(c, C) refers only to other
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cells or constant values; in particular it does not contain pointer dereferences. We
call this kind of expressions scalar expressions. Scalar expressions are generated
by the language:

Scalar-Expr ∋ e ::= [v1, v2] | &V | NULL | invalid
| ⟨V, o, τ⟩ ∈ Cells | ◦ e | e1 ⋄ e2

For any ⟨C, r⟩ and c (possibly not in C), ϕ must satisfy the condition

γCell⟨C, r⟩(c) ⊆ bencτ (E[[ϕ(c, C)]]r), (1)

where E[[·]] denotes a scalar evaluation, and bencτ (·) is lifted to P(I). There-
fore, it is possible to define the operator add-cell : Cells → Ec → P(Ec) as
add-cell(c, ⟨C, r⟩) ≜ {⟨C ∪{c}, r[c 7→ v]⟩ | v ∈ E[[ϕ(c, C)]]r}. It is easy to see that
that if ϕ satisfies (1) then the cell addition is exact, i.e., it does not change the
concretization of the state. The cell removal operator remove-cell : Cells→ Ec →
P(Ec) can be simply implemented as remove-cell(c, ⟨C, r⟩) ≜ {⟨C \{c}, r

∣∣
C\{c}⟩}.

Notice that due to the intersection semantics, removing a cell corresponds to re-
moving a constraint, therefore this can only induce over-approximations. This is
sound for the forward semantics presented in this section, but will become un-
sound for the backward semantics that we present later which instead requires
under-approximations.

Because dereferencing a pointer may create new cells, the semantics of ex-
pressions must return a cell state in addition to a value, thus it has signature
Ec[[a]] : Ec → P(Ec × I). The semantics of assignments ensures that no cell over-
laps the target cell by removing the cells overlapping the target after it has
been updated. This is done with a remove-overlapping-cells operator, which re-
peatedly calls remove-cell until all the overlapping cells are removed. The cell
semantics is reported in Fig. 4.

2.3 Over-approximating Abstract Semantics

Let A be a base numeric abstract domain with concretization γ(·), lattice op-
erators ⊔♯,⊓♯,∇♯, and abstract semantics τ ♯[[s]] defined on a restriction of the
language comprising only numeric expressions (i.e., without pointers). In the
following, we recall how A can be lifted to a cell abstract domain Â abstracting
the cell semantics. To abstract a concrete invariant P(Ec) it is necessary to ap-
proximate both the set of cells in the state and the cell’s content. The set of cells
is abstracted with a single set that is shared among all the concrete cell states.
The representation of the set itself does not require abstractions as Cells is finite
since V is assumed to be finite (this limitation will be addressed in Sect. 3).
To abstract the content of numeric cells we utilize a numeric dimension in the
base domain A, and for pointer cells we abstract the pointer base with a set of
possible targets and the offset with a dimension in the numeric base domain. To
simplify the notation, we group the numeric and pointer abstractions in a single
scalar abstraction Ã ≜ A × (Cellsptr ⇀ P(V ∪ {NULL, invalid})). Lattice op-
erators are computed pair-wise between A and the pointer map and point-wise
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Algorithm 1 Forward abstract transfer functions.

1: function FwdAssign(D̂♯, ∗τp := a)
2: acc← ⊥̂♯

3: for all ⟨ai, li⟩ ∈ resolve(a, D̂♯) do
4: for all ⟨c, lj⟩ ∈ deref(p, D̂♯) do
5: ⟨C′, D̃♯′⟩ ← D̂♯

6: for all ⟨p, ⟨V, o, τ⟩⟩ ∈ li :: lj do
7: ⟨C′, D̃♯′⟩ ← add-cell♯(⟨V, o, τ⟩, ⟨C′, D̃♯′⟩)
8: ⟨C′, D̃♯′⟩ ← ⟨C′, τ̃ ♯[[assume(p = &V + o)]]D̃♯′⟩
9: D̃♯′ ← τ̃ ♯[[c := ai]]D̃

♯′

10: acc← acc ⊔̂♯
remove-overlapping-cells♯(c, ⟨C′, D̃♯′⟩)

11: return acc
12: function FwdAssume(D̂♯,assume(a))
13: acc← ⊥̂♯

14: for all ⟨ai, li⟩ ∈ resolve(a, D̂♯) do
15: ⟨C′, D̃♯′⟩ ← D̂♯

16: for all ⟨p, ⟨V, o, τ⟩⟩ ∈ li do
17: ⟨C′, D̃♯′⟩ ← add-cell♯(⟨V, o, τ⟩, ⟨C′, D̃♯′⟩)
18: ⟨C′, D̃♯′⟩ ← ⟨C′, τ̃ ♯[[assume(p = &V + o)]]D̃♯′⟩
19: D̃♯′ ← τ̃ ♯[[assume(ai)]]D̃

♯′

20: acc← acc ⊔̂♯⟨C′, D̃♯′⟩
21: return acc

within pointers of the pointer map, but not necessarily point-wise in A as A may
be relational (e.g., polyhedra [19]). In Ã, numeric statements are handled by A,
assignments of pointers are carried out by updating the value in the pointer map
of the assigned variable (and the offset in A) and assume statements are carried
out by filtering out from the map values that do not satisfy the guard, e.g.,
τ̃ ♯[[assume(⟨p, 0, ptr⟩ = NULL)]] removes from ⟨p, 0, ptr⟩ all non-NULL values.

Hence, we have: Â ≜ {⟨C, D̃♯⟩ | C ⊆ Cells, D̃♯ ∈ Ã}. Notice that all the
memory environments abstracted by D̃♯ are defined over the same set of cells C.
The concretization is defined as follows:

γ̂♯⟨C, ⟨D♯, P ⟩⟩ ≜

⟨C, r⟩
∣∣∣∣∣∣∣∣∣∣
∃ψ ∈ γ(D♯). ∀c = ⟨V, o, τ⟩ ∈ C.
r(c) = ψ(c) if τ ̸= ptr

r(c) = ⟨p, ψ(c)⟩ if τ = ptr ∧ p ∈ P (c) ∩ V
r(c) = p if τ = ptr ∧ p ∈ P (c) \ V

 .

To compute lattice operators it is necessary to ensure that both arguments
are defined on the same set of cells. This is done by adding the missing cells with
an add-cell♯ : Cells→ Â→ Â operator which adds and initializes a new cell us-
ing the same approach as add-cell. Then lattice operators can be computed on
the scalar abstraction (note that Cells is finite, hence there is no convergence
problem for the widening operator). The semantics of statements is presented
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in the form of an algorithm, see Algorithm 1. Assignments τ̂ ♯[[∗τp := a]]D̂♯

and tests τ̂ ♯[[assume(a)]]D̂♯ are implemented in two steps. Firstly, in an ex-
pression we replace (transitively) pointer dereferences with sets of scalar ex-
pressions where dereferences are replaced by cells that may be accessed. For
instance if p 7→ {&X,&Y }, then the expression ∗intp is replaced by ⟨X, 0, int⟩
and ⟨Y, 0, int⟩ (notice that cells play the roles of variables in scalar expres-
sions). This task is accomplished by an operator resolve : (Expr × D̂♯) →
P(Scalar-Expr× (Cellsptr ×Cells)∗) which yields pairs made of a scalar expres-
sion and sequence of pointer-cell associations that characterize the resolution
(e.g., in the example above we have the pointer-cells ⟨⟨p, 0, ptr⟩, ⟨X, 0, int⟩⟩
and ⟨⟨p, 0, ptr⟩, ⟨Y, 0, int⟩⟩). We define also a specialized version of resolve,
deref : (Vp × D̂♯) → P(Cells×(Cellsptr ×Cells)), which yields a set of cells
pointed by a pointer variable (in addition to the pointer-cell association of the
derefence). deref is used to resolve the dereference on the left-hand side of as-
signments: while this could be done with resolve, keeping a dedicated operator
will become important in the backward semantics. Secondly, for each pair we
execute the statement in the scalar domain and join all the results. Finally, for
assignments, overlapping cells are removed with remove-overlapping-cells♯ which
removes the overlapping cells from the abstract domain.

2.4 Backward Semantics

The semantics proposed in [34] and recalled in the previous section focuses only
on forward over-approximating operators. In this section we study a backward
semantics based on the same abstraction but computing sufficient pre-conditions.

Byte-level Semantics. In general, the backward version
←
f of a function f :

P(D) → P(D) is defined as
←
f (S) ≜ {x | f({x}) ⊆ S}, that is, it computes a

collection of all and only the states x that transition to a post-condition f({x})
included in S. Notice that this matches the definition of sufficient pre-conditions,
previously given for a transition system. Therefore, we can define the backward
semantics as the backward version of the forward semantics.

Example 3. Following [35], in a purely numeric setup (i.e., if states are in V→ R)
the definition of backward semantics yields in the case of assignments and tests:

←τ [[v := a]]S = {ψ | ∀x ∈ E[[a]]ψ. ψ[v 7→ x] ∈ S}
←τ [[assert(a)]]S = S ∪ {ψ | E[[a]]ψ ⊆ {0}} ⊓⊔

The backward semantics of the byte-level semantics of Fig. 3, denoted ←τb[[·]],
is defined as the backward version of the forward semantics τb[[·]]. In particular,
the two cases of assignments and filters can be formulated as follows:
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←τb[[∗τp := a]]S = {ρ | ∀v ∈ Eb[[a]]ρ. ∀⟨b0, . . . , bsizeof(τ)−1⟩ ∈ bencτ (v).

∀⟨V, o⟩ ∈ Eb[[p]]ρ.

ρ[⟨V, o⟩ 7→ b0, . . . , ⟨V, o+ sizeof(τ)− 1⟩ 7→ bsizeof(τ)−1] ∈ S}
←τb[[assume(a)]]S = S ∪ {ρ | ∀v ∈ Eb[[a]]ρ. (v ∈ R =⇒ v = 0) ∧

(v ∈ Ptr =⇒ v = NULL)}

Cell-based Semantics. A backward semantics for the cell-based model of mem-
ory can be derived as a sound under-approximation of the backward byte-level
semantics. A simple choice satisfying this condition would be to define the back-
ward semantics as the backward version of the forward semantics. Unfortunately
this can be too restrictive if the post-condition contains a set of cells different
from the one that naturally arises from the forward semantics.

Example 4. Let c1 ≜ ⟨V, 0, unsigned short⟩ and c2 ≜ ⟨V, 0, unsigned char⟩
be two cells and σ ≜ ⟨{c1, c2}, [c1 7→ 1, c2 7→ 1]⟩ be a state. Consider now
the assignment s defined as ∗unsigned short&V = ∗unsigned short&V + 1 which, in
the forward direction, increments the value of c1 and removes c2 (because it
overlaps with c1). If ←τc[[s]] was defined as the backward version of τc[[s]] then it
would contain all and only the states that, after applying τc[[s]], are subsumed
by the post-condition, but, as s removes c2 and the post-condition {σ} contains
only states where c2 is present, we have ←τc[[s]]{σ} = ∅. On the other hand,
the same computation at byte-level yields a non-empty result: the byte-level
concretization of σ is the the environment ρ ≜ γCell(σ) = [⟨V, 0⟩ 7→ 1, ⟨V, 1⟩ 7→ 0]
and ←τb[[s]]{ρ} = {[⟨V, 0⟩ 7→ 0, ⟨V, 1⟩ 7→ 0]} ≠ ∅. ⊓⊔

To avoid this difficulty we give a different definition of backward semantics where
the inclusion check of backward functions (i.e., f({x}) ⊆ S) is not computed
between sets of cell states but between sets of byte-level states obtained by the
concretization of the cell states. Formally, for any S ⊆ Ec and s ∈ Stat, we have:

←τc[[s]]S ≜ {σ | γCell(τc[[s]]{σ}) ⊆ γCell(S)}.

Example 5. Continuing Example 4, we analyze s with post-condition S = {σ},
thus γCell(S) = {ρ}. The state σ1 ≜ ⟨{c1, c2}, [c1 7→ 0, c2 7→ 0]⟩ is in the
pre-condition as γCell(τc[[s]]{σ1}) = γCell({⟨{c1}, [c1 7→ 1]⟩}) = {[⟨V, 0⟩ 7→
1, ⟨V, 1⟩ 7→ 0]}. For the same reason, σ2 ≜ ⟨{c1}, [c1 7→ 0]⟩ and all the other
cell states that share the same byte-level concretization of σ1 are in the pre-
condition. ⊓⊔

Proposition 1. The backward cell-based semantics is sound with respect to the
backward byte-level semantics, i.e., for all s ∈ Stat and S ∈ P(Ec)

γCell(
←τc[[s]]S) ⊆ ←τb[[s]](γCell(S)).

Proof. Recall the soundness condition of the forward semantics

∀P ⊆ Ec. γCell(τc[[s]]P ) ⊇ τb[[s]](γCell(P )) (2)



12 Marco Milanese and Antoine Miné

then for all S ⊆ Ec we have

γCell(
←τc[[s]]S) = γCell({σc | γCell(τc[[s]]{σc}) ⊆ γCell(S)}) [Def. ←τc[[·]]]

⊆ γCell({σc | τb[[s]]γCell({σc}) ⊆ γCell(S)}) [By (2)]
= γCell({σc | ∀ρ ∈ γCell({σc}). τb[[s]]{ρ} ⊆ γCell(S)}) [Def. τb[[·]]]
= γCell({σc | ∀ρ ∈ γCell({σc}). ρ ∈ ←τb[[s]]γCell(S)}) [Def. ←τb[[·]]]
= γCell({σc | γCell({σc}) ⊆ ←τb[[s]]γCell(S)})
= {γCell(σc) | γCell({σc}) ⊆ ←τb[[s]]γCell(S)} [Def. γCell]
⊆ ←τb[[s]]γCell(S) ⊓⊔

2.5 Lower Abstract Operators

Concrete invariants are of the form P(X), where X can be the universe of byte-
level states or cell states, hence lattice operators such as inclusion check, join
and meet coincide with set operators and are all exact. On the contrary, lattice
operators of the abstract domain Â are in general only sound (in the sense of
over-approximation) but not exact, hence they can not be reused in the backward
semantics which instead requires operators sound for under-approximations.
Consequently, we need to define ⊔̂♯ : (Â × Â) → Â, called lower join and
⊓̂♯ : (Â × Â) → Â, called lower meet, computing an under-approximation of
the concrete ∪ and ∩. We define also a lower widening ∇̂

♯
: (Â× Â)→ Â which

under-approximates the intersection of its arguments and enforces convergence
in a finite number of steps (see [32,35] for examples of lower operators in the
case of numeric domains). As a first step we need to ensure that both arguments
share the same set of cells. Fortunately the unification approach used in ⊔̂♯, ⊓̂♯

and ∇̂♯ (see Paragraph 2.3) is based on the add-cell operator which is exact
and thus can be reused here. It remains to study how the scalar abstraction,
now defined on the same set of cells, can be joined, met and widened. Unfortu-
nately, a point-wise definition (as we do for over-approximating operators) may
be unsound as shown in the following example.

Example 6. Let c1 ≜ ⟨X, 0, int⟩ and c2 ≜ ⟨P, 0, ptr⟩ be two cells. Consider D̂♯
1 ≜

⟨{c1, c2}, ⟨[c1 7→ [0, 5]], [c2 7→ {&Y }]⟩⟩ and D̂♯
2 ≜ ⟨{c1, c2}, ⟨[c1 7→ [6, 10]], [c2 7→

{&Z}]⟩⟩, where for simplicity we omit the offset of P in the numeric abstraction.
We have that [c1 7→ [0, 5]] ⊔♯ [c1 7→ [6, 10]] = [c1 7→ [0, 10]] is exact and also
[c2 7→ {&Y }] ⊔♯ [c2 7→ {&Z}] = [c2 7→ {&Y,&Z}] is. Unfortunately, combining
the two yields ⟨{c1, c2}, ⟨[c1 7→ [0, 10]], [c2 7→ {&Y,&Z}]⟩⟩ which contains the
state c1 = 2 ∧ c2 = &Z that is not present in the concrete union. ⊓⊔

This problem stems from cross terms that appear in the computation of the
join, if defined point-wise. For example, computing point-wise the join of the
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Fig. 5: The join between the red and blue rectangles on the left is not exact,
however it is possible to under-approximate the red rectangle along the x-axis
with the intersection between the x components of the two rectangles (case (6a)).
The result can be joined exactly yielding the rectangle in green on the right.

Cartesian product of two domains, say, A = A1 ×A2, yields

γ(⟨D1 ⊔♯1 D′1, D2 ⊔♯2 D′2⟩) = γ1(D1 ⊔♯1 D′1)× γ2(D2 ⊔♯2 D′2)
⊇ (γ1(D1) ∪ γ1(D′1))× (γ2(D2) ∪ γ2(D′2)) (3)
= (γ1(D1)× γ2(D2)) ∪ (γ1(D

′
1)× γ2(D′2)) ∪

(γ1(D1)× γ2(D′2)) ∪ (γ1(D
′
1)× γ2(D2))

⊇ (γ1(D1)× γ2(D2)) ∪ (γ1(D
′
1)× γ2(D′2)) (4)

= γ(⟨D1, D2⟩) ∪ γ(⟨D′1, D′2⟩)

where the undesired cross terms are colored in red. To design an under-approximating
join it is necessary to ensure that the cross terms are included in the others terms
or equivalently that the inclusion (4) becomes an equality. Conditions for this to
occur were studied for example in [2]. In this simple case, it is enough to require
that (D2 ⊑♯

2 D′2 ∨ D′1 ⊑
♯
1 D1) ∧ (D′2 ⊑

♯
2 D2 ∨ D1 ⊑♯

1 D′1). Therefore, if this
condition is satisfied the cross terms are not present and the lower join can be
defined point-wise (notice that the inclusion (3) is reversed for lower joins, and
thus the definition is sound). Otherwise, the lower join must fall back to either
of its two arguments. In summary, we define

⟨D1, D2⟩ ⊔♯ ⟨D′1, D′2⟩ ≜



⟨D′1, D′2⟩ if D1 ⊑♯
1 D
′
1 ∧D2 ⊑♯

2 D
′
2 (5a)

⟨D1, D2⟩ if D′1 ⊑
♯
1 D1 ∧D′2 ⊑

♯
2 D2 (5b)

⟨D1, D2 ⊔♯2D′2⟩ if D1 = D′1 (5c)

⟨D1 ⊔♯1D′1, D2⟩ if D2 = D′2 (5d)
⟨D1, D2⟩ or ⟨D′1, D′2⟩ otherwise (5e)

Moreover, if the equality conditions of (5c) and (5d) are not satisfied, it is possi-
ble to under-approximate one component of one of the two arguments until they
are equal and thus enforce the equality (see Fig. 5). A simple way to do so is
to replace one component with the meet of the two arguments. Consequently,
we can replace cases (5c) and (5d) respectively with (6a) and (6b) defined as
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follows: {
⟨D1 ⊓♯1D′1, D2 ⊔♯2D′2⟩ if D1 ⊓♯1D′1 ̸= ⊥ (6a)

⟨D1 ⊔♯1D′1, D2 ⊓♯2D′2⟩ if D2 ⊓♯2D′2 ̸= ⊥ (6b)

The same issue is not present with ⊓♯ and ∇♯ which instead can be defined in a
point-wise fashion starting from lower operators of A1 and A2, e.g., ⟨D1, D2⟩ ⊓♯
⟨D′1, D′2⟩ ≜ ⟨D1 ⊓♯1D′1, D2 ⊓♯2D′2⟩. This construction can be extended to products
of arbitrarily many domains and thus can be used to design lower join, meet and
widening for Â.

Example 7. Continuing Example 6, we can see that all the conditions of ⊔♯ are
not satisfied, thus the lower join returns either argument. If we replace D̂♯

2 with
D̂♯

2
′ ≜ ⟨{c1, c2}, ⟨[c1 7→ [6, 10]], [c2 7→ {&Y,&Z}]⟩⟩ we can notice that {&Y } ∩

{&Y,&Z} = {&Y } ≠ ∅, meaning that (6b) is satisfied. Therefore, we can (lower)
join the numeric component and meet the pointer one, which yields the lower
join ⟨{c1, c2}, ⟨[c1 7→ [0, 10]], [c2 7→ {&Y }]⟩⟩. ⊓⊔

2.6 Abstract Semantics of Statements.

The forward computation of abstract assignments and tests starts by first re-
solving pointer dereferences and then passing the scalar expressions to the scalar
domain. Likewise, in the backward semantics it is necessary to start as well by
resolving pointer dereferences. On the other hand, this can not be done using
the post-condition since the computation of the assignment or test could have
modified the pointers involved in the resolution.

Example 8. Consider the statement arr[arr[0]] := 1 where arr has type int [2].
If the pre-condition is arr[0] = 0 then the pointer resolution yields {arr[0]} (here
we display only the expression component) and thus the post-condition ensures
that arr[0] = 1. However, if the backward analysis used the post-condition to
resolve the array index it would erroneously resolve arr[arr[0]] with {arr[1]}
which is incorrect. ⊓⊔

On the other hand it is always sound to perform the pointer resolution using ⊤ or
any over-approximation of the concrete pre-condition. This stems from the fact
that using an over-approximation for pointer resolution yields over-approximated
expressions and in general in the backward semantics we have that f ⊆ g implies
←g ⊆

←
f . Consequently, the backward version of an over-approximation of f is an

under-approximation of the backward version of f . A sound over-approximation
of the pre-condition can be retrieved from a conventional forward analysis, where
the analysis invariants are stored for later re-use in the pointer resolution during
the backward analysis. With this approach, pointer dereferences are resolved
using pointer values stored in the forward over-approximation analysis.

A second issue concerning the analysis of assignments is the need to ensure
that cells overlapping the assigned cell are updated or removed.
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Example 9. Let c1 ≜ {V, 0, unsigned char} and c2 ≜ {V, 0, unsigned short}.
Consider the state D̂♯ ≜ ⟨{c1, c2}, ⟨[c1 7→ 1, c2 7→ 1],_⟩⟩. If the statement
∗unsigned short&V = ∗unsigned short&V + 1 was executed by updating only c2 we
would obtain the pre-condition D̂♯′ ≜ ⟨{c1, c2}, ⟨[c1 7→ 1, c2 7→ 0],_⟩⟩ which is
empty because of the intersection semantics. ⊓⊔

This difficulty is sidestepped in the forward semantics by removing the overlap-
ping cells with the remove-overlapping-cells♯ operator. Unfortunately,
remove-overlapping-cells♯ operates by dropping the cells to remove, thus it com-
putes an over-approximation. As simply dropping cells is unsound for under-
approximations, we envisage an alternative approach where we firstly transfer
the information of the cell we aim to remove to some other cell, after which we
can soundly drop the cell, which has become redundant.

Example 10. Consider two overlapping cells c1 ≜ ⟨V, 0, unsigned char⟩ and
c2 ≜ ⟨V, 0, unsigned short⟩ and a state D̂♯ ≜ ⟨{c1, c2}, ⟨[c1 7→ [0, 10], c2 7→
[5, 15]],_⟩⟩. Since c1 overlaps with the least significant byte of c2, we have the
relation c1 = c2 %256, hence c2 can be updated with (c2 & 0xff00) | ((c2 %256)∩
c1) = [5, 10]. Then c1 can be safely removed. ⊓⊔

In general, to determine a relation between cells we can rely on the ϕ function.
Consequently, to transfer the information of c1 to a cell c2 we can compute
the backward semantics of the initialization of c1 from the values of c2, that is
←̃τ

♯
[[c1 := ϕ(c1, {c2})]].

Example 11. Consider the state D̂♯ = ⟨C, D̃♯⟩ of Example 10. To remove c1, we

compute ←̃τ
♯
[[c1 := ϕ(c1, {c2})]], i.e., a set of states such that the initialization

of c1 with an over-approximation of the set of values contained in the memory
spanned by c1 (recall the soundness condition of ϕ, Equation (1)) is contained
in D̃♯, which means that all the information in c1 is also present in c2. We have
that ϕ(c1, {c2}) = c2 %256 and thus D̃♯′ ≜ ←̃τ

♯
[[c1 := c2 %256]][c1 7→ [0, 10], c2 7→

[5, 15]] = [c1 7→ [0, 255], c2 7→ [5, 10]]. Indeed, in D̃♯′ the expression c2 %256

yields [5, 10] which is contained in D̃♯(c1) = [0, 10]. ⊓⊔

Proposition 2. Let D̂♯ ≜ ⟨C, D̃♯⟩ be a state and c ∈ C. Define D̂♯′ as ⟨C \
{c}, ←̃τ

♯
[[c := ϕ(c, C \ {c})]]D̃♯⟩. Then D̂♯′ ⊑̂♯

D̂♯.

Proof. In order to check the inclusion D̂♯′ ⊑̂♯
D̂♯, the two arguments must be

first unified. In particular, as D̂♯ is defined on the set of cells C, and D̂♯′ on
C \ {c}, the cell c must be added to D̂♯′, i.e., we obtain D̂♯′′ ≜ add-cell♯(c, D̂♯′).
Notice that add-cell♯ adds the missing cell in the scalar abstraction by computing
τ̃ ♯[[c := ϕ(c, C \ {c})]]. Therefore, by Theorem 2.6 of [35] and soundness of the

abstract semantics, τ̃ ♯[[c := ϕ(c, C \ {c})]] ◦ ←̃τ
♯
[[c := ϕ(c, C \ {c})]]D̃♯⊑̃♯

D̃♯, which
proves the claim. ⊓⊔
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Algorithm 2 Backward abstract transfer functions.

1: function BwdAssign(D̂♯, ∗τp := a, pre)
2: acc← ⊤̂♯

3: for all ⟨ai, li⟩ ∈ resolve(a, pre) do ▷ Resolve rhs with pre
4: for all ⟨c, lj⟩ ∈ deref(p, pre) do ▷ Deref p with pre

5: ⟨C′, D̃♯′⟩ ← D̂♯

6: for all ⟨p, ⟨V, o, τ⟩⟩ ∈ li :: lj do ▷ Add cells found in the resolution
7: ⟨C′, D̃♯′⟩ ← add-cell♯(⟨V, o, τ⟩, ⟨C′, D̃♯′⟩)
8: D̃♯′ ← ←̃τ

♯
[[c := ai]]D̃

♯′ ▷ Backward assignment
9: for all ⟨p, ⟨V, o, τ⟩⟩ ∈ li :: lj do ▷ Backward filter of pointers

10: D̃♯′ ← ←̃τ
♯
[[assume(p = &V + o)]]D̃♯′

11: acc← acc ⊓̂♯
remove-overlapping-cells♯(c, ⟨C′, D̃♯′⟩)

12: return acc
13: function BwdAssume(D̂♯,assume(a), pre)
14: acc← ⊤̂♯

15: for all ⟨ai, li⟩ ∈ resolve(a, pre) do ▷ Resolve a with pre

16: ⟨C′, D̃♯′⟩ ← D̂♯

17: for all ⟨p, ⟨V, o, τ⟩⟩ ∈ li do ▷ Add cells found in the resolution
18: ⟨C′, D̃♯′⟩ ← add-cell♯(⟨V, o, τ⟩, ⟨C′, D̃♯′⟩)
19: D̃♯′ ← ←̃τ

♯
[[assume(ai)]]D̃

♯′ ▷ Backward assume
20: for all ⟨p, ⟨V, o, τ⟩⟩ ∈ li do ▷ Backward filter of pointers
21: D̃♯′ ← ←̃τ

♯
[[assume(p = &V + o)]]D̃♯′

22: acc← acc ⊓̂♯⟨C′, D̃♯′⟩
23: return acc

Based on this result we can design an operator remove-cell♯ which removes a
cell from a state while ensuring that the result is an under-approximation, and
the operator remove-overlapping-cells♯ which removes all the cells overlapping a
particular cell. This is done by repeatedly calling remove-cell♯.

We are now ready to implement the backward semantics of assignments and
tests. The semantics is presented in the form of an algorithm, see Algorithm 2.
The first step is pointer resolution, which now is performed starting from an
over-approximated pre-condition pre. The rest of the algorithm is similar to the
forward version, except for the order (here, first assignments or tests and then
filtering of pointers) which is reversed because of the backward direction of the
analysis. Finally, the intermediate results are merged with the meet operator.
This is because in the computations of sufficient pre-conditions, joins appearing
in the forward semantics are replaced by meets. For example τ [[x := x+1]]∪τ [[x :=
x− 1]] maps integers i to {i+1, i− 1}. In order for an integer i to be a sufficient
pre-condition for S, both i+ 1 ∈ S and i− 1 ∈ S must be true, or equivalently
i ∈ ←τ [[x := x+ 1]]S ∩←τ [[x := x− 1]]S.
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Proposition 3. The backward abstract semantics is sound with respect to the
backward cell-based semantics, i.e., for all s ∈ Stat and D̂♯ ∈ Â

γ̂♯(←̂τ
♯
[[s]]D̂♯) ⊆ ←τc[[s]]γ̂♯(D̂♯).

Proof. We outline a sketch of the proof. As in the forward analysis, we need
to replace the pointer dereferences in the statement with concrete cells. For
this purpose, pointers are resolved with targets in pre. Indeed, using an over-
approximation of the pre-condition will increase the number of pointer targets,
but, as all intermediate results are eventually met, this will further restrict the
intersection, thus yielding an under-approximation. After the resolution the al-
gorithm mimics the forward version (in reverse order): we execute the backward
analysis of the statement on the scalar abstraction, and then filter the pointers
according to the values chosen in the resolution.

3 Heap Abstraction

This section extends the backward semantics studied in Section 2 with support
for dynamic memory allocations, which are modeled with the well-known heap
recency abstraction [3]. This abstraction is relatively simple yet can handle pre-
cisely initialization by hand for low-level languages (e.g., C or assembly) where
newly allocated memory is not systematically initialized. For instance, a simple
abstraction which summarizes all the allocations with a single summary block
would not analyze precisely the program below:

1 int *p = malloc(sizeof(int));
2 *p = 0;

Indeed, after the allocation the block is uninitialized (i.e., ⊤) and the assignment
updates ∗p with a weak update, thus ∗p remains ⊤ instead of being initialized
with 0. This motivated the authors of [3] to propose the recency abstraction
where the most recent allocation is singled out in a dedicated block, so that it
can be accessed with strong updates, and the older ones are folded in a single
summary base. In the program above, the allocation in line 1 yields a recent
base, thus the assignment in line 2 can perform a strong update which replaces
⊤ with 0.

Extended Summarization Operators. In the recency abstraction some memory
blocks can summarize several concrete memory allocations. To manipulate them,
we need some additional statements, namely expand(v1, v2) which copies the
constraints of the variable v1 to a new variable v2, fold(v1, v2) which removes v2
and adds its value as a potential value for v1 and rename(v1, v2) which renames
v1 as v2. Additionally, it can be shown that

←−−−−−−−−−−−
expand(v1, v2) = fold(v1, v2) and

←−−−−−−−−
fold(v1, v2) = expand(v1, v2). See [22] for further details.
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Abstraction. The language is extended with atomic statements for memory al-
location and de-allocation:

Stat ∋ s ::= . . . | v := malloc() | free(v),

where v ∈ Vp. We call Base the set of memory bases, i.e., memory blocks that can
be accessed with pointers (up to this point we considered only variable bases, but
this will be extended with heap allocations). Let us denote each allocation site
appearing syntactically in the program with a unique identifier, e.g., malloc10.
The set of all allocations is Alloc ≜ {malloc1, . . . ,mallocn}. For each allocation
malloci we define two bases, namely, bRi and bSi representing respectively the
most recently allocated memory block and the summary block. Consequently,
the extended set of bases is Base ≜ V ∪ {bRi | malloci ∈ Alloc} ∪ {bSi | malloci ∈
Alloc}, and the set of pointers is Ptr ≜ (Base × N) ∪ {NULL, invalid}. Notice
that if a base is not yet allocated (e.g., before malloc is executed), there is no
content at its memory addresses. To account for this, the domain of byte-level
states is now a partial map Eb : Addr ⇀ B.

The heap recency abstraction does not require the storage of information, and
thus it does not possess its own lattice. Conversely, lattice operators are handled
by calling lattice operators of the underlying cell abstraction. In particular, this
may necessitate unifications if the arguments are defined on different sets of
bases. This is achieved by adding the missing bases (and cells) to each argument.

Forward Semantics. The abstract semantics of v := malloci() assigns always to v
the recent base, i.e., bRi , but it ensures also that such recent base is fresh by (pos-
sibly) folding the current content into the summary base. Formally, given a state
D̂♯, if bSi ∈ D̂♯, then the state τ̂ ♯[[v := bRi ]] ◦ τ̂ ♯[[fold(bRi , bSi )]]D̂♯ is returned, oth-
erwise if bSi /∈ D̂♯ the state τ̂ ♯[[v := bRi ]] ◦ τ̂ ♯[[rename(bRi , b

S
i )]]D̂

♯ is returned. The
abstract semantics of free(p) collects first all the bases of the pointers abstracted
by p with offset 0 (so that they point to the base of the memory allocation). For
all recent bases, say, bRi , free must de-allocate the last allocation, and thus the
new recent base should now represent an older allocation: if a summary base is
present it will contain all the previous allocations, thus it is expanded into the
recent base, otherwise the recent allocation is the only allocation, and thus it can
be removed. Formally, given D̂♯, if bSi ∈ D̂♯ then the state τ̂ ♯[[expand(bSi , bRi )]]D̂♯

is returned, otherwise if bSi /∈ D̂♯ then τ̂ ♯[[remove(bRi )]] is returned. If b is a sum-
mary base then it means that some allocation was freed, but others may be still
present, thus the memory block must be retained (i.e., free is a no-op). Finally,
the results for all bases are joined together.3

Backward Semantics. As a preliminary observation, notice that the backward
semantics of v := malloci() can yield two results, depending on the state of the
memory before the allocation.

3 For the sake of brevity, we omit the handling of runtime errors such as use-after-free
or double free, but they are handled in the implementation.
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Example 12. Consider the following program.

1 int *p = NULL;
2 for (int i = 0; i < 5; i++) {
3 p = malloc(sizeof(int));
4 }

Before the malloc is executed in the first iteration of the loop, neither the recent
nor the summary base exist in the abstract state. At the start of the second
iteration, only the recent base is present, and in subsequent iterations both are
present. Note that in the latter two cases the post-condition has the same form,
i.e., with both recent and summary bases present. ⊓⊔

Therefore, if both the recent and the summary bases are present in the state, the
backward semantics can return a pre-condition which may or may not contain
the summary base. Since both pre-conditions are sound, we decide to return the
larger one, i.e., the one containing both bases.

We are now ready to present the backward semantics of v := malloci(). Given
a state D̂♯, three cases are possible:

←̂τ
♯
[[fold(bRi , b

S
i )]] ◦ ←̂τ

♯
[[v := bRi ]]D̂

♯ if bRi ∈ D̂♯ ∧ bSi ∈ D̂♯ (7a)
←̂τ

♯
[[add(bRi )]] ◦ ←̂τ

♯
[[v := bRi ]]D̂

♯ if bRi ∈ D̂♯ ∧ bSi /∈ D̂♯ (7b)

⊥ if bRi /∈ D̂♯ ∧ bSi /∈ D̂♯ (7c)

Notice that the case bRi /∈ D̂♯ ∧ bSi ∈ D̂♯ is invalid as the summary base is only
added if there is already a recent one. The backward semantics of free(p), given
a state D̂♯, computes for all bases bi, such that p abstracts a pointer ⟨bi, 0⟩,

←̂τ
♯
[[expand(bSi , b

R
i )]]D̂

♯ if bRi ∈ D̂♯ ∧ bSi ∈ D̂♯ (8a)

⊥ if bRi ∈ D̂♯ ∧ bSi /∈ D̂♯ (8b)
←̂τ

♯
[[remove(bRi )]]D̂

♯ if bRi /∈ D̂♯ ∧ bSi /∈ D̂♯ (8c)

and then all the results are met.

Example 13. Consider the program of Fig. 6, which performs memory allocations
in line 2. The backward analysis starts with m = 5, sufficient pre-condition for
the assertion to fail. The free of p falls in case (8a), and thus reverts the expansion
of bS1 into bR1 . Similarly, the allocations inside AllocAssign (called at line 6) fall in
case (7a) and revert the fold of bR1 into bS1 . The results of the backward analysis
are summarized in Fig. 7. Notice that the content of p is omitted as it always
points to bR1 . ⊓⊔

4 Implementation and Experiments

Our work was implemented in the MOPSA static analysis tool [26]. MOPSA
can target several languages, but we focused on the C analysis. It was extended
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1: function AllocAssign(n)
2: p← malloc1()
3: ∗p← n
4: return p
5: n← input(0, 10)
6: p← AllocAssign(n+ 1)
7: m← ∗p
8: free(p)
9: assert(m ̸= 5)

Fig. 6: Simple program with alloca-
tions.

Line bR1 bSi n m

9 [0, 10] [0, 10] [0, 10] [5, 5]
8 ⊤ [0, 10] [0, 10] [5, 5]
7 [5, 5] [0, 10] [0, 10] ⊤
6 [0, 10] [0, 10] [4, 4] ⊤

Fig. 7: Backward analysis of the pro-
gram of Fig. 6.

with the features presented in this work: backward semantics of the cell domain
(Sect. 2.4) and heap recency domain (Sect. 3). Additionally, we extended the core
of MOPSA to support backward analyses (previously, only the forward direction
was supported in its iterators). In particular, we had to adapt the signatures of
domains, implement a mechanism for storing and re-calling forward invariants,
and finally implement the actual backward iterators and under-approximating
domains (intervals, cells and heap). Even if the analyzer supports relational
domains, more work is needed to support them in a backward analysis (e.g.,
improve the scalability). On the contrary we utilize a simple configuration with
only intervals domain as it is sufficient to analyze the C language (only floats
are not supported).

To improve the precision and efficiency of the backward analysis, a conven-
tional over-approximation forward analysis is executed first, and the computed
invariants are stored for re-use in the backward pass. Indeed, some backward ab-
stract transfer functions can benefit from having access to an over-approximation
of the pre-condition. For instance, assignments and tests (see Algorithm 2) per-
form pointer resolution using pre which restricts significantly the set of possible
targets.

The analysis starts from a ⊥ post-condition, and when it encounters an op-
eration that may cause a runtime error it computes the states that trigger the
error and joins them to the current abstract state. For example, given the post-
condition x ∈ [0, 10], the analysis of the statement assert(x ≥ 0) will join
x ∈ [0, 10] with x ∈ [−∞,−1] (corresponding to a runtime error), thus obtain-
ing x ∈ [−∞, 10]. This way, we infer a sufficient pre-condition such that, if the
control reaches the assertion, it will definitely fail.

Pre-conditions on Inputs. A sufficient pre-condition for a runtime error must
ensure that all the program trajectories reaching the error location trigger the
error. On the other hand, some bugs may occur only if some external condi-
tion is met. For instance, the division by zero error of the program in Fig. 8 is
triggered only if RAND32() = 0. In order to generate counter-examples as well
for these cases, we leverage the abstraction of inputs presented in [32], which
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1 void CWE369_Divide_by_Zero__int_rand_divide_01_bad()
2 {
3 int data;
4 /* Initialize data */
5 data = -1;
6 /* POTENTIAL FLAW: Set data to a random value */
7 data = RAND32();
8 /* POTENTIAL FLAW: Possibly divide by zero */
9 printIntLine(100 / data);

10 }

Fig. 8: Task from the Juliet suite where a runtime error depends on some external
condition.

allows computing pre-conditions relating to the outcome of calls to an input()
function. Notice that even if the outcomes of calls to input() are collected at the
beginning of the program, input() can be called anywhere in the program. The
input values that we collect are such that, if the program is run and input()
returns the collected values, the program will either diverge or hit a runtime
error.

Benchmarks. We run our analysis on a part of the NIST Juliet collection of
benchmarks [5]. This collection consists of 64,099 C/C++ test cases organized
under 118 different CWEs. Each task comprises bad and good functions. Bad
functions contain one instance of CWE, while good functions are safe. We analyze
13,261 C tasks, extracted from 12 CWEs that are related to undefined behaviors.
In particular, we considered all tasks from those CWEs but the ones where the
flaw is not related to runtime errors. Since we are interested in showing bugs,
we have analyzed only bad functions. Juliet tasks can use some features of the
standard library, e.g., reading from files, memory allocation. We provide some
simple stubs for these functions.

Results. For each task, the analysis can present two outcomes: success if the
analyzer successfully manages to find a non-empty pre-condition; imprecise if the
analyzer finds an empty pre-condition. A residual part of tasks (“Unsupported”
column) could not be analyzed because floats are not supported in the backward
analysis. All the analyses were run on an Intel Core i7-1370P CPU with 32 GiB
of memory. A timeout of 20 s was set, but all the tasks were analyzed (or failed)
before such limit. We report the results in Table 1.

The analyzed tasks mix simple pointer accesses (e.g., read/write from and
to aggregate types or raw pointers) and string operations. While the analysis
is precise on the former category (thanks to the cell domain and heap recency
abstraction), our analysis struggles with string operations, because they can
access simultaneously a potentially large amount of cells. This is the case with
common string functions, e.g., strlen, strcpy, that are widely used in the tasks
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Code Title Time (hh:mm:ss) Task count Success Imprecise Unsupported

CWE121 Stack-based Buffer Overflow 00:30:37 2508 12% 82% 4%
CWE122 Heap-based Buffer Overflow 00:21:35 1556 17% 80% 2%
CWE124 Buffer Underwrite 00:09:14 758 14% 84% 0%
CWE126 Buffer Over-read 00:08:38 600 23% 74% 2%
CWE127 Buffer Under-read 00:08:44 758 9% 90% 0%
CWE190 Integer Overflow 00:25:10 3420 50% 48% 0%
CWE191 Integer Underflow 00:19:07 2622 57% 42% 0%
CWE369 Divide By Zero 00:04:35 497 56% 35% 8%
CWE415 Double Free 00:01:25 190 63% 36% 0%
CWE416 Use After Free 00:01:60 118 25% 74% 0%
CWE469 Illegal Pointer Subtraction 00:00:14 18 0% 100% 0%
CWE476 NULL Pointer Dereference 00:01:14 216 66% 33% 0%

Total 02:17:41 13261 35% 62% 2%

Table 1: Experimental results of the analysis of Juliet tasks. For each supported CWE we
report the cumulative analysis CPU time of the category, the number of tasks in the category
and the outcomes of the analysis.

(e.g., in the CWE469 category the analysis fails due to an imprecision in the
analysis of strchr). To accurately analyze these tasks it is necessary to track
further information about strings, e.g., their length as in [27], and provide precise
stubs for these operations (and this is not implemented for the backward analysis
yet). This explains the poor results in buffer-related categories as they often
involve several complex string manipulations, whereas categories relying less on
them (e.g., integer under/overflow) display better results.

5 Related Works

In this section we discuss previous work on backward and under-approximating
analyses and memory abstractions.

Backward Analysis and Under-Approximation. As a starting point of our work,
we consider the backward analysis of [35,32] that allows to compute sufficient
pre-conditions. Traditionally, backward analyses employed in the abstract inter-
pretation field [6,16,17,18] focused on the inference of necessary pre-conditions.
The two kinds of analyses can yield different results in the presence of non-
determinism: sufficient pre-conditions ensure that all the terminating program
traces reach the post-condition, whereas necessary pre-conditions only ensure
that there exists a trajectory reaching the post-condition.

As noted by the authors of [1], designing under-approximating abstract do-
mains can be a difficult task as they need to be closed under union. Several
approaches sidestep this difficulty by adopting higher-order constructions: for
instance Lev-Ami et al. [30] consider set-complements of ordinary domains,
Schmidt [43] proposes existential quantification and Moy et al. [36] propose a
disjunctive completion. In our work we use conventional domains and design
a new set of under-approximating operators. Compared to our approach, these
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methods retain the best abstraction, but can incur other limitations, namely:
less interesting shapes, too high complexity or are difficult to abstract away.

Incorrectness logic [47,37] was recently proposed as an under-approximation
version of the well-known Hoare logic [25,20]. Reasoning with it can be made
automatic with theorem provers, e.g., in the static analysis tool Pulse [29]. Like
us, these works focus on bug-catching rather than verification, but unlike us,
they study a forward analysis whereas our analysis works in the backward di-
rection. Therefore, while our analysis can provide pre-conditions for triggering
a runtime error, these analyses provide erroneous post-conditions at the error
location. Unfortunately, inferring post-conditions for loops is hard in general,
and many of these approaches handle loops by unrolling, meaning that bugs
can only be discovered if they occur within the maximum number of unrollings.
On the contrary our approach relies on widening operators and thus can handle
unbounded loops.

Finally, Urban et al. [46,40] study a backward analysis for inference of ranking
functions, where the co-domain is under-approximated. The two approaches are
not easy to compare as they use different abstractions and semantics.

Memory Abstractions. Several (over-approximating) pointer analyses for C have
been proposed in literature: these include flow-insensitive algorithms [44,45,24],
i.e., algorithms that do not distinguish different fields in the same struct and
flow-sensitive ones such as [28,4,23,48]. They have been applied with success to
compiler’s design and program analysis as well. Unlike us, these works focus on
points-to analysis in isolation, on the contrary our framework combines it with
a value analysis (in this case operated in the backward direction).

A large body of work has been devoted to the analysis of the shape of memory
allocations: a successful class of works is based on separation logic [41] such as
the tools SpaceInvader [9,10] and Infer [8]. Recently, following the interest in
incorrectness reasoning [47,37,7], separation logic has been formulated also in
an under-approximation fashion (Incorrectness Separation Logic (ISL)) to allow
reasoning about the presence of bugs in programs dealing with memory [39,29].

Moreover, separation logic-based methods have been proposed also in the
abstract interpretation field [12,11,31,21] enabling for instance the development
of the tool MemCAD [42]. In our work we consider a much simpler represen-
tation of memory where for each allocation site we smash together all (but the
most recent) allocations [3]. Finally, these methods focus on over-approximation
forward analyses compared to our approach which focuses on backward under-
approximations.

6 Conclusions

In this article we extend the work of [35,32], studying how well-known mem-
ory abstractions for the analysis of C, namely the cell domain and the recency
domain, can be re-used in a backward under-approximating analysis. We im-
plemented our work in the MOPSA analyzer and assessed its performance by
analyzing part of the NIST Juliet collection of benchmarks.
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Computing under-approximations by abstract interpretation is still a largely
unexplored field, and a wide gap is present with computing over-approximations.
This is especially true with respect to the analysis of realistic C programs, possi-
bly involving complex invariants. In this work we demonstrated some preliminary
results in this direction, and more sophisticated abstractions are left as future
work. Future directions include more advanced abstract domains (e.g., abstrac-
tion of memory’s shape, string length and content), combination of domains
(e.g., partitioning techniques and reduced products), abstraction of the exter-
nal environment (e.g., resource allocation, more precise abstractions of input
streams), and an implementation of backward iterators for the stub language of
MOPSA [38].
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