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Ion partitioning between different compartments (e.g. a porous material and a bulk solution reservoir), known as
Donnan equilibrium, plays a fundamental role in various contexts such as energy, environment, or water treatment. The
linearized Poisson-Boltzmann (PB) equation, capturing the thermal motion of the ions with mean-field electrostatic
interactions, is practically useful to understand and predict ion partitioning, despite its limited applicability to conditions
of low salt concentrations and surface charge densities. Here, we investigate the Donnan equilibrium of coarse-grained
dilute electrolytes confined in charged slit-pores in equilibrium with a reservoir of ions and solvent. We introduce
and use an extension to confined systems of a recently developed hybrid nonequilibrium molecular dynamics / grand
canonical Monte Carlo simulation method ("H4D"), which enhances the efficiency of solvent and ion-pair exchange via
a fourth spatial dimension. We show that the validity range of linearized PB theory to predict the Donnan equilibrium of
dilute electrolytes can be extended to highly charged pores, by simply considering renormalized surface charge densities.
We compare with simulations of implicit solvent models of electrolytes and show that in the low salt concentrations and
thin electric double layer limit considered here, an explicit solvent has a limited effect on the Donnan equilibrium and
that the main limitations of the analytical predictions are not due to the breakdown of the mean-field description, but
rather to the charge renormalization approximation, because it only focuses on the behavior far from the surfaces.

I. INTRODUCTION

The composition of an electrolyte near a charged surface
or in a charged porous material differs from that of a bulk
solution reservoir with which it is in equilibrium. This ion
partitioning between different compartments, known as Don-
nan equilibrium1, plays an important role in biology2 or in
the environment3–6; understanding and predicting it is neces-
sary for various applications e.g. water treatment7, membrane
technology8–11, energy12, or electrocatalysis13,14. The clas-
sical approach to this Donnan equilibrium is to consider the
equality of the electrochemical potentials of the various species
in the reservoir and in the "phase" or region of interest. This
results in the celebrated quadratic relation between the salt
concentrations in the reservoir and the confined medium, and
a so-called Donnan potential difference between the two re-
gions1. This Donnan model can be refined to include various
interactions between the ions or with the medium10,11,15–17.
This simple approach neglects the inhomogeneities in the

distribution of ions and the corresponding electrostatic poten-
tial inside the pores. In fact, the balance between electrostatic
interactions (energy) and the thermal motion of ions (entropy)
results near chargedwalls in electric double-layers (EDL), with
an enrichment of counterions and a depletion of co-ions with
respect to the bulk18–21. Poisson-Boltzmann (PB) theory can
capture the main features of such EDL by considering point
charges in an implicit solvent, and treating electrostatic inter-
actions at the mean-field level. For sufficiently small salt con-
centrations and surface charge densities, PB theory can further
be linearized, resulting in Debye-Hückel (DH) theory, which

predicts an exponential decay of density and potential profiles
as a function of the distance from the wall, over the so-called
Debye length _� . The classical Donnan approach typically
applies in the limit where this length is large compared to the
pore size, so that spatial variations can be neglected. PB or
DH theory can be used in simple geometries to predict ion par-
tioning as a function of pore size, surface charge density and
salt concentration in the reservoir. However its applicability
is usually limited to conditions of low salt concentrations and
surface charge densities. For larger surface charge densities,
the large concentration of counterions (overestimated by PB
theory, which neglects in particular the excluded volume inter-
actions due to the finite size of the ions) is usually lumped into
a (Stern) layer of condensed ions, resulting in the so-called
Gouy-Chapman-Stern theory of the interface18,19.
Despite its great merits, this simplified picture of the EDL

fails to account formicroscopic features whichmay play an im-
portant role at the interface. For example, the molecular nature
of the solvent results in packing of hydration effects known to
influence the distribution of ions at the surface10,22–29, or the
force between atomically flat mica surfaces in Surface Force
Balance experiments (SFB)30–32. Efforts have been made to
modify PB theory to account for effects such as the finite
size of ions33–36, ion-surface interactions11,37–39, electrostatic
correlations40, solvent polarization41,42, or surface charge reg-
ulation43–50.
In order to go beyond these theories, Grand-canonical (GC)

Monte Carlo (MC) simulations have been used to investigate
the Donnan equilibrium of confined electrolytes in equilib-
rium with a reservoir51–55. However, while GC simulations
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of electrolytes described as ions in an implicit solvent can be
performed with sufficiently large acceptance rates of trial in-
sertion/deletion MC moves to allow for a proper sampling of
configurations, such simulations with an explicit solvent are
much more challenging, not only due to the larger computa-
tional cost of interactions, but also to the very low acceptance
rate of such moves. Several advanced MC methods to en-
hance exchange efficiency have been developed, including a
cavity-bias method56, a configuration-biased method52,57,58, a
Boltzmann-bias method59, a continuous fraction component
method60,61, identity exchange methods62–64, the adaptive res-
olution method65,66, and hybrid methods53,67–76. Recently,
Belloni introduced a hybridMC/nonequilibriummolecular dy-
namics (MD)method75, called "H4D", with trial moves during
which the system adjusts to the gradual addition/deletion of
particles via a non-physical additional dimension. This results
in a significant increase in the acceptance rate of such moves,
as demonstrated i.e. for both ion-pairs and solvent exchange
for bulk aqueous NaCl electrolytes75,76.

Here, we extend the H4D method to the case of confined
systems and use it to investigate the Donnan equilibrium of
coarse-grained dilute electrolytes in charged slit-pores in equi-
librium with a reservoir of ions and solvent. We show that the
validity range of linearized PB theory to predict the Donnan
equilibrium of dilute electrolytes can be extended to highly
charged pores, by considering renormalized surface charge
densities43–46,49,50, which can be computed analytically by
comparing the full and linearized PB equations, instead of
the bare ones. By comparing with simulations of implicit
solvent models of electrolytes, we find that for the small salt
concentration considered here, an explicit solvent introduces
oscillations in the ionic density profiles, but has a limited ef-
fect on the excess salt concentration inside the pore. In the
low concentration and thin electric double-layer limit consid-
ered here, the main limitations of the analytical predictions are
not due to the breakdown of the mean-field description, but
rather to the charge renormalization approximation, which is
not sufficient to capture the overall excess ion density because
it focuses on the behavior far from the walls.

The rest of the manuscript is organized as follows. Sec-
tion II discusses the classical description of the Donnan equi-
librium as well as its prediction from Poisson-Boltzmann the-
ory and the surface charge renormalization approach. Sec-
tion III summarizes the basics of the H4D method for grand-
canonical molecular dynamics (GCMD) simulations intro-
duced in Refs.75,76 and extends it to confined electrolytes. Sec-
tion III also presents the model system for which we studied
the Donnan equilibrium: Lennard-Jones model electrolytes
confined in a charged slit-like pore. Section IV then discusses
the results of GCMD simulations and their comparison with
the linearized PB theory, including the surface charge renor-
malization approach. The main conclusions are summarized
in Section V

II. DONNAN EQUILIBRIUM OF ELECTROLYTES BETWEEN A
PORE AND A RESERVOIR

As mentioned above, the composition of an electrolyte near
a charged surface or in a charged porous material differs from
that of a bulk solution reservoir with which it is in equilib-
rium (See Fig. 1). Here, we first recall the classical Donnan
description of this equilibrium (Section II A) before turning
to the predictions obtained for a charged slit pore using the
Poisson-Boltzmann equation and its linearized version (Sec-
tion II B). We finally introduce an effective surface charge
density of the pore walls by comparing the full and linearized
Poisson-Boltzmann equations, according to the charge renor-
malization approach: a fraction of the counterions is included
as part of the surface charge, thereby reducing the latter suf-
ficiently for the linearization to be a good approximation far
from the surface44,77 (Section II C).

H

rsalt = rB
+= rB
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-
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FIG. 1. Donnan equilibrium for a charged slit-pore in contact with
a bulk reservoir. Here, � and ΣB indicate the width and the surface
charge density of the pore, respectively. The ion concentrations in the
bulk and inside the pore are indicated by d�

8
and d�

8
with 8 ∈ {+,−},

respectively. See Section II A for details.

A. Classical Donnan approach

At equilibrium, the electrochemical potential of the various
species is the same inside the pore of interest and in the reser-
voir with which the solution exchanges particles. For ionic
species 8 ∈ {+,−} with charges @± = ±4 with 4 the elementary
charge, the equality of electrochemical potential between the
bulk reservoir �, with concentrations d�

8
and potentialΨ�, and

the confined region�, with position-dependent concentrations
and potential d�

8
(r) and Ψ� (r), reads:

ln(W�8 d�8 /dref) + V@8Ψ� =
ln[W�8 (r)d�8 (r)/dref] + V@8Ψ� (r),

(1)

where W8 is the activity coefficient of species 8, dref is a ref-
erence concentration and V = 1/:�) with :� the Boltzmann
constant and ) the temperature. Then, the ion concentrations
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in the confined region is:

d�8 (r) = d�8
W�
8

W�
8
(r)

exp[−V@8 (Ψ� (r) −Ψ�)] . (2)

This can be further simplified by assuming an ideal behavior
of the electrolyte (activities W8 = 1) and no spatial dependence
of the potential and of the ion concentrations inside the pore.
Assuming without loss of generality that the surface is nega-
tively charged, with a corresponding excess of cations inside
the pore with concentration d�+,4G counterbalancing the surface
charge, one obtains the well-known quadratic equation for the
salt concentration d�salt in the pore:

(dsalt)2 = d�+ d�− = (d�salt + d
�
+,ex)d�salt , (3)

where dsalt = d�± = d�salt, the salt concentration in the electri-
cally neutral reservoir. Inside a charged pore, the co-ion (resp.
counterion) density is expected to decrease (resp. increase)
with respect to the bulk salt density, as a result of the balance
between electrostatic and osmotic pressures78. As in Equa-
tion 2, the electric potential determines the ion distributions in
a confined region.

B. Linearized Poisson-Boltzmann (Debye-Hückel) theory

For a 1:1 electrolyte in a symmetric charged slit-pore, with
two walls with surface charge density ΣB located at I = ±�/2,
one obtains the one-dimensional (1D) electrostatic potential
profile Ψ(I) by solving the following 1D Poisson-Boltzmann
equation (taking the electrostatic potential in the reservoir as
reference Ψ� = 0)78:

32

3I2Ψ(I) = −
d@ (I)
Y0YB

=
^2
�

V4
sinh[V4Ψ(I)] (4)

where d@ (I) = 4
[
d�+ (I) − d�− (I)

]
is the local charge density,

YB is the solvent dielectric constant, and ^� = _−1
�
, with

_� =

√
Y0YB

2Vdsalt42 (5)

the Debye screening length, with dsalt the salt concentration in
the electroneutral reservoir which also sets the potential refer-
ence. For sufficiently low surface charge densities, potential
variations across the slit-pores are small (|4VΨ(I) | � 1) and
Eq. 4 can be linearized, resulting in:

Ψ(I) = Ψ0
cosh(^�I)

sinh(^��/2)
, (6)

whereΨ0 = ΣB/YB^� is the potential at the walls. Accordingly,
the mean ion concentrations (d̄+ and d̄−) inside the negatively
charged pore can be computed from the linearized Boltzmann
distributions d�± (I) = dsalt [1∓ V4Ψ(I)]:

d̄+ (�) =
1
�

∫ �/2

−�/2
3I d�+ (I) = dsalt +

|ΣB |
4�

. (7)

and

d̄− (�) =
1
�

∫ �/2

−�/2
3I d�− (I) = dsalt−

|ΣB |
4�

. (8)

The mean ion densities deviate from their bulk value, depend-
ing on the pore size �, with an enrichment in counterions
and depletion of co-ions, as expected. Furthermore, these
deviations are equal and opposite, so that the total ion den-
sity (2dsalt) is independent of the pore size and the excess ion
density vanishes (Δdex (�) = d̄+ (�) + d̄− (�) −2dsalt = 0).

C. Effective surface charge density

When the distance between the confining walls is much
larger than the thickness of the EDL (_� � �), the so-called
thin-EDL or single-wall approximation works well, resulting
in the following analytical solution of the non-linear Eq. 4 near
each wall:

Ψ(I3) =
4
V4

tanh−1 [W exp(−^�I3)] (9)

with I3 the distance from the wall and the dimensionless pa-
rameter W ∈ [0,1 ] , determined by the boundary condition
(fixed surface charge density ΣB), is

W = −;��^� +
√
(;��^�)2 +1 (10)

with the Gouy-Chapman length

;�� =
2Y0YB
V4 |ΣB |

. (11)

At large distances from the charged surface, the electric poten-
tial in Eq. 9 decays as 4W

V4
exp(−^�I3). Comparison with the

solution of the linearized solution Eq. 6 then allows to define
an effective surface charge density such that the two solutions
coincide at large distances77,79,80, as ΣB,eff = 0effΣB , with:

0eff = 2W;��^� . (12)

This effective surface charge accounts for the screening of
the electric field by the ions close to the surface, up to the
point where it has sufficiently decayed so that the linearization
becomes accurate. This is closely related to the concept of
charge renormalization43–46,49,50, widely adopted in the colloid
community. As shown in Fig. 2, 0eff increases from0 for highly
charged surfaces (;�� . _�), reflecting the fact that the strong
attraction of counterions towards the wall screens most of the
electric field at the surface, to 1 for lightly charged surfaces
(;�� & _�). We note that the expression of 0eff in Eq. 12 is still
at the mean field level; the contribution of ionic correlations
can further decrease 0eff, particularly at high ΣB .79,80
Assuming that the co-ions (here anions) are sufficiently far

from the surface for the linearization to hold even in the pres-
ence of non-linear behaviour close to the surface, i.e. that only
counterions (here cations) are affected by such non-linearity,
we can replace the non-linear potential profile by its linearized
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FIG. 2. Charge renormalization parameter 0eff (see Eq. 12) charac-
terizing the effective surface charge density, as a function of the ratio
between Gouy-Chapman length ;�� and Debye screening length _� .
Four red markers indicates the conditions at which simulations in this
studywere conducted, with a fixed_� corresponding to dsalt = 0.0144
in reduced LJ units (see Section III), while ;�� varies according to
the surface charge density.

counterpart for an effective surface charge density 0effΣB in
the d�− (I) = dsalt [1+ V4Ψ(I)]. This leads to the average anion
concentration in the slit-pore:

d̄− (�) =
1
�

∫ �/2

−�/2
3I d�− (I) = dsalt− 0eff

|ΣB |
4�

. (13)

Further assuming the overall electroneutrality of the system,
i.e. that the cations compensate both the bare surface charge
density and the presence of the anions in equilibrium with the
reservoir, yields the average cation concentration:

d̄+ (�) =
1
�

∫ �/2

−�/2
3I d�+ (I) = dsalt + (2− 0eff)

|ΣB |
4�

. (14)

These results reduce to Eqs. 7- 8 in the limit ;��/_� →∞,
where 0eff = 1. The salt concentration in the pore (d�salt =
d�− ) differs from that in the reservoir (dsalt) and this Donnan
equilibrium is quantified by the excess average ion density,
which at this level of description reads:

Δdex = d̄+ (�) + d̄− (�) −2dsalt = 2(1− 0eff)
|ΣB |
4�

. (15)

We recall that the above results involving the renormalized
surface charge density assume sufficiently large pores, i.e.
� � ;�� ,_� .

III. MODEL SYSTEMS AND SIMULATION METHODS

Here, we introduce the Lennard-Jones (LJ) electrolytes con-
fined in a charged slit-pore studied in this work (Section III A),
and present the hybrid nonequilibrium MD / Monte Carlo al-
gorithm with particle exchange via a fourth spatial dimension,
which we extend to the case of confined electrolytes (Sec-
tion III B).

A. Model Lennard-Jones electrolytes in bulk or confined in a
slit-like pore

LJ electrolytes. The model electrolytes consist of neutral
and charged LJ particles, representing solvent molecules and
ions, respectively, all of which of the same size and same mass
<39. The electrostatic interactions between ions are screened
by the solvent relative permittivity YB . All the LJ interactions
*!� were truncated and shifted at a cut-off distance A2 .

*!� (A) =4n
[(
f

A

)12
−

(
f

A

)6
−

(
f

A2

)12
+

(
f

A2

)6]
, (16)

assuming the sameLJ energy n , and diameterf for interactions
between all types of particles. The cut-off distance for LJ
interactions between ions and solvent particles and between
solvent particles is A∗2 = A2/f = 2.5. Here and in the following,
the asterisk represents a quantity in reduced LJ unit. In order
to explore the effect of packing due to the presence of explicit
solvent particles, we also consider systems where the solvent
is only represented by its permittivity, so that only ions are
explicitly simulated. In that case, we either use the same LJ
interactions between ions with A∗2 = 2.5 (implicit LJ model) or
purely repulsive Weeks-Chandler-Andersen interactions with
A∗2 = 21/6 (implicit WCA model).

The Coulomb interaction (*� ) between LJ (or WCA) ions
is:

*� (A) =
1

4cY0YB

@8@ 9

A
=

n

4cY0YB

@∗
8
@∗
9

A∗
, (17)

where Y0 is the vacuum permittivity and YB the dielectric
constant of the solvent, fixed to unity. LJ ions carry either
@∗
8
= @8/

√
4cY0fn = +1 or -1, while solvent particles carry no

charge. Coulomb interactions are calculated using the particle-
particle and particle-mesh (PPPM) method, with a real-space
cut-off at A∗ = 3.5.
Slit-pore. The LJ electrolytes are confined in a slit-pore

between two atomically flat walls modeled as in Ref. 45. Each
wall consists of 5 layers of a cubic lattice with lattice spacing
f, and the surface is a two-dimensional square lattice with
=G × =H = 20× 20 unit cells, so that the dimensions of the
box in the directions parallel to the walls are !∗G × !∗H = 20×
20. The distance �∗ = �/f between two inner-most layers
(closest to the electrolyte) varies between 12 and 36, ensuring
� � _� in all cases studied in this work. There are =G ×
=H = #F,in atoms in each layer (hence 10#F,in atoms for the
two walls), whose positions are fixed in space. The total
system size, including thewalls on both sides, in the I direction
is thus !∗I = 22, 28, 34, and 46 for �∗ = 12, 18, 24, and
36, respectively. Periodic boundary conditions are used in
the G and H directions only. The conversion from LJ to real
units requires the knowledge of the diameter of the ions. For
example, for a diameter f = 0.5 nm, a reduced pore width
�∗ = 12 corresponds to 6 nm, a reduced bulk ion density
d∗
1D;:

= 0.0144 corresponds to 0.0018 nm−3, and a reduced
surface charge density Σ∗B = −0.1 at a reduced temperature
)∗ = 1 corresponds to -0.038 4/nm2 at 298 K.

Wall atoms interact with the electrolyte via WCA and
Coulomb interactions. No LJ interactions between wall atoms
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were included as they are fixed in space. Only the atoms in the
inner-most layer of each wall carry partial charges @∗F that de-
termine the surface charge density Σ∗B = #F,in@∗F/!∗G!∗H , while
all other wall atoms are neutral. We consider Σ∗B varying from
-0.05 to -0.5, and accordingly the Gouy-Chapman length ;∗

��

(= YB)
∗

2c |Σ∗B | ) varies from 3.2 to 0.32. With non-zero @∗F , the wall
atoms only in the inner-most layers interact with the ions via
Coulomb interactions. The Coulomb interactions, including
the charged wall atoms and the ionic species, are calculated
using the PPPM method, with the same real-space cut-off as
for bulk systems, A∗ = 3.5.

B. Non-equilibrium MD/MC with H4D

This section discusses a brief overview of the H4D method,
and introduces its extension to confined systems with a bias
to alleviate the steric overlaps with confining walls. Monte
Carlo simulations in the grand-canonical ensemble are chal-
lenging for dense systems, in particular when both steric and
electrostatic interactions are present, due to the low acceptance
probability of insertion/deletion moves. Hybrid GCMD simu-
lations, whereby during an equilibrium MD simulation Monte
Carlo moves are proposed using nonequilibriumMD (NEMD)
instead of a "brutal" insertion/deletion, allow to improve the
acceptance probability, at the price of increasing the compu-
tational cost of each trial move (See Fig. 3). An elegant type
of such trial moves, which proved efficient even for aqueous
electrolytes with explicit solvent and ion exchanges, was pro-
posed by Luc Belloni in Ref. 75 and refined and implemented
in the LAMMPS simulation package in Ref. 76.

Basic idea of H4D. The principle of such hybrid MD/MC
simulations is illustrated in Fig. 3: Equilibrium MD trajec-
tories with a fixed number of particles, during which prop-
erties are sampled, are interrupted every #4@ steps by Monte
Carlo trial insertion or deletion moves proposed by nonequi-
librium trajectories in the microcanonical ensemble of # 5
steps, during which “flying” particles are introduced/removed
via a fourth dimension. These trial moves are accepted or
rejected according to a Metropolis criterion ensuring that con-
figurations from the equilibrium trajectories sample theGrand-
Canonical ensemble, where the chemical potential of the ex-
changed particles is fixed. The essence of the H4D algorithm
is to utilize an auxiliary, non-physical (“vertical”) dimension
to facilitate the exchange, which is orthogonal to all other
physical dimensions. For three-dimensional systems, during
the NEMD all the interactions, including LJ and Coulomb
potentials, are treated in (3+1)D, instead of 3D. That is, the
potential energy of the system depends not only on the (G, H, I)
coordinates of all particles, but also on the “altitude” F of
the flying particles. In addition, the flying particles are intro-
duced (for insertion) or removed (for deletion) according to a
prescribed time-dependent altitude F(C), which is crucial to
allow the system to adjust to this perturbation. More details
on the computation of the energy in (3+1)D and on the choice
of the time-dependent altitude can be found in Ref. 76. Here,

Equilibrium MD Nonequilibrium MD 
in (3+1)D for 
particle exchange

Equilibrium MD

Accepted

Rejected

Time, t

C
on

fig
ur

at
io

n,
 x

(xi, ti)

(xf, tf)

Hneq(x, w; t)

Heq(x)

Neq Nf

FIG. 3. Illustration of a grand-canonical molecular dynamics sim-
ulation with H4D: equilibrium MD trajectories with a fixed number
of particles (in blue), during which properties are sampled, are in-
terrupted every #4@ steps by Monte Carlo trial insertion or deletion
moves proposed by nonequilibrium trajectories in the microcanonical
ensemble (in red) of # 5 steps, during which “flying” particles are
introduced/removed via a fourth dimension. These trial moves are
accepted or rejected according to a Metropolis criterion ensuring that
configurations from the equilibrium trajectories sample the Grand-
Canonical ensemble, where the chemical potential of the exchanged
particles is fixed. The Hamiltonians for the equilibrium and nonequi-
librium parts are �4@ and �=4@ , respectively. While the former only
depends on the state of the system in 3D (symbolized here by G), the
latter also depends on a time-dependent "altitude", F(C) (see Eq. 18),
along the "vertical" direction.

we use a constant-velocity altitude schedule:

F(C) = E 5 · (C − C8) +F(C8), (18)

where C ∈ [C8 , C 5 ] in steps of XC. The sign of E 5 deter-
mines whether a trial move is for addition or removal with
proper boundary conditions of F(C): For a trial insertion,
F(C8) = F<0G and F(C 5 ) = 0, while for a trial deletion,
F(C8) = 0 and F(C 5 ) = F<0G . The key parameters of H4D in-
clude the maximum altitude F<0G and vertical velocity E 5 (C),
both of which are crucial to determine the efficiency of particle
exchange. The altitude schedule (Eq. 18) satisfies the detailed
balance condition, being symmetric and pre-determined for the
trial insertion and deletion moves. In the case of ion-pair ex-
change, we choose the same boundary conditions of F(C) and
the same E 5 for both flying ions. In practice, E 5 is determined
by the number of NEMD steps # 5 : E 5 = F<0G · (# 5 XC)−1.
For an instantaneous (infinitely fast) exchange as in a conven-
tional GC MC, # 5 = 0.
Trial exchange moves. The trial insertion/deletion moves

are obtained by propagating the trajectory in the NVE en-
semble, using a deterministic, time-reversible, and volume-
preserving integrator68. In this case, a proposed move is
solely determined by the preparation of all momenta; the mo-
menta of flying particles are prepared randomly according
to the Maxwell-Boltzmann distribution, and the momenta of
non-flying particles are taken from the equilibrium MD. No
momentum in the "vertical" direction needs to be assigned,
along which an external force determines the altitude of flying
particles according to their altitude schedule, and leaves non-
flying particles in 3D at zero altitude. Furthermore, we use
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6

the symmetric two-end momentum reversal scheme70, which
satisfies the detailed balance, since we evolve the systems in
the equilibrium phase using MD as well. In this scheme, for
every trial addition or deletion, themomenta of all particles are
reversed with a probability of one-half both at the beginning
and at the end of NEMD.
Acceptance probabilities. A proposed trial move via the

H4D method is accepted according to a Metropolis criterion,
with a probability ensuring detailed balance68,75,81. Here, we

consider electrolytes confined in a slit-like a pore, with im-
penetrable walls. As commonly done under such circum-
stances, we introduce a bias in addition to the interactions
between the liquid and the wall to favor trial moves consis-
tent with the exclusion of the former from the latter. With
this extension of previous work for bulk electrolytes75,76, the
Metropolis acceptance probability 58=B for trial ion-pair inser-
tions (#B0;C → #B0;C +1) is:

58=B (®A0, ®A2) =min
[
1,exp(−VΔ�#B0;C→#B0;C+1) exp(V`B0;C )

(
!G!H�

Λ3
B

1
#B0;C +1

)2
�34; (®A0 |®A2)
�8=B (®A0 |®A2)

�34; (®A2)
�8=B (®A2)

]
,

≡min
[
1,exp(−VΔ" + V`B0;C )

]
,

(19)

whereΔ" is the nonequilibriumwork,Δ� =Δ*+Δ the total
mechanical energy difference (with* and  the potential and
kinetic energies, respectively), `B0;C the chemical potential
of the ion pair, and ΛB (=

√
Λ+Λ−) the geometrical mean of

thermal de Broglie wavelengths of an ion pair. Here, 58=B
depends explicitly on the 3D positions of flying ions (®A0 for
the anion and ®A2 for the cation) via two biases �(®A0 |®A2) and
� (®A2) to select the cation and anion: the former favors shorter
distances between flying ions (as in the bulk75,76), while the
latter introduces a bias in the position of the flying cation due
to the imposed confinement.
Bias for enhanced efficiency. In our previous work76,

�(®A0 |®A2) was found to be crucial to enhance the efficiency
of H4D for bulk electrolytes, in addition to modulating the in-
teractions via the fourth dimension. On the one hand, for a trial
insertion, the probability to insert the anion at ®A0 = (G0, H0, I0)
for a given cation position ®A2 = (G2 , H2 , I2) is:

�8=B (®A0, ®A2) = 18=B (G0 |G2)18=B (H0 |H2)18=B (I0 |I2) ·+, (20)

where + = !G!H� is the volume of the confined system (with
� is the distance between two innermost layers of the confining
walls, while !G and !H are the simulation box dimensions),
and 18=B applies separately to the three directions of space.
Without such a bias, 18=B = 1/!8 for 8 ∈ {G, H} and 18=B = 1/�
for the I direction so that �8=B = 1 (see Section III C for the
functional form and the corresponding parameters used in this
work). On the other hand, for a trial deletion, one of the
#B0;C +1 anions, knowing the position ®A2 of the flying cation,
is chosen with a probability:

�34; (®A0, ®A2) =
�8=B (®A0, ®A2)∑#B0;C+1

==1 �8=B (®A0,=, ®A2)
· (#B0;C +1). (21)

In the present work, we use the same functional form for the
bias in both insertion and deletion trial moves. In the absence
of such a bias, �34; = 1.

Bias for confined systems. For confined electrolytes, we
introduce another bias, not considered in bulk electrolytes,

to in favor of 3D positions of flying ions away from the sur-
faces. Indeed, a large overlap between a confining wall and a
flying ion with its randomly assigned momenta could lead to
numerical instabilities or require a quite small XC for NEMD,
significantly lowering the efficiency of H4D. Even though in
principle one could bias the positions of both ions with respect
to the walls separately, here we introduce the bias in a sequen-
tial manner: first the cation is introduced with the bias due to
the confinement on ®A2 with� (®A2), then the anion is introduced
with the bias for the interionic distance using �(®A0, ®A2). We
found this sufficient to ensure that both ions are sufficiently far
from the walls.
Here, we discuss the case of confined electrolytes in a slit-

pore whose boundaries are at I = ±�2 . The cation is inserted
at a position ®A2 with probability:

�8=B (®A2) = 28=BG (AG)28=BH (AH)28=BI (AI) ·+, (22)

wherewe in fact consider no bias for the periodic directions, i.e.
28=B
8
(A8) = !−1

8
for 8 ∈ {G, H}, and a one-dimensional truncated-

shifted Gaussian distribution function along the confinement:

28=BI (AI) =
1
N2

[
exp

(
−U2A2

I

)
− exp

(
U2
�

4

2)]
, (23)

where N2 is a normalization constant that ensures∫ �/2
−�/2 2

8=B
I (AI)3AI = 1/�, and U2 determines the sharpness of

the distribution whose mean is at the center of the pore. This
choice of bias ensures that the insertion probability vanishes
at the confining wall boundaries, i.e. 28=BI (±�2 ) = 0. Without
such a bias, �8=B (®A2) = 1 for randomly assigned 3D positions
as in bulk electrolytes.
For a trial ion-pair deletion, the flying cation is chosen

among the #B0;C +1 cations with a probability:

�34; (®A2) =
�8=B (®A2)∑#B0;C+1

==1 �8=B (®A2,=)
· (#B0;C +1)

=
28=BI (AI)∑#B0;C+1

==1 28=BI (AI,=)
· (#B0;C +1).

(24)
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7

The second equality is due to the random choice of the flying-
cation position along G and H directions. Again, �34; (®A2) = 1
for randomly assigned flying cation 3D positions. The flying
anion is then chosen according to Eq. 21. We note that such
a bias � (®A2) can also be applied to the conventional instanta-

neous MC methods, since it is related to the preparation of the
positions of flying ions.
Once both the cation and anion have been chosen as de-

scribed above, the probability to accept the trial deletion
(#B0;C +1→ #B0;C ) is:

534B (®A0, ®A2) =min
[
1,exp(−VΔ�#B0;C+1→#B0;C

) exp(−V`B0;C )
(
(#B0;C +1)

Λ3
B

!G!H�

)2
�8=B (®A0 |®A2)
�34; (®A0 |®A2)

�8=B (®A2)
�34; (®A2)

]
≡min

[
1,exp(+VΔ" − V`B0;C )

]
.

(25)

Similarly, the trial insertion/deletion of solvent particles are generated with the same biases Eqs. 22 and 24 and accepted
with probabilities

58=B (®AB) =min
[
1,exp(−VΔ�#B>;E→#B>;E+1) exp(V`B>;E )

(
!G!H�

Λ3
B

1
#B>;E +1

)
�34; (®AB)
�8=B (®AB)

]
,

≡min
[
1,exp(−VΔ" + V`B>;E )

]
,

(26)

for insertion and

534B (®AB) =min
[
1,exp(−VΔ�#B>;E+1→#B>;E

) exp(−V`B>;E )
(
(#B>;E +1)

Λ3
B

!G!H�

)
�8=B (®AB)
�34; (®AB)

]
≡min

[
1,exp(+VΔ" − V`B>;E )

]
.

(27)

for deletion, respectively. Here, #B>;E is the number of solvent
atoms and `B>;E is their chemical potential. In this work, we
set ΛB =

√
Λ+Λ− = 1 in unit LJ length, and the sign of Δ" in

both trial moves follows the direction of trial insertions as in
Refs. 75 and 76.

Calculation of chemical potentials Grand-canonical sim-
ulations require the knowledge of the chemical potential of
the exchanged species (here the salt, i.e. neutral ion pairs,
and solvent particles), which is set by the composition and
the thermodynamic conditions in the bulk reservoir. Con-
figuration sampling to calculate the chemical potentials was
done in the #B>;E#B0;C ?∗)∗ ensemble with #B>;E = 5000 and
#B0;C = 100 at ?∗ = ?f3/n = 1 and )∗ = ):�/n = 1. The de-
sired pressure ?∗ = 1 and temperature )∗ = 1 were maintained
using the Nosé-Hoover barostat and thermostat, with time con-
stants of 1000 and 100 LJ units, respectively. As described
in Refs. 75 and 76, the chemical potentials were computed
using Crooks’ fluctuation theorem82 and Bennett’s acceptance
ratio method83,84, resulting in: V∗`∗

B>;E
= −1.72± 0.06, and

V∗`∗
B0;C

= −11.74± 0.09 with V∗ = 1/)∗ (see Fig.S1 in SI).
For the implicit solvent models, V∗`∗

B0;C ,!�
= −9.38 ± 0.01

and V∗`∗
B0;C ,,��

= −8.59±0.01 for LJ and WCA interactions
between ions, respectively.

C. GCMD simulations

GCMD simulations were conducted in the
`∗
B>;E

`∗
B0;C

�∗�∗)∗ ensemble, i.e. the numbers of both
solvent and ion pairs fluctuate in a fixed confined space and
their statistics (in particular their average) are determined
by their chemical potentials (Fig. 4). Here, �∗ = !∗G!∗H and
�∗ is the distance between the wall atoms in each of the
inner-most wall layers. GCMD simulations are composed of
two steps, including equilibriumMD to sample configurations
and non-equilibrium MD/MC steps to exchange solvent or
ion pair with reservoir. During equilibrium MD (#4@ steps),
the equations of motion are integrated using the velocity
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8

Verlet algorithm with a timestep XC∗ = XC
√
n (<f2)−1 = 0.005.

The desired temperature )∗ = 1 is maintained using the
Nosé-Hoover thermostat, with a time constant of 100 LJ units.
During NEMD (# 5 steps), performed in the #+� en-

semble, we also use the velocity Verlet algorithm but with
XC∗ = 0.01, and the maximum altitude F∗<0G (see Eq. 18) set
to unity. While this may not seem the most straightforward
choice, we found it beneficial for the acceptance rate of both
solvent and ion-pair exchange in bulk electrolytes to use the
3D PPPM estimate of the long-range part of electrostatic in-
teractions (instead of the 4D expression in the presence of
flying particles): In addition to its simplicity of implemen-
tation, it results in higher acceptance rates for both solvent
and ion-pair exchanges in bulk electrolytes76. The short-range
Coulomb contribution was nevertheless calculated in 4D. Our
implementation of the H4D method for confined electrolytes
in the LAMMPS simulation package85 is freely available as
an update of our previous implementation of the H4D method
for bulk electrolytes76 (see Data Availability statement). The
optimal choice of #4@ and # 5 is system-specific, and we used
#4@ = 100 and # 5 = 800 in most cases. For each system, all
the averaged quantities were computed from six independent
trajectories, each of which including 12,000 trial moves of
solvent particle or salt-pair exchange with equal probabilities
(and following an equilibration including at least 12,000 trial
moves).

FIG. 4. Illustration of grand canonical (GC) MD simulation of con-
fined electrolytes with explicit solvent particles in this study. GCMD
was conducted using the H4D method, extended to confined elec-
trolytes, in order to enhance the acceptance rate of the salt-pair
and solvent exchange trial moves. Chemical potentials used in this
study were also computed using H4D: V∗`∗

B>;E
= −1.72± 0.06, and

V∗`∗
B0;C

= −11.74±0.09. See text for details.

NEMD details. We apply a bimodal biasing function for
the flying-ion distances, as described in Ref. 76. There are
several choices for such a biasing function (e.g., a Gaussian
distribution with a 3D distance between flying ions). Here,
we use a bimodal distribution function for 18=B, which helps
to generate a pair of flying ions that are close to each other yet
without large overlap:

18=B (G0 |G2) =
√
U1

c

exp(−U1 (G02 − G1)2) + exp(−U1 (G02 + G1)2)
erf[√U1 (G1 + !G/2)] − erf[

√
U1 (G1 − !G/2)]

,

(28)

where G02 = G0 − G2 . G1 determines the mean separa-
tion of flying ions, and U1 determines the sharpness of
the biasing function. Again, 18=B is normalized such that∫ !G/2
−!G/2

18=B (G0 |G2)3G0 = 1. In this work, we used U∗
1
= 0.5 and

G∗
1
= 2. The same functional form and parameters are also

used in the H and I directions. A small excluded volume was
also applied: +∗4G = 0.125 for early rejection (See details in
Ref. 76). For the bias in the confined systems (see Eq. 23),
U∗2 varies from 0.5 to 6 with decreasing separation distance.
In order to avoid numerical instabilities, one can increase U∗2
to obtain a narrow Gaussian distribution near the center of the
slit pore.
Since for the moderate salt concentrations considered in the

present work, with an implicit solvent the packing fraction
is low, the potential gain in efficiency with the H4D method
with respect to conventional GCMC (corresponding # 5 = 0)
is not worth the additional computational cost. Therefore,
for implicit solvent models, trial insertions and deletions of
the ions are carried out instantaneously (this corresponds to
an infinite vertical velocity, with # 5 = 0) as in conventional
GCMC. We can illustrate the benefit of the H4D method for
the explicit solvent case on the system with pore size �∗ = 12
and surface charge density Σ∗B = −0.1, for which the H4D with
# 5 = 800 and #4@ = 100 achieves acceptance rates %022 of
0.28± 0.05 and 0.094± 0.001 for solvent particle and salt-
pair exchange, respectively. For comparison, we performed 3
independent runs, each with 6,000 conventional GCMC trial
moves, of the same system (with # 5 = 0 and #4@ = 100),
resulting in %022 = 0.0028± 0.0005 for the solvent exchange
and %022 = 0 for the salt-pair exchange (not a single trial was
accepted). In terms of the efficiencymetric, � C

5
= %022/(#4@+

# 5 ), this means a gain with H4D larger than one order of
magnitude for the solvent exchange – and a gain that cannot
even be quantified for salt-pair exchange since the efficiency
is null with GCMC. We note that in our previous work for
bulk dilute electrolytes76, a 104 gain in efficiency for salt-pair
exchange could be achieved by fine-tuning all the parameters
(which was not done here), which suggests that there is room
for further improvement in the present case.

D. Computation of observables

We analyze the composition and structure of the confined
liquid by computing the ionic and solvent density profiles,
d∗± (I∗) and d∗solv (I), using histogramswith binwidthΔI∗ = 0.1,
and symmetrizedwith respect to the pore center (I∗ = 0). Since
only neutral ion pairs or solvent particles are exchanged in
GCMD, the electroneutrality constraint∫ � ∗/2

−� ∗/2
3I∗d∗@ (I∗) = −2Σ∗B , (29)

with d∗@ (I∗) = d∗+ (I∗)−d∗− (I∗) the charge density, is always sat-
isfied. We also compute the cumulative mean-charge density
from the charged surface

&∗ (I∗) = Σ∗B +
∫ I∗

−� ∗/2
d∗@

(
I∗

)
3I∗, (30)
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which decays from Σ∗B at I∗ = −�∗/2 to 0 at I∗ = 0 (the centre
of the slit-pore), if �∗ � _∗

�
.

The decay of &∗ (I∗) also provides an estimate of the thick-
ness of the electrical double layer at the surface. Due to the
short-range repulsion between the ions and the wall, there
is a region from which ions are excluded where d∗@ = 0 and
&∗ (I∗) = Σ∗B . According to the linearized PB equation, be-
yond this exclusion region, for dilute electrolytes with weakly
charged walls we expect an exponential decay as

&∗ (I∗3) ≈ Σ
∗
B exp[−(I∗3 − B

∗)/_∗�], (31)

where I∗
3
is the distance from the charged wall, and B∗ is an

effective width of the exclusion layer. We note again that
this approximation assumes �∗ � _∗

�
, which is satisfied in

all the cases considered in the present work. As explained in
Section II C, for larger Σ∗B and sufficiently large distances from
the surface, one can approximate the decay using an effective
surface charge density Σ∗eff = 0effΣ

∗
B:

&∗ (I∗3) ≈ Σ
∗
eff exp[−(I∗3 − B

∗)/_∗�] (32)

with Σ∗eff = 0effΣ
∗
B . Similar expressions are obtained for the

corresponding potential and ionic density profiles. As a result
of the exclusion of ions from both walls due to their finite size,
the effective width of the slit-pore is not the bare distance �∗
between the inner-most layers of the confining walls, but an
effective size �∗eff = �

∗ − 2B∗. Based on the simulation data
(see Section IV), in the following we estimate �∗eff using B∗ =
0.9 whenever comparing the simulation results to analytical
predictions involving the pore size.

IV. RESULTS AND DISCUSSION

In this section, we discuss the results of GCMD simulations
for the LJ electrolytes with explicit solvent particles confined
in a slit-like pore with negatively charge surfaces. The system
is in an equilibrium with a reservoir setting the chemical po-
tentials of the salt and of solvent particles, whose values are
computed as described in Section III B. The salt concentra-
tion in this reservoir (d∗

1D;:
=0.0144) is sufficiently small for

Debye-Hückel theory to apply, and the corresponding Debye
screening length is _∗

�
= 1.66. As shown in Fig. S2 of the

SI, we observe in the bulk simulations that the charge-charge
correlation function indeed decays exponentially with the ex-
pected decay length.
Figure 5 displays the local densities of the cations (panels

a-d), anions (panels e-h), and solvent particles (panels i-l) con-
fined in slit-poreswith different sizes (�∗ = 12, 18, 24, and 36)
and surface charge densities (Σ∗B = −0.05, −0.1, −0.2, and −
0.5). Each column displays the profiles for the same Σ∗, with
the positions I∗ shifted by �∗/2 to align the positions of the
“left” walls (at I∗ =−�∗/2), and the colors in each panel corre-
spond to the various pore sizes. For all the considered Σ∗B , the
shifted profiles for the various �∗ overlap. Deviations from
the bulk behaviors emerge only at the surfaces under these
mild confinement conditions, for which �∗ � _∗

�
, ;�� . The

cumulative charge distribution, computed from Eq. 30, is also
reported in Figure 5 (panels m-p).

A. Weakly charged pores

The leftmost column of Fig. 5 (a,e,i,m) displays the results
of dilute LJ electrolytes confined in a weakly charged pore
(Σ∗B = −0.05 and ;∗

��
= 3.2). As expected, electrical double

layers form at the charged surfaces, with an excess of counte-
rions (panel a) and a depletion of co-ions (panel e) near the
walls, with respect to the salt concentration far from them. In
addition, the ionic density profiles display oscillations near the
wall due to packing effects dominated by the solvent density
(panel i), which is much larger than that of the ions and dis-
plays at least three well defined layers. This is in stark contrast
to implicit solvent models where no such layering is observed
in the ion density profiles (see Section IVD). The cumulative
mean-charge distribution &∗ (I∗) (panel m) follows an expo-
nential decay with characteristic length _∗

�
, well described by

the linearized PB result (Eq. 31), to zero at the center of the
pore. In this case the difference between the bare and renor-
malized surface charge densities is small (0eff ≈ 0.94). Finally,
we note that &∗ (I∗) does not display any oscillations despite
that of the ionic density profiles. Such an observation is likely
due to the simplicity of the solvent model, which does not in-
clude an explicit charge distribution (dipolar or more complex)
which would contribute to &∗ (I∗)42,86–89.

B. Strongly charged pores

Withmore negativeΣ∗B (and decreasing ;∗�� ), the structure of
the EDLs evolves with further enrichment of cations (Figs. 5a-
d) and depletion of anions (Figs. 5e-h) near the wall. Due to
the finite size of the ions and solvent molecules, the increasing
density of cations leads to the progressive depletion of solvent
particles at the interface (Figs. 5i-l). For Σ∗B = −0.5, the cation
density is even larger than that of the solvent in the first fluid
layer in contact with the surface. Since the solvent density
near the wall is depleted (even more so that |Σ∗B | is large)
due to the increased density of counterions, so is the average
solvent density inside the pore (See Fig. S3 in the SI).

For large surface charge densities, the decay of&∗ (I∗) (Fig-
ure 5m-p) departs significantly from the Debye-Hückel result
(Eq. 31). Close to the wall, it decays much faster due to the
large concentration of ions in the first layer, consistently with
the Gouy-Chapman-Stern picture of the interface. Beyond this
layer, the decay is well described by the linearized PB result
with a renormalized surface charge density (Eq. 32 and the
dashed lines in Figure 5o-p). The failure from the bare DH
prediction is not surprising, since this is a regime where ion-
wall interactions are large compared to ion-ion interactions
(;∗
��
. _∗

�
)20,21. Importantly, such an agreement suggests that

(i) the effective charge describing the far-field is well predicted
by Eq. 12, and (ii) the decay length at long distance is well
described by _∗

�
.
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a b c d

e f g h

i j k l

m n o p

FIG. 5. Local densities of cations d∗+ (a-d), anions d∗− (e-h), and solvent d∗solv (i-l) confined in charged slit pores of different widths �∗ and
surface charge densities Σ∗B , and the corresponding cumulative mean-charge density&∗ (I∗) (m-p) defined by Eq. 30. Colors represent different
�∗, as indicated in the legend on the right. Horizontal dashed lines in d∗+ and d∗− represent the bulk salt concentration d∗salt in the reservoir.
In panels (m-p), the dotted and dashed lines are the predictions from linearized PB theory with the bare and effective surface charge densities,
given by Eqs. 31 and 32, respectively.

C. Donnan equilibrium

The different composition of the confined solution with re-
spect to the bulk reservoir, which characterizes the Donnan
equilibrium, can be quantified by the mean cation and anion
densities insides the pore. Since the linearized PB theory pre-
dicts linear scalings as a function of the inverse of the distance
between the walls (see Eqs. 7 and 8), the results are reported in
Fig. 6 as a function of the inverse of the effective pore width,
�∗eff = �

∗−2B∗, where the parameter B∗ = 0.9 accounts for the
excluded volume between the liquid and the wall atoms (see
Section III D). The predictions (Eqs. 7 and 8) are shown as dot-
ted lines. They are accurate for the smallest considered surface
charge densities, but as |Σ∗B | increases, they underestimate both
the cation and anionmean densities. Nevertheless, even for the
larger values considered, the scaling remains linear in 1/�∗eff
(which validates its choice of the relevant definition of the pore
width as well as the corresponding value of B∗) and consistent
with the limit d∗±→ d∗

B0;C
for very large pores (where interfa-

cial effects become negligible). In fact, all results are very well
described by the predictions of linearized PB with the effec-
tive charge Σ∗eff = 0effΣ

∗
B (see Eqs. 14 and 13), shown as dashed

blue lines. This good agreement reflects the better accuracy of
the non-linear PB theory, whose result is implicitly taken into
account via the renormalized surface charge density, at least
in the present regime where _∗

�
is small compared to �∗eff.

D. Comparison to implicit solvent models

In order to investigate the solvent packing effect, we con-
ducted additional GCMD simulation of two dilute electrolytes
with explicit ions (with short-range LJ or WCA interactions,
see Section III A) and no explicit solvent particles (only a per-
mittivity screening the Coulomb interactions between ions, as
in the model with explicit solvent considered here). For bulk
electrolytes, all three models predict long-range screening be-
haviors well described by Debye-Hückel theory, despite the
differences in short-range structures in ion-ion radial distribu-
tion functions (See Fig. S2 in SI).
Interfacial structure. In both implicit cases, local ion den-

sities inside the pores (Fig. 7) show no oscillations at all Σ∗B’s,
which further supports the conclusion that the oscillations with
an explicit solvent in Fig. 5 originate from the solvent packing
effect. For the three smaller densities considered (|Σ∗B | ≤ 0.2),
the simulation results are very similar to each other and to
the explicit-solvent case, except for the above-mentioned os-
cillations. In particular, the cumulative charge density is well
described by the linearized PB prediction with the bare charge
for the lowest |Σ∗B |, and at long distance with the renormalized
surface charge for intermediate |Σ∗B | (but not at short distance).
The main difference between the two implicit models is ob-

served for Σ∗B = −0.5. While the predictions of the implicit
WCA model are very close to the explicit solvent case, the
implicit LJ model predicts a peak in the anion concentration
close to the cations adsorbed at the surface (at a distance from
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a

b

c

d

FIG. 6. Mean cation (d̄∗+, squares) and anion (d̄∗−, circles) densities
in slit pores with different widths �∗ and different surface charge
densities: Σ∗B = -0.05 (a), -0.1 (b), -0.2 (c), and -0.5 (d). Results
are plotted as a function of the inverse of the effective width of the
pore, �∗eff = �

∗ −2B∗, where the parameter B∗ = 0.9 accounts for the
excluded volume between the liquid and the wall atoms (see Sec-
tion III D). The dotted and dashed blue lines are the predictions from
linearized PB theory with the bare (Eqs. 7 and 8) and renormalized
(Eqs. 14 and 13) surface charge densities, respectively. The hori-
zontal black dashed line represents the bulk ion density d∗salt in the
reservoir.

the surface corresponding approximately to the shoulder of d∗+
next to the first peak). Such an excess of anions close to the ad-
sorbed cations results from the short-range attraction between
ions, which is absent in the implicit WCA case. In our explicit
solvent model, the short-range attraction between cations and
solvent particles is identical to that between cations, so that
the electrostatic energy cost of increasing the cation density
is not mitigated by the replacement of solvent molecules by
cations next to the surface. In contrast, the implicit LJ model
includes a short-range attraction which mitigates the repulsion
between like-charged ions and increases the attraction between
ions oppositely-charged ions. This is for example known to
shift the bulk phase diagram (see e.g. Refs. 90,91). Since such
ionic correlations, of course, are not included in the PB the-
ory, the latter is insufficient to predict the cumulative charge,
even at long distances since the presence of anions close to the
surface also modifies the electric field experienced by ions far
from it.
Excess ion density. The structure of EDL is closely related

to the Donnan equilibrium between the charged pore and the

Σ∗B 0eff 0eff 0eff,fit 0eff,fit 0eff,fit
(Eq. 12) (Eq. 9) (explicit) (implicit WCA) (implicit LJ)

-0.05 0.94 0.75 0.73 0.99 0.95
-0.1 0.82 0.58 0.57 0.66 0.55
-0.2 0.61 0.38 0.37 0.44 0.30
-0.5 0.31 0.18 0.16 0.21 0.015

TABLE I. Charge renormalization factor 0eff predicted by Eqs. 12
and 9 (see text for detail) and by numerically fitting the simulation
results for the excess ion density Δd∗ex for the three electrolyte models
(see Fig. 8) to Eq. 15.

bulk reservoir. The predictions of the three electrolyte mod-
els for the excess ion density Δd∗ex with respect to the bulk
reservoir (see Eq. 15) are reported with different colors in
Fig. 8, as a function of the inverse of the effective width of
the pore, �∗eff = �

∗−2B∗, for all the considered surface charge
densities, from Σ∗B = −0.05 (circles) to Σ∗B = −0.5 (squares)
(The mean cation and anion densities for the implicit solvent
models can be found in Fig. S4 in SI). For weakly charged
surfaces (;∗

��
& _∗

�
), 0eff ≈ 1 and the excess ion density is

small (Δd∗ex ≈ 0). For larger |Σ∗B |, both implicit models fol-
low the linear trend observed with the explicit solvent and
predicted by the linearized PB theory using a renormalized
charge (see Eq. 15), also shown as dashed lines. However,
while the implicit WCA model closely follows the predictions
with the explicit solvent, the implicit LJ model consistently
overestimates the salt concentration, even more so that |Σ∗B | is
large.
In order to better quantify the differences between the three

electrolyte models, we fit the simulation results of Fig. 8 by
Eq. 15 treating the factor 0eff as a fitting parameter. The re-
sults are summarized in Table I, together with the analytical
predictions Eq. 12, or the values resulting from fitting to Eq. 15
the excess salt density obtained by numerically integrating the
ionic density profiles of the ions in the thin EDL approxima-
tion, where the potential entering in their Boltzmann distri-
bution is given by Eq. 9. In the latter case, exploiting the
symmetry with respect to the center of the pore, this reads
explicitly:

Δd∗ex (�∗) =
2
�∗

∫ � ∗/2

0
d∗salt [4

−Ψ∗ (I∗
3
) + 4+Ψ∗ (I∗3) ] dI3 −2d∗salt

(33)
with Ψ∗ (I∗

3
) from Eq. 9. Consistently with Fig. 8, these re-

sults indicate that Eq. 12 is only accurate for sufficiently small
surface charge density, and overestimates 0eff (hence underes-
timates Δd∗ex) for larger |Σ∗B |. In contrast, the non-linear thin-
EDL approximation is accurate for all the considered cases (for
which _∗

�
is smaller than �∗, as already noted). This suggests

that the limitations of Eq. 12 are not due to the breakdown of
the mean-field description, but rather to the charge renormal-
ization approximation, which is not sufficient to capture the
overall excess ion density because it focuses on the behavior
far from the walls.
Table I also confirms that the implicit WCA model overall

provides a better agreement with the explicit solvent than the
implicit LJ model. The most significant difference is observed
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Implicit LJ model

Implicit WCA model

FIG. 7. Local densities of cations d∗+ and anions d∗− for the two implicit-solvent electrolyte models (implicit LJ, top, and WCA, bottom; see
Section III A) confined in a slit of different width �∗ and surface charge densities Σ∗B , and the corresponding cumulative mean-charge density
&∗ (I∗) defined by Eq. 30. Colors represent different �∗, as indicated in the legend on the right of Fig. 5. Horizontal dashed lines in d∗+ and
d∗− represent the bulk salt concentration d∗salt in the reservoir, while for &∗, the dotted and dashed lines are the predictions from linearized PB
theory with the bare and effective surface charge densities, given by Eqs. 31 and 32, respectively.

for the largest surface charge density, Σ∗B = −0.5, where the
implicit LJ model predicts 0eff ≈ 0, i.e. a perfect screening
of the surface charge by the nearby ions, which also include
co-ions in that case (see Fig. 7). We further note that when the
field due to the surface charge is completely screened, the salt
concentration inside the pore is equal to that of the reservoir
(i.e. no Donnan exclusion). Finally, the good agreement
between the explicit solvent and implicitWCAmodel indicates
that packing effects do not play a significant role in the Donnan
exclusion in the considered cases (even though it does lead to

oscillations in the ionic density profiles, as discussed above).

V. CONCLUSION

We investigated the Donnan equilibrium of coarse-grained
dilute electrolytes confined in charged slit-pores in equilibrium
with a reservoir of ions and solvent. This was achieved using
an extension of a recently developed hybrid Grand canoni-
cal / nonequilibrium molecular dynamics simulation method
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Ss*

Implicit LJ 
model

Implicit WCA 
model

Explicit solvent 
model

Ss* Ss*

FIG. 8. Mean excess ion density Δd∗ex of three electrolytes models:
Blue for the explicit solvent model, red for the implicit WCA model,
and green for the implicit LJ model. Four different markers represent
four different surface charge densities Σ∗B . Results are plotted as
a function of the inverse of the effective width of the pore, �∗eff =
�∗ − 2B∗, where the parameter B∗ = 0.9 accounts for the excluded
volume between the liquid and the wall atoms (see Section III D). The
black dashed lines represent the prediction (Eq. 15) of the linearized
PB theory with a renormalized surface charge density 0effΣ∗B (see
Eq. 12).

(J. Chem. Phys. 151, 021101 (2019) and J. Chem. Phys.
159, 144802 (2023)) to confined systems, which enhances
the efficiency of solvent and ion-pair exchange, using inser-
tion/deletion via a fourth spatial dimension. We restricted
ourselves to the case of dilute electrolytes in the thin electric
double-layer limit and explored the influences of the pore size
and of the surface charge density, as well as packing effects
due to an explicit solvent by comparison with implicit solvent
models, on the co- and counter-ion distributions inside the
pore, the cumulative charge density profiles at the interface,
and the mean ion concentrations of the confined liquid, which
differ from that in the electrolyte reservoir.
We showed that the validity range of linearized Poisson-

Boltzmann theory to predict the Donnan equilibrium of dilute
electrolytes can be extended to highly charged pores, by con-
sidering renormalized surface charge densities, which can be
computed analytically by comparing the full and linearized PB
equations, instead of the bare ones. By comparingwith simula-
tions of implicit solvent models of electrolytes, we find that for
the small salt concentration considered here, an explicit solvent
introduces oscillations in the ionic density profiles, but has a
limited effect on the excess salt concentration inside the pore.
We note that the ability of implicit solvent models to predict
“macroscopic” quantities such as the excess salt concentration,

or the ionic density profiles far from the walls, arises from a
cancellation of errors between over/underestimates near the
walls due to the absence of oscillations in the ionic profiles,
even for small surface charge densities (see Figs. 5 and 7),
as already observed in molecular simulations of closed sys-
tems with an explicit solvent (see e.g. Refs. 92,93). Such
a cancellation of errors might not be as favorable for other
properties, in particular dynamical ones. In the low concen-
tration and thin electric double-layer limit considered here, the
main limitations of the analytical predictions are not due to
the breakdown of the mean-field description, but rather to the
charge renormalization approximation, which is not sufficient
to capture the overall excess ion density because it focuses on
the behavior far from the walls.
In the models of electrolytes considered in the present work,

the dielectric response of the solvent is taken into account only
by its permittivity screening the electrostatic interactions be-
tween ions. While it has the advantage of allowing us to
disentangle the effects of long-range electrostatic interactions
from short-range van der Waals interactions, this is a very
crude representation since the charge distribution within sol-
vent molecules results in more complex interactions between
themselves, with ions and with charged walls. Furthermore,
the computation of electrostatic interactions in the confined
case assumes that there is no dielectric contrast between the
liquid and the wall, which is the exception rather than the rule.
In the present work, the charge was uniformly distributed

on the solid surface. However, surface charge heterogeneities
have important effects on the properties of interfacial elec-
trolytes, for example on the distribution of ions and their sol-
vation at the surface93,94, as well as the solid-liquid friction
and electrokinetic response95–99. In addition, longer-range ef-
fects may arise when surface charge heterogeneities occur on
scales comparable to the electrostatic correlation length in the
electrolyte (the Debye screening length at sufficient small con-
centration), as discussed e.g. in Refs. 100–102. We leave the
study of surface charge heterogeneity on the Donnan equilib-
rium for future work.
The present Grand canonical simulation using the H4D can

also be applied with an explicit solvent such as the SPC/E
water model75,76, as well as more concentrated electrolytes
than the one considered here, or multivalent ions. This would
provide insights into the effects of ion-ion and ion-solvent
correlations on the properties of the confined electrolytes, and
to explore the possible role of the Donnan equilibrium in the
observed scaling of Surface Force Balance measurements with
the concentration30–32 or in the breakdown of electroneutrality
in nanopores103–105. In addition, the present extension of the
H4D method to slit pores could be further extended to more
complex geometries, including disordered porous materials
such as ion exchange membranes.

SUPPLEMENTARY MATERIAL

See supplementarymaterial for details on chemical potential
calculation, charge-charge correlation functions of bulk elec-
trolytes, solvent density inside the pore, andmean ion densities
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with implicit solvent models.
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