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Abstract

Due to their prevalence in the lithosphere and their high capability of
sorbing pollutants, smectite clays play a foreground role in environmental
pollution studies, waste management and soil science. In complementar-
ity with existing approaches at the molecular or macroscopic scales, real
microstructures have been employed to investigate ionic transport by
diffusion through montmorillonite and water-saturated Wyoming ben-
tonite at intermediate scales ranging between the nanometer and the
micrometer. The coupled solute transport and electrostatic phenomena
investigated at the nanopore scale are upscaled using the Homogeniza-
tion of Porous Media approach. Homogenization computations rely on
a hierarchical description of bentonite that acknowledges the existence
of pores networks at different scales. At the scale of montmorillonite
layers, digitized TEM images have been employed to simulate diffu-
sion of ionic solutes by considering electrostatic interactions in the
vicinity of the negatively-charged clay platelets’ surface. Finite Ele-
ment microstructures are created after extraction of the contours of the
layers using dedicated image processing algorithms. Local electric poten-
tial distribution, anion exclusion and cation inclusion are displayed by
ion distribution maps. The effective diffusion tensor and the transport
equation obtained through volume averaging are then used to simulate
diffusion at the scale of a Wyoming bentonite sample composed of clay
gels of variable density, solid grains and micropores. Qualitative compar-
isons were made with existing diffusion data, and a particular attention
is given to the anisotropy of the diffusion tensors at both the mesoscopic
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and macroscopic scales.
keywords: Ionic diffusion, Anion exclusion, Montmorillonite, Com-
pacted Saturated Bentonite, Digitized TEM microstructures, Numer-
ical Homogenization, Finite Element computations, Anisotropy.

1 Introduction

Due to their prevalence in the lithosphere and their high capability of sorbing
pollutants, smectite clays play a foreground role in environmental pollution
studies, waste management and soil science (Choi and Oscarson, 1996; Gon-
zales Sanchez et al., 2009; Suuronen et al., 2014; Whittaker et al., 2020). The
use of compacted bentonite as a buffer material in radioactive or domestic
waste storage is indeed motivated by its exceptional swelling and retention
properties. At the nanoscopic scale, their microstructure is characterized by
a regular stacking of montmorillonite layers of very high aspect ratio, with a
permanent negative surface charge compensated by interlayer cations. The
resulting arrangement will condition the microstructural properties (cationic
exchange capacity, specific surface, swelling potential, retention of water and
pollutants), and the resulting hydro-mechanical behavior of hydrated smec-
tites at engineering scale (Hetzel et al., 1994; Pusch, 2001; Smith et al., 2004;
Whittaker et al., 2020).

Diffusive transport is the predominant mechanism of solute transport
through saturated and compacted smectite clays subjected to natural
hydraulic gradients (Gonzales Sanchez et al., 2009). As a result, there is a
large experimental database related to diffusion of water and charged solutes
through water-saturated bentonite, on a wide range of spatial and temporal
scales (Choi and Oscarson, 1996; Glaus et al., 2007; Gonzales Sanchez et al.,
2009; Kemper and van Schaik, 1966; Kozaki et al., 2001; Malikova et al., 2008;
Marry and Turq, 2003; Nakashima, 2003; Sato and Suzuki, 2003; Sato, 2005;
Smith et al., 2004; Suzuki et al., 2004).
Diffusion measurements at the nanoscopic scale (Gonzales Sanchez et al.,
2009) have shown the preponderance of surface effects, such as reduced water
viscosity and electrostatic interactions between the diffusing species (water
molecules, ions) and the clay surfaces and compensating cations, those effects
being expressed by an electrostatic constraint factor. At the micrometer scale,
the morphology and the connectivity of the pore network play a foreground
role in the resulting diffusion through micropores, this contribution being
expressed by an overall geometric factor or tortuosity. However, as pointed
out in (Gonzales Sanchez et al., 2009), those factors cannot be related to the
porosity or other easily derived properties of the porous medium, and must
be regarded as empirical parameters. Monte Carlo and Molecular Dynamics
(MD) simulations have been employed in order to identify the interlayer
molecular structure and local diffusion coefficients of tracers in the vicinity
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of charged montmorillonite mineral surfaces (Chang et al., 1995; Marry and
Turq, 2003; Tournassat et al., 2016). The simulated values are then introduced
into a macroscopic model of diffusion using the known porosity value and
empirical parameters such as the constrictivity factor and tortuosity. Recently,
(Tournassat et al., 2016) employed MD simulations in order to investigate
anion exclusion from very narrow nanopores (of widths lower than 1.5 nm).
Three individual clay mineral layers, and three nanopores in contact with a
larger mesopore are represented, all the layers being parallel and displaying
a straight and rigid structure throughout the simulations. Detailed concen-
tration profiles are obtained in the interlayer pores and in the mesopores. A
recent model of ionic diffusion transport by (Bacle et al., 2016) is based on
Brownian dynamics simulations, and offers an elaborate description of the
microstructure by stacks of overlapping cylindrical clay platelets, but no elec-
trostatic effects are taken into account. To conclude, although the resulting
macroscopic diffusion coefficients are close to experimental data, Monte Carlo
and Molecular Dynamics Simulations cannot take into account the geometry
of compacted clays beyond the interlayer region (Marry and Turq, 2003). One
drawback of MD simulations lies also in the fact that the simulated clay region
is too limited in space to take into account interlayer pores and micropores
that are not influenced by the montmorillonite layers’ surfaces, and which are
also encountered in clay-water mixtures. Besides, as pointed out in (Pusch,
2001), most of the microstructural models of clays refer only to the detailed
particle-to-particle interaction by assuming a parallel arrangement for two or
three montmorillonite layers, and disregard the real pore distribution and the
scale-dependent variation in density of the clay gels.
(Wu et al., 2020) have performed pore scale simulations of radionuclide tracer
diffusion in compacted montmorillonite using generated three-dimensional
microstructures and the Lattice Boltzmann Method. Their investigation
notably shows the influence of surface charge and the interaction of overlapping
electrical double layers on anion exclusion, in agreement with experimental
data. However, the model requires extensive numerical resources to generate
the microstructures based on a limited set of pore characteristics (such as
porosity, surface area and mean pore size) with no independent means of
checking the representativity of those microstructures, and the computations
do not allow to express the diffusion tensor at the mesoscopic scale.

In complementarity with recent works, we try to model ionic diffusion using
a realistic description of the hierarchical nature of smectite microstructure. We
aim to investigate the specific contributions of the surface charge and the inter-
layer porosity at the nanoscopic scale, as well as the part played by micropores
and clay gels of varying density at the micrometer scale. More specifically,
we aim to develop a better understanding of the role played by the inher-
ent flexibility of negatively charged montmorillonite layers and their natural
arrangement in more or less parallel stackings at the nanoscopic scale (Honorio
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et al., 2018), during ionic transport by diffusion characterized by cation inclu-
sion and anion exclusion. For this reason, we consider a real microstructure
composed of a sufficient number of long and thin elementary layers, in order to
account for the relatively ordered and laminated structure of montmorillonites.
During the model development, we use a rigorous and sequential approach in
order to acknowledge the hierarchical organization of porous spaces in natural
bentonites while avoiding the introduction of empirical fitting parameters. The
Homogenization of Periodic Media approach is employed to obtain the effective
properties governing solute transport by diffusion at the scale of an assembly of
montmorillonite layers and interlayer water. Three levels of description are con-
sidered during the model derivation through homogenization. The microscopic
level designates the scale of stacked flexible montmorillonite lamellae and inter-
layer water whose physical properties are affected by the pore walls (Marry
and Turq, 2003; Cheng and Hendry, 2014). The mesoscopic level refers to the
scale of clay gels, solid grains and inter-aggregate pores (Keller et al., 2014;
Nakashima, 2003; Tomioka et al., 2010). The effective properties computed by
upscaling from the microscopic to the mesoscopic scales are affected to the
clay gels, while diffusion within the inter-aggregate micropores is assumed to
take place without surface effects. The macroscopic level corresponds to sam-
ples subjected to diffusion tests in the laboratory. Upscaling is then performed
from the mesoscopic scale to the scale of a laboratory sample of bentonite
to compute the macroscopic diffusion tensor and the effective coupling tensor
(originating from the negatively charged montmorillonite layers) of bentonite.
The overall diffusion behavior of bentonite at the engineering scale is naturally
expected to depend on the corresponding processes taking place at lower scales
within interlayer nanopores and micropores, and tackling both scales simul-
taneously remains elusive. The advantage of the proposed approach based on
asymptotic analysis is that the nanoscopic and mesoscopic scales can be stud-
ied separately by considering the relevant geometries and physical processes
at each scale, while the coupling coefficients derived through upscaling (or
averaging) can be identified by solving simple elementary problems.

2 Construction of the numerical
microstructures

2.1 At the microscopic scale

The microstructure illustrated in Figure 1 has been obtained by exploiting a
high-resolution Transmission Electron Micrograph from (Hetzel et al., 1994),
and represents one quarter of the complete Representative Volume Element
(see Section 3.4). The porous medium investigated at the nanoscale is com-
posed of two phases: the solid phase of montmorillonite layers Ωs and the
interstitial space saturated with the electrolyte solution Ωf . Ωs and Ωf are
expressed in m3 and we consider a length Lz in the direction perpendicular to
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the plane of the Figure such that Lz ≫ l′ and Lz = O(l), with l′ the character-
istic size of the heterogeneities present within the microstructure, while l is the
characteristic size of a stacking of montmorillonite layers (see Section 3.2, l′ =
3-4 nm represents the interlayer distance, and l = 0.4 µm in Figure 1). Con-
sequently, solute transport is considered to be invariant in the direction of Lz,
and we can restrict the study to a two-dimensional cross-section of the mont-
morillonite clay gels, such as represented in Figure 1. Using two-dimensional
microstructures for describing solute transport around montmorillonite layers
is justified by typical lateral extensions Lz observed for montmorillonite sur-
faces, which are more than a hundred times higher than their average thickness
(Honorio et al., 2018; Malikova et al., 2008; Pusch, 2001), as well as by exper-
imental evidence (Gonzales Sanchez et al., 2009; Malikova et al., 2008; Marry
and Turq, 2003).
The porosity of the microstructure represented in Figure 1 is equal to 82.2 %,
and is close to the value of 87 % employed by (Smith et al., 2004) in their
numerical study, and to experimental values of porosity (comprised between
76 % and 90 %) reported in (Smith et al., 2004) for pure montmorillonite. The

Fig. 1 Finite Element Microstructure obtained after processing of a Transmission Electron
Micrograph from (Hetzel et al, 1994). Image width:0.4 µm.

image analysis procedure developed using MATLAB is the result of trial and
error. Each grayscale TEM image is thresholded first to obtain a binary image,
without prior filtering. The threshold value is found based on the histogram of
the image, and the choice is confirmed by visual inspection. Besides, it has been
observed that a single threshold value leads generally to better final results
than an adaptive thresholding. Contrast enhancement is then performed by
bottom-hat and top-hat filtering. Next, a series of morphological opening and
closing operations are performed with elongated elements of increasing size,
oriented along the average orientation computed for the assembly of layers.
Objects displaying an eccentricity smaller than the average eccentricity are
then removed, as well as objects which area represents less than one percent
of the maximal object area. Finally, the contours of the remaining objects
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are extracted using Moore-Neighbor’s algorithm with Jacob’s stopping crite-
rion (Gonzalez et al., 2004). A dedicated procedure has been implemented to
import the coordinates of the contour points and create the microstructure in
the Finite Element-based code Castem (Le Fichoux, 2022).

2.2 At the mesoscopic scale

Numerical microstructures have been obtained at the mesoscopic scale by pro-
cessing micrographs taken by Transmission Electron Microscopy (TEM) on
resin-impregnated samples of Wyoming bentonite (Pusch, 2001). Four distinct
phases are considered in the original TEM micrographs: solid grains, dense
clay gels, soft clay gels, and micropores. The solid grains refer to the non-
smectite phases (quartz, feldspars, mica and chlorite) and the smectite grains
which have not been hydrated. This microstructure has been retained as clay
gels are spontaneously formed through hydration and expansion of aggregates
that exfoliate from the grains exposed to water, while according to (Pusch,
2001) comparative studies with similar bentonites examined using High Volt-
age Electron Microscopy have shown that microstructural features (such as
void size and clay density) are preserved by acrylate embedment.

The thresholding procedure is based on the algorithm of maximization of the
gray level histogram’s entropy developed by (Kapur et al., 1985). The threshold
values obtained are validated by comparison of the resulting phase proportions
with the cumulative distribution curve and the initial known phase propor-
tions (Bouchelaghem and Pusch, 2017; Tomioka et al., 2010). The contours are
extracted separately for each phase using Moore-Neighbor’s algorithm with
Jacob’s stopping criterion, before being imported and used to create the Finite
Element mesh in Castem. Such a microstructure is illustrated in Figure 6. The
resolution is about 25 nanometers per pixel, which allows a good representation
of the internal microstructure.

3 Homogenization at the microscopic scale

3.1 Modeling assumptions and local description of the
problem

The modeling work starts with equations that have classically been employed
to generalize Fick’s model of diffusion, in order to account for chemical and
electrostatic couplings when ionic species are transported within a charged
porous medium (Cheng and Hendry, 2014; Moyne and Murad, 2006; Smith
et al., 2004). The molar flux density is expressed by Nernst-Planck equation
in the stationary mass balance equation written for each chemical species i
of concentration ci and valence zi (Gross and Osterle, 1968; Morrison and
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Osterle, 1965):

∇x ·
(
D0,i∇xci +D0,i

F

RT
cizi∇xψ

)
= 0 in Ωf (1)

In Eq. (1), D0,i is the self-diffusion coefficient of solute i in the pore fluid, F
is Faraday’s constant, R the universal gas constant and T the constant abso-

lute temperature. ∇x =
2∑
i=1

∂
∂xi

ei is the nabla operator of differentiation with

respect to the Cartesian spatial coordinates.
Poisson’s equation with a source term representing the net charge density
(Cheng and Hendry, 2014; Moyne and Murad, 2006) for N solutes is writ-
ten to describe the distribution of the electric potential ψ under steady-state
conditions:

∇x · (ϵ̃∇xψ) = −F
N∑
i=1

zici in Ωf (2)

where the permittivity ϵ̃ is the product of the permittivity of vacuum ϵ0 and
the relative permittivity of water ϵw: ϵ̃ = ϵ0 ϵw.
Eqns. (1) and (2) are completed with boundary conditions in the vicinity of
the montmorillonite platelets’ surface Γ:

D0,i

(
∇xci +

F

RT
cizi∇xψ

)
· n = 0 on Γ (3)

n, the normal unit vector on Γ, points towards Ωs.
The voltage gradient flux is imposed at the surface of the montmorillonite
layers in order to express the relationship between ψ and the known surface
charge density σ (Cheng and Hendry, 2014; Liu et al., 2019):

ϵ̃∇xψ · n = −σ on Γ (4)

In what follows, to simplify the model presentation, we consider a binary solu-
tion (ci = c+, zi = z+ and D0,i = D+ for cations; ci = c−, zi = −z− and
D0,i = D− for anions):

F

N∑
i=1

zici = F
(
z+c+ − z−c−

)
(5)

Following (Cheng and Hendry, 2014; Moyne and Murad, 2006; Sasidhar
and Ruckenstein, 2003), the electric potential ψ is decomposed into two
components:

ψ = ψex + ψin (6)

where ψex is associated with the exterior solution and the induced membrane
potential, while ψin is related with the interior diffuse double-layer (DDL) and
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the negative charge on the montmorillonite layers. ψin is effective within the
Debye length, so that within the DDL, the concentration of cations is domi-
nant relative to the concentration of anions, but both tend to approach their
respective equilibrium concentrations in the exterior solution. This implies a
Boltzmann distribution of concentration for cations (c+) and anions (c−) (see
(Gross and Osterle, 1968; Morrison and Osterle, 1965) for a detailed derivation
of the following expression):

c± = c±ex exp

(
∓Fz

±ψin

RT

)
(7)

with c±ex the electrolyte concentration associated with the exterior solution.
As a result, Eqn. (2) can be decomposed in two equations:

∇x · (ϵ̃∇xψex) = 0

∇x · (ϵ̃∇xψin) = −F
(
z+c+ex exp (−

Fz+ψin

RT
)− z−c−ex exp (

Fz−ψin

RT
)

)
(8)

3.2 Scaling analysis

To normalize the equations, proper estimates of the physical variables are
required. The subscript c is used to denote a characteristic value, such that each
quantity f (f = c+, c−, ψ, ...) is written as: f = fc f

′, with f ′ the corresponding
dimensionless variable.
Following an approach detailed in (Sanchez-Palencia, 1980), two characteristic
lengths scales are introduced:
- a microscopic length l′ associated with heterogeneities present within the
microstructure. As in (Cheng and Hendry, 2014; Moyne and Murad, 2006), we
take l′ as the Debye length τD:

l′ = τD =

√
ϵ0ϵw RT

F 2cc
(9)

τD represents the scale of variation of the electric potential ψ or the thick-
ness of the double-layer. τD, which depends on the electrolyte concentration
cc = (c±ex)c (typical values being comprised between 1 and 100 mol · m−3 (Liu
et al., 2019; Whittaker et al., 2020)), varies generally between one and ten
nanometers.
- a mesoscopic length l associated with typical dimensions of the microstruc-
ture (i.e. the characteristic dimension of a montmorillonite particle, several
hundreds of nanometers).

The perturbation parameter ε′ is then defined by the following ratio:
ε′ = l′

l , such that ε′ ≪ 1 guarantees the separation of scales required for
homogenization (Sanchez-Palencia, 1980).
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Physical constants are readily estimated (Cheng and Hendry, 2014; Gross
and Osterle, 1968; Morrison and Osterle, 1965; Smith et al., 2004):
Fc = F = 96485 C ·mol−1, Rc = R = 8.3145 J ·K−1 ·mol−1, Tc = T = 293 K,
ϵ̃c = ϵ̃ = ϵ0ϵw = 8.8542× 10−12 × 78 = 6.903× 10−10 C2 · J−1 ·m−1.
As in (Cheng and Hendry, 2014; Gross and Osterle, 1968; Liu et al., 2019;
Smith et al., 2004; Moyne and Murad, 2006), we set ψc =

RT
F . The character-

istic length is defined as lc = l′. From Eqn. (2) the characteristic value for the
electrolyte concentration is taken to be cc =

ϵ̃ψc

Fl′2 mol ·m−3, while from Eqn.

(4) σc = ϵ̃ψc

l′ = O(0.05) C · m−2 (Cheng and Hendry, 2014; Liu et al., 2019;
Moyne and Murad, 2006).

The dimensionless space variable x′i =
xi

l (i = 1, 2 in 2D) is introduced,

together with the dimensionless volumes Ω′
f =

Ωf

l2 Lz
, Ω′

s =
Ωs

l2 Lz
. Ω′ represents

the volume of the complete microstructure composed of interstitial spaces and
montmorillonite layers: Ω′ = Ω′

f + Ω′
s. Γ

′ designates the interface between the
montmorillonite platelets Ω′

s and the interstitial space Ω′
f within Ω′. Using the

previous estimates of cc, ψc and σc and accounting for Eqn.(7), the system of
Eqs.(1),(3),(4) and (8) is rewritten in dimensionless form as follows:

∇x′ ·
(
D′+ exp (−z+ψ′

in)
(
∇x′c′+ex + z+c′+ex∇x′ψ′

ex

))
= 0 in Ω′

f (10)

∇x′ ·
(
D′− exp (z−ψ′

in)
(
∇x′c′−ex − z−c′−ex∇x′ψ′

ex

))
= 0 in Ω′

f (11)

∆x′ψ′
ex = 0 in Ω′

f (12)

ε′2 ∆x′ψ′
in = −

(
z+c′+ex exp (−z+ψ′

in)− z−c′−ex exp (z−ψ′
in)
)
in Ω′

f (13)

D′+ exp (−z+ψ′
in)
(
∇x′c′+ex + z+c′+ex∇x′ψ′

ex

)
· n = 0 on Γ′ (14)

D′− exp (z−ψ′
in)
(
∇x′c′−ex − z−c′−ex∇x′ψ′

ex

)
· n = 0 on Γ′ (15)

∇x′ψ′
ex · n = 0 on Γ′ (16)

ε′ ∇x′ψ′
in · n = −σ′ on Γ′ (17)

By assuming a local periodicity for the microstructure and all physical
variables, c+ex, c

−
ex, ψin and ψex can be written as asymptotic developments

with respect to the mesoscopic coordinates x′ = x
l and the local (microscopic)

coordinates y′ = x
l′ = x′

ε′ (to simplify the notation, in the following we drop
the ′ symbol in the expression of dimensionless quantities):

c+ex(x, y) = c+(0)
ex (x, y) + ε′ c+(1)

ex (x, y) + ε′2 c+(2)
ex (x, y) + ... (18)

c−ex(x, y) = c−(0)
ex (x, y) + ε′ c−(1)

ex (x, y) + ε′2 c−(2)
ex (x, y) + ... (19)

ψin(x, y) = ψ
(0)
in (x, y) + ε′ ψ

(1)
in (x, y) + ε′2 ψ

(2)
in (x, y) + ... (20)

ψex(x, y) = ψ(0)
ex (x, y) + ε′ ψ(1)

ex (x, y) + ε′2 ψ(2)
ex (x, y) + ... (21)

where each term f (i)(x, y) in the developments above is Ω′-periodical.

As a result, differentiation with respect to x, ∇x, is replaced by dif-
ferentiation with respect to x and y, ∇x + 1

ε′∇y (Bouchelaghem, 2018;
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Sanchez-Palencia, 1980). Substituting asymptotic developments (18)-(21) into
Eqns.(10)-(17) and accounting for the new rules of differentiation, local
boundary-value problems are then derived at successive orders of approxima-
tion with respect to ε′. The local problems allow to identify the mesoscopic
quantities (that depend only on x) and the local distributions of concentration
and electric potential, as well as to obtain the effective properties by averaging
over the RVE.

3.3 Local problems

At the lowest level, it is straightforward to show that c
+(0)
ex , c

−(0)
ex and ψ

(0)
ex

are mesoscopic quantities, which do not depend on the local variable y (see

Appendix B). This allows to identify
∂c+(0)

ex (x)
∂xi

and
∂c−(0)

ex (x)
∂xi

(i = 1, 2) as the
mesoscopic force components of the imposed electrolyte concentration gradi-

ent, and
∂ψ(0)

ex (x)
∂xi

as the mesoscopic force of the induced membrane potential
gradient (Cheng and Hendry, 2014). The previous results have important
implications concerning the resolution of the local problems, which will be
greatly simplified in comparison with the original coupled system of Nernst-
Planck and Poisson-Boltzmann equations Eqs. (1) to (4) written for the
ionic concentrations ci and electric potential ψ. One of the strengths of the
asymptotic analysis is that it enables to identify the physical quantities that
don’t depend on the local space variable y, and therefore to obtain a series of
(mostly) uncoupled local problems.

If we consider Eq. (13) at order O(ε′0) = O(1) and Eq. (17) at order O(1),

ψ
(0)
in verifies the following dimensionless problem within the unit cell Ω′:

∆yψ
(0)
in = −z+c+(0)

ex exp (−z+ψ(0)
in ) + z−c−(0)

ex exp (z−ψ
(0)
in ) in Ω′

f

∇yψ
(0)
in · n = −σ on Γ′ (22)

ψ
(0)
in Ω′ − periodical

⟨ψ(0)
in ⟩ = 1

|Ω′|

∫
Ω′

f

ψ
(0)
in dV = 0

At the next order of approximation, we obtain the problems verified by ψ
(1)
ex ,

c
+(1)
ex and c

−(1)
ex (see Appendix B). Contrary to the results presented in (Cheng

and Hendry, 2014), it appears that ψ
(1)
ex is not constant within the interlayer

pores, and varies within the microstructure under the action of the induced

mesoscopic potential gradient ∇xψ
(0)
ex on the montmorillonite layers’ surface

(we use Einstein summation convention on repeated indices):

ψ(1)
ex (x, y) = βl(y)

∂ψ
(0)
ex

∂xl
(x) = β(y) · ∇xψ

(0)
ex (23)
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The local problem verified by βl(y), l = 1, 2, given by the set of Eqs.(B2) to
(B5), is detailed in Appendix B.

After some developments (see Appendix B), we find that c
+(1)
ex and c

−(1)
ex

depend linearly on the electrolyte concentration gradient ∇xc
+(0)
ex and the

membrane potential gradient ∇xψ
+(0)
ex :

c+(1)
ex (x, y) = c+l (y)

∂c
+(0)
ex

∂xl
(x) + d+l (y) z

+c+(0)
ex

∂ψ
(0)
ex

∂xl
(x) (24)

c−(1)
ex (x, y) = c−l (y)

∂c
−(0)
ex

∂xl
(x)− d−l (y) z

−c−(0)
ex

∂ψ
(0)
ex

∂xl
(x) (25)

c+l and c−l (l = 1, 2) verify the local problem given by Eqs. (B12) detailed
in Appendix B.
d+l and d−l (l = 1, 2) verify the local problem given by Eqs. (B13) detailed in
Appendix B.

By writing Eqs. (10) and (11) at order O((ε′)0) = O(1) and averaging over

the RVE, it is possible to obtain transport equations for c
+(0)
ex and c

−(0)
ex at the

mesoscopic scale of clay gels in the following forms (see Appendix C):

∇x

(
D± · ∇xc

±
ex

(0)
)
+∇x

(
c±ex

(0)D±
ψ · ∇xψ

(0)
ex

)
= 0 (26)

In Eqs.(26), the components of the mesoscopic diffusion tensors D± and the
tensors D±

ψ expressing the effect on ion diffusion of the membrane potential
are defined as follows (i, l = 1, 2):

D±
il =

1

|Ω′|

∫
Ω′

f

(
D± exp (∓z±ψ(0)

in )

(
∂c±l
∂yi

+ δil

))
dV (27)

(D±
ψ )il =

1

|Ω′|

∫
Ω′

f

(
D± exp (∓z±ψ(0)

in )z±
(
∂d±l
∂yi

+
∂βl
∂yi

+ δil

))
dV (28)

3.4 Numerical Resolution with the Finite Element
Method

On the outer boundary of the microstructure the ionic concentrations ci and
electric potential ψ are assumed to be periodical. Using symmetry considera-
tions, the periodicity boundary conditions are transformed into more classical
Dirichlet and Neumann boundary conditions. We assume that the domain
occupied by the montmorillonite layers is symmetrical with respect to the coor-
dinate axes and the origin of the coordinate system is a center of symmetry. As
a result, the computations are performed on a quarter of the 2D microstruc-
ture.
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The model is implemented in the Finite Element-based software Castem 2023
(Le Fichoux, 2022). Castem has been initially developed for the analysis of
structures by the Finite Element Method and the modelling of thermo-hydro-
mechanical behavior of a large variety of materials. Castem is based on an
object-oriented approach, and requires the user to define its own sequence
of instructions and procedures using the Gibiane language, in order to con-
struct the geometry, the Finite Element Mesh, the boundary conditions, the
rigidity matrix and the nonlinear resolution procedure. The choice of Castem
has been motivated by its capacity to treat complex geometries starting from
the coordinates of the points which constitute the montmorillonite layers’
surfaces (obtained using MATLAB and imported in Castem), to define a
large variety of boundary conditions, and to customize the resolution proce-
dure for nonlinear problems (control of the local iterations steps, update of
the nonlinear coefficients, convergence criterion ...). We refer to its website
(https://www-cast3m.cea.fr/index.php) for an extensive documentation (in
French) and an overview of its capabilities ranging from structural mechanics
to fluid mechanics.

4 Results and Discussion

For the sake of simplicity, as in (Cheng and Hendry, 2014; Smith et al.,
2004), a single binary monovalent salt (NaCl), completely dissolved in water,

is considered, such that z+ = z− = 1 and c
+(0)
ex = c

−(0)
ex = c

(0)
ex .

4.1 Electric potential and Ion concentration maps

Figure 2 displays the electric potential ψ
(0)
in in V, obtained at the first order of

approximation by solving the system of Eqs. (22), and the osmotic pressure p
(0)
in

in Pa computed using the microstructure illustrated in Figure 1. The swelling
or osmotic pressure that develops within the interlayer pores can be expressed
as a function of the first order approximation of ion concentrations (Cheng and
Hendry, 2014) (in the following expressions of the osmotic pressure and ionic

concentrations ψ
(0)
in represents the physical electric potential and is expressed

in V):

p
(0)
in = RT

(
(exp (−F z

+ψ
(0)
in

RT
)− 1)c+(0)

ex + (exp (
F z−ψ

(0)
in

RT
)− 1)c−(0)

ex

)
(29)

Neumann boundary condition in Eqs. (22) applied on Γ′ constitutes the main

source term for ψ
(0)
in , as attested by higher isovalues in the vicinity of Γ. How-

ever, through the source term in Eq. (3.3), the membrane potential depends

also strongly on each ion concentration c
±(0)
ex weighted by its valence z±. As

a result, the spatial distribution of cations and anions in interlayer pores, and
the effective diffusion tensor will be affected by the external salt concentration,
as has been experimentally observed in Glaus et al. (2007) for more compacted
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Fig. 2 Electric potential ψ
(0)
in in V (above) and osmotic pressure p

(0)
in in Pa as defined by

Eq. (29) (below), computed with c
(0)
ex = 1mol ·m−3 and σ = 0.025 C ·m−2.

montmorillonites.
Figure 3 illustrates the concentrations c+(0) of Na+ ions and c−(0) of Cl−

ions obtained at the first order of approximation from Eq. (7) when electrical
couplings are taken into account. c+(0) and c−(0) are expressed as follows:

c±(0) = c±(0)
ex exp

(
∓Fz

±ψ
(0)
in

RT

)
(30)

As expected from the assumed Boltzmann concentration distribution, cation
inclusion and anion exclusion effects are clearly observed, particularly within
the more densely stacked montmorillonite layers.

Figure 4 represents the evolution of the minimum value of the electric

potential ψ
(0)
in on the interface Γ′ between the interlayer water and the montmo-

rillonite surface when the bulk concentration c
(0)
ex varies between 10−3 mol·m−3

and 10 mol · m−3, for a fixed value surface charge density σ (σ = 0.025,
0.045, and 0.07 C· m−2). As expected, the electric potential in the vicinity
of the montmorillonite layers’ surface strongly depends on the given surface

charge density σ and the bulk ionic concentration c
(0)
ex . As observed in (Liu

et al., 2019; Smith et al., 2004), ψ
(0)
in increases in the interlayer pores when
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Fig. 3 Cation concentration c+(0) (above) and anion concentration c−(0) (below) in mol ·
m−3, computed with c

(0)
ex = 1mol ·m−3 and σ = 0.025 C ·m−2

.

σ increases and/or the ionic concentration in the bulk solution c
(0)
ex decreases.

These results are consistent with the fact that the electric double-layer (EDL)
thickness, and hence the magnitude of the surface potential, decrease with the
electrolyte concentration for a fixed value of surface charge density. As in (Liu

et al., 2019; Smith et al., 2004), we observe that for a given value of c
(0)
ex the sur-

face charge density σ plays a significant role in the increase of the magnitude

of the electric potential, with a decaying influence of σ when c
(0)
ex increases.

4.2 Effective diffusion tensor

4.2.1 At the mesoscopic scale

According to Eq. (24), the cation concentration c
+(1)
ex at the second order

of approximation is obtained by solving the problems verified by c+1 and c+2
(Annex B), which are displayed in Figure 5. c+1 is associated with the macro-

scopic electrolyte concentration gradient in the horizontal direction
∂c+(0)

ex

∂x and

is computed by solving the system of Eqs. (B12) for l = 1. c+2 is associated

with the vertical macroscopic electrolyte concentration gradient
∂c+(0)

ex

∂y and is

computed by solving the system of Eqs. (B12) for l = 2. The consideration of
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Fig. 4 Evolution of the minimum value of the electric potential ψ
(0)
in with ionic concentra-

tion c
(0)
ex .

the local problems at the second order of approximation is necessary because
c+1 and c+2 are required in order to compute the effective diffusion tensor at the
mesoscopic scale D± using Eq. (27). From the distribution of c+1 , it appears
that the ionic diffusion along the horizontal direction is largely unaffected
in the wider interlayer spaces, as it takes place in a direction approximately
parallel to the montmorillonite platelets. On the other hand, the distribution
of c+2 clearly shows that diffusion is strongly hindered along the vertical direc-
tion by the elongated montmorillonite layers which create longer diffusion
pathways. Consequently, the diffusion tensor is strongly anisotropic.
With the present microstructure D+

xx = 1.378D±, D+
yy = 0.153D± for the

cations, and D−
xx = 0.435D±, D−

yy = 0.123D± for the anions.
A qualitative comparison can be made with experimental diffusivities obtained
for various cations and anions with Na-Wyoming montmorillonite gels
(Nakashima, 2003), which are comprised between 0.5D± and D±. In (Kem-
per and van Schaik, 1966; Kozaki et al., 2001) the experimental diffusivities
reported for NaCl in montmorillonite are lower, and vary between 0.20D±

and 0.25D±. The numerical diffusivities computed fall within the range of the
experimental values obtained under the assumption of isotropy. More details
would be required about the microstructural features of the smectite clays
employed in the experiments to push the comparison further.

4.2.2 At the macroscopic scale

The effective diffusion tensor D± obtained at the mesoscopic scale is then used
to simulate diffusion at the scale of a Wyoming bentonite sample comprising
clay gels (79.7 %), solid grains (11.3 %) and micropores (9 %) (Pusch, 2001),
as described in Section 2.
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Fig. 5 Distributions of c+1 (above) and c+2 (below) in mol · m−3, computed with c
(0)
ex =

1mol ·m−3 and σ = 0.025 C ·m−2.

The diffusion properties of clay gels are given by the mesoscopic diffusion
tensor D± defined by Eq. (27) and computed in the previous section. For the
micropores Ω′

v, we assume that the constant diffusion coefficient is given by the
self-diffusion coefficient D0,i of solute i in bulk water. The solute concentration
verifies the mesoscopic transport equation Eq. (26) within clay gels, and the
classical diffusion equation within micropores. Both the solute concentration
and diffusive fluxes are assumed to be continuous at the interface Γ′

cv between
clay gels and micropores. A null outflow boundary condition is imposed on
the interface Γ′

cs between clay gels and solid grains, as well as on the interface
Γ′
vs between micropores and solid grains. An asymptotic analysis similar to

that described at the mesoscopic scale is now performed at the level of the
bentonite microstructure. At this scale, the small parameter ε ≪ 1 is defined
as ε = l

L , with L the macroscopic length, for instance L may represent the
diameter of the bentonite sample during a diffusion test in the laboratory.
For more details, we refer to (Bouchelaghem, 2018, 2022). The components
Dmacro
ik of the macroscopic diffusion tensor Dmacro are then defined as follows

(i, j, k = 1, 2):

Dmacro
ik =

1

|Ω′
total|

∫
Ω′∪Ω′

v

aij

(
δjk +

∂ϕk
∂yj

)
dV (31)

with |Ω′
total| = |Ω′ +Ω′

v +Ω′
solid| the microstructure composed of clay gels

Ω′ which are now viewed as a ’single’ constituent after upscaling, micropores
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Ω′
v and solid grains Ω′

solid; aij (i, j = 1, 2) is the local diffusion tensor at the
mesoscopic scale, such that aij = Dij in clay gels Ω′, aij = D+ for cations and
aij = D− for anions within the micropores Ω′

v.
To determine the components Dmacro

ik of the macroscopic diffusion tensor, the
following system has to be solved for ϕk (k = 1, 2) on the quarter of the REV
of side length Lm = L

4 :

∂

∂yi

(
aij

∂ϕk
∂yj

)
= 0 in Ω′ ∪ Ω′

v,[[
niaij

∂ϕk
∂yj

]]
= − [[niaik]] on Γ′

cv,

[[ϕk]] = 0 on Γ′
cv,

niaij
∂ϕk
∂yj

= −niaik on Γ′
cs,

nj
∂ϕk
∂yj

= −nk on Γ′
vs,

n · ∇yϕk = 0 on yi = 0 and yi =
Lm

2
, i ̸= k,

ϕk = 0 on yk = 0 and yk =
Lm

2

where the notation [[f ]] designates the discontinuity of any function f which
takes different values f|∂Ωc∩Γcv

and f|∂Ωv∩Γcv
on either side of Γcv owing to

the fact that the diffusion properties are different in clay gels and micropores
: [[f ]] = f|∂Ωc∩Γcv

− f|∂Ωv∩Γcv
.

Figure 6 illustrates the local fields ϕ1 and ϕ2 that have to be derived with
respect to the mesoscopic spatial coordinates in order to obtain Dmacro.

The diffusion coefficients computed at the scale of montmorillonite lay-
ers are assigned to the clay gels, and their contribution is predominant for
macroscopic diffusion. The components of the macroscopic diffusion tensor:
Dmacro
xx = 4.43×10−10 m2· s−1, and Dmacro

yy = 3.91×10−10 m2· s−1, are close to
experimental values reported in (Sato and Suzuki, 2003; Smith et al., 2004) for
smectite clays. In the present simulation, the total porosity originating from
interlayer spaces (at the level of montmorillonite layers) and micropores (in
the bentonite sample) is approximately equal to 74.5 %. For the experiments
reported in (Sato and Suzuki, 2003; Smith et al., 2004), no details are given
regarding the distribution of porosity, while based on the values given for dry
density the total porosity varies between 63 % and 76 %. As already observed
in (Sato and Suzuki, 2003; Suzuki et al., 2004), there is no definite influence of
the compaction level on the diffusion tensor anisotropy. This is mainly due to
the presence of incompressible solid grains and large inter-particle pores which
contribute to orient the diffusion pathways in all directions, thereby smearing
out the anisotropy present at the scale of montmorillonite layers (Suuronen
et al., 2014).
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Fig. 6 Distributions of ϕ1 (above) and ϕ2 (below). Image width: 30µm.

5 Conclusion

A simple model has been proposed to describe ion transport by diffusion
through montmorillonite, by relying on a realistic description of the interlayer
space and taking into account the coupling between diffusion and electrostatic
effects. Local electric potential and ion concentration maps have shown that
the presence of an electric potential strongly affects the local ion concentra-
tion distributions in the vicinity of the montmorillonite surfaces.
Through upscaling, the transport equation written for each transported species
at the mesoscopic scale of clay gels allows to define a mesoscopic diffusion
tensor which strongly depends on the electric potential distribution within
the interlayer pores and the morphology of the montmorillonite layers. The
mesoscopic transport equation features also a coupling term depending on the
induced membrane potential. At the montmorillonite scale, the model gives
promising results, other microstructures are currently being tested in order to
compare with existing experimental data available for single binary monova-
lent salts.
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At the scale of clay gels, mineral grains and inter-particle pores, the microstruc-
tures need to be improved in order to be able to simulate diffusion in
three-dimensional conditions. Other perspectives for the work include account-

ing for advection in order to compute the hydrostatic pressure gradient ∇xp
(0)
ex

and the membrane efficiency
∇xp

(0)
ex

2RT∇xc
(0)
ex

(Cheng and Hendry, 2014). Finally,

even at the level of the montmorillonite layers, it would be interesting to apply
the model to 3D microstructures, as recent research indicates large ranges of
variation for montmorillonite particles’ sizes, that imply a three-dimensional
network of interconnected pores (Whittaker et al., 2020).

Appendix A Notation

Ω : microstructure of montmorillonite (in m3)
Ωs : solid phase of montmorillonite layers in Ω (in m3)
Ωf : water-saturated interstitial space in Ω (in m3)
ci : concentration of ions i in pore solution (in mol ·m−3)
zi : valence of ions i in pore solution (dimensionless)
D0,i : self-diffusion coefficient of ion i in the pore fluid (in m2 · s−1)
F : Faraday’s constant (in C ·mol−1)
R : universal gas constant (in J ·K−1 ·mol−1)
T : absolute temperature (in K)
∇x : nabla operator of differentiation with respect to x
x : Cartesian spatial coordinates at the mesoscopic scale (in m)
ψ : electric potential (in V)
ϵ̃ : permittivity (in C2 · J−1 ·m−1)
ϵ0 : permittivity of vacuum (in C2 · J−1 ·m−1)
ϵw : relative permittivity of water (dimensionless)
Γ : montmorillonite platelets’ surface (in m2)
n : normal unit vector on Γ
σ: surface charge density (in C ·m−2)
c+: cations concentration of valence z+ in binary solution (in mol ·m−3)
c−: anions concentration of valence z− in binary solution (in mol ·m−3)
D+: self-diffusion coefficients for cations (in m2 · s−1)
D−: self-diffusion coefficients for anions (in m2 · s−1)
ψex: contribution to the electric potential ψ due to the exterior solution (in V)
ψin: contribution to the electric potential ψ due the interior diffuse double
layer (DDL) (in V)
c+ex: cation concentration in the exterior solution surrounding the montmoril-
lonite layers (in mol ·m−3)
c−ex: anion concentration in the exterior solution surrounding the montmoril-
lonite layers (in mol ·m−3)
l′: microscopic length associated with heterogeneities present within the
microstructure (in m)
l: mesoscopic length associated with the characteristic dimension of a mont-
morillonite particle (in m)
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τD: Debye length (in m)
ε′: small perturbation parameter (dimensionless)
y : Cartesian spatial coordinates at the local scale within the microstructure
(in m)
y′i: dimensionless space variable at the microscopic scale (in m)
x′i: dimensionless space variable at the mesoscopic scale (in m)
Ω′ : dimensionless volume of montmorillonite at the microscopic scale
Ω′

f : dimensionless volume of interstitial space at the microscopic scale
Ω′

s : dimensionless volume of montmorillonite layers at the microscopic scale
Γ′: dimensionless interface between the montmorillonite layers and the inter-
stitial space
βl(y) (l = 1, 2): coefficients expressing the variation of the electric potential
within the interstitial space Ω′

f

c±l (y) (l = 1, 2): coefficients expressing the variation of the electrolyte con-
centration (+: cations, −: anions) within Ω′

f under the effect of a mesoscopic
concentration gradient (dimensionless)
d±l (y) (l = 1, 2): coefficients expressing the variation of the electrolyte concen-
tration (+ for cations, − for anions) within Ω′

f under the effect of the induced
membrane potential gradient (dimensionless)
D±: mesoscopic diffusion tensors (+ for cations, − for anions) (in m2 · s−1)
D±
ψ : mesoscopic coupling tensors (+ for cations, − for anions) (in m2 · s−1)

p
(0)
in : osmotic pressure within the interstitial space (in Pa)

Ω′
total : microstructure of bentonite (dimensionless)

Ω′: clay gels (hydrated montmorillonite particles) present in Ω′
total (dimen-

sionless)
Ω′
v: micropores present in Ω′

total (dimensionless)
Ω′

solid: solid grains present in Ω′
total (dimensionless)

Γ′
cv: interface between clay gels and micropores (dimensionless)

Γ′
cs: interface between clay gels and solid grains (dimensionless)

Γ′
vs: interface between micropores and solid grains (dimensionless)
ε: small perturbation parameter
L: macroscopic length of the bentonite sample (in m)
Dmacro: macroscopic diffusion tensor (in m2 · s−1)

Appendix B Development of the local
problems

Taking Eq. (12) at order O((ε′)−2) and Eq. (16) at order O((ε′)0) = O(1), we
have, using Einstein summation convention on repeated indices:

∂

∂yi
(
∂ψ

(0)
ex

∂yi
) = 0 in Ω′

f,
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∂ψ
(0)
ex

∂yi
ni = ∇yψ

(0)
ex · n = 0 on Γ′

Multiplying the equation above by ψ
(0)
ex and integrating by parts in Ω′

f while
accounting for the associated boundary condition on Γ′, the Ω′-periodicity

of
∂ψ(0)

ex

∂yi
and the Ω′-antiperiodicity of the normal vector n, we obtain that

∂ψ(0)
ex

∂yi
= 0 in Ω′

f and therefore ψ
(0)
ex = ψ

(0)
ex (xi).

Taking Eq. (12) at the order O((ε′)−1) and Eq. (16) at the order O(ε′), we
have:

∂

∂xi
(
∂ψ

(0)
ex

∂yi
) +

∂

∂yi
(
∂ψ

(0)
ex

∂xi
+
∂ψ

(1)
ex

∂yi
) = 0 in Ω′

f,

(
∂ψ

(1)
ex

∂yi
+
∂ψ

(0)
ex

∂xi
)ni = 0 on Γ′

Since ψ
(0)
ex = ψ

(0)
ex (xi), the previous system can be simplified as follows:

∂

∂yi
(
∂ψ

(1)
ex

∂yi
) = ∆yψ

(1)
ex = 0 in Ω′

f,

∂ψ
(1)
ex

∂yi
ni = −dψ

(0)
ex

dxi
ni on Γ′

implying that ψ
(1)
ex depends linearly on

∂ψ(0)
ex

∂xi
. We can therefore introduce two

functions that depend only on yi, βl(y) for l = 1, 2 in 2D, such that:

ψ(1)
ex = βl(y)

dψ
(0)
ex (x)

dxl
= β(y) · ∇xψ

(0)
ex (B1)

and, by inserting Eq. (B1) in the system verified by ψ
(1)
ex , we have:

∆yβl = 0 in Ω′
f, (B2)

∂βl
∂yi

ni = ∇yβl · n = −nl on Γ′ , l = 1,2 (B3)

βl Ω
′-periodical (B4)

⟨βl⟩ =
1

|Ω′|

∫
Ω′

f

βldV = 0 (B5)

By taking Eq. (10) at order O((ε′)−2) and Eq. (14) at order O((ε′)−1), we
have:

∂

∂yi

(
D′+ exp (−z+ψ(0)

in )

(
∂c

+(0)
ex

∂yi
+ z+c+(0)

ex

∂ψ
(0)
ex

∂yi

))
= 0 in Ω′

f
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D+ exp (−z+ψ(0)
in )

(
∂c

+(0)
ex

∂yi
+ z+c+(0)

ex

∂ψ
(0)
ex

∂yi

)
ni = 0 on Γ′

As ψ
(0)
ex = ψ

(0)
ex (xi) does not depend on yi, we obtain simply:

∂

∂yi

(
D+ exp (−z+ψ(0)

in )
∂c

+(0)
ex

∂yi

)
= 0 in Ω′

f

D+ exp (−z+ψ(0)
in )

∂c
+(0)
ex

∂yi
ni = 0 on Γ′

Multiplying the equation above by c
+(0)
ex and integrating by parts in Ω′

f while

accounting for the boundary condition on Γ′, the Ω′-periodicity of
∂c+(0)

ex

∂yi
and

the Ω′-antiperiodicity of the normal vector n, we obtain that
∂c+(0)

ex

∂yi
= 0 and

therefore c
+(0)
ex = c

+(0)
ex (xi).

Similarly, Eq. (11) at order O((ε′)−2) and Eq. (15) at order O((ε′)−1) lead to

c
−(0)
ex = c

−(0)
ex (xi).

Taking Eq. (10) at order O((ε′)−1) and Eq. (14) at order O(1), and taking

into account that ψ
(0)
ex = ψ

(0)
ex (xi) and c

+(0)
ex = c

+(0)
ex (xi), we can write:

∂

∂yi

(
D′+ exp (−z+ψ(0)

in )

(
∂c

+(1)
ex

∂yi
+
∂c

+(0)
ex

∂xi
+ z+c+(0)

ex

(
∂ψ

(1)
ex

∂yi
+
∂ψ

(0)
ex

∂xi

)))
= 0 in Ω′

f

(B6)

D′+ exp (−z+ψ(0)
in )

(
∂c

+(1)
ex

∂yi
+
∂c

+(0)
ex

∂xi
+ z+c+(0)

ex

(
∂ψ

(1)
ex

∂yi
+
∂ψ

(0)
ex

∂xi

))
ni = 0 on Γ′

(B7)

According to Eq. (B1), ψ
(0)
ex is a linear function of

dψ(0)
ex

dxi
, and therefore the

system of equations written for c
+(1)
ex is linear with respect to the mesoscopic

potential gradient
∂ψ(0)

ex

∂xi
and the mesoscopic concentration gradient

∂c+(0)
ex

∂xi
. The

boundary condition on Γ′ clearly shows that the source for the spatial evolution

of c
+(1)
ex is

∂c+(0)
ex

∂xi
and

∂ψ(0)
ex

∂xi
, and we can assume:

c+(1)
ex (x, y) = c+l (y)

∂c
+(0)
ex

∂xl
(x) + d+l (y) z

+c+(0)
ex

∂ψ
(0)
ex

∂xl
(x) (B8)

with c+l and d+l , l = 1, 2, Ω′-periodic characteristic functions. Similarly, from
Eq. (11) at the order O((ε′)−1) and Eq. (15) at the order O(1) and the same
approach, we have:

∂

∂yi

(
D′− exp (z−ψ

(0)
in )

(
∂c

−(1)
ex

∂yi
+
∂c

−(0)
ex

∂xi
− z−c−(0)

ex

(
∂ψ

(1)
ex

∂yi
+
∂ψ

(0)
ex

∂xi

)))
= 0 in Ω′

f

(B9)
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D′− exp (z−ψ
(0)
in )

(
∂c

−(1)
ex

∂yi
+
∂c

−(0)
ex

∂xi
− z−c−(0)

ex

(
∂ψ

(1)
ex

∂yi
+
∂ψ

(0)
ex

∂xi

))
ni = 0 on Γ′

(B10)
leading to:

c−(1)
ex (x, y) = c−l (y)

∂c
−(0)
ex

∂xl
(x)− d−l (y) z

−c−(0)
ex

∂ψ
(0)
ex

∂xl
(x) (B11)

with c−l and d−l , l = 1, 2, Ω′-periodic characteristic functions.
The systems verified by c±l and d±l (l = 1, 2) are obtained by inserting Eq.
(B8) into Eqs. (B6) and (B7) for c+l and d+l , and by inserting Eq. (B11) into
Eqs. (B9) and (B10) for c−l and d−l :

∂

∂yi

(
D± exp (∓z±ψ(0)

in )

(
∂c±l
∂yi

+ δil

))
= 0 in Ω′

f,

D± exp (∓z±ψ(0)
in )

(
∂c±l
∂yi

+ δil

)
ni = 0 on Γ′, (B12)

c±l Ω′-periodical

⟨c±l ⟩ =
1

|Ω′|

∫
Ω′

f

c±l dV = 0

∂

∂yi

(
D± exp (∓z±ψ(0)

in )

(
∂d±l
∂yi

+
∂βl
∂yi

+ δil

))
= 0 in Ω′

f,

D± exp (∓z±ψ(0)
in )

(
∂d±l
∂yi

+
∂βl
∂yi

+ δil

)
ni = 0 on Γ′, (B13)

d±l Ω′-periodical

⟨d±l ⟩ =
1

|Ω′|

∫
Ω′

f

d±l dV = 0

Appendix C Effective tensors at the
mesoscopic scale

We now write Eqs. (10) and (11) at order O((ε′)0) = O(1). By taking into

account the results obtained in Appendix (B), ψ
(0)
ex = ψ

(0)
ex (xi) and c

+(0)
ex =

c
+(0)
ex (xi), we have:

∂

∂yi

(
D± exp (∓z±ψ(0)

in )

(
∂c

±(2)
ex

∂yi
+
∂c

±(1)
ex

∂xi

))

+
∂

∂yi

(
D± exp (∓z±ψ(0)

in )(±z±)

(
c±(0)
ex

∂ψ
(2)
ex

∂yi
+ c±(1)

ex

∂ψ
(1)
ex

∂yi

))
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+
∂

∂yi

(
D± exp (∓z±ψ(0)

in )(±z±)

(
c±(0)
ex

∂ψ
(1)
ex

∂xi
+ c±(1)

ex

∂ψ
(0)
ex

∂xi

))

+
∂

∂yi

(
D± exp (∓z±ψ(0)

in )(∓z±)ψ(1)
in

(
∂c

±(1)
ex

∂yi
+
∂c

±(0)
ex

∂xi

))
(C14)

− ∂

∂yi

(
D± exp (∓z±ψ(0)

in )(z±)2ψ
(1)
in

(
c±(0)
ex

∂ψ
(1)
ex

∂yi
+ c±(0)

ex

∂ψ
(0)
ex

∂xi

))

+
∂

∂xi

(
D± exp (∓z±ψ(0)

in )

(
∂c

±(1)
ex

∂yi
+
∂c

±(0)
ex

∂xi

))

+
∂

∂xi

(
D± exp (∓z±ψ(0)

in )(±z±)

(
c±(0)
ex

∂ψ
(1)
ex

∂yi
+ c±(0)

ex

∂ψ
(0)
ex

∂xi

))
= 0 in Ω′

f

The associated boundary conditions are obtained by considering Eqs. (14) and
(15) at orders O(1) and O(ε′):

D± exp (∓z±ψ(0)
in )

(
∂c

±(1)
ex

∂yi
+
∂c

±(0)
ex

∂xi
± z±c±(0)

ex

(
∂ψ

(1)
ex

∂yi
+
∂ψ

(0)
ex

∂xi

))
ni = 0 on Γ′

(C15)

D± exp (∓z±ψ(0)
in )

(
∂c

±(2)
ex

∂yi
+
∂c

±(1)
ex

∂xi
± z±

(
c±(0)
ex

∂ψ
(2)
ex

∂yi
+ c±(1)

ex

∂ψ
(1)
ex

∂yi

))
ni

+D± exp (∓z±ψ(0)
in )(±z±)

(
c±(0)
ex

∂ψ
(1)
ex

∂xi
+ c±(1)

ex

∂ψ
(0)
ex

∂xi

)
ni = 0 on Γ′(C16)

Eq. (C14) is integrated in Ω′
f. Using Green’s theorem, the Ω′-periodicity of

the physical variables and the Ω′-antiperiodicity of the outward normal vector
n on Γ′, and boundary conditions (C15) and (C16), all the derivatives with
respect to yi disappear. And we have:

∫
Ω′

f

∂

∂xi

(
D± exp (∓z±ψ(0)

in )

(
∂c

±(1)
ex

∂yi
+
∂c

±(0)
ex

∂xi

))
dV

+

∫
Ω′

f

∂

∂xi

(
D± exp (∓z±ψ(0)

in )(±z±)

(
c±(0)
ex

∂ψ
(1)
ex

∂yi
+ c±(0)

ex

∂ψ
(0)
ex

∂xi

))
dV = 0

By accounting for Eqs. (B1), (B8) and (B11), we finally obtain the following
expression for the mesoscopic solute transport equations (+ for cations, − for
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anions):

∂

∂xi

(∫
Ω′

f

D± exp (∓z±ψ(0)
in )

(
∂c±l
∂yi

+ δli

)
dV

∂c
±(0)
ex

∂xl

)
+

∂

∂xi

(∫
Ω′

f

D± exp (∓z±ψ(0)
in )(±z±)

(
∂d±l
∂yi

+
∂βl
∂yi

+ δli

)
dV c±(0)

ex

∂ψ
(0)
ex

∂xl

)
= 0
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