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Abstract CD4+CD25+Foxp3+ regulatory T cells (Treg) have been implicated in pain modulation 
in various inflammatory conditions. However, whether Treg cells hamper pain at steady state and 
by which mechanism is still unclear. From a meta-analysis of the transcriptomes of murine Treg and 
conventional T cells (Tconv), we observe that the proenkephalin gene (Penk), encoding the precursor 
of analgesic opioid peptides, ranks among the top 25 genes most enriched in Treg cells. We then 
present various evidence suggesting that Penk is regulated in part by members of the Tumor 
Necrosis Factor Receptor (TNFR) family and the transcription factor Basic leucine zipper transcription 
faatf-like (BATF). Using mice in which the promoter activity of Penk can be tracked with a fluorescent 
reporter, we also show that Penk expression is mostly detected in Treg and activated Tconv in non-
inflammatory conditions in the colon and skin. Functionally, Treg cells proficient or deficient for Penk 
suppress equally well the proliferation of effector T cells in vitro and autoimmune colitis in vivo. In 
contrast, inducible ablation of Penk in Treg leads to heat hyperalgesia in both male and female mice. 
Overall, our results indicate that Treg might play a key role at modulating basal somatic sensitivity in 
mice through the production of analgesic opioid peptides.

eLife assessment
This study presents a valuable finding on a new role of Foxp3+ regulatory T cells in sensory percep-
tion, which may have an impact on our understanding of somatosensory perception. The authors 
identified a previously unappreciated action of enkephalins released by immune cells in the reso-
lution of pain and several upstream signals that can regulate the expression of the proenkephalin 
gene PENK in Foxp3+ Tregs. The generation of transgenic mice with conditional deletion of PENK 
in Foxp3+ cells and PENK fate-mapping is novel and generates compelling data; they also show a 
comprehensive analysis of Tregs in control and transgenic mice, longitudinal data on heat sensitivity 
and co-localization of PENK+ Tregs with thermal sensory neurons in the skin further supporting their 
hypothesis. The study would be of interest to the biologists working in the field of neuroimmunology 
and inflammation.
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Introduction
Regulatory T cells (Treg), characterized by the expression of the alpha chain of the interleukin-2 
receptor CD25 and the transcription factor Foxp3 (Hatzioannou et al., 2021), are known to be key 
players in immunoregulation in both humans and mice; too few may lead to autoimmune diseases 
whereas too many may prevent an efficient immune response to cancer (Kim et al., 2007; Nishikawa 
and Sakaguchi, 2010).

Over the last few years, several new functions of Treg beyond immunoregulation have been iden-
tified in tissue regeneration or local regulation of metabolism (Xiao et al., 2022; Meng et al., 2023; 
Shime et al., 2020) for instance. In addition, there is accumulating evidence of a cross-talk between 
Treg and the nervous system. This includes promotion of oligodendrocyte differentiation or inhibi-
tion of neuroinflammation facilitating CNS repair process after brain injuries and preventing cognitive 
decline (Dombrowski et al., 2017; Huang et al., 2020; Ito et al., 2019; Lemaitre et al., 2023).

Furthermore, Treg have been involved in the regulation of pain in various models of nerve injury 
in rats and mice, such as in autoimmune neuritis or chronic constriction of the sciatic nerve (Austin 
et al., 2012; Duffy et al., 2019; Kuhn et al., 2021). Depletion of Treg has been associated with 
enhanced pain sensitivity whereas increased Treg number or activity limit pain hypersensitivity (Lees 
et al., 2015). Although the current view is that Treg controls pain through their immunosuppressive 
functions (Bethea and Fischer, 2021), whether Treg might regulate pain at steady state is currently 
unknown. Our results uncover a previously unknown function of Treg that modulates basal somatic 
sensitivity through the production of analgesic peptides derived from the proenkephalin Penk gene.

Figure 1. A meta-signature of murine regulatory T cell (Treg) and Penk mRNA expression in lymphoid and non-lymphoid organs. (A) Top 25 genes 
enriched in Treg compared to conventional T cell (Tconv) from lymphoid tissue from at least 10 of the 11 datasets analyzed ranked by fold change 
(LogFC) of mean expression relative to Tconv. The Penk gene is highlighted in red. (B) Correlation of Penk and Foxp3 expression in all the cell types 
listed in the legend according to the Immuno-Navigator dataset. The Pearson correlation coefficient is indicated. Each dot is a sample, color coded as a 
subset according to the legend. (C) Expression of Penk in Treg (blue) and Tconv (red) isolated from thymus, visceral adipose tissue (VAT) and muscle. The 
source of the data is indicated below each graph.

https://doi.org/10.7554/eLife.91359
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Results
A meta-signature of murine Treg
Using 11 available transcriptomes retrieved from the GEO website, we generated a Treg molecular 
signature at steady state in lymphoid tissues, significantly enhancing the robustness of our analysis 
compared to individual studies. The 25 most differentially expressed genes are depicted in Figure 1A, 
with the complete list provided in Source data 1. As expected from the sorting strategies used to 
isolate Treg (detailed in Table 1 of the Materials and methods section), Il2ra and Foxp3 emerged as 
the most differentially expressed genes in Treg compared to conventional T cell (Tconv). Several well-
known Treg markers such as CTLA-4, Itgae (CD103), Ikzf2 (Helios), Tnfrsf4 (OX40), and Tnfrsf9 (4-1BB) 
are also present on this list. Some genes, such as Gpr83 and Rgs1, have been associated with Treg 
functions (Flynn et al., 2023; Lu et al., 2007) though their exact roles remain to be fully elucidated. 
Interestingly, the majority of genes on this list, including Fam129a, Coro2a, Osbpl3, and Penk, have 
unknown functions in Treg.

Penk expression in Treg of lymphoid and non-lymphoid organs and 
tissues
Using the Immuno-Navigator database (Vandenbon et al., 2016), which provides a batch-corrected 
collection of RNA quantification across numerous studies, samples, and cell types, we confirm that 
Penk is highly correlated to Foxp3 in lymphoid organs of mice (r = 0.871, Figure 1B). Notably, Treg 
samples exhibited the highest level of both Foxp3 and Penk. While it has been previously reported 
that Th2 and Th1 cells can express Penk (Boué et al., 2012), they do so to a lesser extent than Treg 
(Figure 1B).

Additionally, using publicly available datasets comparing Treg and Tconv, we observe that Penk 
is enriched in the thymus, where Treg are generated, and is also present in peripheral tissues such 
as visceral adipose fat and muscles (Figure 1C). Therefore, the enrichment of Penk mRNA in Treg is 
intrinsic to their generation and is independent of their tissue localization at steady state.

Penk mRNA expression is regulated by TNFR signaling and the BATF 
transcription factor
To explore possible mechanisms explaining the enrichment of Penk mRNA in Treg cells, we examined 
the Immuno-Navigator dataset to identify genes most correlated with Penk and with each other in 
Treg samples. We represent these correlations as a network where each node is a gene and each 
edge is a correlation above a certain threshold (Figure 2A). Penk expression is directly correlated 

Table 1. Characteristics of the datasets used for the regulatory T cell (Treg) meta-signature (NA = 
not available; LN = lymph nodes).

Dataset
Genetic 
background Age Sex Treg sorting Tissue

Affymetrix 
Genome 
array

GSE103216 C57Bl/6 6–8 weeks Female Foxp3-RFP LN 1.0

GSE136582 C57Bl/6 6–8 weeks NA Foxp3-eGFP Spleen 2.0

GSE14308 C57Bl/6 NA NA CD25high Spleen and LN 2.0

GSE15907 C57Bl/6 6 weeks Male CD25high Spleen 1.0

GSE17580 C57Bl/6 NA Female CD25high Mesenteric LN 2.0

GSE24210 C57Bl/6 NA NA CD25high Spleen and LN 2.0

GSE37532 C57Bl/6 25 weeks Male CD25high LN 1.0

GSE40685 C57Bl/6 NA NA Foxp3-GFP Spleen and LN 2.0

GSE42021 BALB/c NA NA Foxp3-GFP Spleen and LN 2.0

GSE50096 C57Bl/6 6 weeks NA Foxp3-GFP Spleen 1.0

GSE7460 C57Bl/6 32–36 weeks NA CD25high LN 2.0

https://doi.org/10.7554/eLife.91359
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to the expression of five genes: the TNF receptor family members, Tnfrsf4 (OX40), Tnfrsf9 (4-1BB), 
Tnfrsf18 (GITR), the transcription factor Batf, and the short-chain dehydrogenase/reductase family 
39U member 1 Sdr39u1. As an illustration, we show the correlation between Batf and Penk expression 
in Treg samples (r = 0.599, Figure 2B).

Furthermore, Penk is indirectly correlated with Tnfrsf1b (TNFR2), Il2ra (CD25), and Cish, a negative 
regulator of cytokine signaling. These strong correlations between several TNFR members, the tran-
scription factor Batf, and Penk suggest a possible regulatory pathway. To explore this possibility, we 
reanalyzed our previously published dataset on the transcriptome of Treg stimulated with anti-CD3, 
anti-CD28 antibodies, and TNFR agonists in vitro (Lubrano di Ricco et al., 2020). We observe that 
addition of TNFR2, OX40, or 4-1BB agonists increases Penk expression at 36 hr post-stimulation rela-
tive to controls (Figure 2C). Interestingly, Batf is also increased with TNFR agonists but at an earlier 
time point (18 hr). Consistent with our hypothesis, a dramatic decrease in Penk expression is observed 
in Treg lacking Batf (Hayatsu et al., 2017; Figure 2D).

Furthermore, analysis of the UniBind database (Puig et al., 2021) revealed that the transcription 
factors Batf, Irf-4, Jun, and Fosl2 (AP-1 members), RelA (Nuclear Factor-kappa B signaling), and the 

Figure 2. Penk expression is regulated by TNFR signaling and the BATF transcription factor. (A) A network of the genes most correlated to Penk 
in regulatory T cell (Treg) is shown. The Pearson correlation values were extracted from the Immuno-Navigator database (selecting only Treg in the 
analysis) and integrated into Cytoscape v3.7 (Shannon et al., 2003). Each node is a gene linked by edges with width proportional to the Pearson 
correlation (edge range: 0.538–0.758). (B) Illustration of the correlation between expression of Penk and Batf in Treg. Each dot is a sample from the 
Immuno-Navigator database. The Pearson correlation coefficient is indicated on the figure. (C) Penk and Batf mRNA expression after in vitro stimulation 
of purified Treg with the indicated TNFR agonists prior (0), and at 18 and 36 hr after stimulation. Each dot is a biological replicate from a single 
experiment. (D) GEO2R analysis of the GSE89656 dataset between wild-type control Treg (WT) and BATF-KO Treg.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Analysis of regulatory regions of the Penk gene.

https://doi.org/10.7554/eLife.91359
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master Treg regulator Foxp3 have all been shown by ChIP-Seq to bind to the promoter/enhancer 
regions of Penk in various T cell subsets (Figure 2—figure supplement 1).

Penk is predominantly expressed by Treg at steady state
Among other roles, Batf has been linked to tissue Treg differentiation in mice (Burton et al., 2023; 
Delacher et al., 2020; Hayatsu et al., 2017). Thus, we hypothesize that tissue Treg might be further 
enriched in Penk relative to lymphoid organs. To track Penk-expressing cells in vivo, we crossed a 
transgenic mouse model expressing Tamoxifen (TMX)-inducible Cre recombinase under the promoter 
of Penk (PenkCre-ERT2) with the ROSA26TdTomato reporter mice. In these mice, any cell that expressed Penk 
at the time of TMX administration would become permanently tagged with the tdTomato reporter a 
few days later.

We investigated the expression of Penk mRNA in various immune cell types across multiple tissues 
by spectral flow cytometry, using a combination of lineage markers (Supplementary file 1) and an 
appropriate gating strategy (Figure 3—figure supplement 1A). To improve detection of Penk mRNA-
expressing cells, we also used an anti-mCherry that cross-reacts with TdTomato (Figure 3—figure 
supplement 1B). In a Uniform Manifold Approximation and Projection (UMAP) representation of high-
dimensional flow cytometry data, the projection of tdTomato expression (indicating Penk expression) 
aligns with the clusters of Treg and a small subset of activated CD4+ T cells in the lymph nodes (LNs) 
(Figure 3A). Compared to LN, Penk expression encompasses entire clusters of Treg and activated T 
cells in the colon, likely due to the lower proportion of naïve T cells in this tissue (Figure 3B). Interest-
ingly, in CD4+ T cells (Tconv and Treg), Penk expression is higher in the activated CD62Llow CD44high 
fraction compared to the naive CD62Lhigh CD44low phenotype (Figure 3—figure supplement 2). As 
summarized in Figure 3C, the highest frequency of Penk+ cells is observed in Treg across all analyzed 
tissues, with the highest frequencies in the colon and the skin. Penk expression is also detected in 
Tconv of the colon and skin, but at lower frequencies than in Treg. All other cell types show low or 
undetectable Penk expression.

Immunosuppressive functions of Treg are unaffected by the lack of 
enkephalins
To test whether the lack of enkephalins in Treg impacts their suppressive function, we generated 
mice deficient in enkephalins in the hematopoietic compartment by grafting bone marrow from Penk 
knock-out (KO) mice in immunodeficient Recombinase Activating Gene -2 RAG2-KO mice. As controls, 
RAG2-KO mice were grafted with bone marrow from wild-type (WT) littermates of KO mice. Several 
months after the graft, KO and WT Treg were sorted from lymphoid organs and tested in vitro for 
their ability to suppress the proliferation of Tconv. No significant difference in the suppression of Tconv 
proliferation is observed between WT and KO Treg (Figure 4A). Similarly, the addition of Naloxone, 
an irreversible blocker of enkephalin receptors, neither abolishes nor enhances the suppressive func-
tion of normal Treg cells (Figure 4B). Additionally, KO and WT Treg equally prevented the occurrence 
of autoimmune colitis induced by the transfer of naive Tconv cells into RAG2-KO mice (Figure 4C).

Overall, these results indicate that enkephalins are not major players in the suppressive functions 
of Treg cells both in vitro and in vivo.

Heat hyperalgesia in mice deficient for Penk in Treg
To determine if enkephalins produced by Treg affect pain at steady state, we generated mice defi-
cient in Penk by crossing TMX-inducible Cre recombinase under the control of the Foxp3 promoter 
(Foxp3Cre-ERT2) with mice transgenic for LoxP sequences flanking exon 2 of Penk (Penkflox). In these mice 
(hereafter referred to as LOX), any cell expressing Foxp3 at the time of TMX administration would 
become deficient for exon 2 of Penk a few days later, hence lacking enkephalins.

Using flow cytometry, we observe that Penk mRNA expression is reduced by more than half in 
TMX-treated LOX mice compared to WT mice (Figure 5—figure supplement 1). Consistent with the 
Penk-Cre reporter mouse data, Penk mRNA expression is very low in non-Treg (CD4+Foxp3− or CD8+ 
cells) and does not differ significantly between LOX and WT mice. Thus, TMX treatment specifically 
reduces Penk mRNA expression in Treg cells of LOX mice.

Since exon 2 is the precursor of Met-Enkephalin, an endogenous opioid that affects thermal pain 
sensation (Aman et al., 2016), we evaluated the sensitivity of these mice to pain induced by heat 

https://doi.org/10.7554/eLife.91359
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Figure 3. Penk is predominantly expressed by regulatory T cell (Treg) at steady state. (A–B) (Left) UMAP representing all major cell types indicated in the 
figures determined by flow cytometry from lymph nodes (A) and colon (B). (Right) Projection of tdTomato expression on the UMAP of lymph nodes and 
colon. Subsets were manually gated as depicted in Figure S1A. (C) Bubble plot displaying the average population size and frequencies of Penk+ cells 
for the listed cell populations and organs. Population size was calculated as the percentage out of total CD45+ single cells and represented on a log10 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.91359


 Research article﻿﻿﻿﻿﻿﻿ Immunology and Inflammation | Neuroscience

Aubert et al. eLife 2024;13:RP91359. DOI: https://doi.org/10.7554/eLife.91359 � 7 of 17

(Figure 5). As controls, we used mice expressing the Cre recombinase and WT at the locus of LoxP 
sequences insertion. Mice were treated with TMX and evaluated for heat sensitivity at 10 different 
time points (four before and six after administration of TMX, 2–3 days apart). Under these conditions, 
a significant trend toward lower latency periods (indicative of heat hyperalgesia) is observed in the 
LOX group compared to WT mice (Figure 5—figure supplement 2A). Interestingly, the effect is not 
apparent until 7 days after TMX administration. Before TMX administration, WT and LOX mice do not 
differ in their response to heat. However, after TMX administration, LOX mice develop hyperalgesia 
compared to WT mice, with a 20% reduction in their median latency period from day 7 onwards (8.1 
vs 6.6 s) (Figure 5A). The effect of Penk deletion in Treg on heat hyperalgesia is sex independent, as it 
is observed in both females and males (Figure 5—figure supplement 2B, C). Moreover, this thermal 
hyperalgesia in LOX mice is reproduced with a different test in an independent laboratory where WT 
and LOX mice were sent for further behavioral tests (Figure 5—figure supplement 2D). Indeed, tests 
for innocuous (Von Frey, cotton swab tests) and noxious (pin prick test) mechanical sensitivity, as well 

scale (n = 3 mice for the visceral adipose tissue [VAT], spleen, and bone marrow, n = 6 mice for the other groups; results cumulative of two independent 
experiments).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Mapping Penk expression in multiple tissues and cell types.

Figure supplement 2. Penk expression in conventional T cell (Tconv) and regulatory T cell (Treg) according to activation status in lymph nodes.

Figure 3 continued

Figure 4. Immunosuppressive functions of regulatory T cell (Treg) are unaffected by the lack of enkephalins. (A) In vitro suppression of wild-type (WT) 
conventional T cell (Tconv) proliferation by WT or Penk knock-out (KO) Tregs. (B) In vitro suppression of WT Tconv proliferation by Penk WT Tregs in 
presence of Naloxone. (C) Body weight and (D) survival of Rag2−/− mice transferred with Tconv and Treg from Penk-WT or Penk-KO chimeric mice (2:1 
ratio), as described in the methods. All data are cumulative of two independent experiments.

https://doi.org/10.7554/eLife.91359
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Figure 5. Heat hyperalgesia in mice deficient for Penk in regulatory T cell (Treg). (A) Withdrawal latency of wild-
type (WT) and LOX mice before (baseline) and after administration of Tamoxifen (TMX). Each dot corresponds to 
the mean latency response (in seconds) of four measurements taken before TMX administration (baseline) and 
four measurements taken from day 7 onwards (TMX). Statistical modeling was performed using a non-parametric 
unpaired Mann–Whitney t-test with multiple corrections. The results shown in this figure are cumulative from two 
independent experiments with a total of 44 mice (26 WT and 18 LOX). Each dot is a mouse. (B) Representative 
flow cytometry contour plot of CD25 and Foxp3 staining on pad skin CD45+CD3+CD4+ cells from WT or LOX mice 
17 days after TMX gavage. (C) Quantification of the frequency of Treg (Foxp3+CD25+) among CD4+ T cells in WT 
and LOX mice pad as shown in (B). The indicated p value was determined by a Mann–Whitney test. Each dot is 
a mouse from a single experiment. (D) Immunofluorescence staining of Calcitonin Gene-Related Peptide (CGRP) 
neurons (red), Foxp3-GFP cells (green), and 4'6-diamidino-2-phenylindole (DAPI) (blue) of footpad skin section of a 
female LOX mouse (scale bar represents 50 µm). The right panel is the magnification of the area indicated on the 
left panel.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Specific deletion of Penk in regulatory T cell (Treg) of LOX mice after Tamoxifen (TMX) 
administration.

Figure supplement 2. Heat hyperalgesia in wild-type (WT) and LOX mice.

https://doi.org/10.7554/eLife.91359
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as light touch and proprioception (sticky tape test), fail to show any significant effect of Treg-specific 
Penk deficiency (Figure 5—figure supplement 2E–H). Importantly, TMX administration does not alter 
the proportions of skin Treg in LOX compared to WT mice (Figure 5B, C), indicating that hyperalgesia 
does not result from an altered distribution of Treg.

Given this result, we next investigated whether Treg could be localized in contact with nociceptive 
neurons in the skin. Interestingly, some skin Tregs marked by the GFP reporter molecule in our WT and 
LOX mice can be observed in close contact with free nerve endings labeled with a Calcitonin Gene-
Related Peptide (CGRP)-specific monoclonal antibodies (mAb) in the pad skin (Figure 5D). Because 
sensory neurons expressing CGRP are essential for noxious thermal heat, but not mechanical sensi-
tivity (McCoy et al., 2013), this result suggests that Treg producing enkephalins could act locally on 
nociception.

Discussion
The proenkephalin gene Penk encodes the precursor of opioid peptides with analgesic properties 
(McLaughlin, 2013). Enriched expression of Penk in Treg has been previously reported in several 
specific contexts, including TCR-transgenic mice (Zelenika et al., 2002), UVB exposure (Shime et al., 
2020) or in the brains of mice recovering from stroke (Ito et al., 2019). We first explore the possible 
molecular mechanisms that may explain the preferential expression of Penk observed in tissue Treg. 
Using data mining and gene correlation analysis, we observed that TNFR and Batf might be involved 
in Penk regulation. Batf is known to regulate several genes through partnering with AP-1 and Irf-4 
(Murphy et al., 2013), and we noted that several ChIP-Seq studies have reported the binding of these 
transcription factors in regulatory regions of Penk. Thus, our results support the hypothesis that TNFR 
signaling may regulate Penk expression in murine T cells through cooperation between Batf, AP-1 
and/or Irf-4. Supporting this hypothesis, the AP-1 members Fos and Jun are crucial in Penk regulation 
in the murine hippocampus (Sonnenberg et al., 1989). Additionally, analysis of Penk-Cre reporter 
mice led us to conclude that Penk mRNA is predominantly found in tissue Treg, further supporting 
the hypothesis that Batf might be a chief regulator of Penk. Although Penk might be preferentially 
expressed by activated T cells at steady state (Treg and Tconv), its distribution may be broader in an 
inflammatory context. Consistent with this, it has been reported that IL-4-treated macrophages are 
able to reduce neuropathic pain through their ability to produce opioid peptides (Celik et al., 2020; 
Pannell et al., 2016).

A prior study attributed a function to UVB-exposed Treg-derived Penk in promoting the growth of 
epidermal keratinocytes in vitro and facilitating wound-healing in vivo (Shime et al., 2020). Conse-
quently, heightened heat sensitivity in the absence of Treg-derived Penk may result from altered kera-
tinocyte homeostasis in vivo. However, the impact of Treg-derived Penk on keratinocyte homeostasis 
in vivo under normal conditions has yet to be conclusively demonstrated.

Additionally, a similar hypersensitivity to heat has been recently reported in mice lacking Penk 
in Treg following TMX treatment (Mendoza et al., 2024) but not in another model of bone marrow 
chimeras, which allows the depletion of Penk-expressing Treg only in the dorsal root ganglion (DRG), 
a crucial relay of nociception. Instead, an increased mechanical allodynia was observed in that model 
(Midavaine et al., 2024), a result that we did not observe. This discrepancy might be explained by the 
relatively low number of animals that we tested for mechanical allodynia. It is also possible that the 
deletion of Penk with TMX by oral gavage might have been less efficient in the DRG than in lymphoid 
organs.

Nevertheless, Treg-derived enkephalins might regulate pain at multiple sites, including the DRG 
and peripheral tissues, such as the skin or the colon. Related to the colon, Penk expression by CD4+ T 
cells has been linked to analgesia in murine models of visceral pain (Basso et al., 2018; Basso et al., 
2016; Boué et al., 2014). However, the specific involvement of Treg in this process has yet to be 
investigated.

Furthermore, the hypothesis that skin Treg directly modulates pain is supported by our obser-
vations that skin Treg (1) expressed the highest level of Penk and (2) are observed in contact with 
CGRP-expressing sensory neurons. Notably, Penk-expressing Tregs are closer to neurons in the skin 
than non-expressing Tregs (Mendoza et al., 2024). Experiments are underway to formally demon-
strate that enkephalins produced by Treg directly impact the electrophysiological potential of isolated 
neurons.

https://doi.org/10.7554/eLife.91359
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In neuroinflammatory settings, such as sciatic nerve constriction, the pain modulation by Treg could 
be contingent upon their immunosuppressive function (Davoli-Ferreira et al., 2020; Duffy et al., 
2019; Ledeboer et al., 2007; Shen et al., 2013), potentially mediated through the secretion of IL-10 
or IL-35 (Davoli-Ferreira et al., 2020; Duffy et al., 2019). Contrary to this notion, mice lacking IL-10 
in Tregs do not suffer from heat hyperalgesia (Mendoza et al., 2024), indicating that the control of 
inflammation by IL-10 is not responsible for pain modulation by Treg. Interestingly, IL-10 also possesses 
analgesic properties in murine models of cisplatin-induced neuropathic pain (Laumet et al., 2020). 
The observation that mice with IL-10-KO Tregs experienced similar pain levels to controls further 
indicates that IL-10 produced by Treg cannot compensate for the absence of Penk, highlighting the 
unique role of Treg-derived enkephalins on nociception.

Finally, our in vitro and in vivo experiments, along with results from Midavaine et al., 2024, show 
that Tregs maintains their suppressive capacities in the absence of Penk, ruling out the possibility that 
hyperalgesia stems from increased inflammation due to a defect in the immunosuppressive function 
of Treg. Instead, our results strongly indicate a direct implication of enkephalins produced by Treg in 
nociception, revealing a novel non-immune intrinsic role of Treg in the endogenous regulation of basal 
somatic sensitivity.

Materials and methods
Extraction of Treg meta-signatures
The datasets used were selected based on a ‘Treg* AND (Tconv* OR Teff*) AND Mus musculus’ 
search in the GEO dataset website (https://www.ncbi.nlm.nih.gov/gds). GEO datasets were manually 
inspected for inclusion of studies comparing fresh Treg with fresh Tconv from lymphoid organs. Char-
acteristics of selected datasets are summarized in Table 1. For each dataset, we generated a list of 
differentially expressed genes with a cutoff based on a false discovery rate inferior to 0.05 and a log2 
fold change superior to 1 with the GEO2R embedded algorithm.

Mice
All male and female mice were on a C57Bl/6J background. Foxp3tm9(EGFP/cre/ERT2)Ayr/J (Foxp3Cre-ERT2) 
(catalog #016961), B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J (ROSAtdTomato) (catalog #007909), and B6.
Cg-Penktm1.1(cre/ERT2)Hze/J (PenkCre-ERT2) (catalog #022862) were purchased from The Jackson Laboratory. 
C57BL/6JSmoc-Penkem1(flox)Smoc (Penkflox) were purchased from Shanghai Model Organisms (catalog 
NM-CKO-210032). Bone marrow from Penk-KO and WT littermates mice was a kind gift of Dr G 
Dietrich (IRSD, Toulouse, France). Penk-deficient bone marrow cells were purified from the B6.129-
Penk-rstm1Pig/J strain (The Jackson Laboratory, catalog #002880). For the Penk mapping experiments, 
PenkCre-ERT2 were bred with ROSAtdTomato. All mice were confirmed to be homozygous for the induc-
ible Cre and at least heterozygous for tdTomato by touchdown Polymerase Chain Reaction (primers 
sequences available on request). To specifically knock-out the Penk gene in Tregs, Foxp3Cre-ERT2 were 
crossed with Penkflox leading to double heterozygous mice (F1) that were crossed together resulting 
in double homozygous F2 littermates. All mice used in this study were of F3 generation. Mice were 
genotyped by touchdown PCR (primers sequences available on request). TMX (Thermo Fisher, Les 
Ulis, France) was dissolved in peanut oil at the concentration of 40 mg/ml under 37°C agitation and 
delivered by 200 µl oral gavage. All mice were administered TMX only once. Mice were housed under 
specific pathogen-free conditions and were used for experiments at 8 weeks or older. Mice were 
exposed to a 12-hr light and 12-hr dark cycle. Protocols are approved by the Ethics Committee for 
Animal Experimentation Charles Darwin (APAFIS #32284-2021070513305185 v5) and by the Ethics 
Committee 002 (#11837-2017101816028463 v5).

Preparation of cell suspensions
Organs were harvested on ice in phosphate-buffered saline (PBS) 3% fetal calf serum (FCS). Inguinal, 
brachial, and mesenteric LNs and spleens were directly mashed through a 70-µm filter and suspended 
in PBS 3% FCS. Lungs, colons, livers, visceral adipose tissue, and skin were dissected, minced then 
incubated in appropriate digestion buffers (Miltenyi Biotec, Paris, France) at 37°C for various duration 
according to manufacturer protocols. Cell suspensions were then passed through a 70-µm cell strainer 
and suspended in PBS 3% FCS. To eliminate dead cells and debris, liver cell suspensions were isolated 

https://doi.org/10.7554/eLife.91359
https://www.ncbi.nlm.nih.gov/gds


 Research article﻿﻿﻿﻿﻿﻿ Immunology and Inflammation | Neuroscience

Aubert et al. eLife 2024;13:RP91359. DOI: https://doi.org/10.7554/eLife.91359 � 11 of 17

on a 70:30 Percoll gradient. Rings were collected, washed, and cell pellets were suspended in PBS 
3% FCS. ACK Lysing Buffer was used to eliminate red blood cells in the lungs, livers, and spleens (lysis 
performed for 1 min at room temperature [RT], followed by two washes with PBS), prior to staining 
for flow cytometry.

Antibodies and flow cytometry analysis
The mAb and fluorescent reagents used in this study are listed in Supplementary file 1. Up to 4 × 
106 cells were incubated for 30 min at 4°C with fixable live/dead dye and with the anti-CD16/CD32 
(clone 2.4G2) to block FcgRIII and FcgRII receptors, respectively. Cells were then stained with a combi-
nation of antibodies. Cell-surface staining was performed in PBS 3% FCS for 20 min at 4°C. Permeabi-
lization and intracellular staining were performed using the Foxp3/Transcription Factor Staining Buffer 
Set kit and protocol (Thermo Fisher #00-5521-00, Les Ulis, France). Stained cells were washed with 
PBS 1× before acquisition on a Cytek Aurora flow cytometer (Cytek Bioscience, Fremont, CA, USA). 
UMAPs were generated using FlowJo software, version 10.8.1 (TreeStar, Ashland, OR, USA).

Flow-Fluorescent In Situ Hybridization (FISH) staining
Frozen splenocytes were thawed and washed once in complete RPMI (Thermo Fisher) supplemented 
with 10% vol/vol FCS (Thermo Fisher). Flow-FISH staining was performed using the PrimeFlow RNA 
Assay Kit (Thermo Fisher #88-18005-210) and the subsequent anti-mouse Penk probes set (Thermo 
Fisher #PF-204) according to the manufacturer’s protocol. For flow cytometry staining, after Fc receptor 
saturation (anti-mouse CD16/32, clone 93, 1:50, Biolegend) and dead cells detection (Fixable Viability 
Dye, 1:1000, Thermo Fisher), cells were surface labeled for 30 min on ice with the following anti-
bodies: CD8a-BV421 (Clone 53-6.7, 1:200, BD Biosciences #563898), CD44-BV605 (Clone IM7, 1:200, 
BD Biosciences #563058), CD3e-BV711 (Clone 145-2C11, 1:50, Biolegend #100349), CD4-PE-CF594 
(Clone RM4-5, 1:800, BD Biosciences #562285), and CD62L-PE-Cy7 (Clone MEL-14, 1:300, BD Biosci-
ences #560516). Intracellular staining with Foxp3-PE antibody (Clone NRRF-30, 1:100, Thermo Fisher 
#12-4771-82) was performed after fixation and permeabilization with the reagents provided in the kit. 
A second fixation was performed with the reagents provided in the kit before proceeding to the FISH 
staining. For FISH staining, cells were incubated with the anti-mouse Penk probes set (1:20) for 2 hr 
at 40°C. After washes, cells were kept overnight at 4°C in a wash buffer containing RNase inhibitors. 
The day after, amplification steps were performed to increase the signal: cells were first incubated with 
pre-amplification mix during 1.5 hr at 40°C, washed and then incubated with amplification mix for an 
additional 1.5 hr at 40°C. Cells were then incubated with the label probes (Alexa Fluor 647, 1:100) 
for 1 hr at 40°C. Data were acquired on a 4-lasers LSR-Fortessa (BD Biosciences) and fcs files were 
analyzed with FlowJo as above.

In vitro and in vivo suppression assay
Cells from the spleen and the LNs of Foxp3-GFP mice were isolated and enriched for T cells with 
LS column (Miltenyi Biotec) using anti-CD19-biotin (Clone 1D3, BD Biosciences #553784), aCD11b-
biotin (Clone M1/70, BD Biosciences #553309), and anti-Ter119-biotin (Clone TER-119, BD Biosci-
ences #553672). Afterward, enriched T cells were stained with anti-CD4 PE (Clone RM4-5, 1:400, 
BD Biosciences #553048) and anti-CD62L AF700 (Clone MEL-14, 1:100, BD Biosciences #560517) 
and sorted as CD62L+CD4+GFP+ (Treg) or GFP− (Tconv) fractions on a FACS Aria III (BD Biosciences, 
France). Then, Tconv and Treg were labeled with CellTrace Violet and CFSE (Thermo Fisher #C34557 
and C34554), respectively, before the culture. For T-cell activation, either CD3/CD28 DynaBeads 
(Thermo Fisher #11452D) or soluble anti-CD3 (1 µg/ml) + splenocytes from Rag2−/− mice were used. 
When specified, Naloxone hydrochloride (Tocris, #0599/100) was added to the media at the indi-
cated concentration at the beginning of the culture. At the end of the culture, cells were stained 
with eF780 Fixable Viability Dye (Thermo Fisher #65-0865-14) before acquisition on a LSR Fortessa 
(BD Biosciences). To induce colitis, C57Bl/6 Rag2−/− mice were intraperitoneally injected with CD4+C-
D62LhiGFP− naive T cells (4 × 105 cells per mouse) isolated from spleens and LNs of WT C57Bl/6 
Foxp3-GFP mice (kind gift of Dr B. Salomon), together with or without CD4+CD25hiCD62Lhi Treg cells 
(2 × 105 cells per mouse) isolated from spleens of Rag2−/− mice reconstituted with bone marrow cells 
of Penk-WT or Penk-KO mice.

https://doi.org/10.7554/eLife.91359
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Immunofluorescence
Mice were anesthetized with a mix of 100 mg/kg ketamine and 20 mg/kg xylazine, decapitated with 
scissors and the glabrous skin of the hindpaw harvested. The skin was then fixed with paraformalde-
hyde 4% for 2 hr at RT. Fixed tissue was cryoprotected in 30% sucrose containing 0.05% sodium azide 
diluted in PBS at 4°C for 48 hr, and cut with a cryostat (Microm HM550) into 25 µm sections placed 
directly onto gelatine coated slides. For fluorescent immunostaining, slides were washed with PBS and 
blocked with 1% bovine serum albumin in PBS + 0.2% Triton-X (PBS-T) for 1 hr at RT, then incubated 
with primary antibodies diluted in PBS-T overnight at 4°C. Sections were then washed in PBS and 
incubated with secondary antibodies diluted 1:1000 in PBS-T, for 2 hr at RT. Slices were finally washed 
in PBS and cover-slipped with Fluoromount-G containing DAPI (Invitrogen 00-4959-52). The following 
primary antibodies were used for immunofluorescence staining at the following dilutions: anti-GFP 
raised in rabbit (1:1000, Chromotek # PABG-1), anti-CGRP raised in goat (1:500, Bio-Rad #1720-9007). 
We also used the following secondary antibodies: anti-rabbit conjugated with Cy3 raised in donkey 
(Jackson ImmunoResearch, #711-165-152), anti-rabbit conjugated with Alexa-488 raised in donkey 
(Jackson ImmunoResearch, #711-545-152), and anti-goat conjugated with Cy5 raised in donkey 
(Jackson ImmunoResearch, #705-175-147). Images were obtained by epifluorescent microscopy with 
a motorized fluorescence microscope Axio Imager M2 equipped with a camera Axiocam 705 (Zeiss). 
Skin slices were imaged using a Colibri 7 light source, ×10/0.30 and ×63/1.25 objectives and the 
following filters from Zeiss: 02 DAPI, 38 HE eGFP, 43 HE DsRed, and 50 Cy5 BP640/30. Images were 
generated with Zen blue 3.4 (Zeiss) and brightness and contrast adjusted using ImageJ/Fiji.

Behavioral tests
The methods used were described by Baker et al., 2002 and Peirs et al., 2021.

Heat sensitivity
For the hot plate test, the BIO-CHP apparatus was used (BIOSEB, France). Mice were placed on a 
metal plate maintained at 55°C. The response latency, which is the time taken to observe a nocifen-
sive behavior such as jumping, licking, or flicking of the hind paws, was recorded. The mice were then 
immediately removed from the plate upon the recording of a reaction, or within 25 s if no response was 
observed to prevent tissue damage. The test was repeated every 2 days for a total of four measures 
before the administration of TMX and four measures starting from D3 post-TMX. Mice remained in 
their home cage except when being tested on the hot plate. The experimenter was blind to the geno-
type of the mice until the end of the experiment. Noxious heat sensitivity was independently assessed 
in the Neurodol laboratory with an Hargreaves test. Animals were placed in an acrylic chamber on a 
heated (30°C) glass plate and acclimated to the test chamber for 30 min during 2 days and then for 
30 min on the third day prior to testing. Using a plantar analgesia meter (IITC, 40% intensity), a radiant 
heat source of constant intensity was focused on the plantar surface of the hind paw and the latency 
of paw withdrawal measured. The heat source was stopped upon paw withdrawal with a cutoff of 20 s 
to avoid injury. Heat sensitivity test was repeated three times on each hind paw with a 5-min interval 
between tests and the results for each paw were averaged together.

Static mechanical sensitivity
Static mechanical sensitivity was assessed with a Von Frey test. Briefly, mice were habituated to trans-
parent Plexiglas chambers on an elevated wire mesh table for at least 30 min for 2 days, and prior 
to testing. Assessments were performed using a set of calibrated Von Frey monofilaments using the 
Up-Down method, starting with the 0.4 g filament. Each filament was gently applied to the plantar 
surface of the hind paw for 3 s or until a response such as a sharp withdrawal, shaking, or licking of the 
limb was observed. Rearing or normal ambulation during filament application were not counted. Fila-
ments were applied at 5-min intervals until the threshold was determined. The 50% paw withdrawal 
threshold (PWT) was determined for each mouse on both hind paws.

Dynamic mechanical sensitivity
Dynamic mechanical sensitivity was assessed with the cotton swab test. Briefly, animals were habitu-
ated to transparent Plexiglas chambers on an elevated wire mesh table as described above. The head 

https://doi.org/10.7554/eLife.91359
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of a cotton swab was teased and puffed out with forceps until it reached approximately three times its 
original size. Tests were performed by lightly moving the cotton swab across the surface of the hind 
paw from heel to toe. If the animal reacted (lifting, shaking, licking of the paw) a positive response 
was recorded. A negative response was recorded if the animal showed no such behavior. The applica-
tion was repeated six times with a 5-min interval between applications, and a percentage of positive 
responses was determined. Paw withdrawal frequency (PWF) was determined for both hind paws of 
each mouse.

Noxious mechanical sensitivity
Noxious mechanical sensitivity was assessed with the pinprick test. Animals were acclimated to trans-
parent Plexiglas chambers placed on a wire mesh table as described above. A small insect pin (tip 
diameter = 0.03 mm) was applied 10 times with a 5-min interval between applications on the plantar 
side of each hind paw. Care was taken to apply a minimal pressure without penetrating the skin. If 
the animal showed aversive behavior (lifting, shaking, licking of the paw) a positive response was 
recorded. A negative response was recorded if the animal showed none of these reactions within 1 s 
of application and a percentage of positive responses were determined. PWF was calculated by aver-
aging the positive responses for each mouse for each hind paw.

Proprioception test
Animals were placed in an empty plastic cage and allowed to acclimate for 15–20  min. A 8-mm 
diameter adhesive paper circle was then applied to the plantar surface of the hind paw covering the 
footpads, and the animals were immediately placed back in the chamber. The animals were observed 
until they demonstrated a behavioral response to the adhesive tape, and the latency in seconds to 
respond was recorded. Inspection of the paw, shaking of the paw or attempting to remove the tape 
were all considered valid responses. Each animal was habituated one time the day prior testing, and 
then tested three times with a 5-min interval between tests, and the three values averaged for each 
animal for each hind paw.

Statistical analysis
All statistical tests are reported in the figure legends and were performed with Prism v9.4.1 (GraphPad 
Inc, La Jolla, CA, USA). The statistical power of the analyses (alpha) was set at 0.05. No a priori sample 
size estimation based on beta power (1-alpha) was performed.
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