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PARTIAL REFORMULATION-LINEARIZATION BASED OPTIMIZATION
MODELS FOR THE GOLOMB RULER PROBLEM

Hacène Ouzia*

Abstract. In this paper, we provide a straightforward proof of a conjecture proposed in [P. Duxbury,
C. Lavor and L.L. de Salles-Neto, RAIRO:RO 55 (2021) 2241–2246.] regarding the optimal solutions
of a non-convex mathematical programming model of the Golomb ruler problem. Subsequently, we
investigate the computational efficiency of four new binary mixed-integer linear programming models
to compute optimal Golomb rulers. These models are derived from a well-known nonlinear integer model
proposed in [B. Kocuk and W.-J. van Hoeve, A Computational Comparison of Optimization Methods
for the Golomb Ruler Problem. (2019) 409–425.], utilizing the reformulation-linearization technique.
Finally, we provide the correct outputs of the greedy heuristic proposed in [P. Duxbury, C. Lavor and
L.L. de Salles-Neto, RAIRO:RO 55 (2021) 2241–2246.] and correct false conclusions stated or implied
therein.
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1. Introduction

1.1. The problem

Given a positive integer 𝑛, a ruler with 𝑛 marks is a finite increasing sequence ⟨𝑥0, . . . , 𝑥𝑛−1⟩ of 𝑛 integers
(the marks). The length of the ruler ⟨𝑥0, . . . , 𝑥𝑛−1⟩ is the difference 𝑥𝑛−1−𝑥0. A Golomb ruler with 𝑛 marks is
a ruler ⟨𝑥0, . . . , 𝑥𝑛−1⟩ such that the inter-distances between its marks are all different. Since the inter-distances
are invariant by translation, one can assume that 𝑥0 = 0, which implies that 𝑥𝑛−1 will be the length of the
ruler. In the following, we will assume that 0 is the first mark of any Golomb ruler.

The Golomb Ruler (Optimization) Problem (GRP) consists of finding, among all Golomb rulers
⟨0, 𝑥1, . . . , 𝑥𝑛−1⟩, one that has a minimum length 𝑥𝑛−1. A Golomb ruler with minimum length will be called an
optimal Golomb ruler. For example, in the case of 𝑛 = 4, the two rulers ⟨0, 1, 4, 6⟩ and ⟨0, 1, 3, 7⟩ are Golomb
rulers with lengths 6 and 7, respectively. One can easily check that the former is an optimal Golomb ruler among
Golomb rulers with 4 marks.

The length of an optimal Golomb ruler with 𝑛 marks is usually denoted by 𝐺(𝑛). To the best of our knowledge,
no mathematical expression for 𝐺(𝑛) is known, and its values are tabulated only for 𝑛 ≤ 28. For any given 𝑛,
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the value of 𝐺(𝑛) is trivially bounded below by
(︀
𝑛
2

)︀
because a Golomb ruler with 𝑛 marks measures exactly

(︀
𝑛
2

)︀
distinct distances [8]. A proof of a better lower bound of 𝑛2+

√
𝑛(1−2𝑛)−2 can be found in [8]. Regarding upper

bounds, the best-known upper bound for any number of marks 𝑛 is 𝐺(𝑛) ≤ 2𝑛3 + 𝑛. A conjecture attributed
to Erdős states that 𝐺(𝑛) ≤ 𝑛2 + 𝑐, where 𝑐 ∈ R. Computationally, this conjecture was proven to be true for
𝑛 ≤ 65000 [8].

The GRP has been studied since the 1960s and remains a very challenging problem from both theoretical and
computational points of view. Indeed, to the best of our knowledge, its complexity remains an open question,
and it is not even known if the Golomb Ruler Decision Problem (given two integers 𝑛 and ℓ, is there a Golomb
ruler with at least 𝑛 marks and length at most ℓ?) belongs to the complexity class NP or not [23]. Moreover, the
optimal Golomb ruler with 28 marks was announced last year after approximately 8.5 years of computational
efforts using an enumeration approach implemented on a distributed architecture (distributed.net project
OGR-28).

During the last few years, in addition to the exact approach implemented in the project OGR-28, two other
exact approaches to compute optimal Golomb rulers have also been investigated: constraint programming-based
approaches [13] and mathematical programming-based approaches [16, 22]. Moreover, a lot of work has been
done to compute near-optimal Golomb rulers using different principles. For instance, construction methods from
number theory [10,11,26]; hybrid evolutionary heuristic [9]; hybrid search heuristic [28]; and genetic algorithms
[36].

Finally, the GRP has many applications. To cite a few, in telecommunication engineering [2], in radio-astronomy
[2], in error-correcting codes [30], and x-ray analysis of crystal structures [5].

1.2. Related works

The starting point of this work is the conjecture presented in [12]. This conjecture concerns the solution of
the continuous relaxation of a non-convex quadratically constrained integer programming model (see Sect. 3)
for the GRP. This model is derived from a mathematical programming model first presented in [16], which we
recall below.

Let ̂︀𝐿 be a given upper bound on the length of an optimal Golomb ruler with 𝑛 marks. The length of an
optimal Golomb ruler can be computed using the following nonlinear programming model:

(K0)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min max
{︁

𝑘𝑥𝑘 : 𝑘 = 1, . . . , ̂︀𝐿}︁
𝑠.𝑡.

𝑥𝑗 +
̂︀𝐿−𝑗∑︀
𝑘=1

𝑥𝑘𝑥𝑘+𝑗 ≤ 1, 𝑗 = 1, . . . , ̂︀𝐿− 1, (1a)

𝑥𝑘 ∈ {0, 1} , 𝑘 = 1, . . . , ̂︀𝐿, (1b)

where, for every index 𝑘, the variable 𝑥𝑘 assumes value 1 if and only if the 𝑘-th mark is chosen. The 𝑗-th
quadratic constraint in (1a) imposes that if the 𝑗-th mark is selected then no other pair of marks at distance 𝑗
from each other can be selected.

In [16], the authors conducted a computational comparison between three different optimization approaches
to solve the GRP. In the first approach, they considered several enhancements, including bound tightening
and branching strategies, to solve two well-known integer linear programming formulations of the GRP [19, 22]
using a branch-and-bound algorithm. In the second approach, they considered solving another well-known
constraint programming-based model [34, 35] for the GRP and introduced several enhancements as well. In
the third approach, they considered solving the GRP using the model (K0) above. Two approaches based on
equivalent formulations of the model (K0) were considered. The first one is based on a mixed-integer semi-
definite reformulation of (K0). The second is based on what the authors called the feasibility version of the
model (K0). This version is used to certify the length of an optimal Golomb ruler (see [16] for more detail).
Their approaches differ from the one presented in this work.
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Indeed, the approach presented in this work uses the well-known reformulation-linearization approach to
derive strong models to the GRP from the following binary mixed integer linear programming (BMILP for short)
problem equivalent to the program (K0). This BMILP model, also stated in [12,16], reads:

(K1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜁

𝑠.𝑡.

𝑘𝑥𝑘 ≤ 𝜁, 𝑘 = 1, . . . , ̂︀𝐿, (2a)
̂︀𝐿∑︀

𝑘=1

𝑥𝑘 = 𝑛− 1, (2b)

𝑥𝑗 +
̂︀𝐿−𝑗∑︀
𝑘=1

𝑥𝑘𝑥𝑘+𝑗 ≤ 1, 𝑗 = 1, . . . , ̂︀𝐿− 1, (2c)

𝑥𝑘 ∈ {0, 1} , 𝑘 = 1, . . . , ̂︀𝐿. (2d)

Notice that the equality constraint (2b) is mandatory; otherwise, the zero vector is an optimal solution.

1.3. Our contributions

The contributions of this work are threefold. Firstly, we propose a simple proof of the conjecture stated in
[12]. A proof based on arguments from algebraic geometry is presented in the non-peer-reviewed paper [18].
Secondly, we investigate the computational efficiency of four new BMILP models for the GRP. These models are
derived from an equivalent BMILP model to the non-linear integer programming model (K0) using the well-known
reformulation-linearization technique. Thirdly, we provide the correct outputs of the greedy heuristic proposed
in [12], and we correct false conclusions stated or suggested in therein.

The rest of the paper is organized as follows. In Section 2, we recall the principal concepts and the main
theorem of the Reformulation-Linearization technique. Then, in Section 3, we detail our proof of the conjecture
stated in [12]. In Section 4, we describe the new BMILP models for the GRP. In Section 5, we investigate the
computational efficiency of these proposed models and provide the correct outputs of the greedy heuristic
proposed in [12] to compute feasible Golomb rulers. Finally, we give concluding remarks in Section 6.

2. The reformulation linearization technique

The Reformulation Linearization Technique (RLT) for BMILP problems was introduced and studied by Sherali-
Adams in [32, 33]. It produces, for a given BMILP model, a finite hierarchy of continuous relaxations with
increasing strength, where the relaxation of the higher rank is the description of the convex hull of the set of
integer feasible solutions of the considered BMILP. The RLT approach of Sherali-Adams extends the Lift-and-
Project hierarchy of Balas [3]. Several other hierarchies are known, such as Lovász-Shrijver [20], Lasserre [17],
and the DRL* hierarchy of Minoux and Ouzia [24]. A comparison of the Sherali-Adams, Lovász-Schrijver, and
Lasserre hierarchies can be found in [25]. Links between DRL*, RLT, and Lift-and-Project hierarchies can be
found in [24]. To be self-contained, we recall below the general RLT principle for BMILP problems; more details
can be found in [24,32,33].

Let 𝑃 be a subset of R𝑛1+𝑛2
+ describing the set of feasible solutions of a BMILP problem featuring 𝑛1 binary

variables and 𝑛2 continuous variables. Let us assume that 𝑃 features the following linear description:

𝑛1+𝑛2∑︁
𝑗=1

𝑎𝑗𝑥𝑗 ≤ 𝑏, (3)

𝑥𝑗 ≤ 1 for all 𝑗 ∈ 𝐸 = {1, . . . , 𝑛1} , (4)
−𝑥𝑗 ≤ 0 for all 𝑗 ∈ 𝑁 = {1, . . . , 𝑛1 + 𝑛2} , (5)

𝑥𝑗 ∈ {0, 1} for all 𝑗 ∈ 𝐸. (6)
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In the above description, 𝐸 is the index set of the 𝑛1 binary variables describing 𝑃 ; 𝑁 is the index set of all the
variables; and for each index 𝑗 ∈ 𝑁 , the vectors 𝑎𝑗 and 𝑏 belong to R𝑚, where 𝑚 is the number of constraints
in (3).

The continuous relaxation of the integer set 𝑃 , denoted 𝑃 , is the polyhedron defined by the 𝑚 + 2𝑛1 +
𝑛2 constraints (3)–(5). Recall that two linear descriptions are said to be equivalent if they define the same
polyhedron, and a linear description 𝐷1 dominates another linear description 𝐷2 if the polyhedron defined by
𝐷1 is included in the polyhedron defined by 𝐷2.

Let 𝑝 be a positive integer, and let 𝑆 be a finite non-empty set. The notation 𝑆[𝑝] will denote the set of
all subsets of 𝑆 with cardinality 𝑝, while 𝑆𝑝 will indicate that the set 𝑆 has cardinality 𝑝 (𝑆 will be called a
𝑝-element set).

Let 𝐽𝑑 be a 𝑑-element subset of 𝐸 and let 𝐽 be a subset from 𝐽𝑑. The 𝑑-factor associated with the sets 𝐽
and 𝐽𝑑, denoted 𝐹𝑑

(︀
𝐽, 𝐽𝑑∖𝐽

)︀
, is the degree 𝑑 polynomial:

𝐹𝑑

(︀
𝐽, 𝐽𝑑∖𝐽

)︀
=

∏︁
𝑗∈𝐽

𝑥𝑗

∏︁
𝑗∈𝐽𝑑∖𝐽

(1− 𝑥𝑗) .

We use the convention that 𝐹0 (∅, ∅) = 1. Notice that 𝐹𝑑

(︀
𝐽, 𝐽𝑑∖𝐽

)︀
is nonnegative for all 𝑥 ∈ [0, 1]𝑛1 .

A rank 𝑑 reformulation-linearization relaxation (of the mixed integer set 𝑃 ) is defined in three steps. First,
the problem is reformulated as a 0-1 polynomial mixed integer system (semi-algebraic set2) by multiplying the
constraints (3)–(5) with all 𝑑-factors. Then, the nonlinear terms are linearized by introducing new variables,
giving rise to a higher-dimensional linear description. The last step consists of projecting back the resulting
polyhedron onto the original 𝑥-space. The linearization step can be performed in many different ways, possibly
leading to as many different hierarchies of relaxations [24].

The solution set in R𝑛1+𝑛2 associated with the nonlinear description resulting from the reformulation step
will be denoted 𝑅𝑑

* and reads:

𝑅𝑑
* =

⋂︁
𝐽𝑑∈𝐸[𝑑]

𝑅𝑑
(︀
𝐽𝑑

)︀
,

where, for each subset 𝐽𝑑 of 𝐸, 𝑅𝑑
(︀
𝐽𝑑

)︀
is the following nonlinear system:

𝑛1+𝑛2∑︁
𝑗=1

𝑎𝑗𝑥𝑗𝐹𝑑

(︀
𝐽, 𝐽𝑑∖𝐽

)︀
− 𝑏𝐹𝑑

(︀
𝐽, 𝐽𝑑∖𝐽

)︀
≤ 0 for all 𝐽 ⊆ 𝐽𝑑, (7)

𝑥𝑗𝐹𝑑

(︀
𝐽, 𝐽𝑑∖𝐽

)︀
− 𝐹𝑑

(︀
𝐽, 𝐽𝑑∖𝐽

)︀
≤ 0 for all 𝑗 ∈ 𝐸 and 𝐽 ⊆ 𝐽𝑑, (8)

𝑥𝑗𝐹𝑑

(︀
𝐽, 𝐽𝑑∖𝐽

)︀
≥ 0 for all 𝑗 ∈ 𝑁 and 𝐽 ⊆ 𝐽𝑑, (9)

𝐹𝑑

(︀
𝐽, 𝐽𝑑∖𝐽

)︀
≥ 0 for all 𝐽 ⊆ 𝐽𝑑. (10)

Starting from this non-linear reformulation, various linear descriptions can be constructed depending on the
type of linearization considered. Below, we recall the Sherali-Adams linearization [32, 33]. Other linearizations
are possible [24,27].

The description of the rank 𝑑 Sherali-Adams relaxation for the polyhedron 𝑃 , denoted ̂︀𝑃 𝑑
𝑅𝐿𝑇 , is a

Reformulation-Linearization relaxation of rank 𝑑 where the nonlinear terms in (7)–(10) are linearized by intro-

2A semi-algebraic set in 𝑛 dimensions is a subset of R𝑛 defined as the solution set of a finite system of polynomial equalities
and inequalities; see [4, 7].
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ducing new variables 𝑤𝐽 and 𝑤𝑘
𝐽 defined by:

𝑤𝐽 =
∏︁
𝑗∈𝐽

𝑥𝑗 for all 𝐽 ⊆ 𝐸 and |𝐽 | ≤ min (𝑑 + 1, 𝑛1) , (11)

𝑤𝑘
𝐽 = 𝑥𝑘

∏︁
𝑗∈𝐽

𝑥𝑗 for all 𝑘 ∈ 𝑁∖𝐸, 𝐽 ⊆ 𝐸 and |𝐽 | ≤ 𝑑, (12)

where it is assumed that 𝑤∅ = 1, and 𝑤𝑘
∅ = 𝑥𝑘 for every index 𝑘 in 𝑁∖𝐸.

The resulting higher dimensional linear description will be denoted 𝑃 𝑑
𝑅𝐿𝑇 and it is defined as follows:

𝑃 𝑑
𝑅𝐿𝑇 =

⋂︁
𝐽𝑑∈𝐸[𝑑]

𝑄𝑑
𝑅𝐿𝑇

(︀
𝐽𝑑

)︀
, (13)

where, for each subset 𝐽𝑑 of 𝐸, the polyhedron 𝑄𝑑
𝑅𝐿𝑇

(︀
𝐽𝑑

)︀
is

𝜅∑︁
𝑗=1

𝑎𝑗𝑊 𝐽,𝐽𝑑

𝑗 − 𝑏𝑊 𝐽,𝐽𝑑

0 ≤ 0 for all 𝐽 ⊆ 𝐽𝑑, (14)

𝑊 𝐽,𝐽𝑑

𝑗 −𝑊 𝐽,𝐽𝑑

0 ≤ 0 for all 𝑗 ∈ 𝐸 and 𝐽 ⊆ 𝐽𝑑, (15)

𝑊 𝐽,𝐽𝑑

𝑗 ≥ 0 for all 𝑗 ∈ 𝑁 and 𝐽 ⊆ 𝐽𝑑, (16)

𝑊 𝐽,𝐽𝑑

0 ≥ 0 for all 𝐽 ⊆ 𝐽𝑑. (17)

and where, for every 𝑗 in 𝑁 , 𝑊 𝐽,𝐽𝑑

𝑗 and 𝑊 𝐽,𝐽𝑑

0 denote the linearized forms of the polynomials 𝑥𝑗𝐹𝑑

(︀
𝐽, 𝐽𝑑∖𝐽

)︀
and 𝐹𝑑

(︀
𝐽, 𝐽𝑑∖𝐽

)︀
respectively; these are related to the 𝑤𝐽 and 𝑤𝑘

𝐽 variables as follows:

𝑊 𝐽,𝐽𝑑

𝑗 =
∑︁

𝐽⊆𝐻⊆𝐽𝑑

(−1)|𝐻∖𝐽| 𝑤𝐻∪{𝑗} for all 𝐽𝑑, 𝐽 ⊆ 𝐽𝑑 and 𝑗 ∈ 𝐸, (18)

𝑊 𝐽,𝐽𝑑

𝑗 =
∑︁

𝐽⊆𝐻⊆𝐽𝑑

(−1)|𝐻∖𝐽| 𝑤𝑗
𝐻 for all 𝐽𝑑, 𝐽 ⊆ 𝐽𝑑 and 𝑗 ∈ 𝑁∖𝐸, (19)

𝑊 𝐽,𝐽𝑑

0 =
∑︁

𝐽⊆𝐻⊆𝐽𝑑

(−1)|𝐻∖𝐽| 𝑤𝐻 for all 𝐽𝑑, 𝐽 ⊆ 𝐽𝑑. (20)

(The above expressions (18)–(20) can also be found in [33]). Notice that the constraints (16)–(17) imply the
non-negativity of the variables 𝑤𝐽 and 𝑤𝑘

𝐽 . The rank 𝑑 Sherali-Adams relaxation ̂︀𝑃 𝑑
𝑅𝐿𝑇 is obtained by projecting

the polyhedron 𝑃 𝑑
𝑅𝐿𝑇 onto R𝑛1+𝑛2 .

The following theorem states the two main results concerning the Sherali-Adams relaxations.

Theorem 2.1 (Sherali-Adams [31,33]). For every integer 𝑑 ∈ {1, . . . , 𝑛1 − 1}, we have:

̂︀𝑃 𝑑+1
𝑅𝐿𝑇 ⊆ ̂︀𝑃 𝑑

𝑅𝐿𝑇 .

Moreover, the rank 𝑛1 Sherali-Adams relaxation of the set 𝑃 coincides with the convex hull of the integer set 𝑃 ,
that is:

conv (𝑃 ) = ̂︀𝑃𝑛1
𝑅𝐿𝑇 .

In essence, this theorem provides a procedure to compute, at least in theory, the convex hull of the integer
set 𝑃 . Additionally, it defines a finite hierarchy of continuous relaxations that can be used as alternatives to
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the continuous relaxation 𝑃 for optimizing any linear function over 𝑃 . The rank of each relaxation serves as a
measure of its strength.

As a final definition, the Sherali-Adams relaxation obtained using a subset of the 𝑑-factors or a subset of the
constraints (3) will be called a partial rank 𝑑 Sherali-Adams relaxation. It is evident that any partial rank 𝑑
Sherali-Adams relaxation contains the corresponding rank 𝑑 relaxation.

In this work, we will use partial rank 1 and 2 Sherali-Adams relaxations because they feature smaller size.
Indeed, after linearizing the nonlinear terms in (7)–(10) using the 𝑤 variables defined in (11) and (12) above,

the 𝑃 𝑑
𝑅𝐿𝑇 description features

min{𝑑+1,𝑛}∑︀
𝑘=1

(︀
𝑛
𝑘

)︀
+ 𝑚

𝑑∑︀
𝑘=0

(︀
𝑛
𝑘

)︀
variables (notice that the variable 𝑤∅ is not counted

here since 𝑤∅ = 1) and 𝒪
(︀(︀

𝑛
𝑑

)︀
(𝑛1 + 𝑛2) 2𝑑

)︀
constraints.

3. Proof of the conjecture

In [12], the authors proposed the following continuous non-convex quadratically constrained model to solve
the GRP with 𝑛 marks:

(︀̂︀K)︀

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜁

𝑠.𝑡.

𝑘𝑥𝑘 ≤ 𝜁𝑥𝑘, 𝑘 = 1, . . . , ̂︀𝐿, (21a)
̂︀𝐿∑︀

𝑘=1

𝑥𝑘 = 𝑛− 1, (21b)

𝑥𝑗 +
̂︀𝐿−𝑗∑︀
𝑘=1

𝑥𝑘𝑥𝑘+𝑗 ≤ 1, 𝑗 = 1, . . . , ̂︀𝐿− 1, (21c)

𝜁 ∈ R+, 𝑥𝑘 ∈ [0, 1] , 𝑘 = 1, . . . , ̂︀𝐿. (21d)

And, they stated the following conjecture.

Conjecture 3.1. Given an upper bound ̂︀𝐿 of the length of an optimal Golomb rule with 𝑛 marks. It is true
that any optimal solution to the model (K1) is an optimal solution to the model (̂︀K).

Rephrased differently, this conjecture states that the optimal Golomb rulers with 𝑛 marks constitute a subset
of the set of optimal solutions of the model (̂︀K).

Before proving this conjecture, one can observe that the model (̂︀K) is the continuous relaxation of the model
(K) given below, which in turn is a partial rank 1 Sherali-Adams reformulation of the constraints (2a) of the
model (K1).

(K)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜁

𝑠.𝑡.

𝑘𝑥𝑘 ≤ 𝜁𝑥𝑘, 𝑘 = 1, . . . , ̂︀𝐿, (22a)
̂︀𝐿∑︀

𝑘=1

𝑥𝑘 = 𝑛− 1, (22b)

𝑥𝑗 +
̂︀𝐿−𝑗∑︀
𝑘=1

𝑥𝑘𝑥𝑘+𝑗 ≤ 1, 𝑗 = 1, . . . , ̂︀𝐿− 1, (22c)

𝜁 ∈ R+, 𝑥𝑘 ∈ {0, 1} , 𝑘 = 1, . . . , ̂︀𝐿. (22d)

Thus, according to Theorem 2.1, the models (K1) and (K) feature the same set of feasible solutions. Indeed,
the 𝑘-th constraint of (22a) is obtained by first multiplying the 𝑘-th constraint of (2a) by the non-negative
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variable 𝑥𝑘 and then replacing 𝑥2
𝑘 with 𝑥𝑘, because 𝑥𝑘 is binary. These two steps preserve the feasible solutions

of (K1).
Building upon this observation, in Section 4 and 5, we will propose four new BMILP models for the GRP, derived

from the model (K1) using the partial rank 1 and 2 Sherali-Adams reformulation-linearization technique.
Coming back to the conjecture, below, a straightforward proof.

Proof. (Conjecture 3.1) It is sufficient to prove that any optimal solution to the model (K) is an optimal solution
to the model (̂︀K). Because, as mentioned above, the two models (K) and (K1) share the same feasible solutions
and thus the same optimal solutions.

Let (𝐿, 𝑥*) be an optimal solution to the model (K). By contradiction, assume that there exists an optimal
solution

(︁̂︀𝜁, ̂︀𝑥)︁
to the model (̂︀K) such that ̂︀𝜁 < 𝐿. Recall that we already have ̂︀𝜁 ≤ 𝐿, because the model (̂︀K)

is the continuous relaxation of the model (K). It follows from our assumption that, for every feasible solution
(𝜁, 𝑥) of the model (̂︀K), it must be true that 𝑥𝐿 = 0, otherwise, if 𝑥𝐿 ∈]0, 1] then:

𝐿𝑥𝐿 ≤ 𝜁𝑥𝐿 ⇒ 𝜁 ≥ 𝐿, (23)

which implies that ̂︀𝜁 ≥ 𝐿, contradicting our assumption. Consequently, the constraint 𝑥𝐿 ≤ 0 is valid for the
set of feasible solutions of the model (̂︀K) and it cuts off the optimal integer solution (𝐿, 𝑥*) of the model (K).
This is impossible because the model (̂︀K) contains all the integer solutions of the model (K). Therefore, we must
have ̂︀𝜁 = 𝐿. Since 𝑥* is a feasible solution of the model (̂︀K) and it has the same value as its optimal solution(︁̂︀𝜁, ̂︀𝑥)︁

, then (𝐿, 𝑥*) is an optimal solution of the continuous model (̂︀K). This completes the proof. �

Thus, one can state the following:

Theorem 3.2. Given an upper bound ̂︀𝐿 of the length of an optimal Golomb rule with 𝑛 marks. It is true that
any optimal solution to the model (K1) is an optimal solution to the model (̂︀K).

Two other facts concerning the optimal solutions of the model (̂︀K) can be easily demonstrated. Let us empha-
size the two parameters 𝑛 and ̂︀𝐿𝑛 in the program (̂︀K) by the notation (̂︀K𝑛,̂︀𝐿𝑛

). Let ℓ𝑛 be the length of an optimal
Golomb ruler featuring 𝑛 marks.

Proposition 3.3. For any optimal solution
(︁̂︀𝜁, ̂︀𝑥)︁

of the program (̂︀K𝑛,ℓ𝑛
), the component ̂︀𝑥ℓ𝑛

is equal to 1 and̂︀𝜁 is equal to ℓ𝑛.

Proof. Let
(︁̂︀𝜁, ̂︀𝑥)︁

be an optimal solution the program (̂︀K𝑛,ℓ𝑛
). Then, ̂︀𝜁 ≤ ℓ𝑛 and the point

(︁̂︀𝜁, ̂︀𝑥)︁
satisfies the

inequality 𝜁 ≥ ℓ𝑛𝑥ℓ𝑛
(obtained by multiplying 𝑥ℓ𝑛

≤ 1 by 𝜁, which is a positive quantity, and then noticing that
𝜁𝑥ℓ𝑛 ≥ ℓ𝑛𝑥ℓ𝑛). Thus, if ̂︀𝑥ℓ𝑛 < 1 then (ℓ𝑛̂︀𝑥ℓ𝑛 , ̂︀𝑥) is a feasible solution to the program (̂︀K𝑛,ℓ𝑛) with a better value,

contradicting the optimality of
(︁̂︀𝜁, ̂︀𝑥)︁

. Consequently, ̂︀𝑥ℓ𝑛
= 1 and ̂︀𝜁 ≥ ℓ𝑛 implying that ̂︀𝜁 = ℓ𝑛. This completes

the proof. �

Proposition 3.4. For any optimal solution (ℓ𝑛, ̂︀𝑥) of the program (̂︀K𝑛,̂︀𝐿𝑛
), the component ̂︀𝑥𝑘 = 0 for 𝑘 > ℓ𝑛.

Proof. Let (ℓ𝑛, ̂︀𝑥) be an optimal solution to the program (̂︀K𝑛,̂︀𝐿𝑛
). By contradiction, let us assume that there

exists an index 𝑘 > ℓ𝑛 such that ̂︀𝑥𝑘 ∈ ]0, 1]. Thus, we have:

ℓ𝑛̂︀𝑥𝑘 < 𝑘̂︀𝑥𝑘. (24)

But, from the constraints (21a), we also have 𝑘̂︀𝑥𝑘 ≤ ℓ𝑛̂︀𝑥𝑘. Then, it follows that ℓ𝑛̂︀𝑥𝑘 < ℓ𝑛̂︀𝑥𝑘, which is absurd.
Consequently, for all 𝑘 > ℓ𝑛, we have ̂︀𝑥𝑘 = 0, which completes the proof. �
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4. New models

In this section, we provide the descriptions of four new BMILP models proposed to solve the GRP. The first
three models are obtained using a partial rank-1 Sherali-Adams relaxation, while the last one is based on a
partial rank-2 relaxation.

First, notice that the model (K1) is equivalent to the following BMILP model:

(G)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜁

𝑠.𝑡.

𝑘𝑥𝑘 ≤ 𝜁, 𝑘 = 1, . . . , ̂︀𝐿, (25a)
̂︀𝐿∑︀

𝑘=1

𝑥𝑘 = 𝑛− 1, (25b)

𝑥𝑗 +
̂︀𝐿−𝑗∑︀
𝑘=1

𝑤𝑘,𝑘+𝑗 ≤ 1, 𝑗 = 1, . . . , ̂︀𝐿− 1, (25c)

𝑥𝑘 + 𝑥𝑗 − 𝑤𝑘𝑗 ≤ 1, 1 ≤ 𝑘 < 𝑗 ≤ ̂︀𝐿, (25d)

𝑤𝑘𝑗 ≤ 𝑥𝑗 , 1 ≤ 𝑘 < 𝑗 ≤ ̂︀𝐿, (25e)

𝑤𝑘𝑗 ≤ 𝑥𝑘, 1 ≤ 𝑘 < 𝑗 ≤ ̂︀𝐿, (25f)

𝑤𝑘𝑗 ≥ 0, 1 ≤ 𝑘 < 𝑗 ≤ ̂︀𝐿, (25g)

𝑥𝑘 ∈ {0, 1} , 𝑘 = 1, . . . , ̂︀𝐿, (25h)
𝜁 ∈ R+. (25i)

Indeed, the quadratic terms appearing in the constraints (2c) are linearized using the well-known McCormick
inequalities [21], which lead to the constraints (25c)–(25f). In the sequel, the constraints (25d)–(25f) will appear
frequently. To avoid repeating them, we introduce the following set:

ℳ =
{︂

(𝑥, 𝑤) ∈ R̂︀𝐿 × R(̂︀𝐿2) : (25d)--(25g)
}︂

. (26)

Linearizing in the model (K) the products 𝜁𝑥𝑘 using new variables 𝑣𝑘 and using the McCormick inequalities
to linearize the quadratic terms appearing in the constraints (22c), we obtain the following BMILP equivalent
model:

(M1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜁

𝑠.𝑡.

𝑘𝑥𝑘 ≤ 𝑣𝑘, 𝑘 = 1, . . . , ̂︀𝐿, (27a)

𝑣𝑘 ≤ 𝜁, 𝑘 = 1, . . . , ̂︀𝐿, (27b)

𝑣𝑘 ≤ ̂︀𝐿𝑥𝑘, 𝑘 = 1, . . . , ̂︀𝐿, (27c)

𝑣𝑘 ≥ 𝜁 + ̂︀𝐿 (𝑥𝑘 − 1) , 𝑘 = 1, . . . , ̂︀𝐿, (27d)
̂︀𝐿∑︀

𝑘=1

𝑥𝑘 = 𝑛− 1, (27e)

𝑥𝑗 +
̂︀𝐿−𝑗∑︀
𝑘=1

𝑤𝑘,𝑘+𝑗 ≤ 1, 𝑗 = 1, . . . , ̂︀𝐿− 1, (27f)

𝜁 ∈ R+, (𝑥, 𝑤) ∈ℳ, (27g)

𝑥𝑘 ∈ {0, 1} , 𝑘 = 1, . . . , ̂︀𝐿. (27h)
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The model (M1) can be seen as derived from the model (G) using a partial rank 1 Sherali-Adams reformulation,
where the 𝑘-th constraint (25a) is first multiplied by 𝑥𝑘. Then, the term 𝑥2

𝑘 is replaced by 𝑥𝑘, because 𝑥𝑘 is binary.
Finally, the products 𝜁𝑥𝑘 are linearized using the constraints (27a)–(27d). To avoid repeating the linearization
constraints (27b)–(27d), let 𝒱 be the following set:

𝒱 =
{︂

(𝑥, 𝑤, 𝑣) ∈ R̂︀𝐿 × R(̂︀𝐿2) × R̂︀𝐿 : (27b)--(27d)
}︂

. (28)

In the sequel, we propose two other BMILP models for the GRP. These models are obtained, as above, by a
partial rank 1 Sherali-Adams reformulation-linearization approach applied to the model (G).

The model (M2) below is obtained from the model (G) using a complete rank 1 Sherali-Adams reformulation-
linearization of the constraints (25a). This means that these constraints are first multiplied by the 1-factors 𝑥𝑗

and 1−𝑥𝑗 , for all 𝑗 ∈
{︁

1, . . . , ̂︀𝐿}︁
. Then, the products 𝜁𝑥𝑘 are linearized using the new variables 𝑣𝑘. Additionally,

for every pair of indexes (𝑖, 𝑗) such that 𝑖 < 𝑗, the product 𝑥𝑖𝑥𝑗 is linearized using the variable 𝑤𝑖𝑗 . This model
(M2) reads:

(M2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜁

𝑠.𝑡.

𝑘𝑥𝑘 ≤ 𝑣𝑘, 𝑘 = 1, . . . , ̂︀𝐿, (29a)

𝑘𝑤𝑘𝑗 ≤ 𝑣𝑗 , 1 ≤ 𝑘 < 𝑗 ≤ ̂︀𝐿, (29b)

𝑘𝑥𝑘 − 𝑘𝑤𝑘𝑗 ≤ 𝜁 − 𝑣𝑗 , 1 ≤ 𝑘 < 𝑗 ≤ ̂︀𝐿, (29c)
̂︀𝐿∑︀

𝑘=1

𝑥𝑘 = 𝑛− 1, (29d)

𝑥𝑗 +
̂︀𝐿−𝑗∑︀
𝑘=1

𝑤𝑘,𝑘+𝑗 ≤ 1, 𝑗 = 1, . . . , ̂︀𝐿− 1, (29e)

𝜁 ∈ R+, (𝑥, 𝑤) ∈ℳ, (𝑥, 𝑤, 𝑣) ∈ 𝒱, (29f)

𝑥𝑘 ∈ {0, 1} , 𝑘 = 1, . . . , ̂︀𝐿. (29g)

The model (M3) below is obtained from the model (G) using a complete rank 1 Sherali-Adams reformulation-
linearization of the constraints (25a) and (25b). In other words, the model (M3) is obtained from the model
(M2) using, in addition, a complete rank 1 Sherali-Adams reformulation-linearization of the constraint (29d),
where only the 1-factors

{︁
𝑥𝑗 : 𝑗 = 1, . . . , ̂︀𝐿}︁

are needed. We obtain the same constraints using the 1-factors{︁
1− 𝑥𝑗 : 𝑗 = 1, . . . , ̂︀𝐿}︁

.
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(M3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜁

𝑠.𝑡.

𝑘𝑥𝑘 ≤ 𝑣𝑘, 𝑘 = 1, . . . , ̂︀𝐿, (30a)

𝑘𝑤𝑘𝑗 ≤ 𝑣𝑗 , 1 ≤ 𝑘 < 𝑗 ≤ ̂︀𝐿, (30b)

𝑘𝑥𝑘 − 𝑘𝑤𝑘𝑗 ≤ 𝜁 − 𝑣𝑗 , 1 ≤ 𝑘 < 𝑗 ≤ ̂︀𝐿, (30c)
̂︀𝐿∑︀

𝑘=1

𝑥𝑘 = 𝑛− 1, (30d)

𝑗−1∑︀
𝑘=1

𝑤𝑘𝑗 +
̂︀𝐿∑︀

𝑘=𝑗+1

𝑤𝑗𝑘 = (𝑛− 2) 𝑥𝑗 , 𝑗 = 1, . . . , ̂︀𝐿 (30e)

𝑥𝑗 +
̂︀𝐿−𝑗∑︀
𝑘=1

𝑤𝑘,𝑘+𝑗 ≤ 1, 𝑗 = 1, . . . , ̂︀𝐿− 1, (30f)

𝜁 ∈ R+, (𝑥, 𝑤) ∈ℳ, (𝑥, 𝑤, 𝑣) ∈ 𝒱, (30g)

𝑥𝑘 ∈ {0, 1} , 𝑘 = 1, . . . , ̂︀𝐿. (30h)

Finally, we introduce the model (M4), which is obtained through a partial rank-2 Sherali-Adams reformulation
of the base model (G) as outlined below.

(M4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜁

𝑠.𝑡.

𝑘𝑥𝑘 ≤ 𝑣𝑘, 1 ≤ 𝑘 ≤ ̂︀𝐿, (31a)

𝑘𝑤𝑘𝑗 ≤ 𝑢𝑘𝑗 , 1 ≤ 𝑘 < 𝑗 ≤ ̂︀𝐿, (31b)

𝑘𝑤𝑘𝑗 − 𝑘𝑥𝑘 ≤ 𝑣𝑘 − 𝑢𝑘𝑗 , 1 ≤ 𝑘 < 𝑗 ≤ ̂︀𝐿, (31c)

𝑢𝑘𝑗 ≤ 𝜁, 1 ≤ 𝑘 < 𝑗 ≤ ̂︀𝐿, (31d)

𝑢𝑘𝑗 ≤ ̂︀𝐿𝑤𝑘𝑗 , 1 ≤ 𝑘 < 𝑗 ≤ ̂︀𝐿, (31e)

𝑢𝑘𝑗 ≥ 𝜁 + ̂︀𝐿 (𝑤𝑘𝑗 − 1) , 1 ≤ 𝑘 < 𝑗 ≤ ̂︀𝐿, (31f)
̂︀𝐿∑︀

𝑘=1

𝑥𝑘 = 𝑛− 1, (31g)

𝑥𝑗 +
̂︀𝐿−𝑗∑︀
𝑘=1

𝑤𝑘,𝑘+𝑗 ≤ 1, 𝑗 = 1, . . . , ̂︀𝐿− 1, (31h)

𝜁 ∈ R+, (𝑥, 𝑤) ∈ℳ, (𝑥, 𝑤, 𝑣) ∈ 𝒱, (31i)

𝑢𝑘𝑗 ≥ 0, 1 ≤ 𝑘 < 𝑗 ≤ ̂︀𝐿, (31j)

𝑥𝑘 ∈ {0, 1} , 𝑘 = 1, . . . , ̂︀𝐿. (31k)

The constraints (25a) of the model (G) are reformulated using the factors:{︁
𝑥𝑘 : 1 ≤ 𝑘 ≤ ̂︀𝐿}︁

and
{︁

𝑥𝑘𝑥𝑗 , 𝑥𝑘 (1− 𝑥𝑗) : 1 ≤ 𝑘 < 𝑗 ≤ ̂︀𝐿}︁
. (32)

The new variables 𝑢𝑘𝑗 are used to linearize the new products 𝜁𝑥𝑘𝑥𝑗 . The variables 𝑣 and 𝑤 are as defined
previously.
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5. Computational results

The computational results presented in this section have two purposes. The first one is to provide the correct
outputs of the greedy heuristic presented in [12] for computing feasible Golomb rulers. The second purpose is
to compare the computational efficiency of the models (G), (M1), (M2), (M3), (M4), and (̂︀K) in solving the GRP.
Moreover, we also correct the false conclusions stated or implied in [12].

5.1. The heuristic

The computational results reported in this subsection were obtained using a Dell-Optiplex desktop with
an Intel-Core-i7-9700 CPU running at 2.0 GHz with 8 cores, and 32 GB of RAM. The desktop is operated
by a Linux Ubuntu 18.05.06 LTS operating system.

In [12], the authors proposed a greedy heuristic (referred to as H) to compute feasible Golomb rulers. For the
sake of completeness, we provide its pseudo-code below. The variables mark and dist are two boolean arrays
such that mark(𝑘) = 1 (resp. dist(𝑘) = 1) if and only if the mark (resp. distance) 𝑘 is not used.

Algorithm 1: Greedy heuristic H.
1 Input 𝑛 (number of marks)
2 Outputs ruler (set containing ruler’s marks) ; lruler (ruler’s length)
3 begin
4 limit← MaxInt // Upper-bound to the Golomb ruler’s length

5 for 𝑘 ∈ {0, 1} do
6 mark(𝑘)← 0; dist(𝑘)← 0

7 for 𝑘 ∈ {2, . . . , limit} do
8 mark(𝑘)← 1; dist(𝑘)← 1

9 lruler← 1; 𝑘 ← 1
10 while 𝑘 < 𝑛− 1 do
11 d← 1; infeasible← 1
12 while infeasible do
13 if dist (𝑑) then
14 length← lruler + d

15 𝑖← 0 // Check if length is feasible.

16 while (mark (𝑖) or dist (length− 𝑖)) and 𝑖 < length + 1 do
17 𝑖← 𝑖 + 1

18 if 𝑖 = length + 1 then
19 lruler← length

20 mark (lruler)← 0
21 for 𝑖 ∈ {0, . . . , lruler− 1} do
22 if not mark (𝑖) then dist (lruler− 𝑖)← 0

23 infeasible← 0

24 d← d + 1

25 𝑘 ← 𝑘 + 1

26 ruler← {} // Extract ruler’s marks

27 for 𝑘 ∈ {0, . . . , lruler} do
28 if not mark (𝑘) then ruler← ruler ∪ {𝑘}
29 return ruler, lruler
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Table 1. Correct lengths obtained using the greedy heuristic H.

Length Gap

𝑛 Opt H abs. rel.(%) 𝑛2

5 11 12 1 8.33 25
6 17 20 3 15.00 36
7 25 30 5 16.67 49
8 34 44 10 22.72 64
9 44 65 21 32.31 81
10 55 80 25 31.25 100
11 72 96 24 25.00 121
12 85 122 37 30.33 144
13 106 147 41 27.89 169
14 127 181 54 29.83 196
15 151 203 52 25.62 225
16 177 251 74 29.48 256
17 199 289 90 31.14 289
18 216 360 144 40.00 324
19 246 400 154 38.50 361
20 283 474 191 40.30 400
21 333 564 231 40.96 441
22 356 592 236 39.86 484
23 372 661 289 43.72 529
24 425 774 349 45.09 576
25 480 821 341 41.53 625
26 492 915 423 46.23 676
27 553 969 416 42.93 729
28 585 1015 430 42.36 784

Unfortunately, the implementation proposed in https://github.com/luizleduino/golombruler/blob/
master/heuristic is buggy and the lengths reported in [12] are incorrect. Indeed, as implemented, the heuristic
H returns non-Golomb rulers for 𝑛 ≥ 9. In the case of 𝑛 = 9, it returns the ruler ⟨0, 1, 3, 7, 12, 20, 30, 44, 59⟩,
which is not a Golomb ruler because 59− 30 is equal to 30− 1. Additionally, the computed rulers with 𝑛 ≥ 10
all have as their first 10 marks the marks of the ruler above. Thus, all these rulers are not Golomb rulers.

The correct lengths of the Golomb ruler computed by the heuristic H are shown in Table 1, where for a given
integer 𝑛, the entry Opt(𝑛) in the column Opt (resp. H(𝑛) in the column H) is the length of an optimal Golomb
ruler (resp. the length of the Golomb ruler computed by the heuristic H) featuring 𝑛 marks. The meaning of the
other columns is straightforward. From the aforementioned table, one can observe that for 𝑛 ≥ 17, the difference
between 𝑛2 and lengths H(𝑛) tends to increase, contrary to the computational results reported in Table 1 of
[12]. Thus, the conclusion drawn in [12] regarding the good performances of the heuristic H to compute Golomb
rulers (see Sect. 5, second paragraph) is wrong.

5.2. Numerical efficiency of the proposed models

The computational results presented in this subsection aim to investigate the numerical efficiency of, first,
the model (̂︀K), and then the models (G), (M1), (M2), (M3), and (M4) to solve the GRP. These computational results
were obtained using an HPC cluster featuring 2xIntel-Xeon-5690 processors with 12 cores and 24 threads.
The solution time was limited to 24 hours. All the BMILP models (G), (M1), (M2), (M3), and (M4) were solved using
the solver Gurobi (ver-10.0.1) [14] with its default settings, while the solvers Baron (ver-23.3.11) [15] and
Knitro (ver-13.2.1) [6] were used to solve the model (̂︀K). These solvers were all used via the AMPL interface
[1, 29].

https://github.com/luizleduino/golombruler/blob/master/heuristic
https://github.com/luizleduino/golombruler/blob/master/heuristic
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Table 2. Computational efficiency of the model (̂︀K) to solve the GRP.

Size Knitro Baron

Time Gap Time

𝑛 Opt ̂︀𝐿 nv nc Objval (m:s) Lb Ub (%) (h:m:s)

5 11 12 13 36 11.00 4.08 11.00 11 0.00 10.92
6 17 20 21 60 17.00 8.41 14.46 17 14.94 24:06:55
7 25 30 31 90 25.00 17.69 15.34 25 38.62 24:00:05
8 34 44 45 132 34.00 39.63 14.74 37 60.18 24:00:06
9 44 65 66 195 45.00 1:10 15.47 49 68.44 24:00:07
10 55 80 81 240 62.00 2:09 17.48 63 72.26 24:00:02
11 72 96 97 288 78.00 3:45 18.55 79 76.52 24:00:03
12 85 122 123 366 94.00 8:03 20.06 106 81.08 24:00:02
13 106 147 148 441 113.00 13:32 21.12 123 82.83 24:00:01
14 127 181 182 543 133.00 28:12 22.09 147 84.97 24:00:09

Firstly, in [12], the authors advocated that to solve the GRP, it is more promising to solve the continuous
relaxation (̂︀K) than solving the model (K) (see Sect. 5, first paragraph). This is rather counterintuitive because
the nonlinear model (̂︀K) is non-convex. As an argument, they showed computational results using the solver
Knitro with a particular setting (multi-start enabled with 5000 random points).

In Table 2, we reproduced the computational results obtained after solving the non-convex model (̂︀K) using
the two solvers Knitro (with the same setting used in [12]) and Baron (with its default settings). For the Knitro
solver, we reported the solution time in seconds (column Time) and the objective value (column Objval). For
the Baron solver, we reported the lower bounds (column Lb), the upper bounds (column Ub), the relative gap
(column Gap) between the upper and lower bounds, and the solution time in a human-readable format (column
Time). The meaning of the other columns is as follows: the columns 𝑛, Opt, ̂︀𝐿 are respectively the number of
marks, the length of an optimal Golomb rulers, and the used upper bound to the length of an optimal Golomb
ruler. The content of the two columns nv and nc are respectively the number of variables and constraints of the
model (̂︀K).

The solver Knitro, as observed in [12], solves the model (̂︀K) quickly. However, it returns only feasible solutions,
as indicated in the column Objval. This is not surprising because Knitro guarantees a global optimal solution
only if the model is convex, which is not the case for the model (̂︀K). In contrast to the Knitro solver, the Baron
solver guarantees a global optimal solution of the model (̂︀K). It is notable that the relative gap after 24 hours
(time limit) of computational efforts is at least 70% for instances with a number of marks 𝑛 ≥ 10. As we will
demonstrate latter, better performances can be obtained using BMILP models to solve the GRP, contrary to what
is suggested in [12] (see Sect. 5, first paragraph).

Secondly, let us compare the relative performance of the models (G), (M1), (M2), and (M3) to solve the GRP.
The results of our computational experiments are compiled in Table 3, where for each instance, we reported the
number of marks (column 𝑛), the length of an optimal Golomb ruler (column Opt), and the upper bound to the
length of an optimal Golomb ruler used (column ̂︀𝐿). For each model, we report its size: number of binary and
continuous variables (columns nbv and ncv, respectively); total number of variables and constraints (columns
nv and nc, respectively); the value of the best bound (column Best bnd.); the value of the best incumbent
found (column Best sol.); the relative gap computed as 1− Best bnd.

Best sol.
(column Gap); the solution time (column

Time); and the number of explored nodes in the branch-and-bound tree (column Nbr. nodes).
From Table 3, one can observe that the model (M1) outperforms the other three models if one considers the

number of optimal Golomb rulers found (the number of optimal Golomb rulers found by the models (M1), (G),
(M2), and (M3) are 8, 7, 6, 6, respectively), the values of the best lower bounds (except for the ruler with 13 marks
for which the lower bound computed by (G) is better), or the running time (except for the ruler with 11 marks
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Table 3. Computational performance of the models G, M1, M2, and M3 to solve the GRP.

Model G Model M1
Size of the model Best Best Gap Time Nbr. Size of the model Best Best Gap Time Nbr.

𝑛 Opt. ̂︀𝐿 nbv ncv nv nc bnd. sol. (%) (h:m:s) Nodes nbv ncv nv nc bnd. sol. (%) (h:m:s) Nodes

5 11 12 12 67 79 222 11.00 11 0.00 0.25 1 12 79 91 258 11.00 11 0.00 0.28 1
6 17 20 20 191 211 610 17.00 17 0.00 0.37 1 20 211 231 670 17.00 17 0.00 0.26 1
7 25 30 30 436 466 1365 25.00 24 0.00 1.9 193 30 466 496 1455 25.00 25 0.00 2.46 1
8 34 44 44 947 991 2926 34.00 34 0.00 9.31 1893 44 991 1035 3058 34.00 34 0.00 16.4 2277
9 44 65 65 2081 2146 6370 44.00 44 0.00 1:03 12481 65 2146 2211 6565 44.00 43 0.00 1:15 9555
10 55 80 80 3161 3241 9640 55.00 55 0.00 12:24 35994 80 3241 3321 9880 55.00 55 0.00 7:46 35817
11 72 96 96 4561 4657 13872 72.00 72 0.00 1:39:34 1593120 96 4657 4753 14160 72.00 72 0.00 3:32:15 1241720
12 85 122 122 7382 7504 22387 76.00 94 19.15 limit 18006203 122 7504 7626 22753 85.00 85 0.00 15:24:35 4815450
13 106 147 147 10732 10879 32487 94.00 115 18.26 limit 14230945 147 10879 11026 32928 71.00 117 39.32 limit 485739
14 127 181 181 16291 16472 49232 75.32 140 46.20 limit 987556 181 16472 16653 49775 84.00 143 41.26 limit 757324

Model M2 Model M3
Size of the model Best Best Gap Time Nbr. Size of the model Best Best Gap Time Nbr.

𝑛 Opt. ̂︀𝐿 nbv ncv nv nc bnd. sol. (%) (h:m:s) Nodes nbv ncv nv nc bnd. sol. (%) (h:m:s) Nodes

5 11 12 12 145 157 588 11.00 11 0.00 0.34 1 12 145 157 600 11.00 11 0.00 0.31 1
6 17 20 20 401 421 1620 17.00 17 0.00 0.7 1 20 401 421 1640 17.00 17 0.00 0.78 1
7 25 30 30 901 931 3630 25.00 25 0.00 4.55 1 30 901 931 3660 25.00 25 0.00 8.55 221
8 34 44 44 1937 1981 7788 34.00 34 0.00 35.12 2031 44 1937 1981 7832 34.00 34 0.00 23.95 1988
9 44 65 65 4226 4291 16965 44.00 44 0.00 3:21 12244 65 4226 4291 17030 44.00 43 0.00 2:45 4239480
10 55 80 80 6401 6481 25680 55.00 55 0.00 42:53 35195100 80 6401 6481 25760 55.00 55 0.00 44:13 2840990
11 72 96 96 9217 9313 36960 71.00 74 4.05 limit 439260 96 9217 9313 37056 65.00 72 9.72 limit 241217
12 85 122 122 14885 15007 59658 63.99 95 32.64 limit 186046 122 14885 15007 59780 64.31 95 32.31 limit 131492
13 106 147 147 21610 21757 86583 61.56 122 49.54 limit 70359 147 21610 21757 86730 67.45 123 45.16 limit 49950
14 127 181 181 32762 32943 131225 52.75 153 65.52 limit 18043 181 32762 32943 131406 47.07 147 67.98 limit 26898

for which the running time to compute the optimal Golomb ruler by the model (G) is approximately half the
running time of the model (M1)).

When examining specific pairs of models, first, one can notice that the two models (K) and (M1) perform
rather similarly on rulers featuring a number of marks between 5 and 11. For the other rulers, the model (M1)
performs better than the model (K). Indeed, an optimal Golomb ruler with 12 marks is found in less than 16
hours using the model (M1), while the relative gap of the feasible Golomb ruler found using the model (K) after
24 hours of computational efforts is 19.15%. For the ruler with 13 marks, the relative gap obtained using the
model (K) is better than the one obtained using the model (M1). However, a slightly better relative gap using
the model (M1) is obtained for the ruler with 14 marks. Second, the performances of the two models (M2) and
(M3) are rather similar. Optimal Golomb rulers are obtained for the GRP with a number of marks between 5 and
10. For rulers with a number of marks between 11 and 14, the relative gaps are slightly the same.

Regarding the number of nodes explored during the branch-and-bound algorithm, the model (K) consistently
exhibits the highest counts across almost all instances. In contrast, the number of nodes explored using the
model (M1) surpasses those of models (M2) and (M3). Comparing the number of nodes explored by the latter two
models is more complex. However, the reduced count of explored nodes in models (M2) and (M3) compared to
(K) and (M1) can be attributed to the size (number of variables and constraints) of their continuous relaxations.
This indicates that solving the continuous relaxation at each node of the branch-and-bound algorithm is more
time-consuming.

Based on the aforementioned analysis, it appears that the model (M1) exhibits superior performance in
computing optimal Golomb rulers with a number of marks ranging from 5 to 14.

At this point of the discussion, one may wonder about the efficiency of the model (M1) to solve instances with
a number of marks 𝑛 ≥ 15. Moreover, one may ask about using a rank 2 partial Sherali-Adams relaxation.

In Table 4, we present computational results showing the performances of the two models, (M1) and (M4), in
computing optimal Golomb rulers when the number of marks 𝑛 ranges from 13 to 18. The computation time
was limited to 10 days.

One can observe that computing optimal Golomb rulers for instances featuring a number of marks 𝑛 between
13 and 18 is time-consuming. Even after 10 days of computational efforts, the relative gap remains high for
instances with 14 marks or more.
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Table 4. Computational performance of the models M1 and M4.

Size of the model Best Best Gap Time Nbr.

𝑛 Opt. ̂︀𝐿 nbv ncv nv nc bnd. sol. (%) (h:m:s) Nodes

Model M1

13 106 147 147 10879 11026 32928 98.00 109 10.09 240:00:01 21738900
14 127 181 181 16472 16653 49775 99.00 138 28.26 240:00:10 23501800
15 151 203 203 20707 20910 62524 93.52 170 44.99 240:00:04 2368570
16 177 251 251 31627 31878 95380 100.00 204 50.98 240:00:03 696569
17 199 289 289 41906 42195 126293 78.39 242 67.61 240:00:05 550219
18 216 360 360 64981 65341 195660 52.64 287 81.72 240:00:04 45491

Model M4

13 106 147 147 21610 21757 86583 74.00 119 37.82 240:00:03 1898050
14 127 181 181 32762 32943 131225 69.50 148 53.04 240:00:05 1162260
15 151 203 203 41210 41413 165039 83.00 175 52.84 240:00:04 286779
16 177 251 251 63002 63253 252255 62.24 209 70.22 240:00:05 45
17 199 289 289 83522 83811 334373 80.22 256 68.67 240:00:06 38518
18 216 360 360 129601 129961 518760 85.54 293 70.81 240:00:09 47880

Additionally, the results obtained using the model (M1) are competitive with those obtained by the model
(M4). The model (M1) finds Golomb rulers with better lengths compared to those found by the model (M4). Also,
except for the two last rulers, the values of the lower bounds computed by the model (M1) are better than those
computed by the model (M4). Regarding the number of explored nodes during the branch-and-bound algorithm,
the model (M1) explores more nodes than the model (M4), because the latter features a continuous relaxation
that is stronger but time-consuming to solve.

To gain a better understanding of the time necessary to compute Golomb rulers using the models (M1) and
(M4), we fitted the values of the relative gap for rulers with 𝑛 ∈ {16, 17, 18} using the model:

𝑔𝑛 (𝑡) = 1− 1
1 + 𝛼𝑛𝑡−𝛽𝑛

, (33)

where 𝑡 is the time variable in days.
The values of the parameters 𝛼𝑛 and 𝛽𝑛 are estimated based on the relative gaps recorded in Table 5. These

relative gaps are those recorded after each day of computational effort during the 10 days. The estimated values
of the parameters 𝛼𝑛 and 𝛽𝑛 are given in the last two rows.

In Table 6, we reported the estimated time necessary to compute (with the same resources) Golomb rulers
with a number of marks 𝑛 ∈ {16, 17, 18} and featuring a relative gap at most the value indicated in the first
column. For instance, using the model (M1), almost 8.5 years are necessary to obtain a Golomb ruler with 16
marks featuring a relative gap of at most 10%. One can observe that the estimated time increases drastically
with the number of marks and the desired value of the relative gap. Computing Golomb rulers with 18 marks
and a relative gap of at most 50% is out of reach using the model (M1). In contrast, there is a better hope using
the model (M4), with at most 2 years to compute a Golomb ruler with a relative gap of at most 50%.

6. Conclusion

In this work, we proposed a straightforward proof of the conjecture stated in [12] regarding the optimal
solutions of the model (̂︀K). Moreover, concerning the greedy heuristic proposed in [12] to compute Golomb
rulers, we provided its correct outputs and corrected the erroneous facts and conclusions presented in [12].

As a second contribution, starting from the observation that the proposed model (̂︀K) is the continuous
relaxation of the model (K), derived from the model (G) using the well-known RLT technique, we explored
the computational efficiency of four models, all obtained by partial Sherali-Adams reformulation-linearization
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Table 5. Values of the relative gaps recorded each day of the computational experiment and
the estimated values of the parameters 𝛼𝑛 and 𝛽𝑛.

Instances

Solved using 𝑀1 Solved using 𝑀4

Day 16 17 18 16 17 18

1 0.798 0.804 0.822 0.761 0.786 0.788
2 0.542 0.803 0.822 0.735 0.708 0.775
3 0.536 0.773 0.822 0.722 0.707 0.737
4 0.529 0.692 0.822 0.702 0.698 0.731
5 0.524 0.684 0.822 0.702 0.696 0.724
6 0.523 0.680 0.821 0.702 0.687 0.723
7 0.522 0.679 0.821 0.702 0.687 0.710
8 0.522 0.678 0.821 0.702 0.687 0.708
9 0.522 0.677 0.820 0.702 0.687 0.708
10 0.510 0.676 0.817 0.702 0.687 0.708

𝛼𝑛 2.16449 4.34312 4.652 3.01332 3.08277 3.68457
𝛽𝑛 0.369887 0.355974 0.0093652 0.126109 0.173105 0.198012

Table 6. Estimated solution time in years using the models (M1) and (M4) to compute Golomb
rulers with number of marks 𝑛 ∈ {16, 17, 18}.

Number of marks

Targeted

gap (%) 16 17 18

Model M1

50 0.022098 0.169597 5.33463× 1068

25 0.430789 3.71317 4.713× 10119

10 8.398 81.2966 4.1638× 10170

5 63.3142 663.266 1.86307× 10205

Model M4

50 17.2329 1.8291 1.98642
25 104652 1043.5 510.067
10 6.35531× 108 595312 130973
5 2.37895× 1011 4.4606× 107 5.70199× 106

technique. The computational results we provided indicate, among other things, that using BMILP models is
more efficient than non-convex models, for obvious reasons. Also, they indicate that computing optimal Golomb
rulers when 𝑛 ≥ 13 is time-consuming. This is not surprising if one recalls that the optimal Golomb Ruler with
28 marks was obtained after approximately 8.5 years of computational time. Perhaps an equivalent or greater
amount of time is required to compute optimal Golomb rulers using Reformulation-Linearization-based models.
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