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Abstract

Logical gates have been used in implementation of logic sequential and com-

binational circuits especially in computers, DSPs and microprocessors. They

are mostly fabricated based on CMOS technology that provides a few nano-

seconds of delay for each digital gate. Due to limitations in more scaling CMOS

transistors and cause of short channel effects, some engineers and researchers

believe that there is a huge demand for new devices and fabrication technolo-

gies to produce faster logic gates. In this paper, a new architecture for NAND

gate is presented which operates based on mechanical resonance of a network

of weakly coupled resonators that resonate in radio frequencies. This design

is achieved by employing the associative memory property of Hopfield neural

networks and the theory of weakly coupled resonators. The main advantage of

the proposed design is in its capability to reach out delay times of the order

of 1 nano-seconds or even less. One solution to decrease the delay time can

be increasing the resonance frequency of resonators which are processing ele-

ments of resonators network. In this paper just the new idea of implementation

NAND gate based on weakly coupled RF MEMS resonators is presented and

evaluated. Other criteria like gate power consumption, effects of temperature,
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fan in, fan out and noise margin are not discussed. Regarding the rapid growth

in MEMS technology, resonators with Super High Frequency (SHF 3-30 GHz)

are now available and those with Extremely High frequency (EHF 30-300 GHz)

will soon be in market which enables the presented design to achieve higher

speeds. In addition, mechanical resonators are more fault tolerant than CMOS

circuits when utilized in harsh environments which exposed to ionic beams or

electron beam radiations. In space applications, the satellite and payload are

exposed to huge bombardments of space electrons and ions beams. So, the pro-

posed NAND gate can be a good solution for enhancing reliability of devices

and systems exposed to space radiations.

Keywords: Weakly coupled resonators, Hopfield neural networks, Universal

NAND gate design, RF MEMS resonators, Mechanical neuroprocessing.

1. Introduction

In recent decades, we have witnessed the inevitable slowdown of Moore’s

law and lots of analysts have predicted that the era of exponential gains in

microelectronic is coming to an end [1]. Various ideas are being developed to

be introduced as alternative approaches for computation like quantum comput-5

ing [2] and neuromorphic computing [3, 4]. Also, brain inspired electronics such

as memresistive [5, 6] and oscillator based [7, 8, 9] systems are growing rapidly

in recent years and brings up a competitive field for beyond Moore computation.

Oscillator based systems use the highly complex dynamics of coupled os-

cillators for computation. The genuine idea returns back to 1950s [10, 11, 12]10

but is currently an active area of research and shows utility for certain types

of challenges such as image processing [13] and optimization problems (energy

minimizing)[14]. This type of computing basically occurs by oscillators interac-

tions, specifically their synchronization that is affected by the interconnection

of the oscillators. Oscillator based systems can carry information based on both15

phase and frequency oscillatory signals. In Phase based systems, oscillators

operate at almost the same frequency and information is represented through
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phase.

As mentioned, one ground setting capable of forming a hardware basis for

neurocomputing is a network of oscillators. Hoppensteadt and Izhikevich proved20

that a network of properly connected oscillators can perform associative mem-

ory operation regardless of the physical nature of the oscillators [15, 16, 17].

Various attempts with oscillators of different kinds have been subject to re-

search in order to establish a ground structure to perform specific tasks. Many

types of oscillators can realize the role of neuron function. Structures with os-25

cillatory neurons of magnetic spin-torque [18, 19, 20],oxide-based [21], CMOS

ring [22], injection locking [23] optical laser-based oscillators [24], supercon-

ducting Josephson junctions [25, 26] and micro or nano-electro-mechanical sys-

tems [27, 28, 29, 30, 31, 32, 33, 34] have been proposed. Several of these works

are seeking a platform for pattern recognition, making use of the associative re-30

call property presented by coupled oscillators array. Oscillator based systems are

also presented in cryptography [35], pattern generation and gait control [36, 37].

In another research, an energy efficient integrated MEMS neural network was

fabricated for sensing and computing simultaneously [38].

This work focuses on Radio Frequency Micro-Electro-Mechanical Systems35

(RF MEMS) as oscillatory neurons. MEMS oscillators are among the most

widely used systems in ubiquitous areas such as sensing, biomedical implants

and wireless communications. RF MEMS oscillators are high frequency resonant

systems that play an important role in the field of telecommunications. Lately,

much attention has been drawn to these systems in order to be utilized in the40

area of Generation 5 (5G) wireless networks. Operating resonant frequency in

such systems can reach up to multiple GHz. Various resonators with different

transduction mechanisms exist with utilities in commerce from the early 1.156

GHz disk resonator presented in [39] to the late Super High Frequency(SHF)

resonators with up to 30 GHz working frequency [40]. Micro/Nano electrome-45

chanical systems (MEMS/NEMS) could provide new solutions for computing

and memory systems. Ultra low power consumption, compatibility and reconfig-

urability are some advantages of MEMS/NEMS memory systems in comparison
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with MOSFET technology [41].

The main intention of the present work is to design a structure based on50

oscillatory network to be a basis for phase logic computing. This is done by

employing RFMEMS oscillators as neurons which are electrically interconnected

constituting the network. This architecture is intended to perform as a NAND

logic gate. The mentioned gate is working on a basis of mechanical resonators, so

we can call this as electromechanical neurocomputers. The structure presented55

in this paper may possibly be an alternative solution for prevailing CMOS based

NAND gates in some applications due to its high speed and the fact that the RF

MEMS technology is growing rapidly and yet has a long way to grow up. In order

to apply the proposed microelectromechanical gate in real world applications, it

is essential to add more parts considering other criteria like power consumption,60

noise margine and fan out which are not discussed in this paper.

In the following sections, first we are going to define weak coupling in an

array of resonators and the conditions in which the Andronov-Hopf bifurcation

occurs. This specific critical regime is vital for the resonators to have sustained

constant amplitude oscillations. Next, in section III we present a structure of65

resonators arranged to form a Hopfield neural network. Section IV, proposes the

main goal of this work that is to design a NAND logic gate and the method that

led to this particular design. Simulated results come in the next section and are

analyzed. Finally, we sum up the work done in this paper in the conclusion.

2. Theory70

2.1. Weakly Connected RF MEMS Resonators

Studies on neurophysiology illustrate the existence of synaptic connections

in brain circuitry and among tens of billions of excitatory and inhibitory neu-

rons. Action potentials or spikes, believed to be chemical-based electrical pulses,

generated by the excitatory neurons while excite the inhibitory cells and they75

are inhibited in reciprocation. This action of excitation, also known as firing,

forms dynamic synaptic connections in brain.
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Different models have been proposed to mimic this dynamic connectivity

and neuronal behavior existing in the nervous system. For instance, compre-

hensive models such as Hodgkin-Huxley, empirical models like Mc’Cluch-Pitts80

and Hopfield’s network and canonical models including the voltage Controlled

Oscillator Neuron(VCON) are among the many models constituting the litera-

ture in mathematical neuroscience[42].

Experimental observations have revealed that in case of spikes accumulation

(integration) in a particular neuron (caused by other neurons via synapses) the85

neuronal activity of that neuron can exceed a certain threshold which leads

to firing repetitive spikes, otherwise the neuron remains quiescent. A different

approach for describing neuronal activity consists of replacement of neurons

with periodic oscillators, where the phase of each oscillator plays the role of spike

time. This rhythmic or oscillatory dynamical behavior is also observed in various90

brain parts, including olfactory bulb, thalamus, neocortex and hippocampus[43].

Inspired by biological systems and making use of the rhythmic analogy of

physical artificial oscillators and biological neurons one can present an oscillator

based model. Here we essentially consider an especial category of Weakly Con-

nected Oscillatory Networks(WCONs) which are capable of information process-95

ing and pattern recognition using their proposing associative memory property

[17]. Dynamics of such a system with n oscillatory neurons of dynamical order

m can be described as follows using the Malkin’s theorem [44]:

ẋi = fi(xi) + ϵ
n∑

j=1

gij(xi, xj , ϵ) (1)

Where each of vectors xi ∈ Rm shows activity of i′th oscillator, function fi :

Rm → Rm describes its internal dynamics function, gij : Rmxn → Rn defines100

the coupling among the units and ϵ ≪ 1 is a small parameter that guarantees a

weak connection among the cells.

Eq. (1) defines dynamics of a general case of arbitrary weakly coupled oscil-

lators in a network of oscillators, however this paper focus on a specific type of

mechanical oscillator as mentioned earlier, the RF MEMS oscillators. A network105
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of n coupled mechanical oscillators is described as follows:

mẍi + f(xi)ẋi + g(xi) =

n∑
j=1

(pij ẋj + kijxj) (2)

Where xi shows each oscillator’s resonant body’s displacement with respect to

a determined reference position, m describes its effective mass and f and g are

damping and stiffness functions, respectively. Right hand side of the equation

reveals the effect of connections in the network in which pij and kij show the110

strength of electrical and mechanical connections (conductance and mechanical

spring constants) between ith and jth oscillators.

Employing complex change of variable zi = ẋi + iωxi wherein ω =
√

k
m

is resonance frequency of the dynamic system, we can achieve the canonical

dynamic model of the network as follows:115

żi = (c+ iω)zi + (a+ ib)zi|zi|2 +
n∑

j=1

cijzj (3)

where:

cij =
1

2m
pij −

i

2mω
kij (4)

and parameters a, b and c are as follows:

a = − f ′′
xx

16mω2

b =
3mg′′′ − 2(f ′

x)
2

48m2ω3

c = − f ′
λ

2m
(λ− λH)

Note that forms of the functions f and g depend on geometry, properties of

material, features of the feedback loop and other characteristics of the oscillator,

however particular forms of these functions do not affect the normal form (3),120

but only the parameters a, b and c. For more detailed analysis, see [27] and

[44].

In order to have sustained constant amplitude oscillations, the super-critical

Andronov-Hopf bifurcation must occur and this is guaranteed when a < 0 and
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Figure 1: MEMS Oscillator Neural Network

c increases through the value 0. As mentioned earlier, parameters a, b and c125

are calculated based on the characteristics of the oscillator, including, damping

and stiffness functions (and their derivatives f ′, f ′′ and g′′′), effective mass m

and the frequency of the dynamical system ω. Here, the damping function f is

considered to be the Van der Pol damping, f(x, λ) = x2 − λ where parameter

λ is proportional to the bias voltage applied to the oscillator and λH is the130

threshold value for damping sign, here is assumed to be λH = 0. Also, stiffness

function is modeled by Duffing stiffness g(x) = x + x3 that is trivial to be an

odd function. For detailed analysis see [27].

2.2. Associative Memory Using Oscillatory RF MEMS Network

As said earlier, a network of oscillators interconnected suitably has autocor-135

relative associative memory similar to the one present in Hopfield neural net-

works. In oscillatory networks each pattern is stored in a synchronized phase

relation that fluctuates with the corresponding limit cycle. It is proved for pre-

senting associative memory property, it is vital that all the oscillators operate

at same frequency. Also, in this particular work in which RF MEMS oscillators140

are being used, the mechanical interactions between the cells must be negligi-

ble and the electrical interactions must be symmetrical i.e. kij = kji = 0 and

pij = pji. In case of the mentioned conditions, the network always converges

to an oscillatory phase-locked pattern. There could be many such phase-locked

patterns corresponding to many memorized patterns. The proof and detailed145
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analysis can be found in [17], [27].

Figure 1 shows a MEMS oscillatory network having 5 MEMS resonators fully

interconnected. This is a schema of the network we are talking about here in

which there is an electrical connection between every couple of resonators that

ought to be symmetric. The question that raises here is that how the strength150

of each of these connection is determined? The answer can be found in the

patterns that the network stores. In other words, sets of information (in the

form of vector patterns) which are intended to be memorized by being coded to

oscillator’s phase relations determine the connection values of the network.

Among the many possible learning algorithms that were published [45],155

[46],[47] here we employ the Hebbian learning algorithm to design the synaptic

weights (electrical connections) which, as stated, are realized by the externally

connecting signals.

Suppose set of ”m” complex vectors are given to be memorized by the net-

work:160

ξk = (ξk1 , ξ
k
2 , ..., ξ

k
n); |ξki | = 1 k =0, ...,m (5)

Where ξk is complex vector and ξki is ith element of ξk vector.Connection weights

Matrix can be obtained using the Hebbian learning rule as follows:

cij =
1

n

m∑
k=0

ξki ξ̄
k
j (6)

Where n is the number of network cells and cij determines the corresponding

weight between ith and jth neurons.

Now that the ability of the oscillatory networks to perform associative mem-165

ory operation is defined and clarified, we are going to make use of this property

and design a logic gate based on association of the logic states. In the next sec-

tion, first some preliminaries to the subject will be introduced then the proposed

gate architecture is presented.

8



3. MEMS Based NAND Gate170

The main goal of this work is to benefit from the auto associative memory

property of the weakly coupled oscillators network in order to propose an idea

for NAND logic gate implementation. This section is mainly concerned with

this gate, the characteristics and the path to the established architecture.

Figure 2 shows the network architecture that is the basis for the NAND logic175

gate. The network consists of 8 RF MEMS resonators connected electrically

as shown. Outputs 5 and 8 of resonators determine the gate’s output logic.

Whenever the two outputs synchronize in-phase, gate’s output is considered

as logic 1. Otherwise, when they synchronize anti-phase, gate’s output reveals

logic 0 that will be discussed further.180

Our intention of designing the universal NAND logic gate is due to the fact

that NAND gates are universal gate which means any other Boolean function

can be implemented only using a combination of this type of gate. Hence,

owning a NAND gate designed by this particular computation paradigm means

having access to any other logic gate needed for logic operation.185

Current structure, Fig. 2, is achieved by a series of trials and errors through

an exhaustive search in networks with different number of neurons having dif-

ferent learning patterns and different couple of cells as the gate’s output. This

search started with a network of 4 RF MEMS oscillators weakly connected.

Having tried all the possible combinations of the 4 dimensional vectors as learn-190

ing patterns and couple neurons as the output of the gate, no plausible result

has been gained. The search continued, this time in a space of 8 neurons struc-

ture, passing through the same route, the architecture of Fig. 2 is achieved. As

depicted in Fig. 2 outputs of the cells 5 and 8 could generate acceptable logical

outputs which can be considered as output of the NAND gate.195

This oscillatory neural network ought to have the capability to correctly

retrieve all the logic states of NAND gate compatible with the 8-cells structure

presented here. These compatible states are in fact the corresponding logic

states of the truth table (Table 1) that are shown in Table 2. As is indicated,
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Figure 2: MEMS oscillatory network based NAND Gate

total number of 16 modified states constitute all the logical states that are in200

fact input to the designed NAND gate as patterns. The gate must be able to

match correctly all states with their intended logic shown under the column T

of the Table 2. In order to match all the 16 states with their true logic values

as mentioned earlier the network must be trained correctly that means to adopt

the right set of patterns, among all possible, for the network to learn and adjust205

the synaptic connection weights.

Since the neurons of the proposed NAND gate are oscillators, concept of

logic output of the NAND gate must be clarified. For this reason, unit of

data(bit) is re-established. As mentioned earlier, the information is coded in

the network’s oscillatory neurons phase relations, either in-phase or anti-phase210

synchronizations. Thus, the phase relation between every two oscillatory neu-

rons determines a new bit (binary digit) used as unit of data. This unit of

data is logic 1 in case of in-phase oscillations and logic 0 in case of anti-phase

oscillations of the neurons. This idea is essentially similar to the one presented

in Parametrons in 1950s [12]. In other words, two binary states (bits of 0 or215

1) are determined by phase difference of oscillators which in a synchronization

situation can be 0 or π. We call this idea phaselogic. Different logical gate

operations were implemented in Parametrons using classical RLC circuits as os-
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cillators. Recently, new interest is found in utilizing the phase logic approach in

computing devices at nanoscale, using electromechanical nano-oscillators [48],220

super conducting nano-oscillators [49] or relaxation nano-oscillators [50].

Flowchart of Fig. 3 shows the algorithm that led to the NAND gate design.

This flowchart describes the exhaustive search procedure which starts with de-

termining the number of the cells in network. Beginning with 4 cells as stated

earlier this structure isn’t capable of establishing the desired NAND gate. The225

algorithm continues by adopting 8 cells for the network then a set of 5 patterns

is selected and the network is trained based on Hebbian learning rule and the

algorithm checks if any couple of neurons can play the role of gates output cor-

rectly. This means that some sets of patterns similar to all 16 logical patterns

of the Table 2 are imposed on the network as inputs and checked if they are230

fully generating the true values in the NAND output based on the phaselogic.

The algorithm goes on and try all combinations of oscillators as outputs and all

combinations of patterns as training set till it finds a specific combination to

satisfy all the input/output relations. This specific design is shown in the Figure

2 with cells number 5 and number 8 as defined outputs. Hence, here we employ235

the phase logic in order to determine the gate’s logical output. The in-phase

oscillations of the cells 5 and 8 specify logic 1 or True value and the anti-phase

oscillations specify logic 0 or False value in the NAND gate’s output.

As is stated, phaselogic also suggests some information about the network

oscillators’ phase relations. For instance, input pattern [1 0 0 1 0 1 1 0] shows240

that oscillators 1, 4, 6 and 7 are operating in-phase with respect to each other

and anti-phase with respect to rest of the oscillators.

It must be noted that the dynamics of the proposed network of Fig. 2 is

described by the canonical model presented in eq. (3) with number of cells

n = 8. In fact, system of 8 ordinary differential equations with 8 complex245

variables, z1, z2, ..., z8, defines the dynamics of this logic gate. Input patterns to

NAND gate are in fact initial values to this system of ODEs and the response

to this system of ODEs determines the network’s outputs. The system of ODEs

11



Table 1: NAND logic truth table

X Y NAND

0 0 1

0 1 1

1 0 1

1 1 0

are as follows:

ż1 = (c+ iω)z1 + (a+ ib)z1|z1|2 + C1

ż2 = (c+ iω)z2 + (a+ ib)z2|z2|2 + C2

ż3 = (c+ iω)z3 + (a+ ib)z3|z3|2 + C3

ż4 = (c+ iω)z4 + (a+ ib)z4|z4|2 + C4

ż5 = (c+ iω)z5 + (a+ ib)z5|z5|2 + C5

ż6 = (c+ iω)z6 + (a+ ib)z6|z6|2 + C6

ż7 = (c+ iω)z7 + (a+ ib)z7|z7|2 + C7

ż8 = (c+ iω)z8 + (a+ ib)z8|z8|2 + C8

(7)

Where:250

Ci =

8∑
j=1

wijzj (8)

Having presented the structure of designed NAND logic gate now we are ready

to impose the input patterns corresponding to the possible logical states and

present the simulated results.

4. Simulations and Results

In order to validate the claimed capability of the proposed neural network,255

we simulated the network response to all 16 patterns of the Table 2, which are

all states possible for the 8-cells structure, to see if the network can produce the

logical outputs correspond to all inputs. To avoid repetition, here we present

one out of every four patterns corresponding to each logical state for X and Y .
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Table 2: NAND logic input patterns

X, Y Z0 T

[1 0 0 1 0 1 1 0] T = 1

X = 0 [1 0 0 1 1 0 0 1]

Y = 0 [0 1 1 0 0 1 1 0]

[0 1 1 0 1 0 0 1]

[0 0 1 1 0 1 1 0] T = 1

X = 1 [0 0 1 1 1 0 0 1]

Y = 0 [1 1 0 0 0 1 1 0]

[1 1 0 0 1 0 0 1]

[1 0 0 1 0 0 0 0] T = 1

X = 0 [1 0 0 1 1 1 1 1]

Y = 1 [0 1 1 0 0 0 0 0]

[0 1 1 0 1 1 1 1]

[1 1 0 0 0 0 1 1] T = 0

X = 1 [1 1 0 0 1 1 0 0]

Y = 1 [0 0 1 1 0 0 1 1]

[0 0 1 1 1 1 0 0]

The first 12 logical patterns that represent the logic states X = 0, Y = 0 and260

X = 1, Y = 0 and X = 0, Y = 1 are expected to produce in-phase resonances in

gate output which implies that the gate output is logic 1. The remaining four

input patterns corresponding to the state X = 1, Y = 1 must show anti-phase

resonances in their dynamic response so that logic 0 is determined in the NAND

gate output. Among sixteen inputs noted in Table 2, the simulations result for265

input logical patterns Z1 = [1 0 0 1 0 1 1 0], Z5 = [0 0 1 1 0 1 1 0], Z9 = [1 0 0

1 0 0 0 0] and Z14 = [1 1 0 0 1 1 0 0] are depicted as follows:

The patterns depicted in Fig. 4 to Fig. 7 show the initial and final stages

of the association process. In other words, the left hand side pattern shows

the initial state or input pattern that is in fact one of the logical states of the270
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Figure 3: NAND gate design algorithm

Table 2. The dots in the middle part shows the process of fluctuations which

leads to the pattern association or regeneration. Actually this is some periods of

oscillation time that network takes to synchronize. The right hand side pattern

is the final or output pattern.

As depicted in the patterns of Fig. 4 to Fig. 7, the cells number 5 and275

number 8 are considered as the NAND gate’s output. It is shown that in-phase

synchronization of these two neurons corresponds to logical output 1, as shown

in Fig. 4, Fig. 5 and Fig. 6 and anti-phase synchronization of the mentioned

resonators corresponds to logical output 0, as can be seen in Fig. 7.

Fig. 8 shows the oscillatory response of the network to the input pattern280

[1 0 0 1 0 1 1 0] which is one of the four patterns equivalent to logic input

X = 0, Y = 0. The two neurons defining the NAND gate output (namely

MEMS-5 and MEMS-8) are oscillating in-phase. Hence, the mentioned input

pattern corresponds to logic 1 as is expected.

Fig. 9 shows the oscillatory response of the gate designated outputs to the285
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Figure 4: Regeneration of pattern Z1 = [1 0 0 1 0 1 1 0]

Figure 5: Regeneration of pattern Z5 = [0 0 1 1 0 1 1 0]

Figure 6: Regeneration of pattern Z9 = [1 0 0 1 0 0 0 0]

Figure 7: Regeneration of pattern Z14 = [1 1 0 0 1 1 0 0]

15
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Figure 8: Gate response corresponding to input pattern Z1 = [1 0 0 1 0 1 1 0], X=0 , Y=0 ,

Output = 1

0 2 4 6 8 10 12 14 16 18 20

No. of cycle

-1.5

-1

-0.5

0

0.5

1

1.5

A
m

p
lit

u
d
e
 

Z5 = [0 0 1 1 0 1 1 0]

out-5

out-8

Figure 9: Gate response corresponding to input pattern Z5 = [0 0 1 1 0 1 1 0], X=1 , Y=0 ,

Output = 1
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Figure 10: Gate response corresponding to input pattern Z9 = [1 0 0 1 0 0 0 0], X=0 , Y=1 ,

Output = 1

16



30 32 34 36 38 40 42 44 48 50

No. of cycle

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
m

p
lit

u
d
e
 

Z14 = [1 1 0 0 1 1 0 0]

out-5

out-8

Figure 11: Gate response corresponding to input pattern Z14 = [1 1 0 0 1 1 0 0], X=1 , Y=1

, Output = 0

input pattern [0 0 1 1 0 1 1 0] that is one of the four states equivalent to

X = 1, Y = 0. As expected, the response is in-phase i.e. logic 1.

Figures 10 and 11 show the responses to the input patterns [1 0 0 1 0 0 0

0] and [1 1 0 0 1 1 0 0], respectively. The former is one out of the four logic

patterns of the state in which X = 0, Y = 1 and the later represents a logic290

pattern among the four of the state X = 1, Y = 1. As illustrated, Fig. 10 shows

in-phase oscillations so that the NAND gate output is logic 1. But, in Fig. 11

anti-phase outputs can be seen which shows output logic 0.

Table 3 shows the number of cycles that the output neurons (MEMS-5 and

MEMS-8) need in order to synchronize, either in-phase or anti-phase, subjected295

to different input patterns. Based on simulation results the maximum number

of cycles needed for the output oscillators is revealed to be 39. This number

specifies the maximum delay time of the proposed NAND gate to produce the

output. Using the super high frequency RF MEMS resonator with 45GHz op-

erating frequency the gates delay time can be calculated as follows:300

td = 39× 1

45×109
≈ 0.86ns

As can be seen in Table 3, in most of the cases the resonators produce gate

output in less than 10 period times. If resonance frequency is assumed to be

45 GHz, then the delay time will be less than 222 ps for ten cycles to generate

the output. But, for the last four input cases in Table 3, it needs more than 23
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Table 3: Number of cycles to synchronize for different inputs states

Logicinputs Cycles to generate output Logic output

[1 0 0 1 0 1 1 0] 7

[1 0 0 1 1 0 0 1] 2 T = 1

[0 1 1 0 0 1 1 0] 8

[0 1 1 0 1 0 0 1] 2

[0 0 1 1 0 1 1 0] 9

[0 0 1 1 1 0 0 1] 2 T = 1

[1 1 0 0 0 1 1 0] 10

[1 1 0 0 1 0 0 1] 9

[1 0 0 1 0 0 0 0] 18

[1 0 0 1 1 1 1 1] 2 T = 1

[0 1 1 0 0 0 0 0] 9

[0 1 1 0 1 1 1 1] 1

[1 1 0 0 0 0 1 1] 23

[1 1 0 0 1 1 0 0] 39 T = 0

[0 0 1 1 0 0 1 1] 23

[0 0 1 1 1 1 0 0] 24

periods to produces proper output which is more than 0.5 ns. For input case305

Z14, the worst case, the most delay occurs which is 39 period times. Due to

Fig. 11 the anti-phase outputs can be seen in after passing 12 periods but the

amplitude of MEMS-8 needs more time to reach the desired level. It should

be noted that delay time is inversly related to resonant frequency. In the other

side, in TTL technology, for two-input NAND gate, CD74HCT00, the maximum310

delay time is 30ns. There are some other CMOS NAND gates which have usually

larger delay time than 30ns (for two-inputs high speed CMOS NAND logic gate,

74HC03, the maximum delay is 150ns).

As another advantage of proposed NAND gate, it is more reliable than

CMOS devices when exposed to ion or electron beams radiations. One ma-315
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jor problem of CMOS devices in space applications is vulnerability to space

radiations. Huge amounts of charged beams can penetrate the shields and ma-

terials and enter active regions of CMOS devices. Some of the charges may

be bypassed by some specific metallic paths or mechanisms but, some of them

accumulates in some regions and would make problems by passing time. Accu-320

mulated charges on surfaces and silicon oxide interfaces cause threshold voltage

drift and changing quiescent point of transistors which may cause catastrophic

faults. Also, penetration charged ions and electrons to solid state devices would

destroy uniform crystal structure of atoms and cause many point defects in solid

state bulk region. These point defects can cause leakage and latch up of CMOS325

circuits which ends up to catastrophic faults or device burn out.

In the presented universal NAND gate, RF MEMS resonators produce si-

nusoidal signals by mechanical resonance in radio frequencies. In case charged

particles bombardment, penetrating charged ions or electrons to resonant me-

chanical structures would not affect the resonance frequency. So, it is more330

reliable than CMOS devices which may be degraded by accumulated charges on

surfaces and dielectrics. In case of exposing to electron and ion beams, charge

accumulation and point defects in crystal structure would not affect catastroph-

ically the resonant frequency and amplitude of the signals in mechanical neuro-

computers.335

5. Conclusion

During past decades CMOS has been dominant technology in fabrication of

digital devices. There has been a permanent demand to increase the speed of

logical circuits and reduce the delay in logic gates. Now, the minimum feature

size in CMOS technology is in order of a few nanometer and it is more difficult340

than before to continue scaling down the dimensions of devices. Other substrate

materials and other processing techniques are investigated in order to provide

logic gates and processors with less delays. In this paper a new idea for NAND

gate architecture is proposed in which a network of weakly coupled RF MEMS

19



resonators can produce the gate output in less than 1 ns. It consists eight RF345

MEMS resonators which are connected to each other based on Hopfield neural

networks structure. Each input-output configuration is considered as a pattern

which should be memorized by trained Hopfield neural network. In other words,

eight weakly coupled RF MEMS resonators perform as eight neurons Hopfield

neural network which should be trained as an associative memory which regen-350

erates proper output in accordance to different inputs. In this paper finding

network weights was demonstrated in a flowchart. Also, theory of weakly cou-

pled resonators is applied to the gate structure to provide some formulas for

simulating the outputs of networked weakly coupled resonators. Simulation re-

sults show that eight weakly coupled RF MEMS resonators can perform like a355

NAND gate with delay time less than 1 ns. Applying resonators with higher

frequencies, would end up to less delay time. The simulation results show that

most of the times the gate can produce output in less than 10 periods of os-

cillation. In four input cases, the gate needs more time to reach the output

amplitude at desired level, while the correct phase is achieved in first few os-360

cillations. As future work, amplifying some output signals to fasten output

production may help to decrease the gate delay time to a few decades of ps.
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