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Geometric Deep Learning

Introduction to geometric deep learning [BBCV21]:
• Deep learning← curse of dimensionality
• Accounting for symmetry
→ Translation⇝ CNN
→ Other groups [SPMBO22]

• Geometry⇝ discretize
→ Graph NN [BBCV21]
→ Nodes share same features
→ Limitations: heterogeneous data

• Heterogeneity
→ Cellular sheaves [Cur13]
→ Cell complex, faces⇝ feature space, inclusions⇝ linear maps
→ Functor from a poset to Vect [SP22, SP24a, SPR24, SP24b]
→ Sheaf Neural Networks [BGC+22]
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Bayesian Inference

• Our focus:
→ Bayesian inference, graphical models, Markov random fields, factor

graphs

Context:

Let X be a random variable taking values in a finite measurable space
EX , and θ ∈ Θ ⊆ Rd that parametrizes a collection of probability
measures P(x |θ), where x ∈ EX .
Assume that one is given a prior Q ∈ P(Θ), where P(Θ) denotes the
space of probability measures on Θ. For any observation x0 ∈ EX , one
computes the posterior using Bayes’ rule:

P(θ|x) = P(x |θ)Q(θ)∫
P(x |θ)Q(θ)dθ
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Exponential Computational Cost

• Problem: When θ = (θi , i ∈ [0,N]) is a collection of variables,
where each θi ∈ E .
• ∑

θ P(x |θ)Q(θ) =
∑

θ0
· · ·

∑
θN

P(x |θ0, . . . , θN)Q(θ0, . . . , θN)

→ Number of operations: O(|E |N)
• Notation: For a set of indices I and a subset a ⊆ I,

θa := (θi ∈ Ei , i ∈ a).
• In what follows, all the sets in which variables take values will be

finite: Ei are finite sets.
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In Statistical Mechanics

• One relation to statistical mechanics:
Let θ = (Yi ∈ Ei , i ∈ I) be the unobserved variables, and
X = (Xj ∈ Fj , j ∈ J) the observed variables. Both I and J are finite
sets, and Ej for j ∈ J and Fi for i ∈ I are finite sets.

lnP(θ,X ) = −β
∑

a⊆I⊔J

Ha(Xa∩J ,Ya∩I)

Given an observation x = (xi , i ∈ I), computing lnP(θ|x) is equivalent
to computing:

ln
∑

(yi ,i∈I)

e−β
∑

a⊆I⊔J Ha(xa∩J ,ya∩I)

This is the same as:

lnZ (x) := ln
∑

θ∈
∏

i Ei

e−βH̃x (θ)
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In Machine Learning

• Similar frameworks but different names: Bayesian networks,
graphical models, factor graphs, Markov random fields.

Definition (Factorisation Space)
Let I be a finite set, and let A ⊆P(I), where P(I) is the power set of
I. Let (Ei , i ∈ I) be a collection of sets, and let Ea =

∏
i∈a Ei for any

a ∈P(I). For x ∈ Ω, we denote by xa its projection onto Ea. The
factorisation space over A is defined as follows:

FacA = {P ∈ P(Ω) : ∃(fa ∈ REa
>0,a ∈ A ) s.t. ∀x ∈ Ω, P =

∏
a∈A

fa(xa)}
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Acyclic Graphical Model

Consider an undirected graph G = (I,A) that is acyclic. Denote A (G)
as the partially ordered set (poset) with elements V = I ⊔ A and the
following relations:
• ∀i ∈ I, i ≤ i , and ∀e ∈ A, e ≤ e
• ∀i ∈ I, ∀e ∈ A, i ≤ e ⇐⇒ i ∈ e

Proposition (Factorization on Acyclic Graphs)

Let I be a finite set, and let Ω =
∏

i∈I Ei be a product of finite sets, and
Xi , i ∈ I, a collection of random variables taking values respectively in
Ei . Let G = (I,A) be a finite acyclic graph. PX ∈ P>0(E) factors
according to A (G), i.e., PX ∈ FacA (G), if and only if for any ω ∈ Ω,

PX (ω) =

∏
e∈A PXe(ωe)∏

i∈I Pd(i)−1
Xi

(ωi)
,

where d(i) is the degree of node i ∈ I.
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• Bayesian inference is maximizing (relative) entropy.
• Entropy:

S(Q) = −
∑
ω∈E

Q(ω) lnQ(ω) (0.1)

• Recall that minimizing Gibbs free energy gives Helmholtz free
energy:

β
− lnZ
β

= inf
Q∈P(E)

(EQ[βH]− S(Q))

• Set β = 1.
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• But entropy:

S(PX ) =
∑
e∈A

S(PXe)−
∑
i∈I

(d(i)− 1)S(PXi )

• Inclusion-exclusion formula: c(e) = 1, c(i) = −(d(i)− 1)
• Remarkably, Bayesian inference is the same as minimizing

[YFW05, YFW03]:

FBethe(Q) =
∑
a∈V

c(a) (EQa [Ha]− S(Qa))

where Q := (Qa ∈ P(Xa),a ∈ V ) with compatibility by
marginalization:
→ If a is an edge and i a vertex in a
→ πe

i : Ee → Ei
→ We ask that πe

i ∗(Qe) = Qi
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Summary up to Now

• Bayesian inference corresponds to computing lnZ for a
Hamiltonian H :

∏
i∈I Ei → R, with Z =

∑
x e−βH(x).

• From now on, set β = 1; notation E =
∏

i∈I Ei .
• It is computationally costly to compute directly, but note that

− lnZ = inf
Q∈P(E)

(EQ[H]− S(Q))

• The previous problem can be reformulated as minimizing:

FBethe(Qa,a ∈ A (G)) =
∑

a∈A (G)

c(a) (EQa [Ha]− S(Qa))

with Qi(xi) =
∑

y∈Xi′
Qe(xi , y) when e = {i , i ′}.

• Belief propagation is an algorithm of complexity O(|A||Ei |2) to
solve this optimization problem, when Ei = Ej for all i , j ∈ I.
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Graphical Presheaves: What Underlies Bayesian Inference

→ Extension to higher-order interactions: not just graphs.
→ I did not invent it [Pel20, YFW05]... but no name?

Definition (Graphical Presheaves)
Let I be a finite set and A ⊆P(I) be a sub-poset of the powerset of I.
Let Ei , i ∈ I be finite sets. For a ∈ A , define Ea :=

∏
i∈a Ei . Let

F (a) := Ea, and for b ⊆ a, let F a
b : Ea → Eb be the projection map from∏

i∈a Ei to
∏

i∈b Ei . We call F a graphical presheaf from A to Mesf .

• Only projections.
• Only products of variables, and subcollections of variables.
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Extension to Diagrams in the Category of Markov Kernels

• Consider any map, not just projections:
→ Any measurable maps for b → a and even Markov kernels, i.e.,

stochastic matrices when the source and target are finite sets.
• Account for possible heterogeneity, incompleteness, and

incompatibility in the description of variables:
→ Agents with different world models that communicate their beliefs.
→ Broader class of effective potentials in computational chemistry.
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Extension done in previous work [SP22, SPR24, SP24a]
• Kernf : objects are finite measurable spaces, morphisms are

Markov kernels (stochastic matrices).
• F is a contravariant functor from A to Kernf ; F a

b : F (a)→ F (b) is
denoted element-wise as F a

b (ωb | ωa), with ωb ∈ F (b), ωa ∈ F (a).
→ F encodes all the ways our data can interact.
→ A is any poset, not just a collection of subsets.
→ Maps are not just projections.

• Q = (Qa ∈ P(F (a)),a ∈ A )

• FBethe(Q) =
∑

a∈A c(a) (EQa [Ha]− S(Qa)); c(a) =
∑

b≥a µ(b,a) is
the generalization of the inclusion-exclusion formula associated
with A .
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For a finite poset A ,
• the ‘zeta-operator’ of A , denoted ζ, from

⊕
a∈A R to

⊕
a∈A R is

defined as, for any λ ∈
⊕

a∈A R and any a ∈ A , ζ(λ)(a) =
∑
b≤a

λb

• its inverse is denoted as µ; (µ(a,b),b ≤ a) Möbius function of A .
We want to do Bayesian inference on these diagram.
• Constraint: the Qa must be compatible under the actions of the

F a
b , i.e. F a

b ◦Qa = Qb

• Problem: find an algorithm to ‘solve’ the optimization problem.
→ New message passing algorithm!
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F induces several actions: on probabilities, on probabilites seen as
vectors, on their dual...
• F̃ a

b : P(F (a))→ P(F (b)) is linear map that sends probability
distributions p ∈ P(F (a)) to F a

b ◦ p, we still note F̃ the linear map
from RF (a) to RF (b).
• F̃ ∗ is the functor obtained by dualizing the morphisms F̃ a

b , i.e.
F̃ ∗b

a : F̃ (b)∗ → F̃ (a)∗ sends linear maps lb : F̃ (b)→ R to
lb ◦ F̃ a

b : F̃ (a)→ R.

µ can be extended to account for F̃ through F̃ ∗:
• for a functor G from A to R-vector spaces, we define µG as, for

any a ∈ A and v ∈
⊕

a∈A G(a), µG(v)(a) =
∑

b≤a µ(a,b)G
b
a(vb).

• ζG is it’s inverse, ζG(v)(a) =
∑

b≤a Gb
a(vb).
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Recall we want to solve inf FBethe =
∑

a c(a)F (Qa) under
• Constraint: the Qa must be compatible under the actions of the

F a
b , i.e., F a

b ◦Qa = Qb

- i.e., Q ∈ lim F̃
- In fact, no... need to add the condition that the distribution sums to

one.
- But it’s okay!
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• Fix point of this message passing algorithm are critical point of
FBethe
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• FE :
∏

a∈A P(Ea)→
∏

a∈A R defined as
FE(Q) = (EQa [Ha]− Sa(Qa), a ∈ A ), which sends a collection of
probability measures over A to their Gibbs free energies.
• dQFE denotes the differential of FE at the point Q.

Proposition
Let A be a finite poset, and let F be a contravariant functor from A to
Kernf . Let Ha : F (a)→ R be a collection of (measurable) functions.
The critical points of FBethe are the Q ∈ lim F̃ such that:

µF̃∗dQFE |T lim F̃ = 0

T lim F̃ is the underlying vector space of the affine space lim F̃
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Pose la(Qa) = EQa [Ha]− S(Qa)

Theorem (GSP)

F a functor from A op to vector spaces. An element u ∈ lim F̃ is a
critical point of the FBethe if and only if there is (ma→b ∈

⊕
a,b:
b≤a

F̃ (b)∗)

such that for any a ∈ A ,

du la =
∑
b≤a

F̃ a∗
b

∑
c≤b

F̃ b∗
c mb→c −

∑
c≥b

mc→b

 (CP)
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Where Does This Algorithm Come From

• To understand in greater detail these propositions and the
previous algorithm, we need to extend the setting of the
optimization problem.
• Change the loss:
→ Replace entropy with a ”local loss.”
→ S(Qa)⇝ la(va)

• Change the functor:
→ Replace F with a contravariant functor from a poset A to Vect.

• Result: we can extend the message passing algorithm to solve:

min
v

∑
a∈A

c(a)la(va)

with v := (va,a ∈ A ) under the constraint v ∈ limF .
• This approach is different and on some points more general than

decentralized optimization on cellular sheaves [HG19].
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For F a functor from A op to vector spaces, critical points u of∑
a∈A c(a)la(va) are u ∈

⊕
a∈A F (a) such that:

[µF∗du l]|limF = 0

where, l(v) = (la(va),a ∈ A ), du l(a) = dua la and,

[µF∗du l](a) =
∑
b≤a

µ(a,b)dub lb ◦ F a
b
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0→ limF →
⊕
a∈A

F (a)
δF→

⊕
a,b∈A

a≥b

F (b)

where for any v ∈
⊕

a,b∈A
a≥b

F (b) and a,b ∈ A such that b ≤ a,

δF (v)(a,b) = F a
b (va)− vb

This is simply stating that ker δ = limF .
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Proof of Characterization of Critical Points

Understanding expression of critical points:

0← (limF )∗ ←
⊕
a∈A

F (a)∗
dF←

⊕
a,b∈A

a≥b

F (b)∗

Pose d = δ∗. For any la→b ∈
⊕

a,b∈A
a≥b

F (b)∗ and a ∈ A ,

dm(a) =
∑
a≥b

F a
b
∗
(ma→b)−

∑
b≥a

mb→a
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µ∗
F du l ∈ imd

is the same as the fact that there is (ma→b ∈ F (b)∗|a,b ∈ A ,b ≤ a)
such that,

du l = ζF∗dm
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Assume that the local losses la,a ∈ A are such that there is a
collection of functions ga,a ∈ A that inverses the relation induced by
differentiating the local losses, i.e.

dua la = ya ⇐⇒ ua = ga(ya)

It is the case for the free energy EQa [Ha]− S(Qa).
Messages:

m(t) ∈
⊕

a,b:
b≤a

F (b)∗: ma→b for b ≤ a
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Proof of Characterization of fix points of algorithm

Understanding this choice of message passing algorithm:

g sends Lagrange multipliers m to u ∈
⊕

a∈A F (a). δF (u) = 0 defines
the constraints on u.
δF gζF∗dF sends a Lagrange multiplier m ∈

⊕
a,b∈A

a≥b
F (b)∗ to a

constraint c ∈
⊕

a,b∈A
a≥b

F (b) defined as, for a,b ∈ A such that b ≤ a,

c(a,b) = δF gζF∗dF m(a,b) = F a
b ga(ζF∗dF m(a))− gb(ζF∗dF m(b)))

(0.2)
We are interested in c = 0, i.e.

δF gζF∗dF m = 0
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Proof of Characterization of fix points of algorithm

Understanding this choice of message passing algorithm:

Choice of algorithm on the Lagrange multipliers so that
δF gζF∗dF m = 0,

m(t + 1)−m(t) = δF gζF∗dF m(t)

Any other choice would also be a good candidate!
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Back to Inference

The message passing algorithm is defined as:

δm := δF̃ gζF̃∗dF̃ m

Define BPF ,H := δF̃ gζF̃∗dF̃ .
When differentiating the free energy:

ya = Ha + ln qa + 1

Therefore, ga(ya) = eya−Ha−1.
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Functoriality of the Message Passing Algorithm

• Joint work with Toby St Clere Smithe, in progress.
• Consider a natural transformation ϕ : F → F1 where ϕa is a

deterministic map, not a Markov kernel.
• The map ϕ extends into maps between F̃ → F̃1 and F̃ ∗ → F̃ ∗

1 .
• ϕ induces maps between

⊕
b F̃ (b)→

⊕
b F̃1(b) and⊕

b≤a F̃ (b)→
⊕

b≤a F̃1(b). It also induces a map
ϕ∗ :

⊕
b F̃ ∗

1 (b)→
⊕

b F̃ ∗(b) and ϕ∗ :
⊕

b≤a F̃ ∗
1 (b)→

⊕
b≤a F̃ ∗(b).

Pose:
H̃a = ln

∑
ω′:ϕa(ω′)=ω

e−Ha(ω′)

Then we showed that:

BPF1,H̃
= ϕ ◦ BPF ,H ◦ ϕ∗
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Why do that?

→ Few results on characterizing critical points of the Bethe free
energy.

→ Use transformations on the underlying functor to reduce to simpler
cases (Hamiltonians, posets).

What about base change? ϕ : A → A1

→ When a right adjoint to the pullback exists, results on natural
transformations can be reused.

→ When A is isomorphic to a full subposet of A1, similar result
holds.

Sergeant-Perthuis (LCQB) Inference on diagrams 21/9/24 Thessaloniki 30 / 34



Thank you for your attention

Thank you for your attention!
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