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Introduction PK dose-finding methods
« “First-in-human” and Phase | studies aim at evaluating the safety of We conducted a narrative review to identify existing W m
a candidate drug, along with pharmacokinetics (PK), and include a Bayesian prospective PK dose-finding designs (see Table). BLRM [2]  Toxicity Y; Logistic regression
small sample of healthy volunteers or patients. 1. Preliminary review of well-known papers on dose- Dose d; logit(pr(dy, B))
finding designs for early phase clinical trials. = log(B1) + B-(log(dy) — log(d"))
*  Conventional randomized designs can be unethical with low sample 2. Keyword searchs yielded more publications, totaling 84.  pk| oGIT  Toxicity ; Normal approximation of AUC
size. Adaptive approaches using Bayesian designs, leveraging pre- 3. Filtering sequentially for eligibility based on abstract 3] Dose d, Z|B,v ~ N(By + Bylog(dy),v?)
existing data and/or expert opinion to make prior guesses, are often and full publication content resulted in 3 selected Trapezoidal rule:  Logistic regression
employed to assess the toxicity. papers. Estimated z; from logit(pr(z, B')) = By + B3(z —z*)
The Bayesian Logistic Regression Method (BLRM), which Cij
 In most Phase | and Phase I/l studies in patients, dose-finding and does not use PK data, was implemented as a benchmark. ED-EWOC / Toxicity Y; PopPK model
PK are still analyzed separately [1]. Various methods have been ED [4] Dose d; C(ti|di, Bui) = c(di t; ﬁu) (1+¢;),
proposed in recent literature to integrate PK data in the toxicity Notations Measured € ~ N(O 02)
k estimation. / » n the total number of patients in the trial (i € {1, ...,n} ), concentrations c¢;; | ogistic regression
> pr the probability of toxicity with Y; ~ Bernoulli(p7), Sampling times t logit(pr(z:|Ba, B3)) = Bz + Bs(z —27)
Obi ¢ P\ > Dthe K -Iength* set of doses with dy, the dose-level k € e/ [ K-PD: One-compartment model
]ectlves {1,..,K}and d the reference dose, Informed Dose d, with IV
» d; the dose received by the i-th patient, TITE-PK [5] Sampling times ¢, ( dC ()
+  Narrative review: Explore how PK information is used in existing > Athe target probability of toxicity, and t; T = keC()
Bayesian prospective PK dose-finding designs. » sampling times t = (ty, ..., t;, ..., t;) withj€ {1, ..., ]}, Time of ) dCos (D)
> Ci(t;) and ¢;; respectively the actual and measured administration t, e = kerr(C () — Cege(0))
« Simulation study: Assess the performance and robustness of concentration of the drug in the i-th patient at time t;, Time ofthe DLT or - o plementary log-log regression
these methods for accurate Maximum Tolerated Dose (MTD) >  z; the logarithm of the AUC of the i-th patient, censoring time cloglog(P(T < t*|Core(t*]d)))
\_ identification and dose-toxicity curve. ) k> and z* the reference logarithm of the AUC based on d*. = log(B) + log(AUCE (t*|Coge(t*|d))) /

~

Simulation study: Trial procec
fT"a' Sftotp Dose-finding methods were compared using the probability of selecting the correct MTD based on its location from the simulation
°r i study. The estimated probabilities of toxicity were also evaluated for each method.
fety rul
CBLAN ey (GoNTINUE) Comprehensive comparaison for the percentage MTD=Dosel  MTD=Dose2  MTD=Dose3 MTD =Dose4 No MTD
[T”?;;)”;Zflgjst’:" (%) Of accurate MTD SeleCtion. . -Scenarlo A1 1'OO-Scenarlo A2 . -Scenarlo A3 1'OO-Scenarlo A4 . -Scenarlo A5
[PKLOGIT § Model estimation escalation Assess new RD
fo tox'c'tvt .F based on e;tmted SA“n"n’?’f“e"‘é“u"ze Set A
assessmen declared toxici ropapiliities 27 ' ' ' '
=P EWOC/ P * PK dose-finding designs as accurate as BLRM on 4 ¢
CTITE-PK | average with ED-EWOC leading in terms of g 0501 0501 050 050 050
Treat new cohort correct MTD selection for scenario A1 and A2, 5
of patlents at RD except TlTE_PK 0.25 0.25 - 0.25 4 0.25 0.25 4
Dose recommandation rule: After i patients have been included in the * Almost all PK methods performed ‘better than o . o o o
trial, the recommended dose (RD) d 1) for a hypothetical (i + 1)-th BLRM in scenarios A3 and A4, with informed o oo oo oo 7 1o-
patient is d(j4+1) = argmin|p/(cE) — /1|. TITE-PK being on the top. . : bt g+ 40
+1) = <o «  PKLOGIT performed on average marginally worse 5 . . . Lty .
Safety rule: Based on a predefined safety probability threshold t¢,¢., the than the most effective PK dose-finding methods . & [t by bt oyt ¢ b
\safety rule is expressed as P(pr(d;) > 1) < Tsafe. ) in scenarios A1, A2, A3, and A4. E oso- AR SN T olt 1t 050 oo-
« ED-EWOC outperformed ED, showing effective 5 R
\ overdose control for lower-dose MTD. However, in 025+ 025+ 0251 025+ 0251
Simulation settings scenarios A3 and A4, the results were reversed. _ _ _ _ _
° Naive and informed TITE_PK methOdS falled tO Scenario E1 Scenario E2 Scenario E3 Scenario E4 Scenario E5
All methods were evaluated for a Phase | dose-finding trial based on the 3?spe-|gsgf/ ’ :Q?heol\\jl?l'rl\sv ?srlrgénegnlgrior%g E%TS?ded ) ‘b v T b ¢
PK model for the development of the TGF-f inhibitor LY2157299 [6], in o %0-75-+ TRX ALK ’ orsqg bg b ety o7 44
. . . . § +
e;S|r?g?élzﬁnsi:::?¥r;?23|stlng o... « Set C: For scenarios C1, C2, C3 and C4, ED- % 050 ool . . .
> 30 patients per trial EWOC and ED were respectively outperformed by = : ‘s
> cohorts of size 2, informed and naive TITE-PK methods. 0.25 0.25 - 0.25 0.25 0.25
» 4 doses (30.6 mg, 50.69 mg, 93.69 mg, and 150.37 mg) with dose- . Set E: Better performance in terms of correct MTD Ly xs Ly x¥ t8 % 58 % g x%
level 3 as the reference, f agdBEE agEBEE agtBEE agEREE SgEREE
» a targeted probability of toxicity A = 25%, selection compared to set A. Dose-finding designs ~ Dose-finding designs ~ Dose-finding designs ~ Dose-finding designs ~ Dose-finding designs
\ » and a threshold for the safety rule g5 = 90%. / Clopper-Pearson 95% Cl - Misspecification scenario Reference scenario from set A
A 1.00- Dose-toxicity curve

 BLRM completely failed to estimate
the toxicity probabilities.

* Plausible estimates of the
probabilities of toxicity obtained by
PKLOGIT and ED(-EWOQC), the latter

15 scenarios divided into 3 sets of scenarios (A, C, and E), each 0.75.
containing 5 scenarios to explore different settings:
» Among each set: Deviation on the position of the MTD

— Targeted toxicity

> Across each set: Misspecification of PK measures of exposure § e Real probability of oxicity being the best performer.
(AUC or C,.,,) and/or misspecification of PK model (e.g. number of 2050 : Dosefinding designs . —arg€ variation in the estimate for
Compartiments)_ E ! g | B3 BLRM PKLOGIT due to AUC mOdelllng.
For comparison purposes, the set of scenarios A is taken as the < W I . = Co-EwOs * TITE-PKalls to accurately estimate
standard simulation framework. ; § D e TITERK the probabilities of toxicity.
0.25- * —s - E3 Informed TITE-PK
Set of scenarios A (Reference set) ; . Figure: Scenario A1 - Estimated
1 2 3 4 0 : : probabilities of toxicity at all doses for all
1 | Concentration data: 10 blood concentration Concentration data: One- 0.00- ‘ ! dzs;-fmﬂmg In;ethods where the MTD is
| samplings simulated based on first-order compartment PK model Dote 1 Dot s Dot 3 Sosea on aose-tevel 1.
, | absorption one-compartment PK model with _ Toxicity data: Gy K Panel of doses /
linear elimination kinetics Y Y Y ¥ v
! Toxicity data: DLT event (0/1) simulated based [01] [02] C3 [04] [CS] _ ] : \
| on an AUC threshold = Discussion & Conclusion
|
I  PKLOGIT is the most straightforward approach for PK modelling and therefore underperforms slightly compared to other
| Vi e methods. ED-EWOC/ED shows high potential with the popPK approach, especially under misspecification, but is generally
_____ isspecification . . . .
| > on PK model less accurate than TITE-PK for MTD selection. TITE-PK achieves consistent results, barring low-dose MTDs and
! ; 5 3 4 0 misspecification scenarios.
‘ | |
?t""c‘:“;}’(atim; c:at?: ,O"f[?' o Misspecification «  Model-based approaches incorporating PK information are likely to recommend, at least as much as the BLRM, accurate
e i et el e 0? PK measure MTDs and achieve safer dose-escalation. Additionally, PK dose-finding methods can evaluate the full dose-toxicity curve and
Toxicity data AUC or exposure provide more or less plausible estimates of the probability of toxicity for each dose with a limited sample size.
@ @ ************ [EJ’s] «  Combining popPK modeling and time-to-event approach for toxicity in Phase | dose-finding trial seems to offer promising
\ / \ perspective for future development of effective methods. /
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