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Mechanics studies the relationships between space, time, and matter. These relation-
ships can be expressed in terms of the dimensions of length L, time T , and mass M.
Each dimension broadens the scope of mechanics. Historically, mechanics emerged from
geometry, which considers quantities like lengths or areas, with dimensions of the form
Lx. With the Renaissance quantities combining space and time were considered, like
speeds, accelerations or later diffusivities, all of the form LxT y . Eventually, mechanics
reached its full potential by including “mass-carrying” quantities such as mass, force,
momentum, energy, action, power, viscosity, etc. These standard mechanical quantities
have dimensions of the form MLxT y , where x and y are integers. In this contribu-
tion, we show that thanks to this dimensional structure these mass-carrying quantities
can be readily arranged into a table such that x and y increase along the row and col-
umn respectively. Ratios of quantities in the same rows provide characteristic lengths,
and in the same columns characteristic times, encompassing a great variety of physical
phenomena from atomic to astronomical scales. Most generally, we show that picking
duos of mechanical quantities that are neither on the same row nor column of the ta-
ble yields dynamics, where one mechanical quantity is understood as impelling motion,
while the other is impeding it. The force and the mass are the prototypes of impelling
and impeding factors, but many other duos are possible. We present examples from
the physical and biological realms, including planetary motion, sedimentation, explo-
sions, fluid flows, turbulence, diffusion, cell mechanics, capillary and gravity waves, and
spreading, pinching, and coalescence of drops and bubbles. This review provides a novel
synthesis revealing the power of scaling or dimensional analysis, to understand processes
governed by the interplay of two mechanical quantities. This elementary decomposition
of space, time and motion into pairs of mechanical factors is the foundation of “dimen-
sional mechanics”, a method that this review wishes to promote and advance. Pairs
are the fundamental building blocks, but they are only a starting point. Beyond this
simple world of mechanical duos, we envision a richer universe that beckons with an in-
terplay of three, four, or more quantities, yielding multiple characteristic lengths, times,
and kinematics. The review is complemented by online video lectures, which initiate a
discussion on the elaborate interplay of two or more mechanical quantities.
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I. INTRODUCTION

Mechanics is the bedrock of physics and is influential
to all sciences. Mechanics has had such a far reach-
ing impact on our understanding of the natural world
that it is hard to contain it under a single definition. In
the 19th century, it was an effort to integrate new disci-
plines like thermodynamics and electromagnetism under
its fold that led Fourier (Fourier, 1822), Gauss and We-
ber (Assis et al., 2002), Maxwell and Kelvin (Maxwell,

1873; Mitchell, 2017), and their contemporaries to one
of the most commonly accepted definition of mechan-
ics (Macagno, 1971; Maxwell, 1873). Mechanics deals
with the relationships between space, time and matter,
usually quantified by the dimensions of length L, time T ,
and mass M.

Mechanics in a general sense includes geometric quan-
tities, with dimensions of the form Lx (lengths, areas,
etc.). More broadly, mechanics also includes kinematic
quantities, with dimensions LxT y (speed, acceleration,
diffusivity, etc.). These kinematic quantities describe mo-
tion, but without any reference to the “causes” of these
motions. It is the quest for these causes that led to the
definition of the mass, and all its offsprings: force, den-
sity, momentum, energy, action, power, stiffness, pres-
sure, viscosity, etc. The bestiary of mechanics includes
many creatures, but they are cast from the same mold.
All these mechanical quantities have dimensions of the
form MLxT y, they are “mass-carrying quantities”. As
we will see in this review, this shared structure allows
a representation of the mechanical quantities in a plane
with coordinates x and y, the exponents of the space and
time dimensions. Moreover, since x and y are usually
integers, the standard mechanical quantities can be ar-
ranged into a table, which is a great guide for researchers
and teachers, and the perfect cheat sheet for students.
We have spent the last three years toying with this enig-
matic map of the mechanical quantities. We put this ta-
ble together in order to provide a Rosetta stone to help
translate knowledge across the boundaries of the many
sub-fields of science. We invite readers to contribute to
this table, and to suggest additions or modifications.

Our investigations led us to a reformulation of the di-
mensional approach to mechanics, which we are sharing
in series of lectures on a Youtube channel that we cre-
ated for this purpose (youtube.com/@naturesnumbers).
These lectures explain in detail how to use this table
to identify the “causes” of a wide range of motions, to
transform a kinematic description into a dynamical un-
derstanding. These videos serve as “supplementary ma-
terial” to this review, which focuses on the decomposi-
tion of geometric or kinematic quantities into ratios of
mechanical quantities. From a dimensional perspective,
this kind of decomposition is elementary, but it has far
reaching consequences on the understanding of the rela-
tionship between mechanics and motion, and it provides
a systematic way to approach the “causes” of motion.

The basis for this dimensional approach to mechan-
ics dates back to Archimedes. To measure a volume Ω,
Archimedes proposed to express it as a ratio, Ω = m/ρ,
between the mass m of the object and its density ρ. This
old formula seems so elementary today that we do not
realize the great leap that it encompasses: a geomet-
ric quantity (the volume) is given from a ratio of two
mechanical quantities (the mass and the density). Di-
mensionally, the logic is flawless: [Ω] = L3 = [m/ρ] =

https://www.youtube.com/@naturesnumbers
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��M/��ML−3, where the brackets return the dimensions of
their content. The extra dimension of mass is a sort of
“dummy” dimension, disappearing from the final result,
a very useful intermediary in the computation.

Almost two thousand years after Archimedes, Newton
pushed this logic even further. What Newton sought to
compute was not a geometric quantity, but a kinematic
one, an acceleration a, but he used the same principle.
He expressed the acceleration as the ratio between two
mechanical quantities: a = F/m. Again, the dimensions
match: [a] = LT −2 = [F/m] = ��MLT −2/��M . The ex-
ample is so classical that it may not seem too impressive
today.

Fast forward almost three centuries to the 1940s and
consider this other example, often found in textbooks
on dimensional analysis (Barenblatt, 2003). The Second
World War is raging and the British physicist G.I. Taylor
is trying to compute the dynamics of an explosion blast.
Experiments suggest that the radius of the explosion fol-
lows a ‘power law’ of time, d(t) ≃ Ktα. To understand
the value of the kinematic prefactor K, Taylor uses the
old trick again. In this context, Taylor identifies the en-
ergy E of the bomb and the density ρ of the ambient
air as the relevant mechanical parameters. Then, the
dimensions of the mechanical ratio provide an answer:
[E/ρ] = ��ML2T −2/��ML−3 = L5T −2. Taylor concludes

that K ≃ (E/ρ)
1
5 , that is d(t) ≃ (E/ρ)

1
5 t

2
5 (Taylor,

1950a,b). Not so trivial anymore!
From Archimedes to Newton and Taylor the procedure

remains the same. A geometric or more broadly kine-
matic quantity (without any mass dimension) can always
be expressed as some ratio of mechanical quantities. The
only thing that varies from one example to another is the
pair of mechanical quantities that are involved in the de-
composition. In any case, the dimension of mass comes
to the rescue, providing a way to understand sizes, dura-
tions and motions of all sorts, from a ratio, or “balance”,
or “struggle”, between “competing” mechanical factors.

Even if we restrict ourselves to the standard mechan-
ical quantities in Table I, there are hundreds of possible
pairs, and quite a few with a rich history. The purpose
of this review is to discuss a few of these pairs. Each pair
tells a different story, synthesizes different “physics”, and
retraces the steps of those who sought to explore this me-
chanical landscape.

Pairs of mechanical quantities are the building blocks
of the relationship between mechanics and kinematics,
but they are only a starting point. If motion can be
understood from the interplay of mechanical quantities,
what can we expect from the interaction of three, four
or even more quantities? We asked ourselves these very
questions three years ago and we have been working on
answering them since, our lecture series providing a diary
of this journey. With this review, we solely focus on
the interplay of pairs of mechanical quantities, but we
will return later with more on the impact of additional

players.

To illustrate the scope of a dimensional analysis of me-
chanics we will use examples from a wide spectrum of
fields. This diversity constrains us to limit our citations
to a few papers, which can be used as gates toward larger
bodies of literature. Our background in fluid dynamics,
soft matter, and biophysics, has biased us toward refer-
ences from these fields. For instance, we are indebted to
several reviews and textbooks on spreading, pinching and
coalescence, including Dussan (1979), de Gennes (1985),
Leger and Joanny (1992), Middleman (1995), Oron et al.
(1997), McKinley (2005), Starov et al. (2007), Kalliada-
sis and Thiele (2007), Craster and Matar (2009), Bonn
et al. (2009), Popescu et al. (2012), de Gennes et al.
(2013), Snoeijer and Andreotti (2013), Lu et al. (2016),
Bico et al. (2018), Andreotti and Snoeijer (2020), and
Lohse and Zhang (2020); Lohse et al. (2015). However,
we have tried as much as possible to diversify our ref-
erences to include a literature more familiar to biolo-
gists and engineers. In particular, for explosions we re-
lied on Bethe et al. (1958), Glasstone et al. (1977), Se-
dov (1993), Krehl (2008), Westine et al. (2012), Kinney
and Graham (2013) and Sachdev (2016). For biological
systems we relied on Thompson (1917), Mitchison and
Cramer (1996), Alt (1997), Sheetz (2001), Roberts et al.
(2002), Lecuit and Lenne (2007), Le Clainche and Car-
lier (2008), Pollard and Cooper (2009), Phillips et al.
(2012), Marchetti et al. (2013) and Schwarz and Safran
(2013). We have also benefited from seminal texts on
dimensional analysis, including Fourier (1822), Maxwell
(1873), Buckingham (1914), Rayleigh (1915), Bridgman
(1922), Barenblatt (1996, 2003), and Santiago (2019).

In this review, terms first appearing between ‘single
quotes’ are technical terms from the literature. A search
of this term on the Web will generally lead to its defini-
tion. Terms appearing in italics are those we first define
here, or which substantially deviate from traditional us-
age. Terms appearing between “double quotes” are ac-
tual quotes, or colloquialisms. The sign ‘≡’ symbolizes
a definition, where the left-hand side is a shorthand no-
tation for the right-hand side. The sign ‘≃’ means that
the two sides of the equation are expected to be of the
same ‘order of magnitude’ (other authors may use ∝ or
∼). The sign ‘∼’ will be used to state an incomplete
scaling relation, as in d ∼ tα, where “incomplete” means
that the left and right-hand sides do not have the same
dimensions. The sign ‘=’ refers to a standard equality,
which is presumably exact.

Links to the video lectures are given at the beginning
of each associated section.

II. THE MECHANICAL QUANTITIES

Mechanics 1: Mechanical Quantities

https://www.youtube.com/@naturesnumbers
https://www.youtube.com/@naturesnumbers
https://youtu.be/XDQ21ngtpkI?si=a1PeLW6ICFV8bP5i
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TABLE I Table of standard mechanical quantities, with dimensions MLxT y. Values of the exponents x and y refer to the
columns and rows. A given quantity associated with a choice of couple (x, y) usually have several names. The symbol and the
name in bold are the one we chose when generically referring to that quantity in this review. The dimensions of a mechanical
quantity dictate its symbol. We systematically use the same symbols for all the mechanical quantities that share the same
dimensions. For instance, we do not use “P” for a pressure, “G” for an elastic modulus and “σ” for a shear stress, we just use
Σ for all quantities with dimensions ML−1T −2. We have found useful to define the levity and strength, which are respectively
discussed in sections IV.D.2 and III.A.7. Please feel free to complete this table in any way you see fit.

Mechanics includes geometry, kinematics and every-
thing beyond, if it can be expressed with the addition of
the dimension of mass. So the most generous definition
of the term “mechanical quantity” could encompass any
quantity with dimensions of the form MzLxT y, where
x, y and z could a priori be real numbers. However, this
is not how we will use this term in this review. We will
call mechanical quantities those with dimensions of the
form M1LxT y. We will use the term kinematic quanti-
ties to describe quantities with dimensions of the form
M0LxT y, with x ̸= 0 and y ̸= 0. And we will use the
adjectives geometric/spatial and chronometric/temporal
to respectively describe quantities with dimensions of the
form M0LxT 0 and M0L0T y (x ̸= 0 and y ̸= 0). What
about quantities like MzLxT y (z ̸= 0)? We will disre-
gard them on account of the fact that they can be reduced
to mechanical quantities by factorization: (M1L x

z T
y
z )z.

Examples of geometric quantities include the well-
known length (L1), area (L2), and volume (L3), but also

more technical quantities like the ‘wavenumber’ (L−1).
Chronometric quantities include the duration or period
(T 1), or the frequency (T −1). The three most well-
known examples of kinematic quantities are the speed
or velocity (L1T −1), the acceleration (L1T −2), and the
diffusivity (L2T −1). Progressive time derivatives of the
position beyond acceleration lead to the so-called ‘jerk’,
‘snap’, ‘crackle’ and ‘pop’, but these colorful terms are
seldom used. More broadly, as we will see later, there are
many more possible kinematic quantities, although they
are less known and rarely have names.

Now, what about mechanical quantities (MLxT y)?
In a colloquial sense, the mechanical quantities are the
“forces” that are in turn pushing or pulling, driving or
resisting, impelling or impairing, all the processes at play
behind space, time and their combination: motion. We
have seen a few examples of these mechanical quantities
in the introduction: the mass (x = 0,y = 0), the density
(x = −3,y = 0), the force (x = 1,y = −2), and the energy
(x = 2,y = −2). Each quantity is specified by its coordi-
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nates (x,y), so mechanical quantities can be represented
as points on a plane. As we said, a priori, the coordinates
x and y could take any value, but the small integers are
of notable importance. Indeed the well-known geometric,
kinematic and mechanical quantities have integer expo-
nents. Investigating the reasons for this preference for in-
tegers is a fascinating task, but it goes beyond the scope
of this review. In this review, we will only take note of
this fact, and we will use it to our advantage. Because
if the coordinates are small integers, we can represent
the standard mechanical quantities they correspond to
in a table. Thus, standard mechanical quantities refer to
mechanical quantities where the exponents x and y are
small integers, but since these are the only mechanical
quantities we will be dealing with here, we will drop the
adjective “standard”.

In Table I, we tabulated the mechanical quantities we
could find in the literature, highlighting the fact that they
may bear different names depending on the context. Sur-
prisingly such table does not seem to have been drawn
before, although as we will see it provides a great way to
understand the mechanical underpinning of space-time.
The table is organized around the mass (x = y = 0),
with columns set by the exponent x, and rows by the ex-
ponent y. You can think of each mechanical quantity as
being located in the dimensional space with two coordi-
nates (x,y). We will use the symbol Q(x, y) to designate
the mechanical quantity with dimensions MLxT y, and
the symbol K(x, y) to designate the kinematic quantity
with dimensions LxT y, or simply Q and K when the
exponents are implicit.

Table I is a map of the explorations of mechanics in
the past centuries, but this mechanical universe is still
mostly uncharted territory. Quantities on this table were
discovered step by step. Just a few centuries ago, the ta-
ble would have been mostly empty. Beyond the mass,
the density, the force and the momentum, contempo-
raries of Newton had very little to play with. Newton
himself formalized the concept of ‘viscosity’, while his ri-
val Hooke was quantifying the concept of ‘stiffness’. It
is the painstaking recording of natural phenomena that
progressively enlarged the mechanical cartography. And
this exploration is still ongoing. There are blank spots
to fill. We took the liberty to name two quantities we
felt deserved their place, but for which we could not find
names in the literature: the levity (ML−3T 2) and the
strength (ML3T −2). A famous example of levity is the
inverse of the gravitational constant G. Almost equally
famous examples of strengths are ℏc, and kce

2, where
ℏ, kc, c and e are respectively the Planck and Coulomb
constants, the speed of light, and the elementary charge.
These two expressions respectively give the “strength”
of the nuclear and electromagnetic interactions. We will
return to these important examples later in the review.

Each mechanical quantity can a priori be independent
from the others. However, as we shall see, mechanical

quantities are revealed by their interactions with one an-
other. The most elementary form of such interaction is
between pairs of mechanical quantities. Ratios of differ-
ent mechanical quantities can produce space, time and
motion.
Ratios of quantities in the same row produce purely

spatial results:( Q(x, y)

Q(x− n, y)

) 1
n

= K(1, 0) = ℓ (1)

We will discuss examples of such lengths in section III.A.
The symbol ℓ will generally be used to refer to any kind
of length, size or distance, when this length is constant.
We will rather use the symbol d when referring to a vari-
able length. When multiple lengths are present we may
occasionally use alternate symbols for lengths, like h for
heights, or r for radii.
Ratios of quantities in the same column produce purely

temporal results:( Q(x, y)

Q(x, y − n)

) 1
n

= K(0, 1) = τ (2)

We will discuss examples of such times in section III.B.
The symbol τ is used to refer to any kind of constant
time, duration or period. We will rather use t to refer to
a variable time.
Ratios of quantities on a diagonal of slope -1 produce

speeds: ( Q(x, y)

Q(x− n, y + n)

) 1
n

= K(1,−1) = u (3)

We will discuss examples of such speeds in section IV.B.
We will use the symbol u to designate any constant speed,
and v to refer to a variable speed.
Ratios of quantities on a diagonal of slope -2 produce

accelerations:( Q(x, y)

Q(x− n, y + 2n)

) 1
n

= K(1,−2) = g (4)

We will discuss examples of such accelerations in sec-
tion IV.C. We will use the symbol g to designate any
constant acceleration, and a for a variable acceleration.
These ratios giving rise to lengths, times, speeds, and

accelerations are the most well-known, but we shall see
that others are of interest. Note also that the relationship
between two mechanical quantities is sometimes encoded
in the very names of these quantities. In particular, the
quantity Q(x− 2, y − 1) can be thought of as the flux of
Q(x, y). For instance, a stress can be thought of as a flux
of momentum. The quantityQ(x−3, y) can be thought of
as the density of the quantity Q(x, y). For instance, the
stress can be thought of as a density of energy. However,
except in a few instances were traditions obliged us (as
with the mass flux, or the force-density), we tried to use
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names that did not explicitly refer to a parent quantity.
All quantities on the table are related to another, but
every quantity exists in its own right.

As illustrated by the different names of the mechanical
quantities shown in Table I, the overall spatial dimension
of a particular context can lead to a confusing usage of
the same words. For instance, in a 2D setting, one may
call the stiffness Q(0,−2) an elasticity (this is very com-
mon in the study of cells and tissues (Marchetti et al.,
2013; Schwarz and Safran, 2013)). Our choice here will
be to use the 3D naming conventions written in bold in
Table I. Note that the existence of many names for a
quantity with the same dimensions is correlated to the
existence of many units as well. For instance, Table I
will make it quite obvious that a stiffness is sometimes
expressed in N/m, where a Newton is a unit of force, or
in J/m2, where a Joule is a unit of energy. Although less
conventional, it could very well be given in poise.m/s,
where a poise is a unit of viscosity. We have found that
the table of mechanical quantities can make it easier to
juggle with all these overlapping names and units.

III. THE MECHANICS OF SPACE OR TIME

Before we address the relationship between mechan-
ics (MLxT y) and kinematics (LxT y), that is between
mass-carrying quantities and motion, we should first dis-
cuss how space or time can separately be understood me-
chanically. Any constant length or duration can be de-
composed into a pair of mechanical factors. At the very
least, these factors are interpreted as providing a way to
compute the values of lengths or durations, but they can
also be regarded as the “origin”, or “reason”, or “cause”
behind these lengths or durations.

A. Simple lengths

Mechanics 2: Simple Lengths

As mentioned in the introduction, Archimedes showed
us the way when it comes to relating geometry and me-
chanics, when he expressed a volume as the ratio of a
mass and a density Ω = m/ρ. The story has been told
a thousand times, it is the original “Eureka!” moment.
Galileo’s insight on this ancient story shows the impor-
tance that it had on the mechanical Renaissance (Mot-
tana, 2017).

If the mass and density of an object are known then
its volume is known. For a simple volume, like that of a
cube, we could simply compute the volume from a knowl-
edge of the length of the side ℓ, as Ω = ℓ3. Conversely,
for a given volume we can always compute the length of
the side of a cube with the same volume, as ℓ = Ω

1
3 ,

which is a kind of “average size” of the object. Using the

FIG. 1 Examples of simple lengths. (a) The Crab nebula, a
supernova remnant, which will grow for millennia up to a size

ℓ ≃ (E/Σ)
1
3 (here ℓ ≃ 1017m). Image credit: NASA (public

domain). (b) Earth, Titan and the Moon, three astronomi-
cal bodies with sizes of the form ℓ ≃ Σ/Ψ (here ℓ ≃ 6371,
2575, 1737 km). Image credit: NASA (public domain). (c)
Manilius crater on the Moon, an example of length given by

ℓ ≃ (E/Ψ)
1
4 (here ℓ ≃ 19 km). Image credit: NASA (public

domain). (d) Illustration of the capillary length on a pendant

drop before its fall (public domain), with size ℓ ≃ (Γ/Ψ)
1
2

(here ℓ ≃ 3 mm). (e) An elastic substrate is deformed by
capillarity at the contact line, over a distance ℓ ≃ Γ/Σ (here
ℓ ≃ 10 µm) (Bico et al., 2018). (f) A thin film of oil on water
produces an interference pattern testifying of its small thick-

ness expressed as (E/Γ)
1
2 (public domain). (g) Beyond the

optical resolution, the diffraction pattern of an atomic crystal
obtained by electron crystallography reveals the typical size
of the atoms (public domain). This size if of the form ℓ ≃ S/E
or ℓ ≃ H/p (here ℓ ≃ 0.1 nm).

notations introduced in the previous section (Eq. 1), we
can write:( Q(0, 0)

Q(0− 3, 0)

) 1
3

=
(m
ρ

) 1
3

= K(1, 0) = ℓ (5)

We will use the symbol ℓ to denote any length, when no
confusion is possible. Once we shall start dealing with
multiple such lengths simultaneously, we will introduce
more specific notations. In particular, the length built
from the quantities Q1 and Q2 shall be called ℓQ1Q2

. So
in the example from Archimedes, the average size is ℓmρ,
and the volume is ℓ3mρ. Note that the order of the indices
does not matter, so ℓmρ = ℓρm. We will come back to
this important point in section IV.D.
Objects can have all sorts of shapes and a different

height, width and length. When a measurement of the
“size” of this object is performed, this measure may not
exactly coincide with the size ℓQ1Q2

≡ (Q1(x, y)/Q2(x −
n, y))

1
n . For instance, if the object is spherical its vol-

ume will be Ω = (4π/3)r3, where r is the radius, so

ℓmρ ≡ (4π/3)
1
3 r ≃ 1.6r. If we call the radius r the

“size”, then this size is only approximately given by the
ratio of mass and density, r ≃ (m/ρ)

1
3 . Because tracking

the fine effects of shape is often challenging, and because
we do not seek precision but generality, we will often rely
on this approximate equality sign ‘≃’.

https://youtu.be/QiZ--8tkMdo?si=2IERNoMuT8Jq1A6w
https://math.nyu.edu/~crorres/Archimedes/Crown/bilancetta.html
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In all generality, lengths could be built by combining
an arbitrary number of quantities (geometric, kinematic,
mechanical and even beyond) such that the overall di-
mension is a length. However, in this review we will fo-
cus on cases where the decomposition only involves two
mechanical quantities. We will call these lengths simple
lengths, and as we will see they have been useful in a very
wide range of situations. Even if we restrict ourselves to
the standard mechanical quantities tabulated in Table I
there are over sixty pairs that can produce lengths. We
will only discuss a few, enough to illustrate the generality
of this mechanical approach to space:

(E/Σ)
1
3 energy & stress

(E/Ψ)
1
4 energy & force-density

Σ/Ψ stress & force-density

(Γ/Ψ)
1
2 stiffness & force-density

Γ/Σ stiffness & stress

(E/Γ)
1
2 energy & stiffness

S/E strength & energy

H/p action & momentum

(H/η)
1
3 action & viscosity

F/Γ force & stiffness

ζ/η friction & viscosity

(F/Σ)
1
2 force & stress

Each of these characteristic lengths have several famous
examples, and some are presented in detail below. We
invite the reader to add to this list.

1. Energy and stress: explosions and ideal gases

ℓEΣ ≡
(E
Σ

) 1
3

(6)

The length ℓEΣ applies in particular in the context of ex-
plosions. In the introduction we mentioned the scaling
derived by Taylor for the dynamics of the radius of an ex-
plosion, d(t) ≃ (E/ρ)

1
5 t

2
5 . We will return to this scaling

later in the review, it concerns a type of motion connected
to a ratio of energy and density. Evidently, this motion
cannot continue indefinitely and eventually a ‘final blast
radius’ is reached (Cranz, 1926; Glasstone et al., 1977;
Hopkinson, 1915; Kinney and Graham, 2013; Sachs, 1944;
Wei and Hargather, 2021; Westine et al., 2012). This ra-
dius gives the extent of the zone where most damages
occur. For the nuclear test studied by Taylor (Trinity),
the energy is that of the bomb, around E ≃ 1014 J, and
the stress is the bulk modulus of the air, which is not far
from the atmospheric pressure Σ ≃ 105 Pa. Overall, this
gives: ℓ ≃ (1014/105)

1
3 ≃ 1km. As a comparison, bombs

of 1 Mt, 10 Mt and 100 Mt of TNT (where 1 ton of TNT
is equal to 4.184 gigajoules) correspond to blasts radii of
3 km, 8 km, and 16 km respectively (Glasstone et al.,
1977). The length ℓEΣ also applies for blast cavities of
underground explosions, where Σ is the elastic modulus
of the ground materials (Fokin, 2000).

As illustrated in Fig. 1a, the same formula can be ap-
plied all the way up to supernovae explosions (Asvarov,
2014; Reynolds, 2008), which release energies on the or-
der of 1044 J, and can extend their blast to a distance of
at least 1019 m (i.e. over 300 parsecs). This gives a pres-
sure of the interstellar medium of E/ℓ3 ≃ 1044/1019×3 ≃
10−13 Pa, which is the right order of magnitude (Asvarov,
2014). In regions of interstellar space with even smaller
pressures, the supernova remnants can extend even fur-
ther.

The length ℓEΣ can also be used in situations far from
explosions. For instance, in microscopic physics influ-
enced by thermal effects, E can be the thermal energy
E = kBΘ, where kB is Boltzmann constant and Θ is
the temperature. This Boltzmann constant conveniently
allows to translate a temperature into an energy, incorpo-
rating thermodynamics into the realm of mechanics. In
this context, the equation ℓ ≃ (E/Σ)

1
3 is better known

as Σℓ3 ≃ kBΘ, which is called the ‘ideal gas law’, and
is usually written as ‘PV = nkBT ’, where V/n ≃ ℓ3

is the average volume associated to each microscopic
constituent of concentration, n is the number of these
constituents, and P , V and T are the symbols usually
used for pressure, volume and temperature (note that
we shall not use these notations in this review). This
denomination is a bit misleading since this formula is
not restricted to ideal gases but can be useful to con-
nect (thermal) energy, pressure, and microscales, for a
wide variety of materials. For instance, in 1905, Ein-
stein’s theory of Brownian motion was developed with
the postulate that the osmotic pressure due to dilute
suspension of particles was analogous to that of molec-
ular solutes (Einstein, 1905a). In some cases the stress
Σ can then be interpreted as an elastic modulus. For
instance, in polymer physics, ℓEΣ gives the typical ‘blob
size’. Assuming room temperature (E ≃ 4 10−21 J) and
a modulus around Σ ≃ 100 Pa, which is typical for soft
gels, then ℓ ≃ (E/Σ)

1
3 ≃ 30 nm, a scale characteristic

of the biological frontier of physics (Phillips and Quake,
2006). Clearly, the same formula can underpin very dif-
ferent interpretations. Similar formulas have also been
used to explain the size of cells, where the thermal en-
ergy is multiplied by the effective number of proteins in
the cell (Adar and Safran, 2020; Guo et al., 2017; Xie
et al., 2018).
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2. Energy and force-density: craters and Brownian particles

ℓEΨ ≡
(E
Ψ

) 1
4

(7)

The length given in this equation describes a situation
where energy is balanced by force-density. The force-
density is usually the weight per unit volume, that is
Ψ = ρg0, where g0 is the standard acceleration of grav-
ity. This length scale is for instance relevant to the size of
the crater of an explosion (Holsapple, 1993; Housen et al.,
1983), if the density ρ is taken at the value of the ground
materials. Indeed, this type of simple length is used to
study all sorts of craters from explosions or impacts, in-
cluding those of asteroids on the moon, as illustrated in
Fig. 1c (Katsuragi et al., 2016). Studies of cratering in
granular media also found the same length scale, when
the impactors have moderate speeds (Takita and Sumita,
2013; Uehara et al., 2003). The same scaling can also be
applied for the size of cavity created by explosions at the
surface of liquids (Benusiglio et al., 2014).
The length ℓEΨ can also be used to describe the aver-

age ‘height of a Brownian particle’ in sedimentation or
centrifugation. There, E is the thermal energy and the
force-density is Ψ ≃ ρg, with g = g0 for sedimentation
and g = rω2 for centrifugation (where r is the distance
from the axis of rotation at rate ω) (Sharma et al., 2009).
For instance, at room temperature E ≃ 4 10−21 J, and if
ρ ≃ 103 kg/m3, then (E/ρg0)

1
4 ≃ 0.8 µm. Particles be-

low this size are ‘Brownian’, and they remain suspended
or dispersed, with a number distribution at any height
set by the sedimentation-diffusion equilibrium (Perrin,
1926).

Note that for objects embedded in a fluid, the force-
density will generally be built from ‘buoyancy’, i.e. from
the difference in density with the surrounding medium
Ψ ≃| ρf − ρ | g. In particular, in the case of Brow-
nian particles, the density difference between dispersed
particle and outside medium determines the length scale
that can be identified as the upper limit to the size of
Brownian particles. The argument explains why metal
nanoparticles are Brownian only below 100 nm, whereas
polymer microbeads can be over a micron. Centrifuga-
tion can provide a much larger value of effective g, and
therefore leads to sedimentation and separation (Sharma
et al., 2009).

An example of characteristic size of the form ℓEΨ for
which the force-density is not the weight density occurs
for drop impact. When the viscosity of the drop is negli-
gible in contrast to its inertia and surface-tension, some
studies have found that the maximum drop radius after
impact is given by (E/Ψ)

1
4 , where E ≃ ρr3u2 is the ki-

netic energy of the impacting drop of radius r, speed u
and density ρ. The force-density Ψ ≃ Γ/r2 originates
from capillarity (Clanet et al., 2004). We will see in sec-

tion III.A.6 that other studies suggest a different scaling.

3. Stress and force-density: the hydrostatic equilibrium

ℓΣΨ ≡ Σ

Ψ
(8)

In this length, the force-density is here again often the
weight per unit volume, giving ℓ ≃ Σ/ρg0. The sim-
plest examples consider that the stress is the isotropic
pressure. Such formula is particularly useful in the con-
text of the formation of astronomical objects like plan-
ets or stars (Choudhuri, 2010). In these cases, the size
of a ball of matter is understood as a compromise be-
tween the compression by gravity and the resistance
of an internal pressure. The size is then that of the
planet or star. In this context, Eq. 8 is sometimes re-
ferred to as ‘the hydrostatic equilibrium’ and written
as Σ ≃ ℓΨ, where the internal pressure equilibrates the
weight per unit volume (Kippenhahn et al., 1990), as in
the context of barometers where pressure was first de-
fined (Frontali, 2013). As an example, in the case of
Earth, ρg0 ≃ 5 104 N/m3, and ℓ ≃ 6 106 m, giving
Σ ≃ 1011 Pa. Such pressure typically corresponds to the
elastic modulus of metallic or amorphous solids consti-
tuting the Earth (≃ 100GPa). Through this scaling, the
various sizes of astronomical objects shown in Fig. 1b
are directly related to their densities and elastic mod-
uli (Choudhuri, 2010). For more information, we refer
the reader to a pedagogical presentation on scaling ap-
proaches to the size of stars and planets, which some of us
have recently published (Fardin and Hautefeuille, 2022).

4. Stiffness and force-density: the capillary length

ℓΓΨ ≡
( Γ

Ψ

) 1
2

(9)

Usually Ψ ≃ ρg0 and the stiffness Γ is typically under-
stood as a surface energy, also called ‘surface-tension’.
In the context of the wetting of fluids, such length is
called the ‘capillary length’ (de Gennes et al., 2013).
This capillary length sets the scale where surface energy
and gravity are of comparable influence. For instance,
for the water-air interface, the typical surface-tension is
Γ ≃ 7 10−2 N/m, the density is ρ ≃ 103 kg/m3, and
g0 ≃ 9.8 m/s2, such that the capillary length is around
3 mm. On the moon, where g ≃ 1.6 m/s2, the capillary
length of water is more than twice bigger.
When a drop hangs from a leaf as in Fig. 1d, it may

grow in size only up to the capillary length, after which
it will fall. Generally, gravitation flattens drops of size
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larger than ℓΓΨ, forming puddles, while capillarity keeps
smaller drops spherical. The capillary length also in-
fluences the shape of a meniscus near an immersed or
floating object (de Gennes et al., 2013). Understanding
the interplay of gravity and capillarity can actually be
used to determine surface-tension, using pendant drop
analysis or using capillary rise (de Gennes et al., 2013).

5. Stiffness and stress: the elasto-capillary and elasto-adhesive
lengths

ℓΓΣ ≡ Γ

Σ
(10)

This length provides a balance between stiffness (i.e. sur-
face energy) and stress (i.e. volume energy). The relevant
surface energy can be dominated by the contact with a
solid substrate (in which case it is sometimes called ‘ad-
hesion energy’), or with a fluid medium (in which case it
is usually referred to as ‘surface-tension’). Since Γ is in
the numerator, it is the “driving” term. Larger values of
Γ lead to larger lengths. One particular instance of this
kind of length scale is when the stiffness is understood as
an adhesion energy, and when the stress is elastic. The
elasticity generates a recoil that is balanced by adhesion.
In this context, ℓΓΣ may be called the ‘elasto-adhesive’
length (Creton and Ciccotti, 2016).

When Γ comes from surface-tension, the length ℓΓΣ
is often called the ‘elasto-capillary length’ (Bico et al.,
2018). This length is relevant for the spreading of drops
on soft substrates, associating surface energy and elas-
ticity (Andreotti and Snoeijer, 2020). The elasticity can
be that of the spreading object or of its environment.
For instance, as illustrated in Fig. 1e, ℓΓΣ applies to the
height of the wetting ridge near the solid-liquid-air triple
line (Jerison et al., 2011), where the surface-tension Γ
acts perpendicularly to a substrate of elastic modulus Σ.
Experimentally, a drop of glycerol (Γ ≃ 63 mN/m) on a
soft silicone gel (Σ ≃ 2.4 kPa) produces a ridge of about
12 µm (Coux and Kolinski, 2020). Other orders of mag-
nitude can be obtained, for instance a length of 30 nm
was found for tricresyl phosphate (Γ ≃ 28.5 mN/m) on
a silicone elastomer (Σ ≃ 0.6 MPa) (Carré et al., 1996).

6. Energy and stiffness: Scheludko-Vrij length

ℓEΓ ≡
(E
Γ

) 1
2

(11)

This length is particularly relevant for thin films, where
it can be called the ‘Scheludko-Vrij length’ (Nikolov and
Wasan, 2014; Sheludko, 1967). One example considers

that the energy E comes from van der Waals interactions
and is called the ‘Hamaker constant’ (de Gennes et al.,
2013; Israelachvili, 2015). For typical fluids this length
is around a few angstroms. In this context, one usually
defines a ‘disjoining pressure’ Σ ≃ E/ℓ3, where ℓ is the
film thickness. Disjoining pressure and the Hamaker con-
stant play an important role in the climbing and spread-
ing of thin films (Leger and Joanny, 1992; Popescu et al.,
2012; Starov and Velarde, 2019), and in setting the nano-
topography of foam films (Zhang and Sharma, 2018).
Note that the linear stability analysis of both free-

standing and supported ultra-thin films results in a pre-
diction of a spinodal-like instability into thick-thin re-
gions, with a typical size ℓΓΨ given in Eq. 9, where the
force-density is defined as the gradient of disjoining pres-
sure, i.e. Ψ ≃ E/ℓ4EΓ. This length scale has been observed
experimentally in spinodal dewetting and spinodal strat-
ification (Kalliadasis and Thiele, 2007; Yilixiati et al.,
2019).
As mentioned in section III.A.2, in the context of drop

impact, when the viscosity of the drop is negligible, some
studies have found that the maximum drop radius after
impact is a simple length of the form ℓEΨ, where E is
the kinetic energy of the drop. In contrast, other studies
suggest that the maximum radius may be of the form
given by ℓEΓ (Bennett and Poulikakos, 1993; Eggers et al.,
2010; Laan et al., 2014).

7. Strength and energy: Bohr radius and Bjerrum length

ℓSE ≡ S

E
(12)

This length has very deep roots since it can be used to
express the size of the atom. This length also gives us
the opportunity to say a few words about the mechani-
cal quantity S = Q(3,−2). To the best of our knowl-
edge this quantity does not have a standard name in
the literature. In the context of the deformations of
elastic beams, it is sometimes called the ‘flexural rigid-
ity’ (Landau et al., 1986). We call S the strength be-
cause it is often used to compare the relative strength
of fundamental forces (Dirac, 1937). Newton’s force of
gravity between two masses m1 and m2 separated by
a distance r can be expressed as Gm1m2/r

2, whereas
Coulomb’s force between two charges q1 and q2 can be
expressed as kCq1q2/r

2, where G and kC = 1/4πϵ0 are re-
spectively the gravitational and Coulomb constants (with
ϵ0 the vacuum permittivity). Both Gm1m2 and kCq1q2
have the dimensions of a strength. Most notably, if the
charges q1 and q2 are elementary S0 = kCq1q2 = kCe

2 ≃
2 10−28 kg.m3.s−2. In the microscopic realm one says
that electromagnetism has a greater strength than grav-
ity because S0 ≫ Gm2, where m is for instance the mass
of a proton.
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The length ℓSE can then be used to express the size of
an atom, using S0 and the Hartree energy E = meu

2,
where me is the mass of the electron and where u = α0c
is the semi-classical speed of the electron (α0 ≃ 1/137 is
the ‘fine structure constant’ we shall discuss later, c is the
speed of light). Under these assumptions Eq. 12 gives ℓ =
e2/(4πϵ0meu

2), which is the first historical expression
of the ‘Bohr radius’ (Griffiths and Schroeter, 2018) (an
alternate way of writing this radius will be given in the
next sub-section).

In plasma and electrolytes, the strength S0 also
appears in the definition of the Bjerrum and Debye
lengths (Israelachvili, 2015). The ‘Bjerrum length’ fol-
lows Eq. 12 with S = S0/ϵr, which takes into account
the dimensionless relative dielectric constant ϵr, and
E = kBΘ. This length provides the scale at which the
electrostatic and thermal effects are of comparable influ-
ence. It arises in the context of electrolytes and colloidal
dispersions (Israelachvili, 2015; Muthukumar, 2023). For
water at room temperature, ϵr ≃ 80 and the Bjerrum
length is around 0.7 nm. The different assumptions lead-
ing from S/E to the Bohr or Bjerrum lengths are sum-
marized here:

ℓ =
S

E
&

{
S = S0 & E = meu

2 ⇒ ℓ = e2

4πϵ0meu2

S = S0

ϵr
& E = kBΘ ⇒ ℓ = e2

4πϵ0ϵrkBΘ

(13)
In the context of plasmas and electrolytes the ‘Debye
length’ also involves a strength S0. The Debye length
characterizes the screening of electrostatic interactions
between two charges in the presence of other charges.
In colloidal dispersions, as the Debye length depends on
ion concentration, it is a property of the solution, unlike
the Bjerrum length which depends on the solvent and
its dielectric constant (Muthukumar, 2023). In this con-
text one can define an effective stiffness as a density of
strength, Γ = S0/r

3, which is then combined with the
thermal energy using Eq. 11. Here, the distance r is the
mean distance between electrons and 1/r3 is the electron
number density, so Γ can be understood as a charge den-
sity expressed in units of mass, length and time. The
Debye length can vary widely, from atomic scale in the
solar core to thousands of kilometers in the intergalac-
tic medium. In electrolyte media, encountered in soft
matter and within cells, the strength is built from the
number density of ions, whereas in semiconductors, the
number density of dopants makes the relevant contribu-
tion (Clemmow, 2018; Robinson and Stokes, 2012).

8. Action and momentum: Bohr radius and de Broglie
wavelength

ℓHp ≡
H

p
(14)

We have seen in the preceding sub-section that the very
size of the atom can be expressed as a ratio of two
mechanical quantities. More precisely, the Bohr radius
can be expressed as a ratio between the electromag-
netic strength and the kinetic energy of the electron,
ℓ ≃ S0/E. The kinetic energy can be written in terms
of the mass me of the electron and its speed u = α0c,
so ℓ ≃ S0/(meuα0c) ≃ S0/(pα0c), where p = meu is the
momentum of the electron. Historically, the dimension-
less ‘fine structure constant’ α0 was understood precisely
in this fashion, as the ratio between the speed of the elec-
tron and the speed of light (Kragh, 2003). However, α0

quickly showed up in other situations, and in particular
in the comparison between the electromagnetic strength
S0 and the nuclear strength ℏc, since α0 = S0/ℏc. Using
this formula we can rewrite the Bohr radius as ℓ ≃ ℏ/p.
Expressed in this way the Bohr radius is understood as
the ‘de Broglie wavelength of the electron’. Generally,
when H is the quantum of action ℏ, Eq. 14 encompasses
one of the central concept of quantum mechanics, the re-
lationship between waves and particles (de Broglie, 1925).
We have seen that the Bohr radius can be expressed by

two different pairs of mechanical quantities, S and E or
H and p. The existence of multiple mechanical decom-
positions is not at all special to this case. Any length
can always be decomposed into a ratio of two mechani-
cal quantities, but this decomposition is not unique, and
this plurality encourages a diversity of mechanical mod-
els. The pair chosen in a particular situation depends
on the greater context where the length is found, and on
historical circumstances. A more complete investigation
of this “plurality” would require more than two mechan-
ical quantities and is therefore out of the scope of this
review. We will say a few more words about this in the
conclusion.

9. Action and viscosity: Viscosity as a density of action

ℓHη ≡
(H
η

) 1
3

(15)

As we said in section II, a mechanical quantity of the
form Q(x− 3, y) can always be thought as a 3D density
of the quantity Q(x, y). This is famously true for the
density itself, which is a mass-density and the template
for all the others. This is also true for the stress, which
can be understood as a density of energy, as we saw with
Eq. 6. It is also true in less traditional cases, as with
the viscosity η ≡ Q(2 − 3,−1), which can be thought of
as a density of action H ≡ Q(2,−1). Take water as an
example. Water has a viscosity around η ≃ 10−3 Pa.s
(where 1 Pa.s≡1 kg.m−1.s−1). A water molecule has a
radius around ℓ ≃ 1 Å. So if we multiply the viscosity
by the typical volume of a water molecule we get an ac-
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tion: H ≃ ηℓ3 ≃ 10−33 J.s. This value is not far from
the quantum of action, ℏ ≃ 10−34 J.s, so the viscosity of
water almost corresponds to one quantum of action per
molecule. Although this link between viscosity and ac-
tion is here only sketched by rough orders of magnitude,
it can be formalized more rigorously, as exemplified in a
recent paper by Trachenko and Brazhkin (2020).

10. Old lengths under new light

ℓFΓ ≡ F

Γ
(16)

ℓζη ≡
ζ

η
(17)

ℓFΣ ≡
(F
Σ

) 1
2

(18)

These last examples provide ratios that are well known
but often represented differently.

In Eq. 16, Γ can be interpreted as the stiffness of a ma-
terial behaving as a spring, then Eq. 16 is just Hooke’s
law, F = ΓℓFΓ, where F and ℓFΓ are usually understood
as variable. In the context of spreading drops or cells,
this ratio can state a balance between a driving force F
and a surface-tension or stiffness Γ. For cell spreading,
the length ℓFΓ can be used to characterize the portion of
the cell behind the edge, which is rich in a very dynamic
polymer called ‘actin’ (Mitchison and Cramer, 1996; Pol-
lard and Cooper, 2009; Roberts et al., 2002). The poly-
merization of actin can be associated with a ‘protrusion
force’ F , which is balanced by a surface energy Γ, with
contributions form the plasma membrane, the cell stiff-
ness, and the adhesion with the substrate (Cuvelier et al.,
2007; Fardin et al., 2010).
In Eq. 17, the length is ℓζη≡ζ/η, that is a ratio between

a ‘friction’ or ‘mobility’ and a viscosity. This equation is
more often seen in the form ζ = ηℓζη, in the context of
Stokes drag (Landau and Lifshitz, 1959; Stokes, 1850),
where it gives the effective friction ζ on an object of size
ℓζη moving slowly in a fluid of viscosity η. Indeed, for
high viscosity and low speed, the friction force is propor-
tional to speed u, and given by F ≃ ζu ≃ ηℓζηu. This
connection is the basis for Brownian motion in the Stokes
Einstein relation (Landau and Lifshitz, 1959), and thus
lies at the heart of colloidal physics and chemistry (Rus-
sel et al., 1991).
In Eq. 18, a length is defined as the ratio between a

force and a stress. This formula is more often seen as
Σ ≃ F/ℓ2, which defines a stress from the force F on
the area ℓ2. From this perspective, the stress is typically
understood as intensive, whereas the force is extensive
but normalized by the area. When F and Σ are indepen-
dent constants, ℓFΣ is a simple length in its own right.
This is for instance the case in the physics of nematic

and polar materials, which includes a large class of liv-
ing systems (Marchetti et al., 2013; Schwarz and Safran,
2013). In this context, ℓFΣ is sometimes called the ‘ne-
matic length’, where F is understood as the ‘Frank con-
stant’, which represents a 1D elasticity associated with
differences in alignment, and where Σ represents the en-
ergy per unit volume associated with the alignment of
the nematic components (de Gennes and Prost, 1993).
This length scale gives the typical extent of orientational
boundary layers (Marchetti et al., 2013). Another im-
portant simple length in the study of active matter is
the crossover from ‘wet’ to ‘dry’ active particles, which
can be written as ℓηχ where η is the viscosity of the em-
bedding fluid, and χ is a bit understood as a so-called
‘frictional drag’ (Marchetti et al., 2013).

B. Simple times

Mechanics 3: Simple Times

We have seen that ratios of mechanical quantities can
produce length scales that show up in a wide variety of
situations. In these examples a length emerges out of a
kind of “balance” between conflicting “forces”, where the
term “force” is here used quite generously to encompass
any mechanical quantity (MLxT y). Similarly, pairs of
mechanical quantities can be used to understand time,
durations and periods, leading to what we can call simple
times. We will use the symbol τ when no ambiguity is
possible, and τQ1Q2

when specificity is required. Over
thirty such simple times can be built from the standard
quantities of Table I. We list here the ones we shall discuss
in this section:

(m/Γ)
1
2 mass & stiffness

E/P energy & power

H/E action & energy

η/Σ viscosity & stress

Φ/η normal stress coefficient & viscosity

ζ/Γ friction & stiffness

ρ/χ density & density variation

1. Mass and stiffness: Hooke-Rayleigh time

τmΓ ≡
(m
Γ

) 1
2

(19)

This time is the archetypal example of a simple time.
When Γ is interpreted as the stiffness of a spring from
which is attached a mass m, Eq. 19 is the familiar expres-
sion of the period of oscillation. The standard formula
found in textbooks usually used the symbol ‘k’ instead of

https://youtu.be/KNeNx9mi2ao?si=CSSXh1kCe7_DcNKv


12

Γ, and includes a prefactor of 2π, so τmΓ is more precisely
the inverse of the ‘angular frequency’.

In the context of the dynamics of droplets, the mass is
usually given by m ≃ ρr3, where ρ is the density of the
fluid and r is the radius of the droplet. In this context
one speaks of the ‘Rayleigh time’ (Rayleigh et al., 1879),
which applies to the oscillation frequency of drops, as
well as to the contact time of rebounding drops (Richard
et al., 2002). Despite very different rebound profiles de-
pending on the impact speed, the contact time remains
the same and is set by τmΓ. The timescale also appears in
capillarity-driven flows of ‘inviscid fluids’ (i.e. negligible
viscosity) (Eggers, 1997; Fardin et al., 2022; McKinley,
2005; Middleman, 1995; Rayleigh et al., 1879).

2. Energy and power: Energy consumption and
Ritter-Kelvin-Helmholtz time

τEP ≡ E

P
(20)

The power relates to a transfer or conversion of energy
over time, and so the dimension of E/P is naturally T .
Common units of energy like the kilowatt-hour reflect
this proximity, with 1 kWh= 3.6 106 J.s−1.s, so simply
3.6 106 J. For a given energy E, the time scale in Eq. 20
gives the time range to be expected when the energy
consumption rate is the power P . This time scale can be
used for a wide variety of purposes, to estimate how long
you can drive on a full tank, as well as the life expectancy
of the Sun.

A typical small car will have something like 70 horse-
power, so P ≃ 53 103 W. The energy comes from the fuel.
Assuming a gas tank of 35 liters of standard fuel, with
8.9 kWh/liter, yields E ≃ 109 J per gas tank. Then,
τEP ≃ 5 hours. This is roughly how long this car can
drive without refueling.

The principle behind the formula in Eq. 20 remains
the same for all kinds of fuel and all kinds of systems
consuming this fuel. In particular, this formula can also
be used to obtain an estimate of the lifetime of a star
like the Sun. In this case, the power is well estimated by
the solar luminosity, and P ≃ 3.8 1026 W (Kippenhahn
et al., 1990). If the fuel of the Sun was standard gasoline
as in the car, then the lifetime of the Sun would only be
around 3000 years, according to Eq. 20. This is obviously
not the case.

So what is the fuel of the Sun? The quest to answer
this question spanned from the mid 19th to the mid 20th
century and involved some of the greatest minds of this
time. The story is told beautifully in a paper by Shaviv
(2008). An important step in the quest was to consider
the energy to be due to the self-gravitation of the Sun,
so E ≃ Gm2/ℓ, where m and ℓ are respectively the mass

and size of the Sun. In this scenario, the power of the
Sun, that is its luminosity is due to the gravitational
potential energy. This time scale is sometimes called the
‘thermal timescale’, or the ‘Kelvin-Helmholtz timescale’,
to honor Kelvin and Helmholtz contributions to this field
of research. However, as noted by Shaviv (2008), August
Ritter was the first to derive this formula. This timescale
plays an important role in astronomy, in particular to
set the timescale of the collapse of protostars, however,
it fails to estimate the age of the Sun and similar stars.
Indeed, using ℓ ≃ 7 108 m and m ≃ 2 1030 kg, we get
τEP ≃ 30 million years. The inadequacy of this figure
with the geological records led to intense debate, and
the controversy was only resolved at the beginning of
the 20th century, when it was realized that the fuel of
the Sun is nuclear (Shaviv, 2008). By considering the
conversion of hydrogen into helium, it was estimated that
the energy of the Sun is around E ≃ 6 10−4mc2, giving
τEP ≃ 10 billion years, which is the currently accepted
order of magnitude, and is sometimes called the ‘nuclear
time scale’ (Kippenhahn et al., 1990).

3. Action and energy: Planck relation

τHE ≡ H

E
(21)

Staying on the same column of Table I than in the previ-
ous example, we have the pair combining action and en-
ergy. The part of physics where a constant action is most
dramatically felt is quantum mechanics, where the action
is the Planck constant ℏ. Using this value, we can rear-
range Eq. 21 to express the energy from the Planck con-
stant and the inverse of the time, which is usually written
as a frequency, E = ℏω. This equation started the whole
quantum revolution, it is the Planck relation, which gives
the energy of a photon of frequency ω, or the frequency
from the energy. This is the formula behind Einstein’s
Nobel prize on the photoelectric effect (Einstein, 1905a).
With this relationship, Einstein calculated the frequency
of a photon required to eject an electron from a metal-
lic target. For instance, if the target is made of Zinc,
the binding energy of an electron is around E ≃ 9 elec-
tronvolts, so E ≃ 10−18 J. Thus, according to Eq. 21 the
frequency of light above which electrons can be extracted
is around 1016 Hz, corresponding to ultraviolet light.
In the special case where the energy is the thermal

energy (E = kBΘ), the time τ = ℏ/kBΘ is called the
‘Debye time’ (Kittel, 2005). The inverse of this time scale
provides an important thermal cut-off in the propagation
of waves in crystal lattices. At room temperature, the
Debye time is around twenty femtoseconds. Note that the
term ‘Debye time’ can also be used in a slightly different
way (Bazant et al., 2004). The two formulas could be
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reconciled by using the relationship between viscosity and
action, as given in Eq. 15.

4. Viscosity and stress: rheological time

τηΣ ≡ η

Σ
(22)

This ratio most notoriously apply to Newton’s relation,
Σ ≃ ηγ̇, where γ̇ is the deformation rate. The time scale
is then γ̇−1. In general, the deformation rate is not a
constant. However, in complex fluids there are often re-
markable values of γ̇. For instance, many materials dis-
play rather elastic properties on short time scales, and are
viscous on longer time scales (Larson, 1999). These ma-
terials are usually called ‘visco-elastic’, and the threshold
between short and long time scales is the ‘relaxation time’
τ . In ‘Maxwell’s model’, which is the simplest model of
visco-elastic fluid, the elasticity of the material Σ, the
viscosity, and the relaxation time are connected by the
equation τ ≃ η/Σ (Bird et al., 1987; Larson, 1999). The
greater the viscosity the longer the time, and the greater
the elasticity the shorter the time. The relaxation time
scale of visco-elastic fluids can range from milliseconds to
decades (Bird et al., 1987; Larson, 1999). At any rate,
in simple visco-elastic fluids the time τ is a constant of
the material and it can be used to understand the tran-
sition between different flow regimes (Fardin et al., 2014;
Larson, 1999; McKinley, 2005).

In more complex visco-elastic fluids beyond Maxwell’s
model, there can be more than one relaxation time (Doi
et al., 1988; Larson, 1999). Polymer solutions typically
have a spectrum of relaxation times. In addition, some
materials may behave as Maxwell fluids under small de-
formations, but display flow-induced changes in their
structure at higher deformations. For instance, wormlike
micelles (Larson, 1999) solutions have a viscosity η1 at
low deformation rates, and above a threshold γ̇1 a differ-
ent flow-induced “phase” of viscosity η2 is generated and
coexists at constant stress Σp with the original one until a
second threshold γ̇2. Above this threshold the whole ma-
terial has viscosity η2. This phenomenon is usually called
‘shear-banding’ (Divoux et al., 2016). Both γ̇−1

1 ≃ η1/Σp

and γ̇−1
2 ≃ η2/Σp are time scales of the form η/Σ. More

broadly, remarkable values of viscosity or stress can occur
in a large class of ‘complex’ or ‘non-Newtonian’ fluids, in-
cluding shear-thinning, shear-thickening and yield-stress
fluids. In turn, these quantities provide multiple ways to
construct time scales of the form given in Eq. 22 (Larson,
1999).

5. Viscosity and normal stresses: Weissenberg time

τΦη ≡ Φ

η
(23)

In addition to the visco-elastic time scales they are often
associated with, non-Newtonian materials can also dis-
play quite remarkable ‘normal stress effects’ (Bird et al.,
1987; Larson, 1999). In ‘Newtonian fluids’, shear stresses
are of the form Σs ≃ ηγ̇, where γ̇ ≃ u/ℓ is a veloc-
ity gradient over the distance ℓ. In contrast, normal
stresses come from inertia and are usually of the form
Σn ≃ ρu2 ≃ ρℓ2γ̇2. This stress is sometimes called
the ‘dynamic pressure’, or the ‘Ram pressure’ in astro-
physics (Clarke and Carswell, 2007). For Newtonian or
non-Newtonian fluids, normal stresses can be expressed
as Σn ≃ Φγ̇2, such that [Φ] = ML−1, the same di-
mensions as a 1D mass-density. In the Newtonian case,
Φ ≃ ρℓ2, but in non-Newtonian fluids, including mag-
netic fluids relevant to astrophysics, the normal stress
coefficient Φ can be completely disconnected from ρ and
inertia in general (Ogilvie and Proctor, 2003). Whereas
the positive value of Φ for Newtonian fluids tend to gen-
erate centrifugal forces pushing a rotating fluid outward,
for non-Newtonian fluids Φ can be negative and push the
material inward in the so-called ‘rod-climbing’ or ‘Weis-
senberg effect’ (Bird et al., 1987; Larson, 1999). This is
but one among many examples of non-Newtonian normal
stress effects.
For non-Newtonian fluids, the normal stress coefficient

Φ is a material property as important as the viscosity,
and disconnected from the density. It is a mechanical
quantity of its own, from which a time scale τΦη can be
constructed, as in Eq. 23. In simple visco-elastic models
like Maxwell’s model, this time scale is identical to the
relaxation time τηΣ. Indeed, in Maxwell’s model, one
has Φ ≃ ητηΣ (Larson, 1999). This identity is not true in
general. Currently, the differences between the two non-
Newtonian time scales are most often investigated in the
context of flows with an extensional component, where
the dual effects of normal stresses and relaxation time
are factored into the differences between shear and ex-
tensional rheology (Dinic and Sharma, 2020; McKinley,
2005).

6. Friction and stiffness: damping time

τζΓ ≡ ζ

Γ
(24)

One way to understand this time scale is as the 2D equiv-
alent of τηΣ. For fluid films, the details of the dynamics
of the height can usually be neglected when the horizon-
tal extent is much larger than the thickness. Under such
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‘lubrication approximation’ (Hamrock et al., 2004; Leal,
2007; Oron et al., 1997), τζΓ can be understood as the
characteristic time separating the short time dynamics
driven by the stiffness, and the long time scales domi-
nated by friction. In the most elementary expression of
this time scale, Γ is the stiffness of a spring, and ζ is the
damping coefficient. If the spring is initially compressed,
it first snaps back fast until a cross-over time ζ/Γ, after
which it relaxes more slowly. A time scale of this nature
is for instance seen for the dewetting time of islands of
cells on unwelcoming substrates (Pérez-González et al.,
2019). In this situation, a monolayer of cells progressively
retracts into a 3D aggregate. In this context, the friction
is ζ ≃ ηh, where h is the cell height, and the stiffness
is the ‘tension’ over the portion of the monolayer close
to the edge, Γ ≃ Σℓ, where Σ is the ‘traction stress’ ex-
erted by the cells on the substrate, and the width ℓ near
the edge is given by the nematic length discussed with
Eq. 18.

7. Density and its variation: proliferation time

τρχ ≡ ρ

χ
(25)

Because the standard name we have chosen for the me-
chanical quantity χ ≡ Q(−3,−1) is density change, the
fact that this ratio is a time scale seems trivial. It is
the time scale over which the density changes. This time
scale is particularly useful in dynamics due to the pro-
liferation of objects with a characteristic mass m and
a ‘number density’ n (dimension L−3 or L−2 in 2D).
If the mass is constant, then τρχ≡ρ/χ ≃ n/ṅ, where
ṅ ≃ ∂n/∂t. Thus, the time scale reflects the rate of
change of the number of objects. For instance in tissues
of cells the time scale τρχ is connected to the character-
istic time separating two cell divisions. This time scale
is relevant for the spreading of tissues (Puliafito et al.,
2012), as well as for some organisms like ants (Mlot et al.,
2011).

IV. THE MECHANICS OF MOTION

In the previous section we investigated the mechanics
of space or time, taken separately. Here, we will see how
mechanical quantities can be used to rationalize motion,
so we will address the connection between mechanics and
kinematics, that is between mass-carrying quantities and
space-time.

We will present a few instructive examples of dynamic
scalings from the literature, in particular those illustrated
in Fig. 2.

A. General formula

In the previous section we only considered pairs of
mechanical quantities on the same lines or on the same
columns of Table I. Pairs on the same line yield simple
lengths, and pairs on the same column yield simple times.
We now consider any arbitrary pair of mechanical quanti-
ties, Q1(x1, y1) and Q2(x2, y2). In this general case, the
dimensions of the mechanical ratio combine space and
time, and the dimension of mass naturally disappears:[Q1

Q2

]
= Lx1−x2T y1−y2 (26)

This general formula includes simple lengths in the case
where y1 = y2 (same line), and simple times when x1 =
x2 (same column). Also included are all sorts of fully
kinematic results, where x1 ̸= x2 and y1 ̸= y2. As we will
see now, these kinematic cases provide a deep connection
between mechanical quantities and motion.

B. Simple speeds

Mechanics 4: Simple Speeds

In the same way that pairs of mechanical quantities
can combine to give simple lengths or times, they can also
produce speeds. Indeed, for pairs of mechanical quanti-
ties satisfying x1 − x2 = y2 − y1, Eq. 26 implies[Q1

Q2

]
= Lx1−x2T −(x1−x2) = (LT −1)x1−x2 = [u]x1−x2

(27)
Graphically, the constraint on the exponents, x1 − x2 =
y2 − y1, means that the two quantities Q1 and Q2 are on
the same diagonal of slope -1 in Table I. So in this case,
the ratio of such pair of mechanical quantities produces
a speed or powers of a speed. Taking the appropriate
root we can systematically express the result as a simple
speed, since: [Q1

Q2

] 1
x1−x2

= LT −1 (28)

We shall discuss five important examples:

(E/m)
1
2 energy & mass

(Σ/ρ)
1
2 stress & density

Γ/η stiffness & viscosity

F/ζ force & friction

S/H strength & action

These speeds give us a preview of the relationship be-
tween mechanics and motion, in the special case where
this motion is ‘uniform’, i.e. at constant speed.

https://youtu.be/VvMKwZSNEX4?si=l6aLuzYAhzjqjxfv
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FIG. 2 Examples of dynamics associated with scalings of the form d ∼ tα, from the pinching of viscous liquid threads, to atomic
explosions and the motions of living cells. (a) Side view of the pinching dynamics of a viscous glycerol filament (McKinley
and Tripathi, 2000), governed by d ≃ (Γ/η)t (Eq. 31), where the time t is the duration before pinch-off, so in this example
the “actual time” runs from right to left. The length d is the radius of the filament, and Γ and η are the surface-tension and
viscosity of the fluid. (b) Side view of the first atomic explosion (Trinity test, 1945), discussed in the introduction (Taylor,

1950a). The dynamics of the blast radius d follow d ≃ (E/ρ)
1
5 t

2
5 , where E is the yield of the explosion and ρ is the density of

the surrounding air. (c) Top view of the spreading of a silicon oil droplet that is being spin coated (Melo et al., 1989). The

dynamics of the contact radius d follows d ≃ (E/φ)
1
4 t

1
4 (Eq. 38), where E is the centrifugal energy and φ ≃ η/ℓ is an interfacial

friction built from the viscosity and size of the drop. (d) Top view of the spreading of a cell onto a rigid substrate covered by

extracellular matrix (Fardin et al., 2010). The dynamics of the contact radius d follows d ≃ (F/η)
1
2 t

1
2 (Eq. 51), where F is the

‘protrusion force’ and η is the viscosity of the cell. (e) Top view of the spreading of an aggregate of cells onto a rigid substrate

covered by extracellular matrix (Douezan et al., 2011). The dynamics of the contact radius d follows d ≃ (E/η)
1
3 t

1
3 (Eq. 39),

where E ≃ Γℓ2 is the adhesion energy, and η is the viscosity of the aggregate.
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1. Energy and mass: kinetic energy and projectiles

uEm ≡
(E

m

) 1
2

(29)

The combination of energy and mass produces a speed,
which underlies the concept of kinetic energy, and which
can be used to derive the speed of projectiles of known
mass and energy. The standard unit of energy is the
Joule, which is defined as 1 kg.m2.s−2. This definition
connects the energy to the mass, [E] = [m][u]2, where u
is some speed. The most famous example of this formula
is the most famous formula: E = mc2, the mass-energy
equivalence. Another more ancient example of this con-
nection between energy, mass, and speed is the kinetic
energy, E = 1

2mu2. In this context, the speed u is much
smaller than the speed of light. Usually, this formula is
used to compute the energy from a known mass m and
speed u. However, the formula can be rearranged to ex-
press the speed from the mass and energy, as in Eq. 29.
The mass can be that of a projectile, like a canon ball,
or a bullet, and the energy is that delivered by the gun.

The speed uEm can be used to rationalize the speed
of all sorts of projectiles, bullets racing in a straight line,
but also debris flying in all directions, as in the case of
explosions–small, large, or even astronomical. This kind
of speed can for instance be used to describe the early
stage of supernova explosions. Some types of supernovae
(type Ia) the mass and energy are known with some con-
fidence. The mass is that of the ‘progenitor’, i.e. the
exploding star, with a mass around that of our Sun, so
m ≃ 2 1030 kg, and the energy is around E ≃ 2 1044 J.
In this context, the early speed of the leading edge of
the supernova remnant can be estimated from Eq. 29,
reaching a daunting 10,000 km per second!

2. Stress and density: sound speed

uΣρ ≡
(Σ
ρ

) 1
2

(30)

This example is probably one of the most well-known.
The speed uΣρ is the ‘sound speed’, taken in its most
general sense. The sound waves can be connected to
compression or shear, whether the stress Σ is taken to
be a shear stress or a pressure. Some materials, typi-
cally gaseous can only sustain compression waves. For
air, with ρ ≃ 1.2 kg/m3, and Σ ≃ 1.4 105 Pa, the sound
speed uΣρ would be about 340 m/s (the stress Σ is the
bulk modulus of the air, which is given by the product
between the atmospheric pressure and the ‘adiabatic in-
dex’ around 1.4). The order of magnitude of the sound
speed in various materials can be computed from values

of densities and elasticity/pressure/shear modulus, etc.
In general, there can be different elastic moduli depend-
ing on the directions of deformation. Nevertheless, for
isotropic and homogeneous materials, only two moduli
are enough to characterize the material (Landau et al.,
1986). Many pairs are possible. For instance, inside the
Earth, the sound waves are ‘seismic waves’, called ‘P-
waves’ (compression) and ‘S-waves’ (shear), with speeds
obtained with the formula of Eq. 30, by choosing Σ to
be respectively the P-wave modulus and shear modu-
lus. For granite, the P-wave speed is typically around
5000 m/s, whereas the S-wave speed is 3000 m/s. In
contrast, for medical ultrasounds, the relevant stress is
the shear modulus of tissues, around Σ ≃ 104 Pa, with
a density ρ ≃ 103 kg/m3, giving a sound speed around
3 m/s.
The sound speed uΣρ can also appear in disguise, for

instance in astrophysics, and magnetohydrodynamics,
where it is sometimes called the ‘Alfvén speed’, when
the stress is built from a magnetic field strength B as
Σ = B2/µ0, where µ0 is the permeability of the vac-
cum (Chandrasekhar, 2013). Note that in the same
way that the Boltzmann’s constant was used to trans-
late a temperature into an energy ([kB ] = [E]/[Θ]), and
the permittivity ϵ0 was used to translate charges into a
strength ([ϵ0] = [e]2/[S]), here the permeability is used to
translate a magnetic field into a stress ([µ0] = [B]2/[Σ]).
These translation constants allow one to remain within
the M-L-T system.

3. Stiffness and viscosity: visco-capillary speed

uΓη ≡ Γ

η
(31)

This speed is crucial to the dynamics of capillary driven
flows. In this context the stiffness is interpreted as a
surface-tension, and the speed may be called the ‘visco-
capillary speed’ (de Gennes et al., 2013; McKinley, 2005;
Middleman, 1995). At the interface between pure water
and air, the surface-tension is typically Γ ≃ 7 10−2 N/m,
and the viscosity of water is η ≃ 10−3 Pa.s, such that
the capillary speed is Γ/η ≃ 102 m/s. In contrast, the
sound speed in water would be around 1400 m/s, and
the molecular speed would be 600 m/s. Note that such
molecular speed would be expressed as uEm (Eq. 29), us-
ing the thermal energy and the mass of the molecules as
factors. For glycerol, since the surface-tension is sim-
ilar and the viscosity is a thousand times bigger, the
visco-capillary speed would be around 10 cm/s. When
there is no other significant mechanical quantity beyond
Γ and η, the visco-capillary speed is the natural speed
scale. For instance, uΓη is the speed at which viscous
filaments gets thinner (Eggers, 1997; McKinley and Tri-
pathi, 2000; Papageorgiou, 1995), as depicted in Fig. 2a.
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This speed also occurs during the dynamics of spreading
and coalescing droplets (Fardin et al., 2022). Note that
in the context of dilute surfactant solutions, a difference
of surface-tension is used and the speed can be called the
Marangoni speed (Edwards et al., 1991; de Gennes, 1985;
Manikantan and Squires, 2020; Nikolov et al., 2021).

4. Force and friction: terminal or active speed

uFζ ≡ F

ζ
(32)

This pair is more often found in the form F ≃ ζu, where
u is the drift speed or terminal speed. Usually, ζ is un-
derstood as a constant, whereas F and u are variable.
This viewpoint corresponds well to passive fluids, where
the force is usually applied by the experimenter or set
by gravity (Leal, 2007; Stokes, 1850). One famous ex-
ample of this speed is in the context of an object falling
inside a viscous fluid, like a steel ball in corn syrup. In
this context, F = mg0, where m is the mass of the ball.
The friction or drag coefficient ζ can be estimated if we
know the weight and the speed. For instance, for a ball
of steel with a diameter of 1 cm, the weight is around
F ≃ 0.04 N and the speed in syrup around u ≃ 2.6 cm/s,
so ζ ≃ F/u ≃ 1.5 kg/s. Note that when the density of
the falling object is comparable to that of the fluid, the
driving force F must take into account buoyancy.

In Eq. 32 the force F needs not be the weight. For in-
stance, the standard acceleration of gravity can be super-
seded by a centrifugal acceleration, g ≃ rω2, which can be
orders of magnitude larger than the standard g0. Then
Eq. 32 can be written as u ≃ mrω2/ζ, a formula very
useful in biology, chemistry, and physics, to separate ob-
jects based on their different sedimentation speeds. The
equation can be rearranged as u/g ≃ m/ζ. On the left,
the sedimentation speed is divided by the effective accel-
eration, and is sometimes called the sedimentation coef-
ficient, measured in Svedberg, after Theodor Svedberg,
the Swedish chemist who got a Nobel prize for his study
of colloids and proteins and the development of the ultra-
centrifuge (Claesson and Pedersen, 1972; Sharma et al.,
2009; Svedberg, 1966). By definition, one Svedberg is
equal to 10−13 s, and indeed a speed divided by an ac-
celeration is a time. The right hand side of the equation
reveals that this kinematic ratio of speed and accelera-
tion can also be understood mechanically as a ratio of
mass and friction. So the sedimentation coefficient is the
simple time built from the mass and the friction, a pair
on the same column of Table I, which we can add to the
list of simple times we started in the previous section.

Note that the most general formulation of this sim-
ple speed does not require the force to be connected
to any mass. For sedimentation and centrifugation the

force is known, but in recent years, this simple formula
has also been used the other way around, to estimate
the magnitude of an unknown driving force F from a
known friction, as in the case of motile cells or organ-
isms. For instance, considering a swimming bacteria, be-
tween turning points the bacteria moves at a roughly
constant speed, u ≃ 30 µm/s. From Eq. 32, we can ob-
tain an estimate of the driving force F from the speed
u, if we also know the friction ζ. In viscous fluids, as
we saw in Eq. 17, the friction can be related to the size
ℓ of the moving object and to the viscosity of the fluid,
as ζ ≃ ℓη. The driving force can then be expressed as
F ≃ ηℓu. For a swimming E-coli with u ≃ 30 µm/s and
ℓ ≃ 2 µm, the surrounding medium is around 10 times
more viscous than water, so η ≃ 10−2 Pa.s. Overall,
F ≃ 10−12 N, i.e. one piconewton, which is indeed the
right order of magnitude, although the numerical prefac-
tors we ignored can increase this force to a few tens of
piconewtons (Marchetti et al., 2013; Schwarz and Safran,
2013).

5. Strength and action: the speed of light

uSH ≡ S

H
(33)

This last example gives a simple speed as a ratio be-
tween a strength and an action. We have already seen
an example of such speed with the semi-classical speed
of the electron, u = α0c, with α0 the fine structure con-
stant, which can be expressed as α0 = S0/ℏc, where we
recall that S0 = kCe

2 is the electromagnetic strength be-
tween two elementary charges. Thus the electron speed
is u = S0/ℏ, an important example of simple speed built
from strength and action.
Note that the speed of light itself could be expressed

from Eq. 33. Since c = S0/ℏα0, we could define an action
H = ℏα0, or a strength S = S0/α0, which would provide
slightly different ways to think about the speed of light.

C. Non-uniform motion

Mechanics 5: Struggle in Motion

From Antiquity to the Middle Ages, motion was practi-
cally synonymous with uniform motion, where distances
grow linearly with time, as d = ut. The great leap
made by Galileo, Kepler and Newton was in no small
part driven by their departure from this narrow focus on
motion at constant speed. Generations of thinkers had
been obsessed by speed, with dimensions LT −1, but the
Renaissance shifted the attention toward acceleration,
LT −2, in particular with the study of free-fall, where the

https://youtu.be/jv6IKH7aO5s?si=55dEy2nCWsS_51GT
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FIG. 3 Growth of a length d over time t for regimes observed in dynamics from atomic explosions to living cells. Lengths and
times are respectively measured by the vertical and horizontal axes, in meters and seconds for all plots. All plots show power
laws of the form d = Ktα. On each plot the value of α is represented by a triangle giving the slope of the line. The pair of
mechanical quantities invoked to rationalize the slopes are given in the bottom-right corner. Note that in some cases the data
have been truncated to isolate the range of validity of the regime in focus, undisturbed by the effect of additional mechanical
quantities (see the conclusion of the review for a discussion of this point). (a) Blast radius of the Trinity explosion (Taylor,
1950b). (b) Initial spreading of a spherical aggregate of cells in ‘partial wetting’ conditions (Douezan et al., 2011). (c) Grain
size growth for the ‘Ostwald ripening’ regime of ‘sintering’ (German et al., 2009). (d) Spreading of the ‘precursor film’ of motile
cells for the ‘complete wetting’ of a spherical aggregate of cells (Douezan et al., 2011). (e) Inertio-capillary pinching of a bridge
of liquid mercury (Burton et al., 2004). In this case, the time t is the duration before pinch-off, so the “actual time” runs from
right to left. (f) Spreading of a water droplet (Biance et al., 2004). (g) Spreading of a single cell (Cuvelier et al., 2007). (h)
Distance traveled by a debris flow down an incline (Iverson et al., 2011). (i) Radius of the neck for the coalescence of two air
bubbles in silicone oil (Paulsen et al., 2014).

fallen distance grows quadratically, as d = 1
2gt

2. Unfor-
tunately, this revolutionary takeover turned into a new
dogma, and for centuries acceleration became the im-
posed kinematic metric of motion. It is only toward the
end of the 19th century that the existence of other types
of motion resurfaced with the study of diffusion (Bird
et al., 2006). For diffusive processes a distance grows like

a square root of time, d = Kt
1
2 , which is usually written

as d = (Dt)
1
2 , introducing the ‘diffusivity’ or ‘diffusion

coefficient’ D = K2, with [D] = L2T −1 (Einstein, 1905b;
Perrin, 1926; Sharma et al., 2009). For reasons beyond
our scope, kinematic quantities just like standard me-
chanical quantities are usually defined in such a way as
to have integer exponents.

Motions at constant speed, at constant acceleration,
or “diffusive motions” are the three most historically
significant examples of motion, but they are in no way
more fundamental than other types of motions discovered
since. For instance, following Taylor (Taylor, 1950a,b),
we have seen that the blast of an explosion may advance
according to a ‘power law’ d = Kt

2
5 . In this case, the

kinematic parameter K is neither a speed, nor an accel-
eration, nor given by a diffusivity. The kinematic quan-
tity [K] = LT − 2

5 (or [K5] = L5T −2 if we prefer integer
exponents) is a more unusual combination of time and
space. Like most kinematic quantities K5 does not have
a standard name, but it has every right to be named. In
our video lectures, we took the liberty of calling it the
explosivity. An explosion as the one studied by Taylor

https://www.youtube.com/playlist?list=PLbMiQs7eX-bbNTc-7HwdWzohUs8yPw300
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corresponds to a motion at constant explosivity. Just
like a speed, an acceleration, or a diffusivity, an explosiv-
ity can be understood as a ratio of a pair of mechanical
quantities. In Taylor’s analysis, K5 ≃ E/ρ, where E is
the energy of the bomb and ρ the density of the ambi-
ent medium. This relationship is a direct consequence of
Eq. 26. Indeed, since energy and density are five columns
and two lines apart in Table I, we have:[E

ρ

]
= L5T 2 (34)

We can understand Taylor’s relation, d ≃ (E/ρ)
1
5 t

2
5 , as

being the natural expression of the ratio E/ρ when time
is measured by t and space by d. We shall use these two
symbols, t and d, instead of τ and ℓ, in order to underline
the fact that the length and time are here variable.

This way to represent kinematics as some evolution
law for a size d(t) is pretty visual, so we will adopt it in
this entire subsection, but as we shall see in section V it
is by no mean the only perspective on kinematics. From
this length versus time perspective the general formula
in Eq. 26 can be expressed as a ‘scaling law’ or regime:

Q1/Q2 ≃ dx1−x2ty1−y2 (35)

⇔ d ≃
(Q1

Q2

) 1
x1−x2

t
y2−y1
x1−x2 (36)

This formula includes simple lengths, simple times and
simple speeds as special cases, and it also includes all
sorts of non-uniform motions. Any choice of two mechan-
ical quantities immediately yields a regime. The mechan-
ical quantity in the numerator drives motion, while the
quantity in the denominator slows things down. We will
say that the numerator is the impelling factor, while the
denominator is the impeding factor, and we shall return
to the subtleties of this duality in subsection IV.D.

Note the use of the approximate equality ‘≃’ in Eq. 36,
which underlines the fact that this relationship may not
be exact, depending on the precise definitions of the me-
chanical parameters (Q1 and Q2) and kinematic variables
(d and t). For now, we will consider that the mechanical
quantities Q1 and Q2 provide a satisfying model of the
dynamics if the two sides of Eq. 36 only differ by numer-
ical factors ‘of order 1’. We will return to this point in
section VI.C.2.

Note also that Eq. 36 includes growing regimes, where
(y2 − y1)/(x1 − x2) > 0, and shrinking regimes, where
(y2 − y1)/(x1 − x2) < 0. These shrinking regimes have a
divergent length d at initial time, and d only converges to
zero for t → ∞. In this review, we will focus on growing
regimes. We differ a discussion of shrinking regimes to a
future publication.

In Table I, we defined 25 widely used mechanical quan-
tities. Considering all pairs, would generate more than
300 regimes. If we remove the simple lengths, times, and
speeds, and if we only focus on dynamics where the size

grows over time (d ∼ tα with α > 0), there are still more
than 100 possible regimes. This large number reflects the
great diversity of “physics” that can be at play in differ-
ent situations. In the following sub-sections, we will evi-
dently not discuss all possibilities, but we will show that
regimes of all sorts have already been used to describe
dynamics across scales and disciplines.

1. Dynamics impelled by energy

Let us first present a few regimes impelled by energy. If
we put aside the simple lengths and times, we have seen
two cases so far: the uniform regime given by energy
and mass, i.e. d ≃ (E/m)

1
2 t, and Taylor’s regime of

explosions, d ≃ (E/ρ)
1
5 t

2
5 . Taylor’s regime is depicted in

Fig. 2b, and the scaling is plotted in Fig. 3a.
If we seek additional regimes impelled by energy, quan-

tities on the same line or column as E cannot be included
since they yield simple lengths and times. Quantities on
the line of index y = −3 cannot be included because
they produce shrinking (d ∼ tα, with α < 0) rather than
growing (α > 0). Of the quantities that are left, we have
chosen to highlight the 2D density Λ ≡ Q(−2, 0), the
mass flux φ ≡ Q(−2,−1) (understood as an interfacial
friction Q(−2,−1) = Q(0 − 2,−1)), and the viscosity
η ≡ Q(−1,−1):

d ≃ (E/Λ)
1
4 t

1
2 (37)

d ≃ (E/φ)
1
4 t

1
4 (38)

d ≃ (E/η)
1
3 t

1
3 (39)

The first regime in Eq. 37 can be understood as the equiv-
alent of Taylor’s regime in cylindrical geometry (Sedov,
1993). In the case of explosions confined inside a cylinder
of radius ℓ, one can define a 2D density Λ ≃ ρℓ, leading
to a regime with d ∼ t

1
2 . This regime can be used to

describe exploding-bridgewire detonators (Murphy and
Adrian, 2010).
The second example can be used to describe the dy-

namics of the radius of contact of ‘spin-coated’ drops,
as illustrated in Fig. 2c (Melo et al., 1989). In that
case, the spinning is associated with a centrifugal energy
E = ρℓ5ω2, where ℓ3 is the volume of a drop and ω is
the rotational frequency. One can then define a form of
‘interfacial friction’ from the fluid viscosity as φ = η/ℓ.
With these definitions, the spreading of the spun drop
follows Eq. 38. Note that quantities with the same di-
mensions have been used to study the “friction” of fluids,
polymers and elastomers on solid boundaries (Bocquet
and Barrat, 2007; Hénot et al., 2018). In this context, one
can also define the so-called Navier slip length, ℓ ≃ η/φ,
a form of simple length measured by extrapolating the
velocity profile beyond the boundary (Navier, 1823). We
will see another use of such kind of ‘interfacial friction’
φ in Eq. 47.
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The third example in Eq. 39 describes a regime where
viscosity prevents the spreading of a source of energy.
This regime could apply for point-like inputs of energy
in very viscous fluids. This input could for instance
come from explosions, lasers (Campanella et al., 2019),
or ultrasounds (Gibaud et al., 2020; Lauterborn and Ohl,
1997). Interestingly, this regime has also been used in a
context far from explosions, to describe the spreading
of aggregates of cells, as illustrated in Fig. 2e (Douezan
et al., 2011). In this context, a ball of cells comes in con-
tact with a substrate, on which it starts to spread by cell
migration. The cell-substrate adhesion Γ and the size
ℓ of the ball can be used to define an adhesion energy
E ≃ Γℓ2, such that the spreading abides Eq. 39, where
η is the aggregate viscosity. A comparison between this
mechanical model and the data is shown in Fig. 3b.

2. Dynamics impelled by power

We now turn our attention to dynamics driven by a
constant power rather than a constant energy. Many
choices of resisting quantities could be useful. We here
choose to highlight four possibilities:

d ≃ (P/ρ)
1
5 t

3
5 (40)

d ≃ (P/ζ)
1
2 t (41)

d ≃ (P/η)
1
3 t

2
3 (42)

d ≃ (P/Σ)
1
3 t

1
3 (43)

Eq. 40 can be found in slightly different form in the con-
text of turbulent mixing. In the design of stirrers for mix-
ing of liquids inside vessels, it has been found that the
mechanical input power P required for mixing is given by
P ≃ ρd5t−3, where d is the agitator diameter, t its period
of rotation and ρ is the density of the fluid (Seinfeld et al.,
1992). Note that in this case the scaling does not relate
a variable length and time, the approach adopted in the
examples discussed so far. We will see in section V that
any pair of mechanical quantities can be expressed from
multiple perspectives. The mixing scaling, P ≃ ρd5t−3,
is but a first example of what we will generically call a
“mechanical perspective” in section V.B.

Eq. 41 gives another example of regime based on power.
This equation defines the simple speed (P/ζ)

1
2 , so we

could have put it in section IV.B. This speed is relevant
to dynamics characterized by a constant friction ζ. In
many situations, the friction ζ is not constant and de-
pends on speed. In general one can define ζ from the
friction force F as ζ = F/u, where u is a speed. In the
‘inertial regime’, the friction force is proportional to the
square of the speed, such that ζ ≃ ρud2. Using u ≃ d/t
this definition of the friction would lead back to Eq. 40.
In contrast, in the ‘viscous regime’, the friction force is
proportional to speed and given by ζ ≃ ηd (Stokes, 1850).

If d is the variable distance, this leads to the regime given
in Eq. 42. However, in some cases d is a constant length,
for instance connected to the size of a vehicle. The quan-
tity ζ would then be a constant parameter and Eq. 41
may apply.

Eq. 43 gives yet another example of regime driven by
power, where the impeding quantity is a stress. This
equation may be applicable to ‘sintering’ (German et al.,
2009). In this process, the typical size of grains grows

as d ≃ (Kt)
1
3 , where in the so-called ‘Ostwald ripen-

ing’ regime, the grain growth rate can be written as
K ≃ CDΩΓ/RT . The parameter R is the ideal gas con-
stant, and Ω is the molar volume, such that Σ ≡ RT/Ω
is a characteristic thermal stress. The constant C is a
dimensionless solubility, Γ is the solid-liquid surface en-
ergy and D is the solid diffusivity in the liquid. Thus, one
can define the power associated with an increase in the
size of the grains as P ≡ CDΓ, such that the sintering
equation becomes an example of Eq. 43. An example of
this regime is given in Fig. 3c (German et al., 2009).

3. Dynamics impelled by force-density

d ≃ (Ψ/ρ)t2 (44)

Because of its position in the table of mechanical quanti-
ties, force-density only allows a few regimes where it acts
as the motor. In Eq. 44, force-density is balanced by den-
sity. Since force-density is often taken to be Ψ = ρg, the
equation just states d ≃ gt2, which is the ‘free-fall’ equa-
tion. This regime applies to the early dynamics of mate-
rials driven by gravity before dissipation can set in. It ap-
plies for instance to the early dam-break flow (M Jánosi
et al., 2004), and to the debris flow down an incline (Iver-
son et al., 2011), as depicted in Fig. 3h. In the first case,
one of the walls of a reservoir of fluid is removed and
one records the dynamics of the surge on a horizontal
plane. In the second case, a mixture of fragmented rock
and muddy water is similarly released, but down a steep
incline plane.

Note that Eq. 44 may also describe rises rather than
falls, in the context of buoyancy. In this case, the force-
density takes into account a difference in density between
two materials Ψ ≃| ρf − ρ | g. This version of Eq. 44
would for instance be useful to understand the initial
rise of a mushroom cloud after a nuclear explosion such
as Trinity (Taylor, 1950b). Indeed, the blast generates a
zone of very low density, which acts as a bubble inside
the comparatively denser air.
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4. Dynamics impelled by stress

Of the possible regimes driven by stress, we have al-
ready seen the uniform regime associated with the sound
speed, d ≃ (Σ/ρ)

1
2 t. Let us also mention the following

‘diffusive’ regime:

d ≃ (Σ/χ)
1
2 t

1
2 (45)

Like the regime at constant sound speed, this additional
regime is most commonly found in aerodynamics (Lan-
dau and Lifshitz, 1959). Eq. 45 is appropriate in sit-
uations where the density of the medium is uniformly
changing at a rate χ (either compressing if χ > 0 or
expanding if χ < 0). This situation is particularly rele-
vant to some scenarios of star formation (Mac Low and
Klessen, 2004).

5. Dynamics impelled by stiffness

For the dynamics of drops and bubbles, surface-
tension is often understood as a driving force. We
here highlight three possible regimes impelled by surface-
tension/stiffness:

d ≃ (Γ/ρ)
1
3 t

2
3 (46)

d ≃ (Γ/φ)
1
2 t

1
2 (47)

d ≃ (Γ/Φ)t2 (48)

The first equation has been studied in great detail in the
context of spreading, pinching and coalescence of simple
liquids like water (Basaran, 2002; Bonn et al., 2009; Eg-
gers, 1997; Eggers and Villermaux, 2008; Fardin et al.,
2022; Kavehpour, 2015; Leger and Joanny, 1992; Snoei-
jer and Andreotti, 2013; Villermaux, 2007). We have
seen with Eq. 31 that combining a surface-tension and a
viscosity yields a simple speed, which underlines what is
sometimes called the ‘visco-capillary’ regime, where vis-
cosity is the principal impeding force. In contrast, Eq. 46
describes the ‘inertio-capillary’ regime. In the context of
the spreading, pinching and coalescence of drops, Eq. 46
dictates the dynamics unencumbered by viscosity, where
the main impeding factor is ‘inertia’, represented by the
density ρ. This regime is for instance seen in the pinch-
ing of liquids with low viscosity (Keller and Miksis, 1983),
like water, or mercury as in the example in Fig. 3e (Bur-
ton et al., 2004). This regime has also been observed for
spreading (Courbin et al., 2009; Eddi et al., 2013b) and
coalescence of low viscosity fluids (Eddi et al., 2013a).
Note that although the neck of a pinching drop decreases
over time, its dynamics can be represented by a grow-
ing regime, d ∼ tα, with α > 0, when the variable time
t is understood as the duration before pinch-off (Fardin
et al., 2022).

The regime given in Eq. 47 describes dynamics driven
by a surface energy Γ, but impaired by a mass flux or mo-
mentum density φ. An example of this regime is shown
in Fig. 3d (Douezan et al., 2011). In this example, the
dynamics describe the spreading of the ‘precursor film’
composed of the motile cells moving away in 2D after
the contact of a spherical aggregate. In this context, the
surface energy comes from the adhesion of cells with the
substrate, and the parameter φ is understood as a form
of “friction” (Douezan et al., 2011).
In Eq. 48 the ‘1D density’ Φ can be interpreted as a

‘normal stress coefficient’, as mentioned in section III.B.
The ratio Γ/Φ provides an acceleration, which has some
relevance to the free-surface flows of visco-elastic liquids.
In particular, Eq. 48 has been discussed in the context of
the pinching of so-called ‘second order fluids’ (McKinley,
2005).

6. Dynamics impelled by force

Of the possible regimes driven by force, we choose to
highlight three cases:

d ≃ (F/m)t2 (49)

d ≃ (F/ρ)
1
4 t

1
2 (50)

d ≃ (F/η)
1
2 t

1
2 (51)

In Eq. 49, Newton’s second law is barely disguised. Like
Eq. 44, this spreading law just describes dynamics at a
constant acceleration a = F/m. We recall that under
the assumption that d ∼ tα, F = ma just translates to
F ≃ md/t2. As mentioned in the introduction, this pair
is of great historical significance, since it records the first
time a kinematic–and not just geometric–quantity was
understood mechanically. The force is the prototype for
all impelling factors, and the mass is the prototype for
all impeding factors.
In Eq. 50, the force is balanced by density rather than

mass. This regime applies to spreading, coalescence and
pinching of drops when the whole size of the drop has
a substantial impact (Basaran, 2002; Bonn et al., 2009;
Eggers, 1997; Eggers and Villermaux, 2008; Fardin et al.,
2022; Villermaux, 2007). In this context, the force can
be expressed as F ≃ Γℓ, where Γ is the surface-tension
and ℓ is the size of the drop. An example of this regime is
given in Fig. 3f for the spreading of a water drop (Biance
et al., 2004).
In Eq. 51, the force is balanced by viscosity. This

regime has been observed in a few different contexts. For
instance, this regime describes the coalescence of drops in
a viscous outer fluid, where η is the viscosity of the outer
fluid, as shown in Fig. 3i (Paulsen et al., 2014). A similar
regime can be used to describe the spreading of thin films,
where F/η is understood as an effective diffusivity, with
F ≃ E/ℓ, where E is the Hamaker constant and ℓ the
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film thickness (Feslot et al., 1989; Popescu et al., 2012).
Since the Hamaker constant is usually on the order of
the thermal energy, the effective diffusivity matches with
Stokes diffusivity. The same equation was also used to
describe the early spreading of single cells, as illustrated
in Fig. 2d (Fardin et al., 2010). In that case, the viscosity
is that of the cell and the force can be understood either
as coming from the stiffness of the cytoskeleton, or as a
‘protrusion force’ originating from the polymerization of
‘actin’ (Cuvelier et al., 2007; Fardin et al., 2010). An
example of such scaling of early cell spreading is given in
Fig. 3g (Cuvelier et al., 2007).

D. Impelling and impeding

Mechanics 6: Holy Motors

If two mechanical quantities are given, there is a unique
regime associated with them. For this reason, we may use
the notation {Q1, Q2} to stand for the regime associated
with the pair of mechanical quantities Q1 and Q2. For
instance, Taylor’s regime is {E, ρ}, or {ρ,E}. The order
of the quantities between brackets does not matter. In
the pair {E, ρ}, the energy will always be the motor, or
impelling factor, in accordance with Eq. 36. Let us recall
this equation here so there is no need to turn the pages:

d ≃
(Q1

Q2

) 1
x1−x2

t
y2−y1
x1−x2 (52)

In this equation, the mechanical quantity Q1 is really
in the numerator if x1 − x2 > 0, that is if x1 > x2.
Graphically, this means that the impelling factor of a pair
is always the quantity on the rightmost part of Table I.
For instance, if the pair is {E, ρ}, since E is on the right
of ρ, then energy will be the impelling factor.

Although given a pair, one is always driving, what is
driving in one situation can be resisting in another and
vice-versa. This fact was clearly not understood when
the first few mechanical quantities were defined, and to
this day it remains the source of a lot of confusion. We
only need to look at the historical names of the quanti-
ties on Table I to see that some of them are quite heavily
connoted. To the right of the table, where they are more
likely to be motors, the names are markedly positive, like
‘action’, ‘energy’, ‘force’, or ‘power’. All these “macho”
terms in the English language are here to remind us that
these quantities were thought as movers. For a lot of
early scientists they were nothing short of the hand of
God in the physical world. In contrast, terms like ‘fric-
tion’, ‘mass’, or ‘viscosity’, were initially thought of as
sticky, gooey, resisting or at most inert rather than ac-
tive. In fact, these quantities can be active, they can
be impelling motion rather than impeding it, under the
right circumstances. We shall illustrate this versatility
on two historically significant examples.

1. Boundary layers

We have seen a few examples of dynamical regimes
where viscosity was involved: {Γ, η}, {E, η}, and {F, η}.
In all these cases the viscosity appeared as an impeding
factor, living up to its name (“viscous” comes from Latin
“viscosus”, meaning “sticky”). However, in some situa-
tions the viscosity can actually drive motion, it can be
the impelling factor. We just have to pair viscosity with
a mechanical quantity on its left in Table I. One such
pairing with great historical significance is the following:

{η, ρ} → d ≃
(η
ρ

) 1
2

t
1
2 (53)

Here, viscosity is paired with density, and the resulting
regime is central to the understanding of ‘boundary lay-
ers’ (Landau and Lifshitz, 1959). In this context, the
viscosity and density are that of a fluid and Eq. 53 de-
scribes the thickness of the sheared layer of that fluid
near a boundary. For instance, if a plate starts moving
at t = 0 in a quiescent fluid, the fluid in the immediate
vicinity of the plate will start moving too (in the absence
of slip), but the fluid far away will remain immobile. As
time goes by, the size of the moving layer of fluid near
the boundary will grow, according to Eq. 53. Since the
power law has an exponent of 1

2 , this motion can be said
to be ‘diffusive’, and the mechanical ratio ν ≡ η/ρ can
be interpreted as a (‘momentum’) diffusivity. It is also
called the ‘kinematic viscosity’. The greater the viscos-
ity the greater the diffusivity, so indeed, viscosity is here
impelling motion! Note that as surprising as it may be
Eq. 53 does not involve the speed of the moving bound-
ary. The dynamics of the boundary layer are actually
independent of this speed only up to a point, where the
flow becomes turbulent. So Eq. 53 only refers to ‘laminar
boundary layers’ (Landau and Lifshitz, 1959).

2. Kepler’s law and levity

The mass was originally understood as ‘inertial’, a
word from the beginning of the 18th century based on
the adjective “inert”, in-art, without art, without skill,
from Latin “inertem”, meaning “unskilled, incompetent,
inactive, helpless, weak, sluggish, worthless”, a long list
of pretty negative attributes given by the etymological
dictionary. That was how mass was initially perceived,
as the paradigm of the impeding factor, as the exem-
plar of what is resisting motion. This view on the mass
changed during the Renaissance, when it was realized
that the mass could also be the source of motion, in the
context of gravity.
At the end of the 16th century, building on the observa-

tions of his master Tycho Brahe, Kepler had established
his now famous ‘third law of planetary motion’: t2 ∼ d3.
The square of a planet’s orbital period, t, is proportional

https://youtu.be/J5tm6IXt_fU?si=bPbBS5hD6SkaO3wm
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FIG. 4 (a) Kepler’s law d = Kt
2
3 , i.e. the square of the

orbital period, t, is proportional to the cube of the length of
the semi-major axis of its orbit, d. The law is verified for the
‘solar system’, where the represented orbiting bodies are the
planets and the dwarf planets (small grey disks). The law
is also verified for the orbits of the satellites of the planets,
represented by stars of a color corresponding to the associated
planet. These satellites include the Galilean moons of Jupiter
(orange). The values of the prefactor K differ depending on
the orbital system. (b) The values of K3 for the solar system
and for the satellite systems are plotted against the mass m
of the central object, which is the planet for its satellites, and
the Sun for the orbiting planets. One finds that K3 ∼ m. For
instance, the data point for Jupiter corresponds to the value
of the prefactor K of the power law for the Galilean moons
in (a) (small orange squares).

to the cube of the length of the semi-major axis of its
orbit, d (Kepler, 1609). If we want we can of course ex-

press this law in the following fashion: d = Kt
2
3 , where

the unknown kinematic prefactor K must have dimen-
sions LT − 2

3 , so [K3] = L3T −2, a rather odd kinematic
quantity that is nowadays called the ‘gravitational pa-
rameter’. In the case of the solar system the data avail-
able to Kepler could establish that K3 ≃ 3 1018 m3/s2.

The mechanical interpretation of this kinematic quantity
had to wait one more generation, with the work of New-
ton.
Fig. 4a demonstrates the validity of Kepler’s law for

the orbits of the planets of the solar system. Also in-
cluded are the characteristics (periods and semi-major
axes) of the orbits of the satellites of the various planets
of the solar system. Concomitantly with Kepler’s investi-
gations, Galileo had discovered the four largest moons of
Jupiter (Galilei, 1632), now called the ‘Galilean moons’.
As evident in Fig. 4a, the Galilean moons, as well as
the moons of other planets also follow power laws of the
form d = Kt

2
3 , but the value of the kinematic prefactor

K changes from one system to another.
It was Newton who first realized that the prefactor K

is not a “universal” constant, but that it depends on the
“world” under study (Newton, 1687). Newton then set
out to find a decomposition of the kinematic quantity
K into mechanical quantities. Using the notation intro-
duced in this review, we could say that Newton sought
a pair of mechanical quantities Q1(x1, y1) and Q2(x2, y2)

such that K = (Q1/Q2)
1

x1−x2 . As shown in Fig. 4b,
Newton realized that K3 ∼ m, the impelling mechani-
cal quantity was the central mass of the orbit, Q1 = m,
where m is for instance the mass of the Sun for the solar
system (Newton, 1687).
Since [K3] = L3T −2 = [Q1/Q2], and [Q1] = [m] = M,

Newton’s second mechanical quantity had to have the
following dimensions: [Q2] = ML−3T 2. Thus, Q2 =
Q(−3, 2). Taking a look back at Table I, we see that this
mechanical quantity is at an odd position in comparison
to all the others, which probably explains its peculiar
fate. A quantity Q(−3, 2) is what we called a levity,
denoted by the symbol

G

. Since this mysterious quantity
is on the left of the mass (in the table), it is impeding
motion, whereas mass is impelling it:

{m,

G

} → d ≃
(m

G

) 1
3

t
2
3 (54)

Kepler’s law is here understood as a regime based on
pairing mass and levity. Using a notation introduced at
the end of the 19th century and still in use today (Boys,
1894), we can identify the levity

G

with the inverse of the
so-called ‘universal constant of gravity’ G. More precisely,

G

≃ 4π2/G (assuming the central mass is much more
massive than the orbiting objects).
The purpose of defining such “levity” is to stress that

Kepler’s law–like any other regime–can be expressed from
a pair of standard mechanical quantities with dimen-
sions of the form MLxT y. In contrast, the universal
constant of gravity has dimensions [G] = M−1L3T −2.
Other mechanical quantities with similar negative power
of the mass have been used on occasion, like the ‘flu-
idity’ with dimensions M−1L1T 1 (Bocquet et al., 2009).
These quantities are absolutely valid, but they are unnec-
essary, since they can be reduced to standard quantities
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by inversion. We do believe that the “levity” deserves its
place in Table I and should be free to interact with all
the other quantities. As we saw, pairing levity and mass
leads to Kepler’s law for orbital motion, but we invite
the reader to try different pairings. For instance, {

G

, ρ}
gives rise to a simple time (

G

/ρ)
1
2 ≃ 1/(Gρ)

1
2 , which is

called the ‘free-fall time’, with important applications in
astrophysics (Kippenhahn et al., 1990).

V. PERSPECTIVES ON MOTION

Mechanics 7: Perspectives

Since Eq. 36 we have presented mechanics from one
particular kinematic perspective. The assumption was
that we observed some kind of motion, like an explosion,
or the pinching of a water droplet, or the fall of an ob-
ject, or the orbit of a planet. With these examples, we
represented motion by plotting a length d versus a time
t, as in Fig 3. That length could be a size or a distance,
and the time could be an indefinite duration, or a recur-
ring period. We have seen that the interplay of a pair of
mechanical quantities Q1 and Q2 produces a single kine-
matic power law, d = Ktα, where the kinematic pref-
actor K and the dimensionless exponent α are obtained
from the underlying mechanical quantities. As soon as
we know the relative dimensions of the two mechanical
quantities Q1 and Q2, we know the scaling connecting
kinematics and mechanics.

Describing motion as the time series of a distance d(t)
is quite visual, however not all dynamics can easily be
understood in this fashion, and it is sometimes much
more practical to use different pairs of kinematic vari-
ables. To each pair of kinematic variables corresponds
a different perspective on the dynamics. In some situ-
ations it may even be useful to manipulate mechanical
rather than kinematic variables. These different kine-
matic and mechanical perspectives provide complemen-
tary approaches on the same physics. The “physics” are
set by the quantities Q1 and Q2, and the perspectives
by the choice of variables. The exact forms of the scal-
ings differ from one perspective to another, but they are
always the direct consequence of dimensional analysis.

A. Kinematic perspectives

For a given pair of mechanical quantities, we know
since Eq. 26 that the dimensions of their ratio can
be expressed as some combination of space and time:
[Q1/Q2] = Lx1−x2T y1−y2 . So far, we have considered
cases where the spatial dimension could be associated to
a variable size d, and the time dimension to a variable
time t. However, in some situations the more obvious
variables are different kinematic combinations.

1. Velocity profiles

Let us first come back to the example of an explosion
studied by Taylor. When the explosion is initially su-
personic, Taylor showed that the radius of the blast will
extend for some time according to d ≃ (E/ρ)

1
5 t

2
5 . This

perspective on the dynamics is convenient, because the
validity of this regime can simply be checked by measur-
ing the radius of the blast on pictures captured at dif-
ferent instants (Mack, 1946; Taylor, 1950b), as those re-
produced in Fig. 2b. However, one may rather choose to
record this explosion by measuring the speed of the blast
v as it passes by detectors placed at different distances d
from ground zero. What should we expect for v(d)? If
v is defined as the instantaneous speed of the front, then
v ≡ ∂d/∂t = 2d/5t, which can be expressed solely from

the variable length d, as v ≃ (E/ρ)
1
2 d−

3
2 (where numer-

ical factors are absorbed by the approximate equality).
This equation still displays the same physics combining
energy and density, but it is expressed from the perspec-
tive of a speed versus a distance, rather than a distance
versus time. We may write this shift in perspective by
adding indices to the pair of mechanical quantities un-
derlining this type of motion:

{E, ρ}dt → d ≃
(E
ρ

) 1
5

t
2
5 (55)

{E, ρ}vd → v ≃
(E
ρ

) 1
2

d−
3
2 (56)

In the second equation, one of the variables is a speed,
and the other is a distance. One important application
of this perspective is in hydrodynamics, where one is in-
terested in representing so-called ‘velocity profiles’ (Bird
et al., 1987; Landau and Lifshitz, 1959). The scaling
{E, ρ}vd provides an example of such approach, although
it is rather exotic. Let us now consider two more famous
cases.
We have seen in Eq. 22 that combining a viscosity and

a stress yields a simple time τηΣ ≡ η
Σ . In the case of

a Newtonian fluid like water in normal conditions, this
simple time can be understood as the inverse of the de-
formation rate on a fluid with viscosity η, upon applying
a shear stress Σ at the boundary. The deformation rate
can in turn be interpreted as a ‘velocity gradient’, since
T −1 = (LT −1)/L. So the interplay between viscosity
and stress can also be written as v/d ≃ Σ/η, or as:

{Σ, η}vd → v ≃ Σ

η
d (57)

In other words if a flow is given by the interplay between
a viscosity and a stress, the ‘velocity profile’ in this flow
is linear. This scaling goes back all the way to Newton’s
definition of viscosity, but when this duo of stress and
viscosity is expressed as a speed over distance, one speaks
of the ‘Couette profile’ or ‘Couette flow’ (Landau and

https://youtu.be/lVLjflQI41w?si=m3h0d3Kvm6hI_2e6
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FIG. 5 Examples of dispersion relations of ‘capillary rip-
ples’ (Nikolić and Nešić, 2012) and ‘gravity waves’ (Wang and
Hwang, 2004) on the surface of water. The capillary ripples

correspond to the pair {Γ, ρ} → ω ≃ (Γ/ρ)
1
2 k

3
2 . The gravity

waves correspond to {Ψ, ρ} → ω ≃ (Ψ/ρ)
1
2 k

1
2 .

Lifshitz, 1959). This simple shear-flow is what naturally
comes out of the interplay of stress and viscosity. Speed
varies linearly with distance.

Another very useful flow is the pipe flow. Here, the
profile is not linear but parabolic. Why? In this situa-
tion, the viscosity of the fluid is still relevant, but the flow
is not driven by a stress at the boundary, but by a differ-
ence in pressure along the conduit. The impelling factor
of these dynamics is the gradient of pressure, which is
also a force-density Ψ, since [Ψ] = [Σ]/L. Then, indeed,
the combination of a force-density and a viscosity leads
to a parabolic profile:

{Ψ, η}vd → v ≃ Ψ

η
d2 (58)

When the interplay of viscosity and force-density is rep-
resented from this perspective one speaks of the ‘Hagen-
Poiseuille flow’ (Landau and Lifshitz, 1959). Note that
in this equation, the distance d is defined from the center
of the pipe, and v is the speed in the co-moving frame,
that is the maximum speed in the center minus the speed
in the lab frame.

The scalings {Ψ, η}vd, {Σ, η}vd and {E, ρ}vd give but
three examples of velocity profiles, but they illustrate
a general principle that can be applied to any pair of
mechanical quantities.

2. Dispersion relations

Another important kinematic perspective is that of
‘dispersion relations’ (de Gennes et al., 2013). This view-
point on kinematics is rooted in the study of waves, where
one is interested in relating the frequency of waves and

their wavenumber, that is the inverse of their wavelength.
We will use the symbol ω for the frequency and k for the
wavenumber. So this perspective connects the inverse of
a time T −1 to the inverse of a length L−1. We will give
two famous examples related to the waves on the surface
of liquids like water.
For small waves, also called ‘ripples’ (Rayleigh, 1890),

the relevant mechanical quantities are the surface-tension
Γ, and the density ρ. We have seen this pair already,
in Eq. 46, in the context of pinching, coalescence and
spreading of low viscosity fluids. In these cases, we saw
that the interplay of the pair of mechanical quantities
could be expressed as a power law of the form d ≃ Kt

2
3 ,

where the length d was the radius of the neck for pinching
and coalescence, or the radius of contact for spreading.
The time t was either the time elapsed since contact for
spreading and coalescence, or the time remaining before
pinch-off. For ripples, the size d ≃ k−1 and the time
t ≃ ω−1 are understood as the wavelength and period of
the waves, so the perspective we started with, {Γ, ρ}dt,
can be translated to a dispersion relation {Γ, ρ}ωk:

{Γ, ρ}dt → d ≃
(Γ
ρ

) 1
3

t
2
3 (59)

{Γ, ρ}ωk → ω ≃
(Γ
ρ

) 1
2

k
3
2 (60)

The regime {Γ, ρ}ωk was first studied theoretically by
Lord Kelvin (Thomson, 1871), but it is Rayleigh who
first tested this regime experimentally (Rayleigh, 1890).
An example of modern measurements of such scaling is
given in Fig. 5 (Nikolić and Nešić, 2012). The dynamics
of these small ripples have exactly the same underlying
physics as the dynamics of droplets, they are all due to
the interplay of surface-tension and density, but this me-
chanical struggle is seen from different angles.
For Newtonian liquids like water, the dynamics of

waves change when their wavelength becomes substan-
tially larger than the capillary length (Γ/Ψ)

1
2 , which we

introduced in Eq. 9. In this regime, the dominant im-
pelling factor becomes the weight density Ψ ≃ ρg, and
the impeding factor remains the ‘inertia’ of the fluid en-
capsulated in its density ρ. Thus, the struggle is between
Ψ and ρ, and we have seen this balance before in Eq. 44.
Just as we did for ripples, we can compare the initial
scaling with how the dynamics look when given as a dis-
persion relation:

{Ψ, ρ}dt → d ≃ Ψ

ρ
t2 (61)

{Ψ, ρ}ωk → ω ≃
(Ψ
ρ

) 1
2

k
1
2 (62)

The kind of waves described by this regime are famously
seen on the surface of oceans, seas, lakes and other bodies
of water, but also in the sky (de Gennes et al., 2013).
We could not find a clear reference for the first use of
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this regime, but it was already used as a matter of fact
by Kelvin at the end of the 19th century. Fig. 5 gives
an example of this scaling in the case of oceanic surface
waves (Wang and Hwang, 2004).

The cases discussed here provide two historically im-
portant examples of dispersion relations. Nevertheless,
here again the procedure is general, and any regime can
be expressed from such perspective if need be. We invite
the reader to select any pair from Table I, to derive the
associated dispersion relation and to investigate if such
relation has been observed.

3. Power spectra

In the case of velocity profiles or dispersion relations,
the variables used (v(d) or ω(k)) are not too distant from
the initial variables (d(t)), so it is not too difficult to
identify the kinship between the resulting regimes. How-
ever, for practical or historical reasons, some perspectives
may use comparatively complicated kinematic variables.
This is for instance the case when considering so-called
“energy” or “power” spectra, which are very useful in
turbulence studies (Frisch, 1995).

In the context of turbulence one often measures what
is routinely called an ‘energy spectrum’ E(k). The first
variable, k, is a wavenumber, as in the case of dispersion
relations, so with [k] = L−1. The misleadingly called
“energy” E is actually a kinematic quantity, with [E ] =
L3T −2 (Frisch, 1995), so which could be thought of as
a specific strength (strength over mass). Fig. 6a gives a
famous example of such energy spectrum measured in the
case of turbulence in a tidal channel (Grant et al., 1962).
These measurements were among the first to validate a
prediction from Kolmogorov (Frisch, 1995), about the
spectrum to be expected in the case where the turbulence
is impelled by a power per unit volume Π and impaired
by the density of the fluid ρ:

{Π, ρ}Ek → E ≃
(Π
ρ

) 2
3

k−
5
3 (63)

Note that one usually uses a so called ‘dissipation rate’
or ‘transfer rate’ ϵ ≡ Π/ρ, which is a ‘specific power’, i.e.
a power per unit mass, such that [ϵ] = [P ]/M (Frisch,
1995). This kinematic notation unfortunately obscures
the underlying mechanical quantities, so we shall not
adopt it. As we will see now, the spectrum given in
Eq. 63 provides a great exercise of translation between
different perspectives.

The variable E is called the “energy” because its in-
tegral over all wavenumbers is defined from the vari-
ance of the flow speed, also understood as ‘specific en-
ergy’:

∫∞
0

E(k) dk ≡ 1
2v

2. If we maintain our neglect
for numerical factors all the subtleties of this integra-
tion should not concern us, and we can simply write

FIG. 6 (a) Kolmogorov’s spectrum of ‘inertial turbulence’
{Π, ρ}Ek (Eq. 63), observed in a tidal channel by Grant et al.
(1962). (b) Translation of the spectrum into the evolution
law for the size of strained “blobs” {Π, ρ}dt, using d ≡ k−1

and t ≡ (k3E)−
1
2 . Note that since the translation formulas

neglect numerical factors the resulting plot is only qualita-
tive. In both (a) and (b) the grey data points deviate from
Kolmogorov’s scaling due to the effect of a third mechanical
quantity: the viscosity of the fluid. We refer the reader to the
9th episode of our Mechanics series for a discussion of this
crossover. It is beyond the scope of this review.

Ek ≃ v2. The variable E is connected to the magni-
tude v of the velocity fluctuations for each wavenumber
k. Larger wavenumbers are in turn related to smaller
distances, with k ≃ 1/d. Thus, we can use Kolmogorov’s

spectrum given in Eq. 63, and v ≃ (E/d) 1
2 to express the

interplay of power-density and mass-density from a rela-
tionship between the amplitude of velocity fluctuations
and the size of these fluctuations:

{Π, ρ}vd → v ≃
(Π
ρ

) 1
3

d
1
3 (64)

Velocity fluctuations over longer distances have larger
amplitude. This equation encompasses the same physics

https://youtu.be/1WP7k1VUf3Q?si=Muusfb3EDpNHB2I2
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as the initial Kolmogorov spectrum E(k), but it provides
a slightly different perspective on the pair {Π, ρ}. From
this alternate vantage point, we can more easily trans-
late the dynamics to the perspective of a length versus a
time, which we adopted for most of this review. Let us
do this with an intermediate step in between:

{Π, ρ}ωd → ω ≃
(Π
ρ

) 1
3

d−
2
3 (65)

{Π, ρ}dt → d ≃
(Π
ρ

) 1
2

t
3
2 (66)

These two perspectives are quite useful to the study of
so-called ‘coherent structures’, like the vortices, whirls,
or eddies, which populate turbulent flows (Métais and
Lesieur, 2013). These structures have attracted a lot of
attention in the last 30 years, and they provide an alter-
native way to think about turbulence, complementary to
the statistical style of the spectral perspectives (David-
son et al., 2011). These coherent structures are the face
of velocity fluctuations in turbulent flows. The vortices
can rotate at different rates ω, which is called the ‘vortic-
ity’, with ω ≃ v/d, so [ω] = T −1 (Landau and Lifshitz,
1959). This variable ω is also connected to the zones be-
tween vortices. There ω is the extension rate, when the
vortices rotate in different directions, or the shear rate
where locally the vortices rotate in the same direction.
Through shear, extension, or rotation, ω is connected to
the strain rate. So Eq. 65 can be interpreted as relating
the strain rate to the characteristic size of the strained re-
gion, whether it is a ‘vortex filament’, or a ‘shear layer’, or
some more complicated creature (Davidson et al., 2011;
Dubrulle, 2019; Métais and Lesieur, 2013).

To conclude, we can mention the perspective given in
Eq. 66, a size d versus a time t, which is the initial ap-
proach of this review. In Table I the mass-density ρ and
power-density Π are two columns apart and three lines
apart so we get a size growing like time with a power
3
2 . We know that one way to think about the variable
d is as the size of a strained region. We know that we
can think of t as the period of velocity fluctuations at
this length scale, but also as the inverse of the strain
rate ω on a fluid region of size d. Yet another way to
think about it is as following the evolution of a strained
“blob” of varying size d. We do not know a priori if the
blobs are getting bigger or smaller, pinching like droplets.
Some blobs might grow while other deflate, but anyway
dimensional analysis gives us the power law relating size
and time. Although tracking this process for a single
blob entangled in a sea of countless others may be chal-
lenging, we can actually estimate what we would get by
translating the measured energy spectrum, as shown in
Fig. 6. For each measured values of E and k we can com-
pute the associated values of d ≃ k−1 and t ≃ (k3E)− 1

2 .
Of course, since these translation formulas neglect all nu-
merical factors, the resulting plot in Fig. 6b can only be
regarded as qualitative, but the scaling is ensured.

The four perspectives on turbulence given in Eqs. 63-
66–and any other we may like to adopt–are formally
equivalent, but they collectively contribute to a richer
and finer appreciation of the interplay between power-
density and mass-density, the mechanical pair behind ‘in-
ertial turbulence’. What we see is a combination of what
is and of the perspective we have taken, and greater in-
sight is reached by comparing what is perceived from
different perspectives. We have seen this in some de-
tail for the case of ‘inertial turbulence’ but the lesson is
again general. In particular, we invite the reader to inves-
tigate the scalings associated with the growing number
of ‘non-inertial’ types of turbulence, from visco-elastic
fluids (Steinberg, 2021) to active matter (Alert et al.,
2022). Although these more exotic turbulent flows might
be represented as energy spectra, E ∼ kα, in these cases
one finds that α ̸= − 5

3 , because mechanical pairs beyond
{Π, ρ} are involved–finding which pair is the subject of
current research.

B. Mechanical perspectives

We have seen in the previous sub-section that the ef-
fects of any one pair of mechanical quantities can be
expressed from different perspectives. So far, all the
perspectives we considered were kinematic, which is to
say that the pair of chosen variables always had dimen-
sions of the form LxT y (allowing x or y to be zero).
For instance, we saw that Taylor’s regime of explosions,
d ≃ (E/ρ)

1
5 t

2
5 , could also be expressed as a velocity pro-

file, v ≃ (E/ρ)
1
2 d−

3
2 . In the first perspective the vari-

ables are d and t, in the second v and d. In both cases
they are kinematic quantities in a broad sense (i.e. in-
cluding geometric and chronometric quantities). In some
circumstances one may rather prefer to focus on mechan-
ical variables.
A proper discussion of mechanical perspectives would

lead us astray from our purpose, but let us say a few
words about it here, keeping explosions as our example.
To illustrate our purpose, we shall consider the following
equations, all equivalent formulations of Taylor’s regime:

E ≃ (ρd3)(d/t)2 (67)

E/d ≃ (ρd3)(d/t2) (68)

E/d3 ≃ ρ(d/t)2 (69)

E/t ≃ (ρd3)(d/t2)(d/t) (70)

The terms of a regime can be reshuffled and grouped in
countless ways. Some outcomes from this reshuffling can
be interpreted in terms of mechanical variables, like the
four cases above.
Let us first consider Eq. 67. There, the dynamics of the

explosion are presented as a balance of energy. On the
left-hand side is the constant input of energy E coming
from the bomb. On the right-hand side the variables are



28

grouped in such a way as to compensate each other and
yield a constant result. The combination [ρd3] = M can
be understood as a mechanical variable, the variable mass
m̃ of ambient air swept-away by the blast (we use tildes
for mechanical variables to differentiate them from the
constant mechanical parameters of the regimes) (Bethe
et al., 1947). The entirety of the right-hand side can then
be understood as the kinetic energy of the swept-up air,
Ẽ ≃ m̃v2, and Taylor’s regime as E ≃ Ẽ, which can be
read as saying that the energy of the bomb is converted
into the kinetic energy of the blast front.

If we now consider Eq. 68 we can recover the Newto-
nian perspective on mechanics, which is dear to so many
textbooks. The terms of this equation are now forces,
since [E/d] = [F ]. We can introduce the variable “ex-
plosion force” F̃ ≃ E/d. The term ρd3 ≃ m̃ is still the
variable swept-up mass, and d/t2 ≃ a is the acceleration
of the explosion front. Overall Eq. 68 can be written
as a force balance, in the style of Newton’s second law:
F̃ ≃ m̃a.
In Eq. 69 the dynamics are now given as a balance of

pressures. The left-hand side, Σ̃1 ≃ E/d3, is the energy
density of the explosion. The right-hand side, Σ̃2 ≃ ρv2,
is the dynamic pressure emerging from the speed of the
front, v ≃ d/t . Taylor’s regime corresponds to a front
moving in such a way that the varying energy density
equals the dynamic pressure.

In Eq. 70 the dynamics are given as a balance of power.
The power of the explosion P̃ ≃ E/t is faced by m̃av.

In these four examples we illustrated how a given
regime can be interpreted in terms of mechanical vari-
ables. Here these mechanical variables are just built from
algebraic manipulations, but in some cases they can be
measured by instruments designed for this purpose. For
instance, in the context of explosions one may perform
pressure measurements at various distances from ground
zero. Many such measurements were for instance per-
formed for the Trinity test, enough to confirm the valid-
ity of Eq. 69 from this perspective (c.f. Barschall (1945)
LA-352, Graves (1945) LA-354, Manley (1945) LA-360,
Bright (1945) LA-366, Marley (1945) LA-431; all these
reports are available on the Los Alamos National Labo-
ratory website).

For more information on this topic, we invite the
reader to watch our lecture series on explosions, and
more particularly the episode dedicated to kinematic
and mechanical perspectives (Explosions 8: Kinematic
and Mechanical Variables)

VI. SIMPLE DIMENSIONLESS NUMBERS

Mechanics 8: The Right Angle

We have seen in the previous section that different

FIG. 7 The “constant variable” of the Trinity explosion, i.e.
the “explosivity” κ ≡ d5t−2 plotted against the time since
detonation t, the blast size d, the average front speed d/t, or
the average front acceleration d/t2. Note that the axes for the
speed and acceleration run from right to left, since the speed
and acceleration are initially greater. The horizontal red line
is the “unit of explosivity” κ0 ≡ E/ρ. The data correspond to
the set used by Taylor (1950b), and shown as d(t) in Fig. 3a.

perspectives provide complementary approaches on the
same “physics”. In the framework of this review these
“physics” are conveniently expressed by a pair of mechan-
ical quantities {Q1, Q2}, taken from Table I, and these
mechanical parameters manifest themselves as regimes.
The exact forms of the regimes or ‘scalings’ differ from
one perspective to another, but they are always the direct
consequence of dimensional analysis. They can be re-
derived with a few lines of algebra. When we briefly con-
sidered mechanical variables we saw that the kinematic
parts of a scaling could be combined in such a particular
way as to provide a constant outcome. For instance, in
the case of Taylor’s regime, we saw that E ≃ (ρd3)(d/t)2,
and since the energy E and density ρ were constant, this
meant that d3(d/t)2 was also constant, despite being con-
structed from variables, d and t. Even if we restrict our-
selves to kinematic variables, for any pair of mechanical
parameters {Q1, Q2} there is always a perspective that
can be built that exploit this property. Kinematic vari-
ables and mechanical parameters can combine to form
mechanical variables, but they can also combine in such
a way as to provide a so-called ‘dimensionless number’,
which provides a useful angle on the dynamics.

A. Constant variables

Let us consider the free fall as an example. In this
context an object–like an apple–falls down to the ground.
Galileo had discovered that before any significant friction
can set in the trajectory is characterized by a constant

https://sgp.fas.org/othergov/doe/lanl/
https://youtu.be/bvVCvdB5Uzk?si=7BpPAD6HsvfYjpUe
https://youtu.be/bvVCvdB5Uzk?si=7BpPAD6HsvfYjpUe
https://youtu.be/aun0CHanq94?si=w6CXSKyvzqmlqrqk
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acceleration. Because this fact is now taught in pretty
much all schools throughout the world it is easy to over-
look that a “constant acceleration” would have sounded
like a complete oxymoron back then. Indeed “accelera-
tion” is built from Latin “accelerare”, meaning “to has-
ten, quicken”, whereas “constant” comes from “constan-
tem”, meaning “standing firm”. What did Galileo mean?
The distance traveled since the object was dropped in-
creases like the square of the elapsed time, d = Kt2. If
instead of following the distance over time we track the
speed over time, we would find that it increases linearly,
v ≃ d/t ≃ Kt. Now, if we track the acceleration over
time, we find that it is indeed independent of time, since
a ≃ v/t ≃ K. All these considerations may sound triv-
ial if we solely consider this one example of the free fall.
However, the remarks made in this particular case can
be generalized to any sort of regime.

We just saw the famous example of a constant acceler-
ation, but there are “constant variables” of all kinds. If
we agree to say “constant acceleration”, we should wel-
come this apparent contradiction as well. For any pair of
mechanical quantities, for any regime, there is always a
way to combine the initial variables to define a new vari-
able, which will remain constant in the range of validity
of the regime. The recipe to build such combination is
simple. If we have two mechanical quantities Q1(x1, y1)
and Q2(x2, y2), then assuming that the kinematics can
be described by a variable length d and time t, we know
since Eq. 35 that Q1/Q2 ≃ dx1−x2ty1−y2 . Since both Q1

and Q2 are constant parameters, the combination of vari-
ables κ ≡ dx1−x2ty1−y2 is also constant. The new kine-
matic variable κ is the constant variable of this regime.

In the case of Taylor’s regime, the constant variable is
thus κ ≡ d5t−2, which we called the “explosivity”. As
shown in Fig. 7, if we plot the values of this variable for
the Trinity test we find that it remains roughly constant
over time. In fact, this “constant variable” is not only
constant over time, but also for all sizes d, all speeds
v ≃ d/t, etc. In Fig. 7, changing the horizontal axis does
not change the shape of the plot. For the x-axis, we could
actually choose any kinematic quantity as long as it is not
a power of the explosivity, which would just replicate the
y-axis. The horizontal axis is largely arbitrary. The di-
mensions of the selected variable are inconsequential, as
are its units. In contrast, for the vertical axis, the me-
chanics underlying this motion are suggesting a particu-
lar unit for the explosivity: κ0 ≡ E/ρ, with [κ0] = [κ],
the ratio of energy and density is an explosivity. So we
can use the ratio of energy and density as our “natu-
ral” or “objective” unit of explosivity (a term we shall
specify in section VI.C). Another way to say this is that
NEρ ≡ κ/κ0 ≡ ρd5/Et2 provides a ‘dimensionless num-
ber’ for the pair {E, ρ}. Indeed, [NEρ] = M0L0T 0 = 1,
which is to say that the quantity NEρ has no dimensions.
As we will see now these numbers are quite useful.

B. Dimensionless numbers

In their simplest expression, dimensionless numbers
provide a privileged perspective on each particular
regime. Nevertheless, the term “dimensionless number”
is also used to describe more complex combinations of
kinematic and mechanical quantities, with no overall di-
mensions of space, time or mass. In this review, we will
focus on simple dimensionless numbers. For any pair of
mechanical quantities {Q1, Q2} ,we assume an initial per-
spective with two variables, d and t, and we define the
simple dimensionless number from Eq. 35 as follows:

NQ1Q2
≡ Q2

Q1
dx1−x2ty1−y2 (71)

By construction we have NQ1Q2
≃ 1 in the range of validity

of the regime.

1. The Reynolds number

To illustrate the concept of simple dimensionless num-
bers, let us come back to the boundary layer regime,
d ≃ (η/ρ)

1
2 t

1
2 (Landau and Lifshitz, 1959). The di-

mensionless number associated with this regime is the
‘Reynolds number’ Re, which is probably one of the most
famous of its kind (Rott, 1990).
According to Eq. 71 the dimensionless number associ-

ated with the pair {η, ρ} is:

Nηρ ≡ ρd2

ηt
≃ ρdv

η
(72)

The dynamics of a laminar boundary layer are such that
Nηρ ≃ 1. Here, the dimensionless number is initially ex-
pressed from the size d of the boundary layer, and the
time t since deformation started. However, as we saw in
section V.A.1, in hydrodynamics the scalings are more
often expressed from ‘velocity profiles’, so from a speed
v ≃ d/t and a distance d. With these alternative vari-
ables Nηρ ≃ ρdv/η, which is the better known formula for
the Reynolds number. The reader is invited to check that
the following expressions are also satisfying formulations
of the Reynolds number: Nηρ ≃ ρv2t/η ≃ ρωd2/η ≃
ρω/ηk2 ≃ ρE/ηv ≃ ρE 1

2 /ηk
1
2 , etc. The form used de-

pend on the choice of kinematic variables, and so on the
context.
All too often, the Reynolds number is narrowly defined

from one particular perspective. For instance, Wikipedia
states that “The Reynolds number is the ratio of inertial
forces to viscous forces”. In fact, because dimensionless
numbers are dimensionless, they can be understood as
ratios of any pair of quantities with the same dimensions.
So the Reynolds number can indeed be defined as a ratio
of (variable) forces, but also as a ratio of a number of
other quantities. Here are some of the different ways to



30

interpret the Reynolds number:

Re =
force 1

force 2
=

ρd2v2

ηdv
(73)

Re =
time 1

time 2
=

ρd2/η

d/v
(74)

Re =
length 1

length 2
=

d

η/ρv
(75)

Re =
speed 1

speed 2
=

v

η/ρd
(76)

Re =
stress 1

stress 2
=

ρv2

ηv/d
(77)

Re =
density 1

density 2
=

ρ

η/dv
(78)

Re =
viscosity 1

viscosity 2
=

ρdv

η
(79)

You can check that all these quantities have the correct
dimensions by using Table I. Each particular formulation
of the Reynolds number underscores a different way to
think about the interplay of viscosity and density.

Of the various ways to interpret the Reynolds number,
one has a stronger standing than the others. As we saw
in section IV.D.1, the ratio of viscosity and density gives
rise to a ‘diffusivity’ (ν≡η/ρ, with [ν] = L2T −1). The
most natural way to express the Reynolds number is then
as a ratio of diffusivities:

Re =
diffusivity 1

diffusivity 2
=

νk
ν

(80)

The diffusivity νk is traditionally called an ‘advection’
or ‘convection’ and written as νk≡dv, or with alternate
variables as νk≡d2/t or v2t, depending on context. This
combination of variables provides the “constant variable”
of the pair {η, ρ}, and ν≡η/ρ is its “objective unit” (a
term we shall specify in section VI.C).

2. The Taylor-Sedov number

The procedure we followed to construct the Reynolds
number can be carried out for any regime. As we will
see in the next sub-section some of the ensuing dimen-
sionless numbers also have their own name, but most do
not. Surprisingly, to the best of our knowledge the di-
mensionless number associated with Taylor’s regime of
explosions does not have a name. Since the ‘Taylor num-
ber’ refers to something else already (Fardin et al., 2014),
let us call it the Taylor-Sedov number, from the name of
a Soviet physicist whom also contributed substantially
to the understanding of explosion blasts (Deakin, 2011;
Sedov, 1993).

According to Eq. 71 the dimensionless number associ-
ated with the pair {E, ρ} is:

NEρ ≡
ρd5

Et2
≃ ρd3v2

E
(81)

TABLE II Simple dimensionless numbers as relations
between pairs of mechanical quantities. Some rep-
resentative dimensionless numbers are shown to con-
nect the mechanical quantities of Table I: Bo=Ψd2/Γ
(Bond number), Ec=Γ/(Σd) (Elasto-capillary number),

Fr=ρ
1
2 v/(Ψd)

1
2 (Froude number), Ma=vρ

1
2 /Σ

1
2 (Mach num-

ber), Wi=ηv/(Σd) (Weissenberg number), Ca=ηv/Γ (Cap-
illary number), Re=ρdv/η (Reynolds number), We=ρv2d/Γ
(Weber number), Ne=P/(ρv3d2) (Newton or Power number),
Se=ρd3v2/E (Taylor-Sedov), C1 = F/(ρv2d2) (inertial drag
coefficient), C2 = F/(ηvd) (viscous drag coefficient). All
numbers shown are standard, except for the Taylor-Sedov,
which we defined in this review. The notation ‘Se’ is here
to imitate the traditional style, but as mentioned in the text
we recommend the standard notation introduced in Eq. 71.
The structure constant α0 = S/Hv is usually defined in the
special case where H = ℏ, v = c and S = S0 = kCe

2, in which
case it is called the ‘fine structure constant’.

The right-most expression gives the Taylor-Sedov number
from the traditional “hydrodynamic perspective”, using
a speed and a length as variables. Dynamics following
Taylor’s 2

5 regime correspond to a constant Taylor-Sedov
number, NEρ ≃ 1. Contrary to the Reynolds number,
this dimensionless number is not naturally expressed as
a ratio of diffusivities, but as a ratio of explosivities.

3. Multitudes of dimensionless numbers

To each pair of mechanical quantities corresponds a
simple dimensionless number. Even if we restrict our-
selves to the standard quantities in Table I we could
build over three hundred different dimensionless num-
bers. Some of the most well-known are represented in
Table II, with some listed here with a comparison be-
tween the traditional hydrodynamic formulations and the
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standard definitions following Eq. 71:

Bond/Eötvös Bo ≡ Ψd2

Γ
≃ NΓΨ (82)

Elasto-capillary Ec ≡ Γ

Σd
≃ N−1

ΓΣ (83)

Weissenberg/Deborah Wi ≡ ηv

Σd
≃ N−1

ηΣ
(84)

Mach Ma ≡ ρ
1
2 v

Σ
1
2

≃ N
1
2

Σρ (85)

Capillary Ca ≡ ηv

Γ
≃ NΓη (86)

Froude Fr ≡ ρ
1
2 v

(Ψd)
1
2

≃ N
1
2

Ψρ (87)

Weber We ≡ ρdv2

Γ
≃ NΓρ (88)

The first two examples correspond to simple lengths (Bo
and Ec). The third example corresponds to a simple time
(Wi). The forth and fifth examples correspond to simple
speeds (Ma and Ca). The sixth example corresponds to
a regime at constant acceleration (Fr). The last example
correspond to a more “exotic” regime, where the asso-
ciated constant variable is a quantity with no standard
name, and dimensions L3T −2.
As we first saw with the Reynolds number, Re, di-

mensionless numbers are often referred to using the first
two letters of the person most often associated with that
number. This is true for the Bond, Mach, Froude or We-
ber numbers. This is almost true for the Weissenberg
number, which uses Wi, instead of We, to avoid confu-
sion with the Weber number. Some numbers, like the
elasto-capillary or capillary numbers imitate the style of
one capitalized letter followed by a lower case letter, al-
though no surnames are attached to it. This odd nomen-
clature can become quite unpractical when dealing with
an increasing number of regimes, and can be the source
of bitter priority disputes. It is one of the reasons why
we advocate the more neutral and less reverent nota-
tion NQ1Q2

, as defined in Eq. 71. Note also that in some
cases the name used for a particular dimensionless num-
ber depends on the choice of kinematic variables. For
instance, one usually speaks of the ‘Weissenberg number’
to describe Wi≡ ηv/Σd, but of the ‘Deborah number’ for
De≡ η/Σt (Dealy, 2010; Poole, 2012).

As is apparent, for a given pair {Q1, Q2}, the tradi-
tional dimensionless numbers usually coincide with the
definitions of NQ1Q2

. However, in certain cases they differ
by some power, vestige of historical circumstances. In-
deed, dimensionless numbers are defined modulo an over-
all power, which is to say that if a combination of kine-
matic variables and mechanical parameters is dimension-
less, then any power of that combination is necessarily
dimensionless. So for a dimensionless number N , Nα

will also be dimensionless for all values of α. Underneath
this trivial fact, if κ is a constant variable for a regime,

the κα will also be constant.

The general definition provided in Eq. 71 ensures that
all dimensionless numbers constructed in that way are
linear in the underlying mechanical quantities, in con-
trast to Ma or Fr. In addition, since both N and N−1

could be equally valid definitions Eq. 71 ensures that the
impelling and impeding factors always occupy the same
place from one number to another. For instance, histori-
cally, the ‘elasto-capillary number’ Ec= Γ/(Σd) (McKin-
ley, 2005) has been defined in contradiction to the Bond
number, such that Ec< 1 means that d > ℓΓΣ, whereas
Bo< 1 means that d < ℓΓΨ. When we use traditional
definitions, all these little discrepancies pile up and end
up seriously obstructing the use of these dimensionless
quantities. This is another reason to prefer the notation
introduced in Eq. 71.

C. Numbers and units

We have seen that given a pair of mechanical quanti-
ties we can derive its kinematic outcome and express it
from a number of perspectives. One of these perspectives
combines all variables and parameters into a dimension-
less number. How is this last viewpoint special? How to
use dimensionless numbers to further our understanding
of the relationship between mechanics and kinematics?

1. Rescaling

So far we have illustrated regimes associated with pairs
of mechanical quantities, {Q1, Q2}, by giving single ex-
amples where the mechanical parameters took set val-
ues. For instance when we discussed Taylor’s regime
{E, ρ}, we focused–like him–on the Trinity explosion,
where E ≃ 1014 J and ρ ≃ 1 kg/m3 (Taylor, 1950b). To
gain greater insight on the use of dimensionless numbers
we need to consider a collection of dynamics governed
by the same mechanical pair, but with different values
for the impelling and impeding factors. We will review
the case of explosions in detail in an upcoming article,
so let us here consider the ‘visco-capillary’ regime as an
example, i.e. the regime combining surface-tension and
viscosity, {Γ, η}, which we mentioned in section IV.B on
simple speeds.

As shown in Fig. 8a the visco-capillary regime has been
observed in a number of situations where viscous fluids
are driven by surface-tension (Fardin et al., 2022). As
mentioned in section IV.B this regime is for instance ob-
served for the pinching of viscous liquid bridges (McKin-
ley and Tripathi, 2000). In that case t is the duration be-
fore pinch-off, and so the “actual time” runs from right
to left. This pinching configuration is just one out of
many possible set-ups exhibiting the regime {Γ, η}. Sim-
ilar visco-capillary dynamics can also occur with rising
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FIG. 8 Illustration of “rescaling” on a set of data exhibiting the visco-capillary regime {Γ, η}. The data include various
configurations of pinching (Bolanos-Jiménez et al., 2009; Burton et al., 2005; McKinley and Tripathi, 2000), coalescence (Aarts
and Lekkerkerker, 2008; Aarts et al., 2005; Paulsen et al., 2011; Rahman et al., 2019; Yao et al., 2005) and spreading (Eddi
et al., 2013b). The data sets are available in the supplementary files of our recent review of this subject (Fardin et al., 2022).
(a) The visco-capillary regime seen from the “canonical perspective” of a length versus a time, {Γ, η}dt. The length d is the
radius of the neck or contact area. The time t is the duration since contact for spreading and coalescence, and the duration
before pinch-off for pinching. (b) The speed of the neck or of the edge of the contact area is plotted against time, {Γ, η}vt.
Since the speed is the “constant variable” of this regime, the data sets fall on plateaus. (c) Upon using the mechanical ratio
Γ/η as “objective unit” of speed the data sets are all found to be close to 1, ηv/Γ ≃ 1. The vertical axis can also be interpreted
as giving the value of the simple dimensionless number of the regime, NΓη = Ca. The actual ordinates of each plateau give
the value of the scaling constant δΓη in each experiment. (d) When the scaling constant is included in the definition of the
dimensionless number N∗

Γη ≡ ηv/ΓδΓη, all data sets naturally collapse on a single plateau given by N∗
Γη = 1. Note that in (c)

and (d) the size d is used as horizontal axis, but any variable other than the speed v or powers of it could have been used (c.f.
Fig 7).

bubbles pinching-off (Bolanos-Jiménez et al., 2009; Bur-
ton et al., 2005). In that case, the viscosity is that of the
outer fluid. This regime has also been found in a num-
ber of slightly different configurations of droplet coales-
cence (Aarts and Lekkerkerker, 2008; Aarts et al., 2005;
Paulsen et al., 2011; Rahman et al., 2019; Yao et al.,
2005). For these examples, the neck between the drop
grows and so time is running from left to right. As we
will see shortly, the differences in setups actually have a
marginal impact. The visco-capillary regime is observed

during pinching, coalescence, and spreading of drops onto
substrates (Eddi et al., 2013b). For spreading the size d
is the radius of contact.

All lines in Fig. 8a have the same slope but the inter-
cepts are different, because the values of viscosity and
surface-tension are different in each case, giving rise to
visco-capillary speeds ranging from over 10 m/s for water
with a bit of glycerol, in dark green (Paulsen et al., 2011),
to slightly over 1 µm/s for colloid-polymer mixtures, in
faint green (Aarts and Lekkerkerker, 2008). What we
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are seeing in Fig. 8a is how all these experiments look
like from the perspective of a length versus a time, the
“canonical perspective” of this review. But we are free
to use a different perspective, and in particular to adopt
a perspective where one of the axis is the “constant vari-
able”, which in this case is the speed v ≃ d/t. In Fig. 8b
we kept the time t as the other variable, but we could
have chosen the size d, or anything we want other than
the speed (or powers of the speed). As we saw already
in Fig. 7 the second variable is largely irrelevant. The
data sets would have still looked the same: horizontal
lines. Since {Γ, η} → v ≃ Γ/η, in Fig. 8b, the different
ordinates of the horizontal lines associated with each ex-
periment reflect the different values of Γ/η. Experiments
found higher on the plot correspond to higher values of
surface-tension or lower values of viscosity.

In Fig. 8b, regardless of the fluid and set-up, the speeds
are measured in meters per second. Of course, we could
have used any arbitrary unit we want like cm/min or
feet/hour. The choice of unit is completely subjective.
We can–if we want–measure the speed of these pinch-
ing, coalescing and spreading droplets in relation to the
length of our feet (ft), and to a faction of the rotation
period of our planet (hour). We are allowed to do this,
but we should recognize how presumptuous we are to
expect that the dynamics of droplets would be best de-
scribed by such provincial choices. When for instance
we say that the pinching of glycerol happens at a speed
around 54 feet per hour, the number we get, 54, is due
to two different things. First, and hopefully, it is related
to some actual natural phenomenon, which was recorded
sometime at the turn of the millennium (McKinley and
Tripathi, 2000). Second, the number 54 is connected to
the choice of unit. If we choose different units, we get
a different number, like 27.6 cm/min. So these two con-
cepts of units and numbers are obviously related. That
is not really contentious. 54 or 27.6, these numbers are
a bit random, as random as our choice of units.

Can we instead find a way to define more “objective”
or “natural” units, less bound to our preferences? Units
that would be set by the mechanics at play? Yes we can,
this unit of speed is given by the ratio of surface-tension
and viscosity, v0 ≡ Γ/η. For each experiment we know
the surface-tension, and we know the viscosity so we can
compute their ratio and use it directly as our unit. This
unit is more objective than any of our choices because it
is given directly by the mechanical quantities dictating
the dynamics.

In contrast to the subjective units like meters per sec-
ond, the value of the objective unit changes from one ex-
periment to another. Once we have our objective units
we can then plot all curves together, as shown in Fig. 8c.
The curves now start to overlap, revealing their inher-
ent similarity. With these objective units, all speeds are
reasonably “close to 1”. Note in addition that plotting
the speed v “in units of Γ/η” is the same as plotting the

dimensionless number of the regime, which in this case
is the Capillary number Ca = NΓη. In Fig. 8c, it is said
that the dynamics from Fig. 8a or b have been ‘rescaled’.
Nevertheless the overlap between the different curves

in Fig. 8c is not perfect. For all curves we may say that
NΓη ≃ 1, but not that NΓη = 1. Now that we are reach-
ing the end of our exploration of scalings based on pairs
of mechanical quantities, it is time to come back to the
difference between the approximate equality, ‘≃’, which
we have been relying on, and a stricter kind of equality,
‘=’.

2. Scaling constants

Throughout this review, except on rare occasions, we
have used approximate equalities, ‘≃’, which connect left
and right-hand sides with the same ‘order of magnitude’.
This sign has helped us absorb a number of numerical
factors ‘of order 1’, which tend to cloud the expressions of
regimes. For instance, in a formula such as Ω = (4π/3)r3,
giving the volume of a sphere of radius r, the symbols
between brackets should not be given the same status as
the term r3. When focusing on scaling, we would just
write Ω ≃ r3, neglecting the numerical factors. However,
as we have just seen with Fig. 8, in the end if we want
to neatly overlap all dynamics pertaining to the same
underlying mechanics we need to pay more attention to
these factors.
A dimensional equation like [E/ρ] = [d]5[t]−2 is unim-

peachable and exact regardless of the values of energy,
density, size and time. This is why we use the sign ‘=’.
When the brackets are dropped, E/ρ ≃ d5t−2, the ap-
proximate equality ‘≃’ is not so much an expression of
imprecision as a requirement of adequacy between the
chosen kinematic variables d and t, and the values of the
mechanical quantities E and ρ. One may say that if the
dynamics of an explosion blast are due to the interplay
of energy and density, then E/ρ and d5t−2 must indeed
have the same order of magnitude. More generally, as-
suming for simplicity that we have identified a variable
length d and a variable time t to describe the kinematics,
if we have Q1/Q2 ≃ dx1−x2ty1−y2 , we can safely assume
that the dynamics are impelled by Q1 and impeded by
Q2. However, the agreement between the two sides may
not be exact. We can write this from the “canonical per-
spective” of a length versus a time:

d = δQ1Q2

(Q1

Q2

) 1
x1−x2

t
y2−y1
x1−x2 (89)

This equation is identical to Eq. 36, but we have intro-
duced a (dimensionless) numerical correction δQ1Q2

, in or-
der to be able to use a strict equality. This kind of prefac-
tor has been called by different names, like the ‘similarity
constant’, or the ‘scaling constant’, or even the “fudge
factor” by more facetious commentators. In contrast to
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the rest of the equation, this constant cannot be derived
from dimensional analysis, but dimensional analysis im-
poses that its value remains ‘of order 1’, roughly between
0.1 and 10. Unfortunately, making this constraint more
precise would go beyond the scope of this review since
it requires considering more than two mechanical quan-
tities. Nevertheless, we can already clarify a few things
about this scaling constant.

The scaling constant δQ1Q2
of a regime is a black box,

containing all sorts of influences beyond that of the me-
chanical pair underlying the dynamics. For instance, con-
sider Archimedes’ simple length ℓmρ ≡ (m/ρ)

1
3 . Suppose

we are dealing with a sphere of diameter d, so its vol-
ume is Ω = (π/6)d3, and its mass is m = ρΩ, and so

d = δ(m/ρ)
1
3 , with δ = (6/π)

1
3 ≃ 1.2. In this case, the

scaling constant δ includes shape effects. Its value would
be different if we were dealing with a cube or a pyra-
mid, or some more complicated figure. The description
of shapes may require more than a single length (height,
width, etc.) and would then involve more than a pair of
mechanical quantities.

When we discussed the Hooke-Rayleigh time τmΓ we
saw a similar effect in the time rather than space dimen-
sion. The period of oscillation of a spring and mass sys-
tem is τ = δ(m/Γ)

1
2 , with δ = 2π ≃ 6.3. Such correction

can very well be absorbed by redefining the variables. For
instance here, we can use the angular frequency ω ≡ 2π/τ

to reach ω = (Γ/m)
1
2 , where there is no more correction

factor.

In some cases, as in the previous two examples, the
scaling constant can be disposed off by an appropriate re-
definition of the variables. In other cases, a redefinition
of the mechanical quantities may also be helpful. For
instance, if the standard way to measure the energy (or
‘yield’) of an explosion was to fit the dynamics of the blast

by a power law d = Kt
2
5 and then to set E ≡ ρK5, then

obviously we would have d = δ(E/ρ)
1
5 t

2
5 , with δ = 1, as

long as our measurement of the air density ρ is correct.
Whenever we face a regime with a scaling constant that
conveniently reduces to one, it is probably because the
mechanical quantities of this regime are actually defined
in that context. However, this is rarely the case, since
mechanical quantities are free to interact with so many
partners, like all those given in Table I. The difficulties
in understanding the value of the scaling constant δ then
lie in the fact that δ usually connects a given regime to
other manifestations of its mechanical factors, beyond the
range of validity of the regime. For instance, for explo-
sions, the energy may be rather defined from measure-
ments of the final blast radius ℓ, as E ≡ 4π

3 Σℓ3, where
Σ is the bulk modulus of the air (according to Eq. 6), or
from the initial speed u, as E ≡ 1

2mu2, where m is the
ejected mass (according to Eq. 29). The numerical fac-
tors used in these definitions ( 4π3 , or 1

2 ) get carried over
from one equation to another and end up pilling up in

the scaling constant δ.
In the case of the pinching, coalescing and spreading

fluids in Fig. 8c, the ordinates of the plateaus in each data
set give an average value of the scaling constant δΓη for
each experiment. We refer the reader to our recent meta-
analysis of this subject, where values of the constant are
listed for all experiments shown in Fig. 8c (Fardin et al.,
2022). The constants are all reasonably “close to 1”, but
they are influenced by the geometric details of each set-
up. For instance, in the case of the pinching of a liquid
thread between two plates, theoretical analyses proposed
slightly different values of δΓη depending on subtle dif-
ferences: δΓη = 0.1666 (McKinley and Tripathi, 2000),
δΓη = 0.0709 (Papageorgiou, 1995), δΓη = 0.0304 (Bren-
ner et al., 1996; Eggers, 1993), δΓη = 0.0108 (Brenner
et al., 1996). The experiment on the pinching of glycerol
reproduced in Fig. 8 (▲) seemed to favor Papageorgiou’s
value (McKinley and Tripathi, 2000).
Ultimately, one may decide to include the scaling con-

stants into the definition of the objective unit or constant
variable, that is into the definition of the simple dimen-
sionless number, in order to reach a more satisfying over-
lap of the data, as shown in Fig. 8d for the visco-capillary
regime. If the scaling constant is defined from the canon-
ical perspective in Eq. 89, then amending Eq. 71 we may
write:

N∗
Q1Q2

≡ δx2−x1
Q1Q2

Q2

Q1
dx1−x2ty1−y2 ≡ δx2−x1

Q1Q2
NQ1Q2

(90)

Then all data sets naturally collapse on a single plateau
given by N∗

Γη
= 1. Systematic deviations form this

plateau can only be witnessing the growing effect of me-
chanical quantities beyond the initial pair, for instance
the effect of the density of the fluid ρ, or of the ‘Laplace
force’ F ≃ Γℓ, when approaching the size ℓ of the whole
drop (Fardin et al., 2022). Since no regime extends for-
ever, such deviations are bound to happen, but this topic
is however beyond the scope of this review.

VII. CONCLUSION

With Archimedes, Newton, Taylor, and all those who
sought to explore the mechanical underpinning of space
and time, this review has demonstrated the parsimonious
efficiency of dimensional analysis. Whether we want to
explain the magnitude of a particular volume, an accel-
eration, or the more exotic motion of an explosion blast,
the mechanical philosophy suggests a bold idea: to invoke
an extra dimension, the dimension of mass M, beyond
the visible dimensions of space, L, and time, T . The
scope of this simple idea is immense.
What we see as motion, size, or duration is understood

as a form of shadow, cast on a plane by a much broader
play. The players are the mechanical quantities, which
generations of researchers have inferred from their effects.
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The table of mechanical quantities that we built for this
review provides a first map, drawn from centuries of ex-
ploration of this mechanical pantheon. We hope that
this table will incite historians of science to trace back
the steps of past thinkers from one spot on the map to
another, to define pressure, energy, power, action, etc.
Why did so many great minds sailed these waters? How
does this mechanical chart relate to the world we live
in? We wish to do our part in answering this question,
and this review is a first step. In this review, we have
shown what emerges from the interplay of duos of me-
chanical quantities. This type of pair interaction is the
elementary building block of a dimensional analysis of
mechanics, to which we can refer to more succinctly as
dimensional mechanics.

As we saw, numerous experiments have shown that a
range of complex motions can be cast as single lines in
logarithmic scale. These straight regimes are drawn on
a plane of space and time, and yet we find that they can
be more deeply understood as a “reflection”, or “projec-
tion”, or “shadow” of something going on at a higher di-
mension. What is going on is a “struggle”, or “balance”,
between “competing” mechanical factors. Dimensional
mechanics help us formalize all these colloquialisms, help
us find the “causes” of these scalings. These causes are
embodied by the mechanical quantities. Any pair of me-
chanical quantities is associated with a regime, a line in
the kinematic plane. The slope of this line is given by
the dimensions of the mechanical ratio. Because the stan-
dard mechanical quantities all share a dimension of mass
M, such mass disappears from their ratio:[Q1

Q2

]
=

��MLx1T y1

��MLx2T y2
= Lx1−x2T y1−y2 (91)

Hence kinematics emerge from a confrontation of me-
chanical terms. Motion, change, comes from ratios of
constant mechanical parameters. Mathematical division
formalizes the age-old intuition that motion results from
a “tug of war” between “forces” and “masses”, between
what we more generally called impelling and impeding
factors.

The type of scaling observed in a particular context
depends on the dimensions of the underlying mechanical
parameters. Some experiments may evidence character-
istic lengths, or times, or speeds, but others may record
more intricate relationships between space and time. For
instance, from the “canonical perspective” of a variable
length measured relative to a variable time one may see
scalings of the form d ∼ tα, with α = 1

2 , or 2
5 , or 1

4 ,
or 2

3 , or
3
2 , etc. These exponents are not fundamentally

weirder than the more traditional α = 1 of uniform mo-
tion, or α = 2 of uniformly accelerated motions. We just
had less time to get used to them. In this review, we
have tried to find a diverse array of examples from dif-
ferent fields, but the lists of scalings that we compiled
is but a fraction of what could be gathered from a more

thorough investigation. We invite readers to participate
in this encyclopedic enterprise, and we will welcome any
correspondence to that end.
Throughout this review we have assumed that the “rel-

evant” mechanical quantities were known in each partic-
ular context, and so from these parameters the regimes
could be derived by dimensional analysis. We under-
stood the “play” so we could make sense of its “shadow”,
as seen from different perspectives. For instance, in the
case of the Trinity explosion, knowing the energy E of
the bomb and the density ρ of the air to be the relevant
parameters, Taylor could derive that d ∼ t

2
5 , or that

v ∼ t−
3
5 . We have shown how a knowledge of mechan-

ics implies the kinematics. But how is such knowledge
gained in the first place? Mechanics implies kinematics,
but the reverse is not so simple. Assuming a “canonical
perspective”, we can symbolize this as follows:

Mechanics →⇝Kinematics

{Q1, Q2} →⇝d ≃ Ktα (92)

For a given pair of mechanical quantities {Q1, Q2} there
is a single associated kinematic regime. However, a sin-
gle regime can be associated with a multitude of pos-
sible mechanical models (what we symbolized with the
squiggly arrow). We saw this in passing with the Bohr
radius, which could be expressed from the electromag-
netic strength and the kinetic energy of the electron,
{S,E} (Eq. 12), or from the Planck constant and the
momentum of the electron, {H, p} (Eq. 14). Both mod-
els gave the same result. This “redundancy” is not at all
unique to the Bohr radius, it is fundamentally entrenched
in the asymmetric relationship between mechanics and
kinematic.
Kinematics have a lower dimension than mechanics.

What we see as motion is only a projection of what goes
on, and information is lost in such shadow play. We
might see a dog or a duck on the screen, but it may ac-
tually be the hand of the puppeteer. For a given pair of
mechanical quantities, Q1(x1, y1) and Q2(x2, y2), the re-
sulting regime is d ≃ Ktα, with α = (y2 − y1)/(x1 − x2).
Only the relative dimensions of the mechanical quanti-
ties matter, i.e. the differences y2−y1 and x1−x2. Thus,
a given exponent α may actually come from an array of
mechanical pairs. For instance, we saw diffusive regimes
due to {E,Λ}, {Σ, χ}, {Γ, φ}, {F, ρ}, {F, η}, or {η, ρ}.
Taking a look back at the table of mechanical quanti-
ties will confirm that these pairs have the same relative
placement. So, if we do observe d ∼ t

1
2 , how can we

know which mechanical pair is behind this motion? We
cannot; that is if we only observe a single regime. . .
On paper, power laws such as d ≃ Ktα are ‘self-

similar’ (Barenblatt, 2003), they seemingly extend to
arbitrarily small or large scales. In practice, no single
regime extends indefinitely. For instance, Taylor showed
that the Trinity explosion of July 1945 in New Mexico
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followed d ≃ (E/ρ)
1
5 t

2
5 . As shown in Fig. 3a, the data do

support this model, but only for the selected time range,
from a fraction of a millisecond to a fraction of a sec-
ond after detonation. Taylor knew very well that this
regime was only transient (Taylor, 1950a,b). If extended
indefinitely in the future, the blast would have reached
New York by now! And if extended to the instant of
detonation, this regime would predict a diverging front
speed, since v ∼ t−

3
5 . Evidently, the balance of energy

and density cannot account for the whole dynamics of
the explosion. We actually know what we should expect.
At small time scales, the mass of the bomb will have
an effect and we would get a constant initial speed from
{E,m}, according to Eq. 29. At large scale, we would
reach the final blast radius set by the ambient pressure,
{E,Σ}, according to Eq. 6. Dynamics are never truly
‘self-similar’, because the complete play always involves
more than two players.

We have learned much by focusing on pairs of mechan-
ical quantities, and we would be right to expect that
a deeper understanding of dimensional mechanics may
come by progressively enlarging our set of mechanical pa-
rameters. We have already started exploring the effects
of trios and quartets, and they greatly extend the reach
of dimensional mechanics. Our online series of video lec-
tures on explosions documents this progression for this
particular example, and starting with episode 9 the series
on mechanics generalizes our findings. We are planning
to summarize these investigations in upcoming publica-
tions, but we can already mention a few salient points,
which may resonate with some of the questions that this
review might have raised.

When considering three mechanical quantities, two
cases should be distinguished: whether the three quanti-
ties are aligned or not. When the quantities are aligned
they lead to three parallel regimes. For instance, in the
special case where the quantities are on the same line
of Table I, this configuration can be used to rational-
ize shapes with distinct dimensions along different di-
rections, and more generally to discuss the mechanical
underpinning of geometry. Readers wishing to get ahead
may already investigate situations characterized by trios
such as {E,Σ,Ψ}, which may be useful for cratering (Hol-
sapple, 1993), or {E,Γ,Ψ}, which may be useful for drop
impact (Laan et al., 2014). When considering trios of me-
chanical quantities that are not aligned, the three regimes
associated with the three pairs of the trio intersect at a
single point, a special event where dynamics take a turn,
and which can serve as the locus of fully objective units.
For instance, looking back at the dispersion relation in
Fig. 5, we can easily envision that the regimes of waves
{Ψ, ρ} and ripples {Γ, ρ} will intersect at a wavenum-
ber given by the inverse of the capillary length implied
by the pair {Γ, ρ}. The coordinates of the point of in-
tersection are fully characterized by the trio {Ψ,Γ, ρ}.
Another example would consider the trio {Γ, ρ, η}, to

capture the combined effects of inertia and viscosity on
capillary flows. We discussed this case in a recent publi-
cation (Fardin et al., 2022).

The key insight brought by considering a fourth quan-
tity is even more intriguing. Quartets of mechanical
quantities include four connected trios associated with
intersections. The six associated regimes connect these
turning points to one another, allowing for instance to
track the succession of events of an explosion from the
initial dynamics driven by the energy of the bomb E and
impaired by the ejected mass m, to the gradual transfor-
mation of the blast into a simple sound wave, depending
solely on the density ρ and pressure Σ of the ambient
air. As shown in our online series of video lectures on
explosions a quartet such as {E,m, ρ,Σ} also provides a
new kind of dimensionless number, depending solely on
the constant mechanical parameters. In this particular
instance, this number would be N ≡ Eρ/mΣ (modulo
an overall power). Such kind of dimensionless number
allows to distinguish two broad classes of dynamics, here
detonations (N > 1) and deflagrations (N < 1). More
profoundly, such kind of dimensionless number provides
an “objective number base”, to use instead of 10 in loga-
rithmic representations. Base 10 is an international con-
vention for numbers, just like kilograms, meters, and sec-
onds are international conventions for mass, length and
time. If dimensional analysis is practiced beyond the me-
chanical duos we have been focusing on here, these four
conventions are replaced by standards set by the physics
of the situation at play.

Although the role of the mass dimension and the asso-
ciated mechanical quantities is initially to “explain” the
kinematics, what dimensional analysis reveals is that the
“physics” of a situation also inform the appropriate ways
to represent what is seen. The kind of rescaling displayed
in Fig. 8 can be brought to a whole new level by enlarg-
ing the experimental range, including the effects of more
than two mechanical quantities.

Dimensional analysis is so much more than a trick to
circumvent the more “rigorous” use of differential equa-
tions. Dimensions provide the fundamental structure of
physics, and the dimensions of mechanics are its most
robust backbone.
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