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Abstract 
Unicellular green picophytoplankton from the Mamiellales order are pervasive in marine ecosystems and susceptible to infections by 
prasinoviruses, large double-stranded DNA viruses within the Nucleocytoviricota phylum. We developed a double-stranded DNA virus 
enrichment and shotgun sequencing method, and successfully assembled 80 prasinovirus genomes from 43 samples in the South 
China Sea. Our research delivered the first direct estimation of 94% accuracy in correlating genome similarity to host range. Stirkingly, 
our analyses uncovered unexpected host-switching across diverse algal lineages, challenging the existing paradigms of host–virus co-
speciation and revealing the dynamic nature of viral evolution. We also detected six instances of horizontal gene transfer between 
prasinoviruses and their hosts, including a novel alternative oxidase. Additionally, diversifying selection on a major capsid protein 
suggests an ongoing co-evolutionary arms race. These insights not only expand our understanding of prasinovirus genomic diversity 
but also highlight the intricate evolutionary mechanisms driving their ecological success and shaping broader virus–host interactions 
in marine environments. 

Keywords: Nucleocytoviricota, Mamiellophyceae, Mamiellales, host range, Prasinovirus, diversifying selection, horizontal gene transfer 

Introduction 
Over the past five decades, the discovery of diverse viruses 
in freshwater and marine algae has unveiled their pervasive 
presence and ecological importance [1, 2] . These include viruses 
infecting cosmopolitan unicellular photosynthetic eukaryotes, 
such as the coccolithophore Gephyrocapsa huxleyi [3–5], hap-
tophytes including Phaeocystis spp. [2, 6], and picoeukaryotes 
like Micromonas [7]. Many of these viruses, belonging to the 
Nucleocytoviricota phylum [8], are characterized by large double-
stranded DNA genomes that can be up to 2.7 Mbp [9, 10]. 
These giant viruses profoundly impact phytoplankton population 
dynamics [11, 12] and are positively correlated with carbon export 
in marine ecosystems, highlighting the ecological importance of 
phytoplankton–virus interactions in the carbon cycle [13]. 

Advances in metagenomic sequencing and single-virus 
genomics have dramatically enhanced our knowledge of marine 
viral diversity and distribution [14, 15]. International sequencing 
efforts have identified over 2500 giant virus metagenome-
assembled genomes (GVMAGs) from marine environments [16, 
17]. Furthermore, single-virus genomics, which involves sequenc-
ing individual virus-like particles sorted by flow cytometry to 

obtain single-virus assembled genomes (vSAGs), has deepened 
our insights into marine viral genomic diversity [18]. However, 
the specific hosts and host ranges of these GVMAGs and vSAGs 
remain largely unknown, often inferred only from cultured strains 
[16, 19, 20]. 

To address these limitations, we developed a host-targeted 
virus enrichment strategy that enables detailed investigation 
of viral genome diversity and direct linkage to specific host 
species. Our research has focused on the picophytoplankton 
order Mamiellales, an ideal model for this approach due 
to their high abundance and cosmopolitan distribution [21]. 
These algae, diverging from a common ancestor between 330 
and 640 million years ago [21], are common hosts for the 
widespread prasinoviruses [15, 16, 22]. Their abundance in marine 
environments allows for direct virus isolation without the need for 
a concentration step. We applied this strategy in the South China 
Sea (SCS), an underexplored region for phytoplankton research 
[23]. As a major sea in the northwestern Pacific Ocean, SCS is 
crucial for the water mass exchange between the Pacific and 
Indian Oceans. Our approach successfully identified multiple 
prasinovirus strains in the natural environment and linked them
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to their algal hosts. This study provides valuable insights into 
the dynamic interplay between viruses and their Mamiellales 
hosts, revealing genetic variations, evolutionary relationships, 
and mechanisms such as horizontal gene transfer that drive their 
evolution. 

Materials and methods 
Water sampling 
Seawater samples were collected from 13 coastal habitats around 
Hong Kong from February to May and September to November 
2020 (Fig. 1A). Eastern sites (HAB-HK) are influenced by shelf and 
oceanic waters from the SCS, while western sites (HM-HO) are 
influenced by the Pearl River freshwater discharge. Duplicate 50-
ml samples of surface seawater were collected using polycar-
bonate bottles. Temperature, dissolved oxygen, salinity, pH, and 
turbidity were measured with a YSI ProDSS meter. Samples were 
syringe filtered through 0.45-μm polyethersulfone filters (PES) 
and stored at 4◦C. 

Eukaryotic phytoplankton culturing 
The eukaryotic phytoplankton strains used as potential hosts for 
isolating viruses included Bathycocccus prasinos (RCC4222), Man-
tonellia sp. (RCC6849), Micromonas commoda (RCC827), and Ostreo-
coccus sp. (RCC4221, RCC2590, RCC3401, RCC6881, BCC37000, and 
ZA5.1). All strains were cultivated in L1 medium (NCMA) made 
with autoclaved seawater (MOLA station: 42◦27′11′′ N, 3◦8′42′′ E), 
diluted to a salinity of 30 g l−1, and filter-sterilized through 0.22-
μm filters. Cultures were maintained under a 12 h:12 h light/dark 
(50 μmol m−2 s−1 white light) at 20◦C. To verify species identity, we 
amplified the full eukaryotic 18S rDNA gene of the algal strains at 
the start and end of the experiment using established primers and 
performed Sanger sequencing [24]. 

Virus enrichment 
Five milliliters of each of the thirteen 0.45-μm-filtered seawater 
samples was added to 10 ml of nine different microalgal cultures 
in culture flasks and monitored color changes daily against a 
control for up to 8 days under the previously described cultur-
ing conditions. Upon observing discoloration, the lytic property 
was confirmed by re-inoculating 5 ml of the 0.45-μm-filtered 
lysate into 10 ml of fresh microalgae culture. After confirming 
discoloration, the volume of each of the 52 lysates was gradually 
doubled using fresh culture until reaching 145 ml. Each lysate 
was then filtered through a 0.45-μm PES filter to remove debris 
and bacteria. Virus-like particles (VLPs) concentrations were esti-
mated using a Beckman-Coulter Cytoflex flow cytometer [25]. 
Lysates from geographically close samples and the same strain 
with <5 × 105 VLPs ml−1 were pooled, reducing the number of 
lysates from 52 to 44. The experimental pipeline is synthesized 
in Supplementary Fig. 1. All statistical analyses were performed 
with R (v4.3.2) [26]. 

DNA extraction and sequencing 
Viral particles from the 44 lysates were concentrated using a 
0.1-μm-pore-size polycarbonate filter (Millipore; VCTP0470) and 
incubated in CTAB lysis buffer (2% CTAB, 100 mM Tris–HCl [pH = 8], 
20 mM EDTA, 1.4 M NaCl, and 0.2%, 10 mM DTT and 0.1 mg ml−1 

proteinase K) at 60◦C for 1 to 2 h, following a published extrac-
tion protocol [27]. DNA quality was evaluated by a Nanodrop at 
260/230 nm and 260/280 nm, and confirmed by 0.8% agarose 
gel electrophoresis. DNA quantification was performed using the 
Quantus fluorimeter with the QuantiFluor dsDNA system kit. 

Due to one extraction failure (RCC827 at the HI site), 43 short-
insert paired-end libraries (2 × 150 bp) were sequenced using the 
Illumina Nextseq550 system at the Bioenvironment platform of 
the University of Perpignan. 

Construction of prasinovirus genomes 
Between 308- and 582-Mb sequences were obtained per lysate, 
totaling 37 million bp across 43 lysates. Each sample was assem-
bled with metaSPAdes (version 3.15.1) (−k 55,77,99 127 —meta) 
[28], yielding 47 469 contigs >1 kbp. Supervised binning of the con-
tigs into distinct virus genomes was conducted based on tetranu-
cleotide frequency and coverage within each lysate using Anvi’o 
v7.1 [29]. In the sample OtV-6881-HJ, no viral sequences were ini-
tially identified due to dominant bacterial signals, but subsequent 
use of VirSorter [30] with default settings enabled the identifica-
tion of one viral genome. In total, 80 viral genomes of at least 
100 kb each were reconstructed (Supplementary Table 1), which 
corresponds to ∼50% of known prasinovirus genome length. For 
genomes with 2 to 15 contigs showing overlap, manual scaf-
folding into a single large contig was conducted using Geneious 
(v11.0.3 + 7). The genomes were then reoriented based on their 
alignment with the most closely related viral reference genome 
using Mummer (v4.0.0beta2) [31]. Assemblies with >15 contigs 
were retained without manual scaffolding. 

To identify highly similar viral sequences among samples from 
neighboring locations, whole-genome Average Nucleotide Identity 
(wgANI) analysis was conducted using skani [32]. A conserva-
tive threshold of wgANI >98% (corresponding to ANI >99% and 
aligned fraction >99%) was applied to cluster highly similar viral 
sequences. This threshold balances the need to distinguish mean-
ingful genomic variation against potential sequencing errors and 
other technical artifacts. A dereplication step was applied to 
retain only one representative genome from each cluster. Genome 
completeness was further assessed based on the presence of at 
least three out of six Nucleocytoviricota marker genes (SFII, PolB, 
TFIIB, TopoII, A32, VLTF3) using the script “ncldv_markersearch” 
[17]. 

Genome annotation 
Protein-coding genes were annotated using Prokka (v1.14.5) [33] 
with the following parameters: e-value of 1e−5, and genetic code 
standard (—gcode 1), specifying “virus” as the taxonomic kingdom 
and applying “metagenome.” Further functional annotations were 
performed using BLASTp against the RefSeq protein database 
using Diamond (v2.0.8) [34] with an  e-value cutoff of 1e−5, supple-
mented by annotations from the EggNOG-mapper toolkit [35] and  
the InterProScan database (v5.44-79.0) [36] with default settings. 
Transfer RNA were predicted using tRNAscan-SE (v2.0.2) [37] with  
default settings. 

Phylogenetic analysis 
Maximum likelihood (ML) concatenated phylogenetic trees were 
reconstructed using 6 Nucleocytoviricota marker genes [17] from 51  
viral genomes and 22 reference prasinovirus genomes, with the 
chlorovirus PBCV-1 genome as an outgroup. Protein sequences 
were aligned using the L-INS-i method in MAFFT [38] (v7.313). 
Alignments were refined by removing positions with >50% 
gaps using Goalign (v0.3.2) [39] and manually inspected. ML 
phylogenetic analysis of single and concatenated proteins were 
conducted using IQ-TREE (v2.0.6) [40], based on 3360 amino 
acid positions (Supplementary Figs. 2–7). The best-fitting model, 
LG + F + R4, was selected using the fast model-selection (−m MFP)  
[41] based on the Bayesian information criterion (BIC). Branch
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Figure 1. Sampling seawater characteristics and number of virus assemblies recovered. (A) The spatially interpolated monthly averaged sea surface 
salinity in June 2020 from the observational data assimilating from Global Ocean forecasting system 3.1 (#expt93.0, from the 41-layer HYCOM + 
NCODA global 1/12◦ analysis). Observational data from the Hong Kong environmental protection department averaged over the same period are 
represented by white circles with shading. The water sampling locations reported in this study are indicated by triangles, circles, and diamonds, with 
individual samples labeled with two letters (e.g. HA to HO), and pooled samples indicated by multiple letters (e.g. HEFG results from pooling HE, HF, 
and HG). (B) Environmental water-challenged culture matrix representing lysis or no lysis of 117 Mamiellales cell cultures. The dendrogram illustrates 
the phylogenetic relationships among the Mamiellales strains. The genera are Mantoniella, Micromonas, Bathycoccus, and  Ostreococcus. Branch colors 
indicate three distinct Ostreococcus species: O. tauri, O. mediterraneus, and  O. lucimarinus. The matrix is ordered by the frequency of successful lyses along 
the vertical axis. The total number of virus assemblies recovered in each sampling site is indicated within the boxes, with the number of virus 
assemblies kept for in-depth analyses in brackets. Asterisk (∗) denotes the presence of two distinct DNA polB genes detected in the same genome. (C) 
Linear correlation between the number of viral genome assemblies and salinity. The shaded area represents the 95% confidence interval. R, Spearman 
correlation coefficient; P, P-value. (D) Boxplot showing the number of amino acid differences from all pairwise viral polB gene alignments between 
lysates and from pairwise polB gene alignments from sequences within the same lysate. 

support were evaluated using 1000 Shimodaira–Hasegawa-like 
approximation likelihood ratio test and 1000 ultra-fast bootstrap 
approximations [ 42]. The phylogenetic trees were visualized with 
the Interactive Tree Of Life (iTOL) v6 [43]. 

Comparative genomics analysis 
Orthogroups among 51 viral genomes from this study and 22 ref-
erence prasinovirus genomes were identified using OrthoFinder 
(v2.5.4) [44] with default settings. Hierarchical clustering was per-
formed based on the Euclidean distance of the presence/absence 
orthogroups patterns, with the “ward.D2” linkage method. Statis-
tical significance was assessed with approximately unbiased P-
values derived from 1000 bootstrap replicates using the pvclust 
R package (v2.2-0). Orthogroup distribution across genomes was 
visualized in a heatmap using the ggplot2 R package (v3.4.0). 

Pan-genome analysis was performed using PANGP [45] to  
determined core and total genes across 51 studied and 22 
reference prasinovirus genomes (Supplementary Table 2). Average 
gene counts from each iteration were plotted, and the pan-
genome curve was fitted using a power-law regression based on 
Heaps’ law [46]. In this model, α values between 0 and 1 indicate 
an open, infinitely expanding pan-genome as more genomes are 
added, while values outside this range suggest a closed pan-
genome that approaches a plateau. 

Metagenomic analysis 
To compare the novelty of SCS viruses with marine viral 
metagenomes, a BLASTx search was performed using the polB 
protein from SCS viral genomes against the GOEV database. 
Criteria for relatedness included an e-value <1e−5, protein
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sequence identity >80%, and alignment length >500 amino acids. 
PolB alignment of 108 sequences (39 GVMAGs, 46 SCS genomes, 22 
prasinovirus references, and PBCV-1) was performed using MAFFT 
(v7.313) with L-INS-I method [38]. Positions with >50% gaps 
were removed with Goalign (v0.3.2) [39] and manually inspected. 
A ML phylogenetic tree based on full polB was constructed 
using IQ-TREE (v2.0.6) [40]. The optimal substitution model, 
Q.insect+I + R5, was selected based on BIC using a fast model-
selection method [41]. Branch support was computed using 
previously described methods. Phylogenetic trees were visualized 
using iTOL (v6) [43]. 

Detection of amino acid sites under diversifying 
selection 
The ratio ω, representing non-synonymous (dN) to synonymous 
substitutions (dS), elucidates protein evolution effects: ω <1 indi-
cates purifying selection, ω = 1 suggests neutral evolution, and ω 
>1 suggests positive or diversifying selection. We applied differ-
ent codon models to the Major Capsid Protein (MCP6) gene: M0 
(constant ω), M1a (two site classes: ω0 = 1  and  ω1 < 1), and M2a 
(three site classes: ω0 = 1,  ω1 < 1, ω2 > 1) using PAML4.8 [47]. In 
cases of dS saturation (dS > 1) across the dataset, it was split into 
sub-datasets corresponding to monophyletic groups for separate 
analyses. The best model was selected based on the highest 
likelihood and significance in a nested likelihood ratio test (P < .05) 
[47, 48]. Degrees of freedom were 1 for M1a versus M0 and 2 for 
M2a versus M1a. Three-dimensional structures of proteins with 
identified selection sites were predicted using AlphaFold v2.0 on 
the Colab server, with default settings [49], and were visualized 
using PyMol v3.9 (Schrödinger). 

Horizontal gene transfer analyses 
To identify recent horizontal gene transfer (HGT) among the 51 
viral genomes and potential hosts, a BLASTp search was per-
formed against the NCBI nr database targeting Mamiellophyceae, 
with an e-value threshold of 1e−5 and a minimum identity of 
60%. This search was extended to include cultivated and uncul-
tivated Nucleocitoviricota genomes using the same criteria. For 
uncultivated genomes, an additional amino acid similarity search 
was performed against the GOEV database. Genes ubiquitous 
across all the nucleocytoplasmic large DNA viruses (NCLDVs) 
were excluded to focus on recent HGT events. Phylogenetic trees 
were reconstructed using previously described methods. 

Results and discussion 
Dominant and diverse prasinoviruses in the 
South China Sea 
We conducted 117 virus enrichment experiments across 13 
distinct water samples from the SCS (Fig. 1A) using nine 
algal strains, representing four genera and six species (Fig. 1B, 
Supplementary Fig. 1), and successfully obtained 52 viral lysates. 
Due to low virus counts detected by flow cytometry, we pooled 
nearby samples from similar habitats (HMN and HEFG) to increase 
the probability of successful DNA extraction, ultimately obtaining 
sequencing reads from 43 lysates. The infection success rate 
varied significantly among the strains (Fig. 1B) (Chi square, 
P-value < 10−6, df = 5), with viruses lysing seven out of nine strains. 
Micromonas commoda and Ostreococcus lucimarinus consistently 
produced lysates upon exposure to water from all sites, while 
Mantoniella sp. and Ostreococcus mediterraneus yielded none. 

DNA sequences from each of the 43 lysates were assembled 
separately and the assembled contigs were binned into 80 high-
contiguity viral genome assemblies (>100 kbp) (Supplementary 
Table 1), each derived from one of the 43 sequenced lysates. No 
significant difference was observed in the number of viral genome 
assemblies among different host strains (one-way analysis of 
variance, df = 6,  P-value = .42), with an average of 1.9 virus assem-
blies per lysate. This highlights the widespread occurrence of 
multiple prasinovirus strains infecting a single algal strain, while 
no evidence of co-infection was observed in this case. Notably, 
no non-prasinovirus viral DNA, such as circovirus-like viruses 
[50], previously reported to potentially infect Micromonas [51], was 
detected. RNA viruses were not targeted in this study; however, 
the predominance of DNA viruses was clear, with only one lysate 
failing to yield DNA sequences. The absence of other DNA viruses 
could be due to their size, either smaller (<100 nm diameter) or 
larger (>450 nm diameter) than our filtration cutoff, or their low 
presence in the sampled waters. 

Prasinoviruses were ubiquitous in the sampled area, with their 
distribution significantly influenced by water properties and 
coastal upwelling dynamics. Specifically, lysates were obtained 
from a wider range of Mamiellales strains and more prasinovirus 
genomes from the western sampling stations near the Pearl River 
Estuary (HO and HL, Fig. 1B), where freshwater runoff impacts 
local water conditions. In contrast, we obtained fewer lysates 
and virus genomes from the eastern regions (HE, HF, and HD; 
Fig. 1B). This distribution pattern aligns with previous studies 
on phytoplankton communities in the region, particularly the 
abundance of Micromonas, which is influenced by environmental 
factors, especially salinity [52]. Further analysis showed a 
significant negative correlation between virus genome counts 
and salinity (Spearman ρ = −0.58, P-value = .048, Fig. 1C), but no 
significant correlations with temperature, turbidity, and dissolved 
oxygen (Supplementary Fig. 8). The strong inverse relationship 
between viral abundance and salinity aligns with a previous 
meta-analysis of 333 estimations of virus abundance in surface 
waters [53]. This reinforces the significant role of salinity as a 
key factor shaping the dynamics of viral communities in aquatic 
ecosystems. 

Challenging the concept of strict host–virus 
co-speciation 
In this context, we sought to determine if (i) multiple viral 
genomes in one lysate corresponded to closely related viruses, 
and (ii) the same or closely related viral strains occurred multiple 
times across lysates (and thus across different host strains) from 
different water samples. We assessed the genetic diversity of 
viruses isolated from either the same (within) or different lysates 
(between) by analyzing the pairwise amino acid differences in 
the DNA polymerase B gene (polB) sequences from our dataset. 
Among 80 prasinovirus genomes, 69 (89%) encoded a single 
full-length polB gene. Surprisingly, we found no significant 
difference in average amino acid pairwise divergences within 
lysates (average 161, ∼16.8%) compared to between lysates 
(average 183, ∼19.1%) (Mann–Whitney test, P-value = .92; Fig. 1D). 
Consequently, the polB sequence revealed similar amino acid 
divergence between prasinoviruses infecting the same or different 
hosts. This preliminary analysis highlighted that the considerable 
conservation of the polB gene may blur viral diversity on a 
genome-wide scale. 

To further explore prasinovirus diversity, we constructed a phy-
logenetic tree based on polB protein sequences (Supplementary 
Fig. 9). Although polB is a robust marker for assessing prasinovirus
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diversity in environmental water samples [54, 55], its high 
sequence conservation tends to underestimate the overall 
genomic diversity. Therefore, we employed wgANI for more 
precise genomic identity estimations at the nucleotide level, 
particularly suited for incomplete and medium-quality GVMAGs 
[32] (Supplementary Table 3). Integrating polB evolutionary 
information with wgANI, we defined viruses with identical 
polB sequences and a wgANI >98% as the same “genotype” 
(Supplementary Fig. 10). Most genotypes were unique, but 33 virus 
genomes shared a wgANI >98% with at least one other genome. 
The most prevalent genotype was identified in Ostreococcus 
lysates, obtained from the O. tauri strain RCC4221 collected 
from environments HE, HG, HJ, HL, and HO; strain RCC6881 
from environment HAB; and one O. lucimarinus strain RCC3401 
from HO (Supplementary Table 3 and Supplementary Fig. 9). 
We subsequently excluded substandard genomes, specifically 
those missing three or more of the six marker genes, with 
poor alignment, or comprising excessive contigs. This quality 
control process reduced the initial set of 80 viral genomes to 
51 (64%) near-complete SCS prasinovirus genotypes for further 
analysis. 

Using six conserved marker genes (SFII, polB, TFIIB, TopoII, A32, 
and VLTF3) from the phylum Nucleocytoviricota [8], we constructed 
a phylogenetic tree which revealed that viruses infecting the 
same host strains can belong to distant lineages, while phyloge-
netically close viruses may infect different genera (Fig. 2). Three 
“outlier” virus assemblies have been identified with unexpected 
phylogenetic positions, diverging from known Prasinovirus evolu-
tionary patterns [56], and providing valuable insights into the 
complex virus–host interactions in marine ecosystems. The first 
notable case involves the  Ostreococcus-infecting virus OlV-37 000-
HG-V3, which is grouped with the prasinovirus clade typically 
infecting Bathycoccus (Fig. 2). Despite this classification, the HG 
water sample containing this virus failed to infect Bathycoccus 
RCC4222, a strain susceptible to other viruses within the same 
clade (Fig. 1B). While this observation is intriguing, it is important 
to note that many viruses exhibit strain specificity. Without test-
ing OlV-37 000-HG-V3 against other Bathycoccus strains, we cannot 
conclusively determine whether this represents a host switch 
or simply strain-specific infection patterns. Further investigation 
is needed to fully understand the host range and evolutionary 
history of this virus. Similarly, the Micromonas-infecting virus, 
McV-827-HK-V3, phylogenetically aligned with viruses infecting 
Ostreococcus (Fig. 2). However, the HK water sample carrying McV-
827-HK-V3 failed to infect the typical algal hosts (BCC37000, 
RCC4221, and RCC6881) of this virus clade (Fig. 1B). This pattern 
further supports the notion of host-switching, indicating specific 
adaptations to a new host. Conversely, the Ostreococcus-infecting 
virus OtV-ZA-HO-V3 is positioned within a prasinovirus clade with 
viruses infecting Bathycoccus, Ostreococcus, or  Micromonas strains. 
This group appears to serve as a transitional clade, potentially 
infecting a broader array of hosts. This suggests an evolutionary 
adaptation that allows these viruses to extend their host range 
across multiple closely related species, highlighting the complex 
interplay of evolutionary pressures and host–virus dynamics. This 
unexpected phylogenetic dispersion of strains infecting the same 
host explains the similar amino acid divergences in the polB 
sequence observed within and between lysates (Fig. 1D). Interest-
ingly, the three outlier viruses (OlV-37 000-HG-V3, McV-827-HK-
V3, and OtV-ZA-HO-V3) occur less frequently in the lysates than 
other viruses, with a significant lower relative read abundance 
(Fig. 2, Mann–Whitney test, P-value = .032), suggesting lower initial 
frequency or lower virulence. The absence of similar genome 

sequences in the lysates of the same water in different strains, 
coupled with the absence of a double peak in the 18S rRNA 
sequencing chromatogram, effectively rules out algal host con-
tamination. This reinforces the reliability of the host affiliation of 
these outlier viruses (Fig. 2) and support the hypothesis of host 
range expansion. This challenges the prevailing view that most 
prasinoviruses are strain specific and have co-speciated with their 
host [57, 58] as previously isolated members of each prasinovirus 
clade were observed to infect only the same species or genus. This 
traditional perspective may be skewed by isolating more virulent 
strains, and our results suggest that host-switching across gen-
era could be more frequent than previously inferred from virus 
isolation efforts. Moreover, 6% of virus genomes (3 out of 51) 
failed to infect a host from the same genus as previously isolated 
despite having highly similar genomic sequences. Reciprocally, 
the method of inferring the host genus based on the sequence 
similarity of viral genomes proved accurate in 94% of cases within 
this model system. 

Expanded prasinovirus genome resource reveals 
a finite set of genes 
Pan-genomic analysis revealed a set of 630 orthogroups among 
prasinoviruses (Supplementary Table 4). The rarefaction curves 
for unique genes approached saturation, indicating that our 
dataset has a closed pan-genome (alpha > 1) (Supplementary 
Fig. 10), where new additional genomes would now contribute 
minimally to the overall gene pool of prasinoviruses. However, 
expanding the host-targeted enrichment strategy to include more 
strains could lead to the identification of additional specific 
prasinovirus genes in future studies. 

Further analysis based on the gene family content of the entire 
prasinovirus dataset revealed that the hierarchical clustering 
topology (Fig. 3) aligns with gene marker–based phylogeny (Fig. 2). 
Clade I, which is adjacent to Bathycoccus viruses and includes 
Ostreococcus viruses as well as the McV-827-HK-V3 virus, shares 
18 unique orthogroups, predominantly of unknown function. Two 
genes in this clade are linked to Class-I S-adenosylmethionine 
(SAM) methyltransferases (Mtases). Clade II, grouping OlV-37 000-
HG-V3 with Bathycoccus viruses, shares 24 unique orthogroups; of 
these, three have predicted functions: two are SAM-Mtases and 
one is a starvation-inducible transcriptional regulator protein, 
sharing 51% amino acid identity with a protein from Yellowstone 
Lake phycodnavirus 2. Mtases are epigenetic modification 
enzymes commonly found in giant virus genomes [1, 59]. In the 
Phycodnaviridae family, chloroviruses encode complete restriction-
modification (R-M) systems where Mtases are associated with 
companion DNA site-specific (restriction) endonucleases (REases) 
[60], with a bacterial ancestry. While prokaryotic Mtases some-
times appear without cognate REases (dubbed orphans) and 
serve various biological functions [61, 62], the function of 
similar orphan Mtases in viruses remains unknown [63]. In our 
study, no Mtases were linked to REases companions in these 
specific orthogroups, suggesting potential alternative functions 
in prasinoviruses. Interestingly, two orthogroups (OG0000421 and 
OG0000422) associated with Mtases in the Bathycoccus group and 
OlV-37 000-HG-V3 are orthologous to the Mtases of the distantly 
related chloroviruses infecting the freshwater Chlorella species 
(Supplementary Table 4). 

In Clade III, 15 predicted proteins are specific orthologs to the 
13 studied viruses and are novel among prasinoviruses. Of these, 
only two have assigned putative functions: one is a haloacid dehy-
drogenase (HAD) family hydrolase, and the other is a collagen-like 
protein. Furthermore, two protein sequences resemble a cupin
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Figure 2. Phylogenetic diversity and assembly features of 51 virus “genotypes.” Phylogenetic reconstruction was inferred from a concatenated 
alignment of SFII (GVOGm0013), polB (GVOGm0054), TFIIB (GVOGm0172), TopoII (GVOGm0461), A32 (GVOGm0760), and VLTF3 (GVOGm0890) markers 
defined within the phylum Nucleocytoviricota. Twenty-two reference prasinoviruses were included with the 51 virus assemblies (3 assemblies with <3 
marker genes were excluded: McV-827-HK-V4, BpV-4222-HI-V2, and OlV-3401-HJ-V2). Virus PBCV-1, which infects P. bursaria chlorella, was used as an 
outgroup and truncated for display purposes. The newly isolated prasinoviruses are shown in bold. Novel clades are shaded. Symbols indicate the 
geographical origin of the new virus isolates: circle (closer to open ocean: HAB-HK), diamond (intermediate: HI-HJ), and triangle (closer to the Pearl 
River: HM-HO). The heatmap represents the presence or absence of marker genes within genomes. The outermost circle indicates the total number of 
scaffolds (#scaffolds) in each genome. The next circle show the proportion of reads recruited to each assembly (%reads). The third circle represents the 
genome size in kilobase pairs (kbp). The three novel lineages (I, II, and III) are highlighted in red and light red. Circles mark bootstrap values >85%. The 
scale bar represents the number of estimated substitutions per site. The single-protein phylogenetic trees are available in the supplemental data 
(Figs. 8–13). 

domain-containing protein and a FkBM Mtases, respectively. The 
cupin domain is a conserved protein fold associated with enzy-
matic activities, and often involved in metal binding and catal-
ysis. FkBM Mtases is an enzyme that methylates specific DNA 
sequences, crucial for genetic regulation. 

Among the three outlier viruses discussed, only OlV-37 000-HG-
V3 harbors a unique gene (OlV-37 000-HG-V1-00211) encoding a 
hypothetical protein. This gene showed low sequence similarity 
(30% amino acid identity) and coverage (30%) with a bacterial 
sequence in the NCBI database (WP_292229369.1), underscoring 
the distinctiveness of this virus and suggesting a potentially novel 
role in viral biology or host interaction. 

Comparison of viral genome assemblies from 
host-targeted enrichments and metagenomic 
assemblies 
To assess the prevalence and distribution of the new SCS viral 
genomes in the global viral metagenomic dataset, we screened 
the Global Ocean Eukaryotic Viral (GOEV) [16] for sequences 
matching the polB protein from our assemblies (>80% identity; 
e-value > 1e−5; alignment length > 500 bp). We identified 39 
Nucleocytoviricota GVMAGs, all belonging to the Prasinovirus genus 
within the Phycodnaviridae family, predominantly related to 
Micromonas virus lineages. While six GVMAGs aligned more closely 
with novel lineages within clade I, none were associated with 
lineages in clades II and III (Supplementary Fig. 11), indicating 

potential geographical barriers or environmental influences on 
the diversity of giant virus genotypes in the SCS. 

Using wgANI analysis [32], we compared the recovered 
GVMAGs with our SCS viral genomes, confirming low similarity 
and identifying 17 novel prasinovirus lineages in SCS coastal 
waters, including 5 in clade II and 11 in clade III and OtV-ZA-HL-V2 
(Supplementary Figs. 12 and 13). Furthermore, our comparative 
analysis on genome completeness showed that our enrichment 
approach yielded higher completeness for SCS viral genomes 
than the TARA dataset (Mann–Whitney test, P-value < .01) and 
was comparable to GVMAGs from Moniruzzaman et al. [17] 
(Mann–Whitney test, P-value > .05) (Supplementary Table 5). 
However, while GVMAGs from Schulz et al. [16] exhibited higher 
completeness (Mann–Whitney test, P-value < .01), their results 
should be interpreted with caution. These prasinovirus GVMAGs 
often had >50 contigs and genome sizes outside the typical 170– 
230 kb range for isolated prasinoviruses, suggesting potential 
binning errors that could affect the accuracy of completeness 
assessments. 

Our enrichment method is the only technique that success-
fully produced closed prasinovirus genomes, with nine complete 
genomes confirmed by CheckV [64]. This approach achieved a 
17.6% success rate in acquiring complete genomes, significantly 
outperforming the 2.5% rate found in the IMG/VR 2.0 database. 
Unlike culture-independent methods that rely on sequence sim-
ilarity, our strategy increases target DNA quantity and provides
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Figure 3. Gene family distribution within prasinoviruses. Hierarchical clustering of prasinoviruses was based on the presence/absence matrix of 
orthogroups. The heatmap shows the occurrence pattern of all orthogroups, ordered by frequency on the x-axis. Only bootstrap support values >80% 
are shown on the cladogram. 

accurate host-specificity information, which is crucial for under-
standing host–virus interactions and the ecological impact of 
prasinoviruses in marine ecosystems. 

Evidence of horizontal gene transfer between 
hosts and viruses 
Horizontal gene transfers are significant drivers of viral evolution, 
typically involving the incorporation of host genes during 

infection [65–67]. This process allows viruses to manipulate 
host replication and defense machinery to ensure success-
ful replication [17, 68, 69]. Our analysis identified six viral 
homologues with >60% amino acid similarity to host genes, pri-
marily associated with transporters/symporters and enzymatic 
metabolism (Supplementary Table 6). Notably, the alternative 
oxidase (AOX) and phosphate:Na + symporter (PNaS) genes were 
found in 27 GVMAGs in the GOEV database. Phylogenetic evidence
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Figure 4. Evidence of recent lateral gene transfer between green alga host and viruses. Maximum-likelihood phylogenetic reconstruction of (A) 
phosphate:Na + symporter (PNas) protein and (B) alternative oxidase (AOX) protein. The virus clade is outlined in red. SCS viruses in this study are 
bolded and marked with a star. Circles indicate bootstrap values >85%. The scale bar represents the number of estimated substitutions per site. 

suggests that these genes were recently acquired through lateral 
transfer from hosts ( Fig. 4). The AOX gene was detected in 22 
prasinoviral assemblies, including 17 GVMAGs, with 3 showing 
duplications, whereas the PNaS gene was less common, appearing 
in only 5 viruses (Fig. 4). 

The AOX gene encodes an enzyme critical to the respiratory 
electron transport chain in plants, algae, fungi, and protists [70, 
71]. It also helps in preventing reactive oxygen species (ROS) 
production under stress in plants [72] and algae [73]. During viral 
infection and replication, ROS levels can spike, causing oxidative 
stress that damages cellular components like DNA, proteins, and 
lipids. This can lead to cell death and impede successful virus 
replication. By acquiring genes like AOX, viruses might delay 
cell death, prolonging virus production. While giant viruses are 
known to possess genes like superoxide dismutase enzyme and 
glutathione peroxidase for managing oxidative stress [17, 74–77], 
the identification of AOX as a viral homolog in a giant virus has 
never been reported to our knowledge. This finding highlights 

the diverse adaptation strategies prasinoviruses use to mitigate 
oxidative stress during infection. 

In addition to the essential macronutrients required for phyto-
plankton growth, proteins like nutrient uptake transporters can 
be limiting in oligotrophic environments [78, 79]. Marine viruses 
often possess ammonium and phosphate transporters [69, 80, 
81], with inorganic phosphate (Pi) transporters previously docu-
mented in giant viruses [16, 17, 80, 81]. However, the PNaS gene is 
rare in the marine environment [17]. Unlike the PO4 transporter 
that operates on a phosphate ion concentration gradient, PNaS 
utilizes the energy from the electrochemical gradient of sodium 
ions (Na+) to actively transport Pi against its gradient. This may 
allow simultaneous uptake of Na+ and Pi into virus-infected 
cell. Our data show that only one Micromonas virus (McV-827-
HAB-V1-00145) and Ostreococcus virus OtV6 encode PNaS genes. 
The scarcity of PNaS genes among marine viruses suggests that 
this transporter may have evolved to meet specialized environ-
mental needs. The strategic use of these transporters by viruses
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Table 1. Likelihood values and parameter estimates for major capsid protein alignments with evidence for diversifying selection. 

Alignment n lM1 lM2 2Δl P-value p2 ω2 BEB sites with 
ω > 1 

m0003-G2-02-a 5 −2538.7 −2507.8 61.8 <.0001 .19 102.6 34 sites[1] 

m0003-G2-02-b 6 −2161.3 −2153.7 15.1 <.0001 .21 9.9 6 sites[2] 

m0003-G2-04-b 11 −3650.1 −3647.0 6.2 <.05 .006 11.1 212 (N) 
m0003-G2-05-a 7 −3585.0 −3578.2 13.6 <.001 .08 8.9 243 (W), 300 (Q) 
m0003-G2-05-b 5 −3635.7 −3631.5 8.2 <.05 .07 31.4 
m0003-G3-01 3 −2472.3 −2465.4 13.8 <.001 .12 111.8 9 sites[3] 

m0003-G4-03 6 −1357.4 −1353.3 8.3 <.05 .06 5.1 29 (S) 75 (Q) 

[1]74 (P), 79 (K), 82 (K), 86 (S), 101 (T), 106 (Q), 107 (Y), 108 (I), 113 (L), 114 (A), 116 (N), 117 (L), 118 (T), 120 (S), 122 (S), 123 (G), 124 (F), 160 (I), 162 (S), 163 (E), 218 (A), 224 
(M), 235 (F), 237 (Y), 239 (D), 244 (A), 247 (S), 252 (P), 254 (S), 256 (D), 257 (E), 261 (F), 263 (Y), 294 (N) [2]130 (T), 133 (W), 190 (T), 250 (T), 278 (M), 310 (S) [3]87 (D), 151 
(P), 158 (L), 223 (E), 224 (S), 266 (P), 268 (N), 300 (F), 301 (V) n, number of sequences in alignment; l, loglikelihood of dataset under model M1 or M2; p2, proportion 
of sites with ω2 >1; ω2, positive selection coefficient; BEB, Bayes empirical Bayes analysis of positively selected sites with Pr(ω2 > 1) >.95, position (amino acid). 

likely enhances their ability to manipulate host nutrient uptake, 
improving their replication and survival. Nevertheless, further 
research is needed to explore how viral infection, nutrient limi-
tation, and transport mechanisms interact, to deepen our under-
standing of virus–host eco-evolutionary dynamics. 

Diversifying selection on amino acid evolution in 
the virus capsid proteins 
Diversifying selection is a cornerstone of the co-evolutionary 
arms race between hosts and viruses, yet its documentation in 
giant viruses is limited, likely because of the lack of appropriate 
available datasets. We applied a maximum-likelihood approach to 
detect signatures of diversifying (or positive) molecular evolution 
[47, 82] in the Major Capsid Protein (MCP6) gene by analyzing 
the ratio of non-synonymous (dN) to synonymous (dS) substi-
tutions (ω). To ensure accurate estimations, we partitioned the 
global alignment into 29 sub-alignments to avoid saturation at 
synonymous sites, to enhance the accuracy of the dN/dS ratio (ω) 
estimation. 

We compared the diversifying selection model (M2a), which 
allows for a proportion of sites with ω >1, against the purifying 
selection model (M1a), which includes sites with ω <1 and  
neutral evolution (ω = 1), across seven datasets (Table 1 and 
Supplementary Table 7). The M2a model consistently outper-
formed the M1a model, suggesting a better fit and confirming 
diversifying or positive selection acting on specific amino acids 
within the MCP6 gene. Moreover, Bayes empirical Bayes analysis 
[83] identified 1 to 31 amino acid sites under diversifying 
selection across different datasets. These findings support 
previous evidence that diversifying selection impacts viral capsid 
proteins, which are involved in physical interactions with the 
host [84]. 

To elucidate the structural implications of the amino acid sites 
under diversifying selection, we employed AlphaFold v2.0 [85] to  
predict the three-dimensional conformation of the MCP6 protein. 
This analysis showed notable structural resemblance between the 
predicted MCP6 capsid structure and that of Paramecium bursaria 
Chlorella virus 1 (PBCV-1) [86] (Fig. 5, Supplementary Table 8), 
despite only 25% amino acid identity between the chlorovirus 
and prasinovirus proteins. Both structures exhibit two jelly-roll 
domains, a common motif in viral capsid proteins characterized 
by four antiparallel beta strands in a β-meander configuration 
[87]. This similarity underscores the functional importance and 
conservation of jelly-roll domains in capsid proteins. 

Interestingly, the sites undergoing diversifying selection within 
MCP6 are primarily located on one facet of the capsid protein, 

predominantly on the exterior surface. This spatial distribution is 
as expected because external sites are more likely to be involved 
in environmental interactions, possibly with host cell receptors. 
Previous research supports the idea that surface-exposed regions 
of capsid proteins play critical roles in virus–host interactions, 
including host recognition, receptor binding, and immune eva-
sion strategies [88]. The presence of diversifying selection on 
these surface-exposed regions further emphasizes their func-
tional importance in the interactions between the virus and its 
host. 

Conclusions 
Targeted virus enrichment led us to sequence 51 new prasinovirus 
viral genomes associated with known algal host from the SCS. 
Comparative analyses with 22 prasinovirus reference genomes 
and available metagenome-assembled giant virus genomes 
allowed us to track their evolutionary trajectories. We identified 
a distinct prasinovirus subgroup in SCS coastal waters with 15 
additional orthogroups, suggesting that environmental factors 
or ecological interactions might have shaped their genome 
evolution. Our findings challenge the notion of strict host–virus 
co-speciation and reveal substantial genomic diversity within the 
same lysate. 

We identified six genes transferred from Mamiellophyceae 
hosts to prasinoviruses, including AOX and PNaS. AOX poten-
tially prolongs viral replication by delaying host apoptosis, while 
PNaS may enable viruses to manipulate host nutrient uptake in 
oligotrophic environments. These findings, significant beyond the 
SCS, highlight the prevalence of specific gene families acquired 
via HGT from host genomes. Additionally, our analysis of the 
MCP6 gene indicates adaptive evolution with diversifying selec-
tion on sites likely critical for host–virus interactions, predomi-
nantly affecting the protein’s external surface, which could influ-
ence interactions with host cellular receptors. 

Overall, this study not only deepens our comprehension of 
prasinovirus diversity in the SCS but also underscores the sig-
nificance of viral dynamics in marine ecosystems. By exploring 
evolutionary strategies like HGT and diversifying selection, our 
research sets the stage for further investigations into the eco-
logical and evolutionary impacts of these genomic adaptations. 
Our findings illuminate the complex interactions between viruses 
and their hosts, underscoring the need for expanded experi-
mental and functional studies. By producing lysates for further 
experiments, our host-targeted enrichment approaches facilitate 
forthcoming investigations into the intricate virus–phytoplankton 
interplay.
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Figure 5. Evidence of diversifying selection detected in the major capsid protein (MCP) among green algal viruses. Predicted three-dimensional (3D) 
structures of the MCP in the alignments are shown for (A) m0003-G2-02-a, (B) m0003-G2-02-b, (C) m0003-G2-04-b, (D) m0003-G2-05-a, and (E) 
m0003-G3-01. (F) Paramecium bursaria chlorella virus 1 (PBCV-1, accession: NP_048358). Domains D1 and D2 are indicated in orange and yellow, 
respectively. Spheres represent the residues under selection based on PAML analysis. The 3D structures of m0003-G4-03 and m0003-G2-05-b (Table 1) 
are not included in this visualization due to unsuccessful predictions by AlphaFold. 
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