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Slovenia

Diederick Vermetten d.l.vermetten@liacs.leidenuniv.nl
Leiden Institute for Advanced Computer Science, Leiden, The Netherlands
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Abstract
Modular algorithm frameworks not only allow for combinations never tested in manu-
ally selected algorithm portfolios, but they also provide a structured approach to assess
which algorithmic ideas are crucial for the observed performance of algorithms. In this
study, we propose a methodology for analyzing the impact of the different modules
on the overall performance. We consider modular frameworks for two widely used
families of derivative-free black-box optimization algorithms, the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) and differential evolution (DE). More specif-
ically, we use performance data of 324 modCMA-ES and 576 modDE algorithm vari-
ants (with each variant corresponding to a specific configuration of modules) obtained
on the 24 BBOB problems for 6 different runtime budgets in 2 dimensions. Our anal-
ysis of these data reveals that the impact of individual modules on overall algorithm
performance varies significantly. Notably, among the examined modules, the elitism
module in CMA-ES and the linear population size reduction module in DE exhibit the
most significant impact on performance. Furthermore, our exploratory data analysis
of problem landscape data suggests that the most relevant landscape features remain
consistent regardless of the configuration of individual modules, but the influence that
these features have on regression accuracy varies. In addition, we apply classifiers that
exploit feature importance with respect to the trained models for performance predic-
tion and performance data, to predict the modular configurations of CMA-ES and DE
algorithm variants. The results show that the predicted configurations do not exhibit a
statistically significant difference in performance compared to the true configurations,
with the percentage varying depending on the setup (from 49.1% to 95.5% for mod-
CMA and 21.7% to 77.1% for DE).
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1 Introduction
Black-box optimization refers to optimization for problems where the structure of

the objective function is unknown, unexploitable, or non-existent (Alarie et al., 2021).
In such cases, information about the optimization problem is gathered by evaluating
the objective function for newly sampled candidate solutions, without making use
of knowledge of the underlying structure or characteristics of the problem (Molina
et al., 2018). Iterative metaheuristic optimization algorithms are especially well-suited
to tackle such problems as they search for the optimal solution by iteratively query-
ing the objective function with different inputs (i.e., solution candidates), and they use
only this information to steer their search towards the most promising regions of the
search space. Some commonly used iterative metaheuristics include local search algo-
rithms (Hoos and Stützle, 2004), evolutionary algorithms (Eiben and Smith, 2015), ge-
netic algorithms (Kramer, 2017), particle swarm optimization (Kennedy and Eberhart,
1995), and ant colony optimization (Dorigo et al., 2006), among many others.

Many state-of-the-art algorithms are claimed to have been originally inspired by
natural processes such as evolution and swarm intelligence (Hussain et al., 2019). Fu-
eled by the variance in the performance of the algorithms on different problem types,
researchers continue to seek inspiration from nature and employ diverse metaphors
to develop and refine these techniques. However, a recent call for action by the evo-
lutionary computation scientific community has highlighted three significant concerns
related to metaphor-based metaheuristics (Aranha et al., 2022). Firstly, the usefulness of
metaphors in metaheuristics is questionable, as many ”novel” algorithms inspired by
metaphors often lack scientific justification and oversimplify or modify the metaphor
to resemble an optimization process, making them differ greatly from their original in-
spiration. Secondly, there is a lack of originality, with researchers often rediscovering
concepts that have already been published in earlier studies (under different names).
Finally, the experimental validation and comparisons of these algorithms are often bi-
ased, with improper comparisons made between novel and non-state-of-the-art algo-
rithms on benchmark problem instances that are under-representative of the diversity
in the problem space. These issues highlight the need to develop novel approaches that
can be used to better understand the behavior of metaphor-based metaheuristics (and
metaheuristics in general) in order to identify genuine contributions to the field.

A commonly used method to understand the behavior of algorithms is the assess-
ment of their performance through benchmarking and statistical analyses. Typically,
this involves reporting the average performance across a selected set of benchmark
problems (Hansen et al., 2020; Eftimov et al., 2017). However, this approach has faced
criticism for its limitations in accurately interpreting algorithm behavior and its inabil-
ity to generalize to new problems (Hooker, 1994, 1995; Hall and Posner, 2010). Further-
more, in these statistical analysis approaches, algorithms are treated as black-boxes
much like optimization problems, hence, it is challenging to draw any conclusions
about the characteristics of the algorithms that contribute most to their performance.

Another approach to understanding metaheuristics is the development of classi-
fication systems and taxonomies that try to categorize these algorithms based on their
underlying mechanisms, search strategies, and other relevant factors (Stork et al., 2022;
Lones, 2020; Stegherr et al., 2022). Unlike statistical approaches that treat algorithms as
black boxes, these classification systems aim to provide a structured way of describing
metaheuristics and help researchers identify similarities and differences between dif-
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ferent algorithms. However, one limitation of these classification systems is the lack of
connection between the algorithms and the optimization problems they are designed to
solve, as well as the performance they exhibit on these optimization problems. Without
this connection, it can be challenging to understand the performance of the algorithms
on specific problem instances.

To overcome these limitations, new methods for assessing algorithm behavior are
needed. These methods should consider the characteristics of the algorithm, the land-
scape characteristics of the problems, and the interaction between the two in terms of
their influence on performance behavior. By understanding these factors, we can de-
velop more effective algorithms that perform well on a range of problem instances.

One promising approach for improving the assessment of algorithm behavior is
to use modular optimization algorithm frameworks (Dreo et al., 2021; de Nobel et al.,
2021a; Andersen et al., 2022; Boks et al., 2020). These frameworks provide a flexible
and modular way to design and evaluate metaheuristic algorithms. The idea is to break
down the algorithm into smaller components that can be easily modified and combined
to create new algorithms. By using a modular approach, researchers can better under-
stand how individual components contribute to the algorithm’s overall performance
and identify areas for improvement. In these frameworks, ‘modules’ essentially repre-
sent the operators in optimization algorithms. For clarity and consistency throughout
this paper, we will use the term ‘module’ instead of ‘operator’ in the context of modular
frameworks. Modular optimization algorithm frameworks can also provide a way to
bridge the gap between algorithm behavior and the optimization problems they are de-
signed to solve. By designing algorithms as collections of interchangeable components,
researchers can test different combinations of components on a variety of problem in-
stances.

In this study, we use modular optimization algorithm frameworks to assess the
different algorithmic ideas that were proposed in the literature. Our analysis is focused
on examining each module individually, reflecting the common practice of proposing
algorithmic ideas in isolation. Exploring the interactions between these modules and
their collective impact on performance is an interesting aspect, yet it remains outside
the scope of our current research.

We focus on the analysis of two different classes of metaheuristics: Differential
Evolution (DE) (Storn and Price, 1997) and Covariance Matrix Adaptation Evolution
Strategies (CMA-ES) (Hansen and Ostermeier, 1996). We use their decomposed ver-
sions on basic components/modules that are available in the modCMA-ES (de Nobel
et al., 2021a) and modDE (Vermetten et al., 2023a) modular frameworks, respectively.
Our contributions and key findings: In this paper, our main contribution is the pro-
posal of an empirical workflow for understanding the impact of modules on the perfor-
mance of DE and CMA-ES algorithm. We analyze 324 modCMA-ES and 576 modDE
algorithm variants across 24 BBOB problems to: (i) Evaluate the effect of individual
modules on overall algorithm performance through analysis of performance data; (ii)
Train ML regression models to predict algorithm performance, with a focus on un-
derstanding how problem landscape features impact these predictions. This approach
provides an explainable ML model, linking feature importance directly to the model
outcomes; and (iii) Train classifiers that use performance and landscape feature im-
portance data to predict algorithm module configurations. High prediction accuracy
signals variability in the performance data w.r.t. to the modules, suggesting that higher
accuracy reflects greater variability or a stronger impact of the module on performance.
Conversely, lower accuracy suggests a module’s configuration has a minimal impact on
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overall performance.
Our analyses suggest that, among the CMA-ES modules, the elitism module has

the most significant influence on performance, whereas the local restart module has the
smallest effect, particularly for shorter runtime budgets. For DE, the linear population
size reduction module has the greatest impact, whereas the mutation reference and
adaptation method modules have relatively minor effects. However, we also observe
that the results of our methodology can be inconclusive for some of the modules.

Interestingly, we find that the set of landscape features that are most relevant for
accurate regression models that predict performance does not depend on the configu-
ration of the modules, indicating that feature selection does not necessarily need to be
tailored to the specific configuration. Finally, we have trained classifiers to predict mod-
ular configurations, with better performance gains achieved using performance-based
meta-representations.
Extension: This study builds upon our previous work published at the Genetic and
Evolutionary Computation Conference (GECCO 2022) (Kostovska et al., 2022b) on
landscape feature importance in predicting the performance of modular CMA-ES vari-
ants. Initially focusing on 40 CMA-ES variants and two modules (elitism and step size
adaptation), we now examine a broader scope encompassing 324 CMA-ES variants, ob-
tained by changing the configurations of six modules. We also extend our analysis to
576 DE variants, generated by changing the configurations of seven modules. Further-
more, we investigate how the different CMA-ES and DE modules individually affect
the algorithm’s overall performance. Previously, we used single-output classifiers and
problem landscape-based meta-representations to predict modular algorithm configu-
rations. In this study, we have extended our methodology by incorporating both sin-
gle and multi-output classifiers and integrating problem landscape and performance-
based meta-representations. Moreover, we have conducted a statistical analysis of the
resulting classification predictions to determine if there is a performance difference be-
tween the true and predicted configurations.
Outline: The paper is structured as follows. In Section 2, we review related work on
empirical performance analysis of modular optimization algorithms, automated algo-
rithm performance prediction, and explainable ML. Section 3 presents our methodol-
ogy for obtaining algorithm meta-representations and using them to predict the algo-
rithm’s modular configuration. We describe our experimental design in Section 4. In
Section 5, we discuss the key findings and results of our experiments. Finally, in Sec-
tion 6, we summarize our contributions and outline several directions for future work.
Availability of data and code: Following best practices towards replicability and repro-
ducibility, the full project data and code, as well as figures for all settings, are publicly
available (Kostovska et al., 2023b).

2 Related Work
Diverse research has investigated the modular CMA-ES and DE algorithm fami-

lies in various single-objective learning scenarios. This includes conducting empirical
performance analysis of CMA-ES (Vermetten et al., 2023b) and DE (Das and Sugan-
than, 2010), predicting CMA-ES (Trajanov et al., 2021) and DE (Nikolikj et al., 2022a)
algorithm performance, automated algorithm selection (Jankovic and Doerr, 2020), and
automated algorithm configuration (Prager et al., 2020; Belkhir et al., 2017).

The empirical performance analysis (Vermetten et al., 2023b; Das and Suganthan,
2010) has focused on providing empirical results through descriptive statistics of the
performance achieved on a particular benchmark suite. Another way to compare al-
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gorithms’ behavior using information from the performance space is to use perfor-
mance2vec meta-representations (Eftimov et al., 2020). Here, the results obtained by
multiple runs of an algorithm instance on a particular problem are averaged and stored
as a vector representation that consists of the results for all benchmark problems. Fur-
ther, the similarity between algorithm instances is assessed as the similarity between
the vector representations obtained by using performance2vec.

The studies performed in automated algorithm performance prediction allow us
to develop an explainable ML predictive model. For this purpose, landscape prop-
erties (Mersmann et al., 2011) of the problem instances are used as input features to
train an ML predictive model that links them to the performance of the algorithm
achieved after some function evaluations. Further, by applying post-hoc explainable
techniques, the contribution of each landscape feature to the accuracy of performance
prediction can be analyzed. Recently, the SHAP (Rozemberczki et al., 2022) feature
ranking method has been explored for such analyses, since it provides explanations
both at a global level (i.e., all benchmark problem instances) and at a local level (i.e.,
per problem instance). The SHAP explanations can be used for algorithm behavior
meta-representation that facilitates the capture of the interactions between the prob-
lem landscape properties and the performance of the algorithm instance. These meta-
representations have been used with unsupervised techniques to find similar groups
of algorithm behavior of CMA-ES (Trajanov et al., 2021) and DE (Nikolikj et al., 2022a)
configurations.

The mentioned studies integrate into a broader range of research that aims to un-
derstand the behavior of modular CMA-ES and modular DE. However, despite signif-
icant efforts in this direction, most of the studies that focus on automated algorithm
performance prediction and selection treat the CMA-ES or DE configurations as black
boxes, without exploring the impact of the individual modules on the final performance
of a configuration. While some studies have used time-series features calculated from
the global state variables to classify isolated CMA-ES modules (de Nobel et al., 2021b),
there is no information on how these features are linked to each module separately.
Another study (Prager et al., 2020) has investigated a problem instance-based configu-
ration model that selects optimal CMA-ES modules using landscape features of prob-
lem instances but does not provide any insight into the importance of the landscape
features.

Modular algorithm components have also been investigated in multi-objective op-
timization. Bezerra et al. (2015) focus on the automatic design of novel multi-objective
evolutionary algorithms (MOEAs) through the utilization of a conceptual framework
encompassing various MOEA components. However, the study does not investigate
the impact of each of those modules on the overall performance of the algorithm, nor
does it provide insight into the importance of problem landscape features.

A purely performance-oriented view on the modular algorithm framework was
taken by Aziz-Alaoui et al. (2021), where a modular suite of pseudo-Boolean optimiza-
tion algorithms is implemented within the ParadisEO framework (Cahon et al., 2004)
and tuned on a collection of W-model problem instances (Weise and Wu, 2018; Doerr
et al., 2020) using the irace algorithm configurator (López-Ibáñez et al., 2016). Here, the
goal is to identify module combinations that work well together, rather than to explore
their complementarity.
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3 Methodology
Our methodology comprises three main components: (i) generating meta-

representations of the modular algorithms (described in Section 3.1); (ii) exploratory
analysis, investigating the impact of the modules on the performance and investigating
the importance of the landscape features for algorithm performance prediction (Sec-
tion 3.2); and (iii) using the learned meta-representations in a supervised classification
task to predict the modular configuration of different algorithm instances (Section 3.3).

3.1 Generating meta-representations of modular algorithms
We investigate two types of algorithm meta-representations, performance-based and
Shapley-based.

3.1.1 Performance-based meta-representations
Performance-based meta-representations (Eftimov et al., 2020) rely solely on perfor-
mance data, enabling us to develop an understanding of how the different modules
contribute to the performance of the algorithm variant. To obtain this data, we exe-
cute each modular algorithm variant (i.e., algorithm instance) on a range of problem
instances from diverse classes.

Considering the stochastic nature of the algorithms, to obtain reliable estimates of
the performance of each variant on each problem instance, we conduct r independent
runs of the algorithm variant. In each run, we measure the precision, i.e., the absolute
difference f(xbest) − f∗, between the best solution xbest found by the algorithm in the
considered run and the global optimum f∗ := infx f(x). The solution quality (or per-
formance) for instance j in class i, referred to as qij , is determined as the median of
these precision values.

To summarize the algorithm variant’s performance on a problem class level, we
calculate the mean pi =

1
m

∑m
j=1 qij of the solution qualities qij across the m instances

in class i.
Finally, the overall performance of an algorithm instance across n classes is sum-

marized in an n-dimensional vector P = (p1, p2, ..., pn).

3.1.2 Shapley-based meta-representations
Shapley-based meta-representations consist of problem landscape feature importance
scores derived from regression models that predict algorithm performance. These
scores, known as Shapley values, quantify the marginal contribution of each input fea-
ture (in our case problem landscape features) to the model’s predictions (Molnar, 2020).
Shapley values have been widely used as an explainability technique in ML (Chen et al.,
2022; Kumar et al., 2020). Unlike classical ML feature importance approaches that pro-
vide global importances on a model-level, Shapley provides feature importances on
a local level, for each prediction. This local interpretability aspect provides valuable
insights into the model’s decision-making process, enhancing its explainability. For
calculating the Shapley values, we use the SHAP (SHapley Additive exPlanations) al-
gorithm (Lundberg and Lee, 2017).

To construct these meta-representations, we first train regression models for per-
formance prediction for each variant of the modular algorithms, separately. We con-
sider a portfolio of problem classes with size n and m instances of each problem class,
resulting in a total of n×m problem instances. Each problem instance is represented as
a vector of ℓ problem landscape features, (x1, x2, ..., xℓ), which serve as input for train-
ing the regression models. The target output y that we aim to predict is the algorithm’s
performance within a fixed budget of function evaluations, as detailed in Section 3.1.1.

6 Evolutionary Computation Volume x, Number x



Assessing Module Performance Contribution in Modular Optimization Frameworks

Table 1: Illustrative example of groups of CMA-ES algorithm variants when we inves-
tigate the impact of the elitism module on the algorithm’s performance.

Elitism Base sampler Step-size
adaptation

1 True Gaussian CSA
2 True Gaussian PSR
3 True Sobol’ CSA
4 True Sobol’ PSR
5 True Halton CSA
6 True Halton PSR

(a) Algorithm variants with elitism

Elitism Base sampler Step-size
adaptation

7 False Gaussian CSA
8 False Gaussian PSR
9 False Sobol’ CSA

10 False Sobol’ PSR
11 False Halton CSA
12 False Halton PSR
(b) Algorithm variants without elitism

After training the regression model for performance prediction, we calculate the
Shapley values of the landscape features. Applying the Shapley value calculation
on the regression models that predict the performance of each algorithm instance
separately gives us the Shapley-based meta-representations as an ℓ-dimensional vec-
tor, (s1, s2, ..., sℓ). We need to point out here that the Shapley meta-representations
are model-specific and depend on the ML algorithm used for learning the predictive
model.

3.2 Exploratory analysis using the meta-representations

We use the learned algorithm meta-representations in two types of exploratory analy-
sis: (1) to investigate the impact of a module’s configuration on the algorithm’s perfor-
mance and (2) to investigate the importance of the landscape features when predicting
the algorithm’s performance across the different module configurations.

3.2.1 The impact of module configuration on algorithm performance
Here, we make use of the performance-based meta-representations. First, to investigate
the impact of module configuration on algorithm performance, from a selected set of
algorithm modules and their configurations, we generate all possible configurations of
the algorithm variants that we will investigate. Then, the different algorithm variants
are grouped with respect to a given module to observe whether there are some dif-
ferences in the performance when we change the module configuration and introduce
some specific structural changes to the algorithm.

Consider as an example the modular CMA-ES algorithm (de Nobel et al., 2021a).
This algorithm has multiple configurable modules, but in this illustrative example, for
simplicity, we focus on three: elitism (which can take values of either true or false),
the base sampler (which offers different sampling techniques such as Gaussian, Sobol’,
and Halton), and the step size adaptation mechanism (which includes Cumulative Step
Size Adaptation (CSA) and Step Size Adaptation with Population Success Rule (PSR)).
By combining the settings of these three modules, we can create a total of 12 different
algorithm variants shown in Table 1. To assess the impact of elitism, we divide the
configurations into two distinct groups: one with elitism activated (elitism = True) and
another without it (elitism = False). This division allows us to analyze and compare the
performance of the algorithm variants under different settings, e.g., for elitism.

For each group, we visualize the distribution of the achieved performance on all
problem instances and problem classes. Differences in these distributions would indi-
cate that certain modular configurations perform better/worse on the overall problem
instance portfolio. We repeat this process for the remaining modules. Additionally, the
same analysis can be performed at problem class level to investigate whether there are
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A. Kostovska, D. Vermetten, P. Korošec, S. Džeroski, C. Doerr, T. Eftimov

differences in performance in the different problem classes.

3.2.2 The importance of the landscape features in algorithm performance
prediction for the different module configurations

Compared to the performance-based meta-representations, the Shapley-based ones
come with the benefit that they can be employed in an exploratory analysis pipeline
where we can investigate the importance of the landscape features across the different
modules and across the different configurations of a given module. To this end, we per-
form the same process of grouping the algorithm variants as described in Section 3.2.1.
We then calculate the importance of the landscape features for each group separately
and average them across all problem instances. We repeat this process for the remain-
ing modules. This approach facilitates the exploratory analysis of the effect each of
the modules has on the final performance of the algorithm. Furthermore, trends in the
landscape space can be observed. More specifically, some problem landscape features
can be found to hold more predictive value than the rest by observing the SHAP values
across the different problems (in multiple dimensionalities) for different budgets.

3.3 Prediction of a module’s configuration of the algorithm instances

The meta-representations (both performance- and Shapley-based) of the modular algo-
rithms variants can be assigned labels that indicate their modular configuration. This
labeled data serves as input to train ML classifiers, which predict the configuration of
the algorithm’s modules. These classifiers are beneficial, for example, in cases where
we have the performance data of an algorithm that is achieved after some function
evaluations on a particular benchmark suite, but we don’t have information about the
configuration of the algorithm.

By using its meta-representation we may be able to identify a modular configura-
tion with similar performance behavior. This may help us in a lot of studies for which
the performance data is publicly available, but details about the tested configurations
are missing. For example, if we have CMA-ES performance data, by using the learned
classifiers we can identify a modular CMA-ES configuration with similar behavior.

To test the power of the classifiers, we use the meta-representations of each mod-
ular configuration, and we use the classifiers to predict the modules that are activated
with their values. Further, we report the F1 score (macro F1 score in the case of multi-
class classification) of the predictions across all modules, problem dimensions, and dif-
ferent cut-off budgets. However, the classifiers may make wrong predictions for the
configuration, and the prediction may differ from the true configuration in one or sev-
eral modules. The wrong predictions affect the performance of the classifier, but the
predicted configuration and the true one may still have similar behavior. To evaluate
this, we perform a statistical analysis based on hypothesis testing including the raw
performance data for the true and the predicted modular configuration. For this pur-
pose, we use the Deep Statistical Comparison (DSC) approach (Eftimov et al., 2017) that
ranks the true and the predicted configuration for each problem instance separately, by
comparing the distribution of their raw performance data (for each problem instance
separately). The ranked data obtained for the true and the predicted configuration
across all benchmark problem instances is further analyzed by the Wilcoxon signed-
ranks test to find if there is a statistically significant difference in the performance of
the true and predicted configuration on the selected benchmark suite.
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4 Experimental Design
In this section, we provide details on the experimental setup, which consists of

several components. We describe our problem portfolio, problem landscape data, al-
gorithm portfolio, and algorithm performance data. Additionally, we provide informa-
tion on the regression models for algorithm performance prediction and the classifiers
for the prediction of the modular configuration of each algorithm instance.

4.1 Problem instance portfolio
The problem instance portfolio consists of the 24 single-objective, noiseless black-box
optimization problems sourced from the BBOB benchmark suite (Hansen et al., 2009)
of the COCO benchmark environment (Hansen et al., 2020). Multiple instances of each
BBOB problem can be generated by using linear and non-linear transformation pro-
cesses. These involve adding an offset, rotating the axes, and scaling the coordinates
of each basic function. The BBOB benchmark suite already contains multiple instances
of each problem. In this study, we consider the first 5 instances of each of the 24 BBOB
functions, both with dimension D = 5 and D = 30. This results in two separate prob-
lem instance portfolios, one for each dimension, with each portfolio containing a total
of 120 problem instances.

4.2 Landscape features
For representing the problem landscape, we utilize the ”cheap” exploratory landscape
analysis (ELA) features implemented in the R package flacco (Kerschke and Traut-
mann, 2016). The ELA features are used as numerical vector representations of the
problem instances that capture the landscape characteristics of optimization problems.
We considered a total of 46 different ELA features, which were not calculated from
scratch, but reused from Renau et al. (2020). The selected ELA features were calculated
by using the Sobol’ sampling strategy on a sample of size 100D on a total of 100 inde-
pendent repetitions. To represent the landscape of each problem instance, we calculate
the median value for each feature over the 100 independent repetitions.

It is worth mentioning that we deliberately allocated a substantial sample size
for ELA computation to eliminate the effects of noisy feature evaluations. Addition-
ally, we do not perform feature selection, even though it has been demonstrated to
improve results in performance prediction tasks (Renau et al., 2021). However, we an-
ticipate that our findings will hold for other types of features as well, based on previous
work (Jankovic et al., 2021a; Nikolikj et al., 2022b).

4.3 Algorithm portfolio
We examine two black-box optimization algorithms that have modular implementa-
tions available, namely CMA-ES and DE. For CMA-ES, we utilize the modCMA-ES
framework (de Nobel et al., 2021a), which encompasses various versions of the core
algorithm. These modifications include changes in the sampling distribution (such as
mirrored or orthogonal sampling), weighting schemes for recombination, and restart
strategies, to name a few. This modular structure allows for the creation of at least
36 288 configurations of CMA-ES, and additionally provides access to a large set of
control parameters (population size, update rates,. . . ).

We utilized the modDE (Vermetten et al., 2023a) package1 for DE. This package
provides a diverse array of mutation mechanisms and modules for selecting the base
component, the number of differences included, and the use of an archive for some

1modDE package (version 0.0.1-beta) accessible at https://github.com/Dvermetten/ModDE
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Table 2: The complete list of modCMA-ES modules and their respective parameter
space yielding a total of 324 algorithm configurations.

Module Parameter space
Elitist True, False
Mirrored sampling None, mirrored, mirrored pairwise
base sampler gaussian, Sobol’, halton
weights option default, equal, (1/2)ˆλ
local restart None, IPOP, BIPOP
step size adaptation csa, psr

Table 3: The complete list of modDE modules and their respective parameter space
yielding a total of 576 algorithm configurations.

Module Parameter space
mutation base rand, best, target
mutation reference None, pbest, best, rand
mutation n comps 1, 2
use archive True, False
crossover bin, exp
adaptation method None, shade, jDE
lpsr True, False

of the difference components. Additionally, the package enables the usual crossover
mechanisms and incorporates update mechanisms for internal parameters based on
several state-of-the-art DE versions. In total, this package allows for the creation of at
least 1 474 560 configurations of DE.

4.4 Performance data

Due to the computational infeasibility of collecting data for all possible combinations
of modular CMA-ES and modular DE algorithms, we opted to use a subset of, specif-
ically 324 algorithm variants for modular CMA-ES and 576 variants for modular DE.
The performance data for this subset of algorithm variants is taken from Kostovska
et al. (2023a). We show the modules and parameter spaces used for CMA-ES and DE
in Table 2 and Table 3, respectively. To obtain the algorithm variants, we created a
Cartesian product of the modules and the selected module parameter spaces.

To evaluate the performance of each algorithm variant, 10 independent runs have
been conducted and the median objective function value has been recorded for each
problem instance. All experiments make use of the IOHexperimenter module (de No-
bel et al., 2024) of the IOHprofiler benchmarking environment (Doerr et al., 2018). Our
objective function measures the precision of the algorithm’s solution, i.e., the distance
to the optimum, within a fixed budget of function evaluations. We considered six dif-
ferent budget values, B ∈ {50D, 100D, 300D, 500D, 1 000D, 1 500D}, where D is the
problem dimensionality. We report the best precision achieved by each algorithm vari-
ant at the different cut-off budgets for the 5D and 30D problem instance portfolios. The
population size for both CMA-ES and DE is set to 4 + ⌊3 log(D)⌋.

4.5 Regression models for algorithm performance prediction

In this study, we train regression models for algorithm performance prediction as part
of the pipeline of obtaining Shapley-based algorithm meta-representations. Previous
studies have investigated the use of ML in algorithm performance prediction, includ-
ing the use of Random Forest (RF) regression models (Muñoz et al., 2012; Collautti
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Table 4: Parameters of the RF approach and their corresponding values considered in
the grid search.

Hyperparameter Search space
n estimators [10, 50, 100, 500, ]

max features [′auto′,′ sqrt′,′ log2′]

max depth [4, 8, 15, None]

min samples split [2, 5, 10]

et al., 2013; Kerschke and Trautmann, 2019; Kostovska et al., 2022a). RF, an ensemble-
based decision tree method, is thoroughly described in the seminal work by Breiman
(2001). In our work, we employ the RF approach to learn performance prediction re-
gression models, as they have been shown to provide promising results in this con-
text (Jankovic et al., 2021b; Trajanov et al., 2021) and we tune their hyperparameters.
For training the models we use the RF algorithm as implemented in the Python pack-
age scikit-learn (Pedregosa et al., 2011).

To ensure optimal results, we trained separate regression models (single-output
models) for each modular variant. This decision was based on findings by Trajanov
et al. (2021), which showed that multi-output models (models that predict the out-
put for several algorithm instances simultaneously) did not demonstrate performance
gains compared to single-output models.

For learning the performance prediction models, a vector of 46 ELA features is
used to describe each problem instance. Our objective is to predict the precision, i.e.,
the distance to the optimum that each algorithm in the portfolio will attain on a problem
instance, given a fixed budget of function evaluations and problem dimensionality. In
this study, we log10-transform the target variable (the median of the 10 independent
runs) as it has been shown to improve the performance of the learned predictive models
when the target variable is the distance to the optimum (Jankovic and Doerr, 2020). We
also cap the target variable to 10−8 prior to performing the logarithmic transformation.
Hyperparameter tuning and model evaluation. To assess the learned ML models’ per-
formance, we use a nested cross-validation (CV) technique that involves two stages. In
the outer loop, we partition the data into training and testing sets, while the inner loop
determines the optimal parameters of the ML method. This evaluation approach may
require significant computational resources, but yields more reliable estimates of the
model’s generalization ability as compared to traditional train/val/test data splitting
or standard CV (Varma and Simon, 2006; Bates et al., 2023).

To implement the outer loop, we apply a leave-one-group-out CV, which segments
the data into groups/folds based on the unique ID of each problem instance. Since our
study involves the first 5 instances of each of the 24 BBOB problems, we create 5 folds
by assigning 4 for training and 1 for testing. We repeat this process five times, each
time selecting a different fold for testing while using the remaining four for training.

The inner loop adopts a grid search approach to tune the parameters and selects
the optimal ones based on the average performance of the inner CV’s holdout folds.
A leave-one-group-out CV is applied to the training data (i.e., the four folds) obtained
from the outer loop. The R2 score is used as a performance metric. The parameters
chosen for tuning and their corresponding search spaces can be found in Table 4.

After the optimal parameters have been determined, the model is trained on the
entire training data, and its performance is assessed using the test set from the outer
loop.
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4.6 Classification models for predicting/identifying the modular configuration of
algorithm variants

To train these classifiers, we use the algorithm meta-representation as input data and
apply the RF classifiers implemented in the Python package scikit-learn (Pe-
dregosa et al., 2011). We consider two scenarios: (1) Single-output classifiers – we
train a classifier for each module separately. Depending on the number of possible
configurations for each module, we perform binary classification (when there are 2
possible configurations of the given module, leading to a binary output/target vari-
able) or multi-class classification (when there are more than 2 possible configurations
of the given module, resulting in a discrete datatype for the output/target variable ),
and (2) Multi-output classifiers – we train a single classifier to predict the configuration
of all modules simultaneously. Here, the output/target variable is a record of discrete
values.

We evaluate both types of classifiers as they have not been studied in this context
before. Note that for different problem dimensionalities and cut-off budgets, we train
separate classifiers.

In addition, we assess the performance of TabPFN, a pre-trained Transformer
model that approximates probabilistic inference for a novel prior in a single forward
pass. TabPFN was shown to have fast training time and competitive performance on
tabular prediction tasks by (Hollmann et al., 2023) and we use their implementation.

All classifiers are trained using default (hyper-)parameter values. To evaluate the
performance of the learned models, we partition the data into training and testing sets
using leave-one-group-out cross-validation, which segments the data into train/test
folds based on the unique ID of each benchmark problem instance. As a performance
indicator, we report the F1 scores of the classifiers.

5 Results and Discussion
Following the methodology described in Section 3 and the experimental proto-

col given in Section 4, we first perform an exploratory analysis using the algorithm
meta-representations (Section 5.1). We then present results on the task of predicting
the modular configuration of the algorithm variants from algorithm behavior meta-
representations in Section 5.2.

5.1 Exploratory analysis

5.1.1 The impact of the modules on the performance of the algorithms
We investigated how different configurations of modules impact the performance of
the CMA-ES and DE algorithms, using performance-based meta-representations in a
log-10 scale. The distribution of the precision achieved by different variants of the
CMA-ES algorithm on 5D problem instances is presented in Figure 1. We tested 6
different modules (elitist, mirrored, base sampler, weights option, local restart, and
step size adaptation) across the 6 cut-off budgets. Each violin plot in the figure shows
the precision across all CMA-ES algorithm variants that have the same value for a given
module.

For instance, there were 324 algorithm variants selected as the Cartesian product
of the 6 modules, and 162 algorithm variants had the elitism module activated, while
162 did not. Therefore, the violin plot for ‘elitism = true’ is based on the precision
values of 162 algorithm variants, where the precision value of an algorithm variant is
the mean value of the performance-based meta-representations (i.e., the mean value of
a numerical vector representation of size 24) in a log-10 scale as detailed in Section 3.
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Figure 1: Distribution of the precision achieved by different variants of the CMA-ES al-
gorithm on 5D problem instances for different modular configurations, across different
cut-off budgets. The precision values are inversely proportional to algorithm perfor-
mance, with smaller values indicating better performance.

The precision values are inversely proportional to algorithm performance, with smaller
values indicating better performance.

We analyzed the results displayed in Figure 1 and made the following observa-
tions: (i) The activation of elitism in the algorithms leads to improved performance
for smaller evaluation budgets. As the budget increases, this trend reverses and elitist
configurations are overtaken by their non-elitist counterparts; (ii) Algorithm variants
that have activated mirrored orthogonal sampling with pairwise selection (mirrored
pairwise) demonstrate a longer tail towards poorer performance than those that use
mirrored sampling without pairwise selection and those that do not use mirrored sam-
pling at all, although on average they perform similarly; (iii) At the lower budget cut-
offs, the Halton sampling showed the best performance, Sobol’ sampling came second,
and Gaussian sampling demonstrated the worst performance out of the three. As the
budget increases, the differences are less evident; (iv) Algorithms with recombination
weights set to (1/2)ˆλ and default weights have similar distributions. Also, all three
configuration setups have similar average performance; (v) For the lower budgets, we
observe that the local restart module achieves comparable performance for the three
modular configurations (BIPOP, IPOP, and no restart) across the different budgets. This
makes intuitive sense, as at low budgets the algorithm will not have had a chance to
trigger any of the restart criteria. As the budget increases, IPOP and BIPOP local restart
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Figure 2: Distribution of the precision achieved by different variants of the DE algo-
rithm on 5D problem instances for different modular configurations, across different
cut-off budgets. The precision values are inversely proportional to algorithm perfor-
mance, with smaller values indicating better performance.

techniques show slightly better performance compared to algorithm variants without a
restart mechanism, which matches observations made in previous work (Hansen et al.,
2010); and (vi) In the case of step size adaptation, for smaller budgets, cumulative step
size adaptation (CSA) exhibits better performance than step size adaptation using the
population success rule (PSR).

For the DE configurations, we show the same type of visualization in Figure 2.
From this figure, we can see that the overall performance differences between DE mod-
ule options are much smaller than those seen for CMA-ES. The clear exception is the
LSPR module that, if enabled, results in much worse performance for smaller budgets.
This matches our intuition since LPSR changes the initial population size to 20D at the
beginning of the search. This much larger initial population size leads to a slower con-
vergence at the beginning of the search. The difference to no-LPSR slowly decreases
over time, but it does not manage to overtake it within our maximum budget of 1 500D
function evaluations. This observation also seems to suggest that the population size
is a critical parameter of DE, which matches previous observations (Piotrowski, 2017).
For the other modules, we observe that the mutation base and reference settings, which
are more elitist (best and pbest) show improved performance for low budgets, match-
ing the observations for CMA-ES.

We have also conducted the same empirical analysis for the 30D problem instances,
and the results are available in our Zenodo repository (Kostovska et al., 2023b). Similar
observations can be made for the 30D problem instances as in the case of using the 5D
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problem instances.

5.1.2 The importance of the ELA features for different modular setups

Following our experimental design, to obtain the Shapley-based meta-representations
(i.e., landscape feature importance scores), we first trained separate regression models
for each algorithm variant. Table 5 presents the average R2 scores of the RF and base-
line regression models for the CMA-ES and DE algorithm variants, for both 5D and
30D problems and the six different cut-off budgets. Additionally, Table 6 summarizes
the MSE scores for these models. As a baseline, we employ a model that consistently
predicts the overall mean algorithm performance. One interesting pattern that can be
observed is that the models perform better for the 30D problems. This improved per-
formance may be due to variations in the distributions of the target variable across
different combinations of budget and dimensionality. The different distribution charac-
teristics, such as skewness, can impact the performance of the RF model. Additionally,
in a higher-dimensional space, where the points are spread out, certain ELA features
might converge to specific values which can make the data simpler and easier for mod-
els to learn from.

Subsequently, we have utilized the SHAP algorithm to determine the feature im-
portance of each of the 46 ELA features at the problem instance level. In the outer loop
of the nested cross-validation, we have employed a leave-one-group-out CV valida-
tion with five groups (four for training and one for testing). However, we specifically
focused on the Shapley values of the training folds, as this data is used to learn the
predictive models and provides insight into the algorithms’ workings.

To generate a Shapley value for each ELA feature and problem instance, we cal-
culated the value four times (due to each problem instance appearing four times in
the training data and once in the testing data) and then took the mean of the four val-
ues. Lastly, we averaged the Shapley values for each ELA feature across all problem
instances, which gave us a single vector for each algorithm instance. For this pur-
pose, we have leveraged TreeSHAP. TreeSHAP is tailored for tree-based models such
as decision trees, random forests, and boosting machines. It is designed to be compu-
tationally efficient by exploiting the tree structure for faster calculations, which enables
it to manage more complex scenarios effectively. One of the key advantages of Tree-
SHAP is its consistency property: if a model relies more on a particular feature, the
attributed importance of that feature will not decrease, ensuring reliable feature attri-
bution. Alternatively, KernelSHAP can be used for interpreting the impact of features
in any model, as it employs a model-agnostic approach. While KernelSHAP offers
flexibility across various model types, it comes at the cost of computational efficiency.
This makes KernelSHAP less suitable for complex, high-dimensional situations or ap-
plications requiring real-time explanations. Given that we are working with tree-based
predictive models, TreeSHAP was the appropriate choice for our study. It provided the
necessary computational efficiency. The calculation of TreeSHAP is detailed in Lund-
berg and Lee (2017), where it is demonstrated that Shapley values can be used to inter-
pret model performance regardless of whether the model performs well or poorly.

To investigate the importance of the ELA features, we conduct exploratory anal-
ysis by selecting the top K most important features, where K is chosen from the set
{10, 15, 20}. Next, we tally the frequency of appearance for each feature in the top K
across all algorithm variants within the same group of modular algorithm variants.
This is done by calculating the number of times a feature appears in the top K as in-
dicated by their Shapley values. The resulting value ranges between 0 and the total
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number of algorithm variants in the group.
Analyzing the results in Figure 3 and through our analysis of feature importance

in various other scenarios, we have observed that a similar set of ELA features are the
most important predictors of performance, regardless of the algorithm, modular config-
uration, problem dimensionality, or cut-off budget. This suggests that we can perform
feature selection for all algorithms simultaneously, irrespective of their configurations.
However, we recommend training separate regression models for each algorithm con-
figuration to obtain the most accurate predictions.

Table 5: The R2 scores of the RF regression models / R2 scores of the baseline re-
gression models averaged over the CMA-ES and DE algorithm variants for the BBOB
problem instances in 5 and 30 dimensions where the best precision is reached after
B ∈ {50D, 100D, 300D, 500D, 1000D, 1500D} function evaluations.

Budget
CMA-ES DE

5D 30D 5D 30D

50D 0.7577/-0.0072 0.9400/-0.0005 0.8788/-0.0019 0.9403/-0.0009
100D 0.7689/-0.0069 0.9179/-0.0008 0.8783/-0.0017 0.9433/-0.0008
300D 0.6146/-0.0072 0.8457/-0.0031 0.8587/-0.0016 0.9362/-0.0013
500D 0.7045/-0.0055 0.8322/-0.003 0.8368/-0.0024 0.9361/-0.0015
1000D 0.7272/-0.0046 0.8072/-0.0029 0.7795/-0.0043 0.9242/-0.002
1500D 0.7288/-0.0048 0.8391/-0.0023 0.7508/-0.0051 0.9191/-0.0023

Table 6: The MSE scores of the RF regression models / MSE scores of the baseline
regression models averaged over the CMA-ES and DE algorithm variants for the BBOB
problem instances in 5 and 30 dimensions where the best precision is reached after
B ∈ {50D, 100D, 300D, 500D, 1000D, 1500D} function evaluations.

Budget
CMA-ES DE

5D 30D 5D 30D

50D 0.7829/4.0248 0.1482/2.461 0.3716/3.383 0.2642/3.7964
100D 1.2195/5.1834 0.2692/3.2073 0.4326/3.9106 0.2458/4.225
300D 3.9828/8.9112 1.0303/5.8091 0.809/5.6781 0.3055/4.9577
500D 4.8498/13.9604 1.2684/6.6078 1.0403/6.1126 0.3803/6.1386
1000D 5.2191/15.2566 1.7192/7.9612 1.9462/6.8843 0.5378/7.0673
1500D 5.1945/15.198 1.8771/10.9973 2.3355/7.4111 0.634/7.6636

5.2 Predicting the modular configuration of an algorithm using its behavior
meta-representation

After exploring the performance and ELA data on which the meta-representations are
built, we now analyze whether these meta-representations are powerful enough to pre-
dict/identify the corresponding algorithm variant.

First, we compare the single- and multi-output approaches for training classifiers
using the RF method. The F1 scores for the classifiers obtained on the test data aggre-
gated across the 2 problem dimensionalities, 5 budgets, and algorithm modules, are
listed in Table 7. We have observed that comparable results can be obtained when em-
ploying single-output and multi-output RF techniques on both CMA-ES and DE algo-
rithms, using both performance- and Shapley-based meta-representations. However,
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Figure 3: Frequency of appearance of the ELA features as top 10 most important fea-
tures for performance prediction of two modCMA-ES modules (elitist and mirrored;
first four groups) on the 24 BBOB functions in both 5 and 30 dimensions and for six
different evaluation budgets B ∈ {50D, 100D, 300D, 500D, 1 000D, 1 500D}. The fifth
group provides the same data for one DE module (mutation base).
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Table 7: F1 scores of the single-output RF, multi-output RF, and single-output TabPFN
models, computed by averaging over the CMA-ES and DE algorithm variants. The
F1 scores are further averaged for both 5 and 30 dimensions, and across the 5 cut-off
budgets for function evaluation (B ∈ {50D, 100D, 300D, 500D, 1000D, 1500D}).

Algo

Performance Shapley
single-

output RF
multi-

output RF
single-output

TabPFN
single-

output RF
multi-

output RF
single-output

TabPFN
CMA-
ES

0.794 0.772 0.811 0.623 0.618 0.629

DE 0.758 0.744 0.790 0.603 0.601 0.589
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Figure 4: The F1 scores of the RF classifiers for predicting the modular configuration
of the CMA-ES algorithm variants. Results are presented for each CMA-ES module
separately, for 5D and 30D BBOB problem instances, and for 5 different cut-off budgets.
The baseline is the majority classifier.
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it is worth noting that the multi-output RF approach exhibits slightly inferior perfor-
mance as compared to single-output RF.

Additionally, we have compared the performance of single-output RF classifiers
with TabPFN classifiers. Both classifiers showed similar F1 scores, as indicated in Ta-
ble 7. For instance, when using Shapley-based meta-representations, the RF classifier’s
average F1 score for predicting the modular configuration of CMA-ES variants was
0.623, while the TabPFN classifier’s F1 score was 0.629, indicating slightly better perfor-
mance for TabPFN. However, for the DE variants, we observed the opposite situation,
with RF classifiers achieving an average F1 score of 0.603 and TabPFN of 0.589.

In Table 7, the F1 scores are averaged over all algorithm modules. To further ana-
lyze the classifiers trained using the single-output RF method, in Figure 4 we present
the F1 scores of the classifiers for each CMA-ES module separately. As a baseline,
we use the majority classifier. Figure 4 shows that the highest performance scores are
achieved in predicting the setting of the elitist and step-size adaptation modules. The
higher F1 scores for the elitist and step-size adaptation modules compared to the other
four CMA-ES modules are expected because we only investigated two module options
for these two modules, while the remaining four modules used three different module
options. By having fewer classes to distinguish between, the classification problem is
simplified, making it easier to solve.

The highest F1 scores among the remaining four modules have been observed for
the weights option, followed by the base sampler and mirrored. The configuration
of the local restart module is the most difficult to predict. In general, all classifiers
for predicting the status of each module outperform the baseline across the different
modules, problem dimensions, and budgets (see Figure 4).

Further, we have observed that the performance-based meta-representations have
better predictive power than the Shapley-based meta-representations.

In Figure 5, we show the F1 scores of the RF classifiers for each DE module. For the
mutation n comps, use archive, crossover, and lpsr modules we have consid-
ered two different module options. As can be seen in Figure 5, for these four modules
the classifiers have the highest F1 scores, with lpsr classifiers performing the best,
followed by crossover, mutation n comps, and use archive. As the number of
considered modular options increases (three different options for the mutation base
and adaptation method modules and four different options for mutation reference), the
F1 scores of the classifiers tend to decrease. For both CMA-ES and DE, it is worthwhile
to note that the modules that have limited initial impact (local-restart and adaptation
mechanism) are indeed more challenging to predict, especially for small budgets. Nev-
ertheless, in all cases, the classifiers outperform the baseline classifier. Furthermore,
the RF classifiers that used performance-based meta-representations consistently out-
performed those that used Shapley-based meta-representations.
Performance difference between algorithm variants. By combining the predictions of
the RF classifiers for all modules, we can predict the modular configuration of the algo-
rithm instance. To judge the effectiveness of this prediction, we analyze the difference
in performance between the true and predicted modular configurations. Even though
there might be a difference in the configuration, the true and the predicted algorithms
may have similar performance behavior. To evaluate this, we use the DSC approach
to test for statistical significance in the performance of the true and the predicted con-
figuration across all benchmark problem instances. First, we apply the DSC ranking
scheme that ranks the true and the predicted configuration by comparing the distribu-
tion of their raw performance data for each problem instance separately. For comparing
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Figure 5: The F1 scores of the RF classifiers for predicting the modular configuration
of the DE algorithm variants. Results are presented for each DE module separately, for
5D and 30D BBOB problem instances, and for 5 different cut-off budgets. The baseline
is the majority classifier.

the distributions, the two-sample Anderson-Darling test is used by the DSC ranking
scheme. Since most of the statistical tests require the independence condition, we have
aggregated the rankings per problem class by calculating the average of the DSC rank-
ings obtained for the five problem instances that belong to that problem class. Next, the
ranked data is analyzed with a statistical test. The rankings obtained for the 24 prob-
lem classes have been analyzed with the Wilcoxon signed-ranks test to find if there
is a statistically significant difference (at a p-value of 0.05) in the performance of the
true and predicted configuration on the selected benchmark suite. After determining
the statistical significance of the difference between each true and predicted algorithm
pair, we calculate the percentage of pairs with performance differences that are not sta-
tistically significant. Additionally, we generate 5 different random predictions for the
modular configuration of each algorithm instance and perform the DSC analysis on
them. The results for CMA-ES and DE across different problem dimensions, budgets,
and meta-representations are shown in Table 8 and Table 9, respectively.

In both Table 8 and Table 9, we can observe that the percentage of algorithm pairs,
consisting of true and predicted configurations, with performance differences that are
not statistically significant (based on the predictions generated by our classifiers) is
significantly higher as compared to the scenario where predictions are randomly gen-
erated for the modular configuration. This affirms the robust predictive capabilities
exhibited by our classifiers.
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Table 8: The DSC results on the statistical difference in the performance of CMA-ES
algorithm pairs. Results are reported in the format: percentage of (true, predicted)-
pairs with performance differences that are not statistically significant/percentage of
(true, random)-pairs with performance differences that are not statistically significant.
The numbers in brackets correspond to the standard deviation for the latter percentage
since this was computed over 5 independent runs.

Budget
SHAP Performance

5D 30D 5D 30D

50D 74.4 / 33.6 (2.0) 68.2 / 24.6 (2.7) 89.2 / 36.4 (2.0) 93.2 / 22.5 (1.2)
100D 80.9 / 62.2 (3.5) 68.2 / 26.9 (2.3) 91.0 / 64.0 (1.6) 93.5 / 27.0 (3.1)
300D 75.0 / 57.5 (1.6) 59.6 / 35.2 (3.0) 87.3 / 58.4 (3.1) 88.9 / 36.5 (1.7)
500D 67.6 / 57.2 (2.3) 55.2 / 33.5 (2.4) 89.5 / 55.8 (3.1) 83.6 / 34.8 (1.5)
1000D 74.1 / 48.7 (2.3) 54.3 / 36.8 (1.1) 84.9 / 48.5 (0.6) 82.7 / 38.9 (1.7)
1500D 72.2 / 43.6 (1.7) 49.1 / 34.0 (2.1) 88.0 / 42.7 (3.0) 81.2 / 34.1 (2.9)

Table 9: The DSC results on the statistical difference in the performance of DE algo-
rithm pairs. Results are reported in the format: percentage of (true, predicted)-pairs
with performance differences that are not statistically significant / percentage of (true,
random)-pairs with performance differences that are not statistically significant. The
numbers in brackets correspond to the standard deviation for the latter percentage
since this was computed over 5 independent runs.

Budget
SHAP Performance

5D 30D 5D 30D

50D 50.5 / 14.5 (1.2) 21.7 / 12.2 (1.5) 77.1 / 12.6 (1.7) 53.6 / 10.8 (0.7)
100D 45.0 / 11.2 (0.8) 23.6 / 10.9 (1.6) 70.5 / 12.2 (1.3) 54.3 / 11.7 (1.1)
300D 31.9 / 10.0 (1.4) 27.3 / 12.3 (0.7) 57.1 / 9.9 (1.1) 45.3 / 13.2 (0.9)
500D 31.1 / 11.5 (0.9) 28.6 / 16.6 (1.2) 56.9 / 11.3 (1.6) 48.1 / 15.7 (1.1)
1000D 31.2 / 13.0 (1.1) 31.8 / 19.5 (1.5) 49.5 / 12.6 (1.0) 45.5 / 19.0 (1.0)
1500D 33.0 / 16.0 (1.5) 30.4 / 23.2 (0.9) 54.5 / 15.0 (1.7) 46.5 / 22.5 (1.8)

An additional noteworthy observation is that the percentage of pairs with per-
formance differences that are not statistically significant is higher for the CMA-ES
algorithm variants as compared to DE. To further investigate this observation, we
use UMAP (McInnes et al., 2018) as a dimensionality reduction technique to depict
the performance-based meta-representations of CMA-ES and DE algorithm variants.
Specifically, we focus on the 5D problems and 300D budget cut-off.

Figure 6 showcases the UMAP plots, allowing for a visual examination of the per-
formance space. Notably, the CMA-ES algorithm variants exhibit closer proximity to
one another, forming two distinct clusters. This close grouping suggests similar perfor-
mance characteristics among these variants. We have observed that the elitism module
almost perfectly separates the algorithm variants into two clusters. In contrast, the
DE algorithm variants display more pronounced differences in performance, leading
to a lower percentage of pairs with performance differences that are not statistically
significant. In this case, the purest clusters are formed by taking into consideration
the configurations of the lpsr module, indicating that this module exerts the greatest
influence on performance as compared to the other modules.

6 Conclusion
In this study, we propose a methodology for examining the impact of differ-

ent modules of optimization algorithms on the overall algorithm performance. We
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(a) CMA-ES (b) DE

Figure 6: UMAP embeddings of the performance-based meta-representations of the
324 CMA-ES and 576 DE algorithm variants.

demonstrate its relevance within two pre-existing modular optimization frameworks,
namely modCMA-ES and modDE. To this end, we analyze performance data from 324
modCMA-ES and 576 modDE algorithm variants across 24 noiseless BBOB problems.
Among the investigated CMA-ES modules, we have found that the elitism module has
the most pronounced influence on performance, while the local restart module has the
smallest influence, particularly for smaller runtime budgets. These findings are aligned
with existing work analyzing these algorithms. Regarding DE, out of the seven mod-
ules examined, we observe that the linear population size reduction module exerts the
greatest influence on performance. The mutation reference and adaptation method
modules have considerably smaller effects as compared to the other modules.

Although our findings on some modules are not conclusive, our methodology is
adaptable and can be applied to other modular optimization frameworks, where it may
yield different insights. In our future work, we plan to apply our methodology to other
modular optimization frameworks, such as ParadisEO (Cahon et al., 2004; Dreo et al.,
2021) and the modular hybridization framework of particle swarm optimization and
differential evolution (Boks et al., 2020).

Through the observation of variations in the impact of different modules on perfor-
mance, we reach the conclusion that to accurately assess the contribution of a new idea
or algorithm design, it is crucial to compare algorithm modules rather than algorithms
themselves.

Furthermore, we have successfully trained classifiers to predict the modular
configuration of algorithm variants. We find that the classifiers achieve higher F1
scores, in both cases of using performance-based and Shapley-based algorithm meta-
representations when the impact of the module on performance is more substantial.
This observation is expected because, in cases where the impact is less significant, algo-
rithm variants tend to be closer in the meta-representation space, making it challenging
for the ML model to differentiate effectively.

The classifiers built from performance-based meta-representations demonstrate
superior predictive performance as compared to those built from Shapley-based
meta-representations. However, it is worth noting that performance-based meta-
representations are less flexible when it comes to accommodating new problem classes,
as the vector size is predetermined by the number of classes. On the other hand,
Shapley-based meta-representations, which rely on problem landscape features, main-
tain a consistent vector size when introducing new problem classes. Nonetheless, a
limitation arises when new classes are introduced, requiring the retraining of regres-
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sion models used to determine the Shapley-based landscape feature importance.
With respect to the importance of the landscape features, it seems that the same

ELA features appear to be the most important features that contribute to the perfor-
mance of the algorithm performance prediction regression models, regardless of the
possible values of each module.

With the performance prediction in place, we can hope to deploy the modular al-
gorithm frameworks in our per-run algorithm selection (Kostovska et al., 2022a) context,
where we strive to select online which algorithm to choose for a given phase of opti-
mizing a given problem instance. Our results indicate that switching from an elitist to a
non-elitist selection rule could be beneficial for CMA-ES on a broad range of problems.

Finally, as future work, we also plan to explore the interplay between the different
modules and their influence on the algorithm performance.
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Kumar, I. E., Venkatasubramanian, S., Scheidegger, C., and Friedler, S. (2020). Problems with
Shapley-value-based explanations as feature importance measures. In International Conference
on Machine Learning, pages 5491–5500. PMLR.

Lones, M. A. (2020). Mitigating metaphors: A comprehensible guide to recent nature-inspired
algorithms. SN Computer Science, 1(1):49.
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