

Fourth-Generation HIV Rapid Tests: Enhanced Sensitivity and Reduced Diagnostic Window for HIV-1 Primary Infection Screening

Vincent Guiraud, Angèle Naizet, Habiba Khan, Ghizlane Benhafoun, Pierre Hernandez, Luigi Piccin, Agnès Pichon, Ay Ling Leng, Léna Yousfi, Agnès Gautheret-Dejean

▶ To cite this version:

Vincent Guiraud, Angèle Naizet, Habiba Khan, Ghizlane Benhafoun, Pierre Hernandez, et al.. Fourth-Generation HIV Rapid Tests: Enhanced Sensitivity and Reduced Diagnostic Window for HIV-1 Primary Infection Screening. Journal of Medical Virology, 2024, 96 (11), pp.e70044. 10.1002/jmv.70044 . hal-04764051

HAL Id: hal-04764051 https://hal.sorbonne-universite.fr/hal-04764051v1

Submitted on 3 Nov 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

1 Fourth-Generation HIV Rapid Tests: Enhanced Sensitivity and Reduced Diagnostic

2 Window for HIV-1 Primary Infection Screening

- 3 Vincent Guiraud ^{a*}, Angèle Naizet ^a, Habiba Khan ^a, Ghizlane Benhafoun ^a, Pierre Hernandez ^a, Luigi
- 4 Piccin^a, Agnès Pichon^a, Ay Ling Leng^a, Léna Yousfi^a, Agnès Gautheret-Dejean^{a,b}
- ³ Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP,
- 6 Hôpitaux Universitaires Pitié Salpêtrière Charles Foix, Laboratoire de Virologie, F-75013 Paris,
- 7 France
- 8 ^bUniversité Paris cité, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France
- 9 * Corresponding author, E-mail: Vincent.guiraud@aphp.fr

10 Fundings

- 11 This work was supported in part by the ANRS-MIE (Agence Nationale de Recherches sur le SIDA et les
- 12 hépatites virales-Maladies Infectieuses Emergentes) (Medical and Pharmacological ANRS-MIE
- 13 Network), the Groupe Pasteur Mutualité and the Adebiopharm ER28 association

14 Declaration of Competing Interests

- 15 The authors declare that they have no competing financial interests or personal relationships that
- 16 could have influenced the work reported in this paper.

17 Acknowledgments

- 18 The authors thanks Abbott and Prodiag for providing a part of the kits used in this study for free.
- 19 Abbott and Prodiag had no part on study design, data collection, data analyses, data interpretation,
- 20 manuscript writing nor decision to submit to publication.

21

22 Word count: Abstract 219, Text 2187

23 Abstract

Introduction: As most HIV rapid tests (HRT) detect only HIV-1/2 antibodies, their performance during primary HIV infection is poor. Determine[™] HIV Early detect (Abbott) (Determine) is the only HRT with a HIV-1 p24-antigen detection, but the impact of this addition in shortening diagnostic window remains unclear.

28 **Methods:** A total of 183 HIV-1 primary infection samples were tested using the HRTs Determine and 29 ONE STEP anti-HIV (1&2) Test (InTec Products) (One-Step). The pre-seroconversion subgroup was 30 defined as p24-antigen positivity without Western blot nor Liaison XL (4th generation enzyme 31 immunoassaywith distinct signal for p24-antigen and HIV-1 antibody) HIV-1 antibodies.

Results: Global sensitivity (95%Cl) was 95% (91-97) for Determine vs 80% (74-85%) for One-Step (difference p=1.38e-06). Pre-seroconversion subgroup sensitivity was lower, at 71.9 (54.6-84.4%) for Determine and 9.7% (3.3-24.9%) for One-Step. Among the 45 samples with an HIV-1 infection date, no HRT was reactive up to two weeks. Between two and three weeks, Determine sensitivity was 78% (45-95%) vs 56% (27-81%) for One-Step. From three weeks to one month Determine sensitivity was 90% (62-98%) and One-Step 45% (21-72%). The last negative sample occurred at three weeks for Determine vs 70-90 days for One-Step.

Conclusion: HRT with p24-antigen detection significantly shortens diagnostic window from
 approximatively three months to one month. HRTs should be used with caution in the first month
 after HIV infection.

42

- 43
- 44

45 Keywords: Determine Combo; One-Step; HIV primary infection; sensitivity; HIV rapid test; Diagnostic
46 window

47 Introduction

Since the release of the first FDA-approved HIV screening assay in 1985, four generations have been developed, each associated with a technical breakthrough [1]. The 1st generation was based on virusinfected cells. The second and third relied on recombinant antigens and synthetic peptides, improving both sensitivity and specificity [2]. Finally, the 4th generation introduced the detection of HIV-1 p24-antigen, which shortened the diagnostic window from 3-6 weeks to around 2 weeks postinfection [3–7].

As most HIV rapid tests (HRTs) are considered 3rd generation assays, they perform poorly in a primary HIV-1 infection setting, with sensitivities as low as 70% [8,9]. Determine[™] HIV Early detect (Determine), the first FDA-approved 4th generation HRT, was designed to address this issue, with the independent detection of p24-antigen and HIV-antibodies. However, there have been few studies with limited sample collections performed regarding its sensitivity in this context [10–13], and most of them have been conducted on US-based samples, which may limit their applicability to HIV-1 subtype-B samples [14].

61 Recently, the development of Pre-exposure Prophylaxis (PrEP) has raised a new interest in the 62 relevance of HRTs during HIV-1 primary infection, as PrEP associated HIV diagnosis may rely mostly 63 on serology, even for non-TDF/FTC PrEP [15,16].

The objective of this study was to compare sensitivity and diagnostic windows of the only FDAapproved 4th generation HRT Determine with a 3rd generation HRT, ONE STEP anti-HIV (1&2) Test (InTec Products) (One-Step).

67 Methods

Sample collection. Primary HIV-1 infection samples were collected as part of the routine activities of
 the Virology laboratory of the Pitié Salpêtrière Hospital (Paris, France). HIV screening was performed
 using two enzyme immunoassays: Alinity I HIV Ag/Ab Combo assay (Abbott, Rungis, France) and, in

71 case of positivity, Liaison XL Murex HIV Ag/Ab (DiaSorin, Antony, France). The Western blot New Lav 72 Blot I (Bio-Rad laboratories, Marnes-la-Coquette, France) was used as a confirmatory assay. HIV-1 73 viral load was assessed using Cobas HIV-1 (Roche Diagnostics, Manheim Germany) and quantitation 74 of p24-antigen using the enzyme immunoassay Vidas HIV p24 II (BioMerieux, Marcy l'Etoile, France) 75 (Vidas). Viral loads, subtypes and recombinant forms of HIV-1 were assessed as previously described 76 [17,18]. HIV primary infection was classified into three subgroups based on a simplified Fiebig staging 77 [5]. First, the pre-seroconversion subgroup, defined as positive p24-antigen on Vidas or Liaison XL 78 with negative Western blot and negative antibody S/CO signal on Liaison XL, or positive HIV-1 RNA 79 and negative EIA (Stage Fiebig I). Second, an early-seroconversion group, defined by a positive p24antigen (Liaison XL or Vidas) with a Western blot pattern compatible with HIV-1 primary infection 80 81 and Liaison XL positive for HIV antibodies [19]. Lasty, the seroconversion subgroup, defined by a 82 negative p24-antigen with a HIV-1 primary infection compatible Western blot and Liaison XL positive 83 for HIV antibodies. HIV-1 primary infection-compatible Western blots were defined according to 84 Fiebig's criteria as follows: they consistently presented as incomplete Western blots, either showing 85 only one band among p24, gp41, or gp120/160, or showing at least two bands from the same set (p24, gp41, gp120/160)[20-22]. 86

Presumptive dates of HIV-1 infection and prior PrEP use were collected from medical records.
Samples were stored at -20°C prior to use.

Samples processing. Samples were analyzed within the same freeze-thaw cycle using the 4th generation HIV-screening Determine[™] HIV Early detect (Abbott, Rungis, France) (Determine) and the 3rd generation HIV-screening ONE STEP anti-HIV (1&2) (InTec Products, Xiamen, China) (One-Step). Briefly, both tests are immunochromatography assays. HIV-specific antibody detection is based on gp41 and gp36 recombinant antigens for both assays, combined with a synthetic peptide of the gp36 for One-Step [23]. Samples were processed according to the respective manufacturer's guidelines, with results read by two unblinded operators after 40 minutes for Determine and 20 minutes for

96 One-Step. All suspected negative or trace test lines (faint or barely visible line) were adjudicated by a
97 third, blinded operator. Samples with an invalid result were repeated once.

98 **Statistical analysis.** Statistical analyses and figures were performed using R (R Foundation for 99 Statistical Computing) or Graphpad Prism (GraphPad Software, Inc). Univariate analyses were 100 performed using Wilcoxon rank sum test for continuous variables and McNemar test for categorical 101 variables, with p<0.05 considered to be statistically significant. Confidence intervals were calculated 102 using Wilson's confidence interval for proportions. We determined a priori that considering a 90% 103 sensitivity for each test, 180 samples would allow a clinically relevant 4% accuracy.

104

105 Ethics. This work was approved by the French Infectious Disease Research Ethics Board
106 (IRB00011642), no. 2024-0107.

107 Results

108 A total of 183 samples were included in this study. HIV-1 genetic diversity was relatively high, with 109 approximatively 33% of HIV-1 subtype B, 18% CRF02_AG and 33% of other subtypes and circulating 110 recombinant forms (Figure 1). One pre-seroconversion sample was repeatedly invalid by One-Step 111 and was excluded from further analysis for this assay. The overall sensitivity was 95.1% 95% CI [90.9, 112 97.4] for Determine and 80.2% 95% CI [73.8, 85.4] for One-Step. As a consequence, Determine had a 113 significantly higher sensitivity (p = 1.38e-06, using McNemar Test) compared to One-Step for HIV 114 primary infection screening. As expected, there was an upward trend in sensitivity from pre-115 seroconversion samples, with a 71.9% 95% CI [54.6, 84.4] and 9.7% 95% CI [3.3, 24.9] sensitivities for 116 Determine (n=32) and One-Step (n=31), respectively, to 100% 95% CI [95.5, 100] and 92.7% 95% CI 117 [84.9, 96.6] for the early-seroconversion subgroup (n=82), and to 100% 95% CI [94.8, 100] and 97.1% 118 95% CI [90.2, 99.2] for the seroconversion subgroup (n=69). The results are summarized Figure 2A. 119 Notably, Determine performed significantly better in both pre (p = 8.57e-05) and early (p = 0.041) 120 seroconversion subgroups. The proportion of reactive results with a unique trace line (either Ag or Ab for Determine) was 12.5% (4/32) and 6.4% (2/31) for Determine and One-Step, respectively, in the pre-seroconversion subgroup. These proportions were stable at 6.1% (5/82) and 9.8% (8/82) in the early-seroconversion subgroup, but lower at 0% (0/69) and 1.4% (1/69) for the seroconversion subgroup.

Of note, the results for confirmed non-subtype-B samples were only remarkably consistent with overall results. For the pre-seroconversion subgroup, Determine had a sensitivity of 66.7% 95% CI [47.4, 82.8] and One-Step a 9.5% 95% CI [2.7, 28.9], which increased to 100% 95% CI [90.8, 100] (Determine) and 92.1% [79.2, 97.3] (One-Step) for the early-seroconversion subgroup, and to 100% 95% CI [90.1, 100] (Determine) and 94.3% [81.4, 98.4] (One-Step) for the seroconversion subgroup.

130 Estimated dates of infection were available for 45 (24%) patients (figure 2B). During the first two 131 weeks after infection, no assay was reactive (n=2). Between 2- and 3-weeks after infection, 132 Determine accurately identified 78% 95% CI [45-94%] (n=7/9) of the positive samples, while One-133 Step identified 56% 95%CI [27-81%] (n=5/9) of them. From three weeks to one month, Determine 134 accurately identified 90% 95%CI [62-98%] of them (n=10/11), whereas One-Step identified only 45% 135 95%CI [21-72%] (5/11). Beyond a month, Determine accurately identified all of them (100% 136 sensitivity, 95%CI [86-100%], n=23/23), while One-Step was non-reactive for two samples with 137 alleged infection dates of about one month and 70-90 days, respectively (91% sensitivity 95% CI [73-138 98%], n=21/23). Overall, the last negative sample occurred at 3 weeks for Determine vs 70-90 days 139 for One-Step (Figure 2B).

Of note, six of the 183 serum samples included matched four cases of HIV infection among TDF/FTC PrEP users, in all cases due to low treatment adherence. Reported time of infection was available for two of them (three samples) and ranged from 20 to 30 days. Both rapid tests were antibody-reactive on all six serum samples.

Several reports have highlighted an elevated p24 limit of detection threshold for the Determine assay
 compared to Enzyme immunoassays (EIAs) [24,25]. In the present study, p24-antigen was assessed in

146 a quantitative arbitrary S/CO unit with Liaison XL and in pg/mL with Vidas. After excluding Vidas 147 samples above the limit of quantitation, both assays correlated ($r^2 = 0.81$, p < 0.001, Figure 3A) but 148 moderately correlated with viral loads, with a $r^2 = 0.45$ (p < 0.0001) and 0.63 (p < 0.0001) for Vidas 149 and Liaison, respectively (Figure 3 B-C). Determine p24-antigen was only reactive with highest viral 150 loads, almost consistently above 6 log copies/mL, or high p24 levels (Figure 3D, Supplementary figure 1). Determine p24-antigen median of positivity was 210.5 pg/mL (IQR [65.35; >400 pg/mL]). In 151 152 contrast to this disappointing limit of detection, both Determine and One-Step had a low limit of 153 detection for HIV antibodies, close to the Liaison XL (Supplementary figure 2). Of note, there was no 154 S/CO statistical difference between Determine and One-Step for negative, trace, low reactive and 155 reactive subgroups.

156 Discussion

Overall, this study highlights the relevance of a 4th HRT generation assay for primary HIV infection screening, with both a higher sensitivity and a shorter diagnostic window compared with a 3rd generation HRT assay, despite an elevated detection threshold for p24-antigen compared to 4th generation EIA.

161 Study comparisons of HIV sensitivity in the context of primary infection should always be treated 162 with caution. As emphasized in this study, sensitivity is strongly influenced by the proportion of the 163 pre-seroconversion subgroup and by how pre-seroconversion is defined. This definition may be 164 based solely on a negative Western blot [7,26], which has a relatively high antibody detection 165 threshold, or on a combination of a negative Western blot with a negative-antibody 4th generation 166 EIA, an assay with a low detection threshold. To our knowledge, no study has addressed the 167 sensitivity of the One-Step assay in this subgroup using this stringent criterion. However, its sensitivity is in line with previous reports from other 3rd generation rapid tests, such as the VIKIA 168 169 HIV1/2® rapid test (BioMérieux), which was non-reactive on 0% (n=2) and 15% (n=13) samples, or the 170 Autotest VIH® (AAZ-Mylan), which had a sensitivity of 0% (n=13) [27,28]. Using the other reported

definition of a negative Western blot only, 3rd generation HRTs tended to have significantly higher 171 172 sensitivities, ranging from 7% to 57% [9]. However, these promising results can be misleading, as of 173 Western-blot negative / antibody-reactive EIA samples could account for a non-negligible proportion, 174 up to 80% of the samples tested [9,29]. With a sensitivity of 71.9% for the Determine assay in the pre-seroconversion subgroup with a 4th generation EIA and/or positive NAAT as the reference assay, 175 176 our results are within the ranges of previous studies: 65% in 23 samples [30], 54% in 13 samples [28], 177 45.5% in 11 samples [11] as summarized in Figure 4. Of note, our higher sensitivity could be 178 explained by a higher proportion of RNA+/EIA- samples in other studies.

Few studies have related reactive rapid tests to the diagnostic window. Pavie et al reported a window period of at least two months for five 3rd generation rapid tests in two patients [31]. Delaney et al, using commercial seroconversion panels, estimated that the median time from HIV exposure to reactivity was around 18 days for HIV 1/2 Ag/Ab Architect combo (Abbott), a reference EIA assay, 19.2 days for Determine and 26 to 32 days for 3rd generation HRTs [7]. Although our results agree with their estimates, they warn of late false non-reactive samples, which occurred in our study about a week later for Determine and about a month for One-Step.

Conflicting results have been reported for the Determine p24-antigen sensitivity in clinical samples, 186 187 with sensitivities ranging from 23 to 91% compared with laboratory-based EIAs [10,29,30]. In the 188 present study we chose a 40-minutes reading to both maximize p24-detection and get as close as 189 possible to real-life settings, where clinicians would use the maximum incubation time to increase 190 the likelihood of detecting a primary HIV infection. Despite our attempt to optimize this parameter, 191 the p24 component was only 55% (63/114) sensitive compared to Liaison XL or Vidas, and was almost exclusively reactive at the highest viral loads or p24 titers. This disappointing result may be 192 193 due to the high HIV subtype diversity in our samples, with widely varying p24 detection limit for non-194 B subtypes, as previously described EIA limitation [32]. Thus, unlike antibody detection, which tends 195 to the limit of detection of EIA assays, further developments are needed to increase the analytical 196 sensitivity of HRT p24-antigen. Pending these developments, an alternative could be the use of a point-of-care NAAT test, which, despite a much higher cost, could be especially useful in the first two 197 weeks following a potential HIV-1 infection [33]. This study has several limitations. Sensitivity was 198 performed on thawed sera, which might lead to an overestimation compared to whole blood [31]. 199 200 As a consequence, point-of-care sensitivity might be lower than laboratory-based testing. Moreover, we used One-Step as a surrogate for all 3rd generation HIV rapid tests. We have previously reported 201 sensitivities for most CE-marked 3rd generation HRT [9] on a smaller panel of other seroconversion 202 203 samples. As Determine and One-Step were the two main HRT missing in this previous study, there 204 were selected to be included in the present study. Importantly, the One-Step sensitivity matched well with other 3rd generation HRTs, which may suggest that their lack of sensitivity in this setting is 205 206 directly related to a lack of HIV antibodies.

207 Conclusion

Despite an elevated threshold for p24antigen detection, Determine, the first 4th generation HIV rapid
 test has a higher sensitivity and a shorter diagnostic window compared to 3rd generation HIV rapid
 tests.

211 Data availability statement

The data that support the findings are available as a supplementary table.

213 Author Contribution Statement

- VG, AGD: Conceptualization, methodology, validation, data curation, formal analysis, resources,
- 215 writing -original draft and reviewing, AN: methodology, data curation. HK, GB, PH, LP, AP, ALL: Data
- 216 curation. LY: data curation, writing review and editing.

217 References

Alexander TS. Human Immunodeficiency Virus Diagnostic Testing: 30 Years of Evolution. Pasetti
 MF, editor. Clin Vaccine Immunol. **2016**; 23(4):249–253.

- Zaaijer HL, Exel-Oehlers P v., Kraaijeveld T, Altena E, Lelie PN. Early detection of antibodies to
 HIV-1 by third-generation assays. The Lancet. **1992**; 340(8822):770–772.
- Lindbäck S, Thorstensson R, Karlsson AC, et al. Diagnosis of primary HIV-1 infection and duration of follow-up after HIV exposure: AIDS. 2000; 14(15):2333–2339.
- Weber B, Mbargane Fall EH, Berger A, Doerr HW. Reduction of Diagnostic Window by New
 Fourth-Generation Human Immunodeficiency Virus Screening Assays. J Clin Microbiol. 1998;
 36(8):2235–2239.
- Fiebig EW, Wright DJ, Rawal BD, et al. Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS. 2003;
 17(13):1871–1879.
- Weber B, Gürtler L, Thorstensson R, et al. Multicenter Evaluation of a New Automated Fourth Generation Human Immunodeficiency Virus Screening Assay with a Sensitive Antigen Detection
 Module and High Specificity. J Clin Microbiol. **2002**; 40(6):1938–1946.
- Delaney KP, Hanson DL, Masciotra S, Ethridge SF, Wesolowski L, Owen SM. Time Until
 Emergence of HIV Test Reactivity Following Infection With HIV-1: Implications for Interpreting
 Test Results and Retesting After Exposure. Clin Infect Dis. 2017; 64(1):53–59.
- Adams S, Luo W, Wesolowski L, et al. Performance evaluation of the point-of-care INSTI[™] HIV 1/2 antibody test in early and established HIV infections. Journal of Clinical Virology. 2017;
 91:90–94.
- Guiraud V, Beaulieu Q, Fauchois A, et al. Rapid tests should be used with caution for HIV-1
 primary infection screening. Med Microbiol Immunol. **2024**; 213(1):10.
- Fitzgerald N, Cross M, O'Shea S, Fox J. Diagnosing acute HIV infection at point of care: a
 retrospective analysis of the sensitivity and specificity of a fourth-generation point-of-care test
 for detection of HIV core protein p24. Sex Transm Infect. 2017; 93(2):100–101.
- Mourez T, Lemée V, Delbos V, et al. HIV rapid screening tests and self-tests: Be aware of
 differences in performance and cautious of vendors. EBioMedicine. 2018; 37:382–391.
- Parker MM, Bennett SB, Sullivan TJ, et al. Performance of the Alere Determine[™] HIV-1/2 Ag/Ab
 Combo Rapid Test with algorithm-defined acute HIV-1 infection specimens. Journal of Clinical
 Virology. 2018; 104:89–91.
- Masciotra S, Luo W, Westheimer E, et al. Performance evaluation of the FDA-approved
 Determine[™] HIV-1/2 Ag/Ab Combo assay using plasma and whole blood specimens. Journal of
 Clinical Virology. 2017; 91:95–100.
- Ly TD, Ebel A, Faucher V, Fihman V, Laperche S. Could the new HIV combined p24 antigen and antibody assays replace p24 antigen specific assays? Journal of Virological Methods. 2007; 143(1):86–94.
- Raphael J. Landovitz, Emily Voldal, Brett Hanscom, Susan H. Eshleman, Estelle Piwowar Manning, Philip Sullivan, Marybeth McCauley, Lydia Soto-Torres, James F. Rooney, Alex R.
 Rinehart, Myron S. Cohen, Mina Hosseinipour, Sinead Delany-Moretlwe, Beatriz Grinsztejn.
 Site-Based HIV Testing Assay Performance for Cabotegravir and TDF-FTC PrEP Failure in HPTN
 083 [Internet]. CROI Conference on Retroviruses and Opportunistic Infections; 2024 [cited

- 2024 Sep 3]. Available from: https://www.croiconference.org/abstract/site-based-hiv-testing assay-performance-for-cabotegravir-and-tdf-ftc-prep-failure-in-hptn-083/
- Bekker L-G, Das M, Abdool Karim Q, et al. Twice-Yearly Lenacapavir or Daily F/TAF for HIV
 Prevention in Cisgender Women. N Engl J Med. **2024**; :NEJMoa2407001.
- Guiraud V, Bocobza J, Desmonet M, et al. Are Confirmatory Assays Reliable for HIV-1/HIV-2
 Infection Differentiation? A Multicenter Study. Hayden R, editor. J Clin Microbiol. 2023;
 :e00619-23.
- 18. HIV French Resistance website [Internet]. 2024 [cited 2024 Sep 3]. Available from:
 https://hivfrenchresistance.org/protocols/
- AIDS: proposed WHO criteria for interpreting western blot assays for HIV-1, HIV-2, and HTLV I/HTLV-II. Bull World Health Organ. 1991; 69(1):127–129, 131–133.
- 271 20. Profil atypique de western blot VIH-1 (New Lav Blot I) avec perte d'anticorps anti-gp120, anti-gp41 et anti-polymérase au cours d'une infection par du VIH-1 sous-type A au stade sida:
 273 Virologie. 2022; 26(3):253–255.
- Saah AJ, Farzadegan H, Fox R, et al. Detection of early antibodies in human immunodeficiency
 virus infection by enzyme-linked immunosorbent assay, Western blot, and
 radioimmunoprecipitation. J Clin Microbiol. **1987**; 25(9):1605–1610.
- Tuaillon E, Sanosyan A, Pisoni A, Liscouët J, Makinson A, Perre PVD. Staging of recent HIV-1
 infection using Geenius rapid confirmatory assay compared to INNO-LIA, New Lav and Blot 2.2
 assays. Journal of Clinical Virology. 2017; 95:47–51.
- 280 23. Guiraud V, Gauthier V, Lazga H, Leroy I, Gautheret-Dejean A. HIV rapid tests immunological
 281 internal control can be misleading. Annales Pharmaceutiques Françaises. 2024; 82(5):765–770.
- 282 24. Stone M, Bainbridge J, Sanchez AM, et al. Comparison of Detection Limits of Fourth- and Fifth 283 Generation Combination HIV Antigen-Antibody, p24 Antigen, and Viral Load Assays on Diverse
 284 HIV Isolates. Caliendo AM, editor. J Clin Microbiol. 2018; 56(8):e02045-17.
- 285 25. Agence Nationale de Sécurité du médicament et des produits de santé. Test rapide Alere HIV
 286 Combo Alere Information Recommandation ANSM [Internet]. 2018 [cited 2024 Jun 30].
 287 Available from: https://ansm.sante.fr/informations-de-securite/test-rapide-alere-hiv-combo 288 alere-information-recommandation-ansm
- Patel P, Bennett B, Sullivan T, Parker MM, Heffelfinger JD, Sullivan PS. Rapid HIV screening:
 Missed opportunities for HIV diagnosis and prevention. Journal of Clinical Virology. 2012;
 54(1):42–47.
- 292 27. Gomes C, Azevedo-Pereira JM. The performance of the VIKIA® HIV1/2 rapid test—Evaluation of
 293 the reliability and sensitivity. Journal of Virological Methods. 2011; 173(2):353–356.

Delaugerre C, Antoni G, Mahjoub N, et al. Assessment of HIV Screening Tests for Pre-Exposure
 Prophylaxis Programs. The Journal of Infectious Diseases [Internet]. 2017 [cited 2024 Jul 2]; .
 Available from: https://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jix297

- 297 29. Wratil PR, Rabenau HF, Eberle J, et al. Comparative multi-assay evaluation of Determine[™] HIV 298 1/2 Ag/Ab Combo rapid diagnostic tests in acute and chronic HIV infection. Med Microbiol
 299 Immunol. 2020; 209(2):139–150.
- 30. Van Tienen C, Rugebregt S, Scherbeijn S, Götz H, Geurts Van Kessel C. The performance of the
 Alere HIV combo point-of-care test on stored serum samples; useful for detection of early HIV-1
 infections? Sex Transm Infect. 2018; 94(5):331–333.
- 303 31. Pavie J, Rachline A, Loze B, et al. Sensitivity of Five Rapid HIV Tests on Oral Fluid or Finger-Stick
 304 Whole Blood: A Real-Time Comparison in a Healthcare Setting. Pai NP, editor. PLoS ONE. 2010;
 305 5(7):e11581.
- 306 32. Qiu X, Sokoll L, Duong Ly T, et al. An improved HIV antigen/antibody prototype assay for earlier
 307 detection of acute HIV infection. Journal of Clinical Virology. 2021; 145:105022.
- 308 33. Jordan JA, Plantier JC, Templeton K, Wu AHB. Multi-site clinical evaluation of the Xpert[®] HIV-1
 309 viral load assay. Journal of Clinical Virology. **2016**; 80:27–32.
- 34. Visseaux B, Assoumou L, Mahjoub N, et al. Surveillance of HIV-1 primary infections in France
 from 2014 to 2016: toward stable resistance, but higher diversity, clustering and virulence?
 Journal of Antimicrobial Chemotherapy. 2019; :dkz404.
- 313

Figure 1: HIV-1 subtypes and Circulating Recombinant Forms of serum samples included in this study.

- **Figure 2**: Determine and One-Step sensitivity (%) according to seroconversion subgroups (A) or time
- 331 from infection (B).
- 332
- 333

Figure 3: p24 antigen determination in serum is dependent on the assay and is poorly correlated with HIV viral loads. Correlation between Vidas HIV p24 II and Liaison XL p24 (A), between Vidas p24 antigen and Viral load (B), between Liaison XL and Viral load (C), and between Determine and Viral load (D). p24 values above limit of quantification were excluded from the figures. p24 was expressed in pg/mL for the Vidas assay, in a quantitative S/CO value for the Liaison XL assay, and as a visual intensity for Determine. Viral loads are expressed as log(copy/mL). Comparisons were performed using Wilcoxon rank sum (D), and Spearman coefficient was used for correlation (A).

Figure 4: Comparison of pre-seroconversion subgroup sensitivity of the Determine assay withprevious studies.

364 Supplementary Figure 1: Determine p24 antigen band intensity according to p24 quantitation in 365 serum using Vidas (A) or Liaison XL (B). Band intensities were defined as follow. Reactive: Test line at 366 least as visible as the Control line, Weakly reactive: Test line less reactive than the control line but

367 positive without doubt. Trace: barely visible Test line. Negative: no Test line.

368

Supplementary Figure 2: Determine (antibody) and One-Step Test line visual intensities according to
 Liaison XL S/CO HIV-antibody ratio. Numbers in the figure represent p-values, assessed using
 Wilcoxon-rank sum.