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Abstract

Solving parametric partial differential equations (PDEs) presents significant chal-
lenges for data-driven methods due to the sensitivity of spatio-temporal dynamics
to variations in PDE parameters. Machine learning approaches often struggle to
capture this variability. To address this, data-driven approaches learn parametric
PDEs by sampling a very large variety of trajectories with varying PDE parameters.
We first show that incorporating conditioning mechanisms for learning parametric
PDEs is essential and that among them, adaptive conditioning, allows stronger
generalization. As existing adaptive conditioning methods do not scale well with
respect to the number of parameters to adapt in the neural solver, we propose
GEPS, a simple adaptation mechanism to boost GEneralization in Pde Solvers via
a first-order optimization and low-rank rapid adaptation of a small set of context
parameters. We demonstrate the versatility of our approach for both fully data-
driven and for physics-aware neural solvers. Validation performed on a whole
range of spatio-temporal forecasting problems demonstrates excellent performance
for generalizing to unseen conditions including initial conditions, PDE coefficients,
forcing terms and solution domain. Project page: https://geps-project.github.io/

1 Introduction

Solving parametric partial differential equations, i.e. PDE in which certain parameters—such as initial
and boundary conditions, coefficients, or forcing terms—can vary, is a crucial task in scientific and
engineering disciplines, as it plays a central role in enhancing our ability to model and control systems,
quantify uncertainties, and predict future events (Cohen & Devore, 2015). Neural networks (NNs) are
increasingly employed as surrogate models for solving PDEs by approximating their solutions (Long
et al., 2018; Lu et al., 2021; Li et al., 2021). A primary challenge with these data-driven solvers
is their ability to generalize across varying contexts of the physical phenomena. This is especially
pronounced for dynamical systems, which can exhibit significantly different behaviors when subject
to small changes in PDE parameters.

The usual approach for solving a parametric PDE with neural networks involves sampling instances
from the PDE parameter distribution (e.g., the PDE coefficients), and then sampling trajectories
for each instance of the underlying PDE (Takamoto et al., 2022). The training set thus consists of
multiple trajectories per parameter instance, with the objective of generalizing to new instances. This
approach aligns with the classical empirical risk minimization (ERM) framework: it assumes that
the training dataset is large enough to represent the distribution of the dynamical system behaviors
and that this distribution is i.i.d. (Bodnar et al., 2024). However, given the complexity of dynamical
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systems and the variety of PDE terms and parameters, these assumptions are rarely met in practice.
To address this difficulty, some methods relax these assumptions. For instance, certain approaches
embed the PDE parameters as inputs, aiming to generalize to new dynamics (Brandstetter et al., 2023;
Takamoto et al., 2023). While this can alleviate the issue, it does not facilitate generalization beyond
the training distribution. Other approaches focus on few-shot settings, where a pre-trained model
is fine-tuned for each new context (Subramanian et al., 2023; Herde et al., 2024). As we will see,
fine-tuning NN solvers typically requires a substantial amount of data, when it is often scarce in
practice. In general, given the complexity of physical phenomena, it is often unrealistic to expect a
sample distribution that is sufficiently representative to enable reliable generalization to new instances
of the same phenomenon.

Our claim is that neural PDE solvers should be explicitly trained with an adaptive conditioning
mechanism to enable generalization to new parameter instances. For practical applications, this
mechanism should condition the network on new dynamics using only a small amount of data. We
assume access to several environments governed by the same general PDE, each defined by a unique
set of parameters, from which trajectories can be sampled. This assumption aligns with approaches
in multi-task learning (Yin et al., 2022) and meta-learning (Wang et al., 2022; Kirchmeyer et al.,
2022), where network weights are conditioned on a context that encapsulates environment-specific
information. Although various adaptive conditioning mechanisms have been proposed (Finn et al.,
2017; Kirchmeyer et al., 2022; Wang et al., 2022), they are often limited to specific neural network
architectures (Karimi Mahabadi et al., 2021) and struggle to scale effectively with data size or with
the number of environments. We then propose an adaptation method that can handle a diversity of
physical dynamics, is compatible with various NN backbones, and scales effectively with data size
and the number of environments.

After introducing the problem in Section 2, we emphasize in Section 3 the need for adaptive
conditioning to solve parametric PDEs and illustrate the limitations of traditional ERM based
approaches. We then introduce GEPS, a low-rank 1st-order gradient-efficient adaptation mechanism
for learning parametric PDE solvers. At inference, GEPS adapts to a new unseen environment, by
learning a compact context vector ce. This approach is instanciated in two representative settings: (i)
purely agnostic approaches, where the solver is trained without any prior physical knowledge, and
(ii) physics-aware approaches that combine differentiable numerical solvers with NN components in
a hybrid framework. Finally section 5 compares GEPS with alternative adaptation baselines. Our
contributions are as follows:

• We demonstrate on example PDEs that adaptive conditioning generalizes to multiple and
new contexts, while classical ERM approaches fail to handle parametric PDEs.

• We propose an effective and scalable adaptive conditioning framework for learning neural
solvers. It is based on a first-order meta-learning approach and leverages low-rank adaptation,
enabling adaptation to unseen environments in a few shot context. This formulation is
versatile enough to encompass both pure data-driven and physics-aware models.

• We provide experimental evidence of the performance and versatility of the approach on
representative families of parametric PDEs, incorporating changes in initial conditions, PDE
coefficients, forcing terms, and domain definitions, thereby covering both in-distribution
and out-of-distribution scenarios.

2 Problem Description

We consider parametric time-dependent PDEs and aim to train models that generalize across a wide
range of the PDE parameters, including initial conditions, boundary conditions, coefficient parameters,
and forcing terms. For a given PDE, an environment e is an instance of the PDE characterized by
specific parameter values. We assume that all environments share common global features, such
as the general form of the dynamics, while each environment e exhibits some unique and distinct
behaviors. A solution ue(x, t) of the PDE in environment e satisfies the PDE:

∂ue(x, t)

∂t
= F e

(
ue,

∂ue

∂x
,
∂2ue

∂x2
, . . . ,µ,f

)
, ∀x ∈ Ω,∀t ∈ (0, T ] (1)

B(ue)(x, t) = 0, ∀x ∈ ∂Ω,∀t ∈ (0, T ] (2)
ue(x, 0) = ue

0, ∀x ∈ Ω (3)
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where F e is a function of the solution ue, its spatial derivatives, the PDE coefficients µ and forcing
terms f(x, t); B is the boundary condition (e.g., spatial periodicity, Dirichlet, or Neumann) that must
be satisfied at the domain boundary ∂Ω and u0 is the initial condition (IC) sampled with a probability
measure u0 ∼ p0(.). Environment e is thus defined by a set of parameters ξ = {B,p0,µ,f}.
The targeted task is dynamics forecasting, where a neural solver is auto-regressively rolled out on
a temporal horizon t ∈ [0, T ]. The goal is to approximate the evolution operator F e with a neural
solver Gθ(ue(x, t)) parametrized by θ ∈ Rdθ , capable of generalizing to various PDE instances ξ,
both within (in-distribution) and outside (out-of-distribution) the training parameter distribution.

Therefore, we posit the observation of a set of environments e, each characterized by its specific
PDE parameters ξ; trajectories are sampled for each environment, each characterized by an IC ue

0.
We define Etr as the set of environments used to train our model. In each training environment,
Ntr trajectories are available De

tr = {ui(x, t)}Ntr
i=1. For the in-distribution evaluation, the model has

already learned conditioning context parameters (described later in section 4.1) for each training
environment and is simply tested on new trajectories from the same environments using the appropriate
context. For out-of-distribution, the model is evaluated on trajectories from new environments from
an evaluation set Eev and is adapted. We then assume access to Nad trajectories De

ev = {ui(x, t)}Nad
i=1

from the new environments to adapt the network. In our experiments we consider a scarce data,
few-shot scenario where Nad = 1. After adaptation, we test our model on new unseen trajectories
from these evaluation environments Eev. This setting is illustrated in Figure 1.

Figure 1: Multi-environment setup for the Kolmogorov PDE. The model is trained on multiple
environments with several trajectories per environment (left). At inference, for a new unseen
environment it is adapted on one trajectory (right).

Before introducing our method, we first aim to motivate the need for adaptive conditioning in learning
to solve parametric PDEs, while illustrating the limitations of the classical ERM setting.

3 Motivations: ERM versus adaptive approaches for parametric PDEs

The classical ERM approach learns a single model on the data distribution, assuming that the training
dataset is large enough to approximate the true data distribution. In practice, data acquisition is often
costly and even simple physical systems can demonstrate a large variety of behaviors due to changes
in the parameters. This may lead to poor generalization especially with scarce data.

To illustrate this, we will compare the performance and behavior of classical ERM approaches and
of our adaptive conditioning method for solving parametric PDEs, on two example datasets: the
2D Gray-Scott and the 1D Burgers equations. In these experiments, we generate for each PDE a
series of environments by sampling only the physical coefficients of the PDE ξ = {µ} (more details
in Appendix B). We consider in-distribution generalization and out-of-distribution generalization
(respectively in sections 3.1 and 3.2, both for an initial value problem (IVP), a common setting where
the initial condition u0 corresponds to the system state at one time t0 only. We then consider an
alternative setting, where the neural solver is conditioned over a sequence of past states instead of
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one state only (section 3.3), this is denoted as "temporal conditioning". For all experiments, reported
results correspond to the averaged relative L2 loss on 32 unseen trajectories per environment.

3.1 In-distribution generalization for IVP: classical vs. adaptive conditioning approaches

Let us first compare adaptive conditioning and ERM approaches, for in-distribution evaluation, when
scaling the number of training environments and trajectories. The models are trained on a range of
environments - corresponding to different coefficients of the underlying PDE - and evaluated on the
same environments with different initial conditions. Here GEPS is implemented with a classical
CNN, while the tests for ERM are performed with four different backbones: the same CNN as used
for GEPS but without adaptive conditioning, FNO (Li et al., 2021), MP-PDE (Brandstetter et al.,
2023) and Transolver (Wu et al., 2024). Additionally, we also compared with a reference foundation
model "Poseidon" (Herde et al., 2024). This model has been pre-trained on a variety of IVP PDE
equations and is fine-tuned on our data. Poseidon being trained on 2D data is thus evaluated only for
the Gray-Scott equation. For all the baselines, we consider the classical IVP setting where only one
initial state is given as input.

Scaling w.r.t. the number of environments. We first examine how the number of training
environments affects generalization to unseen trajectories within the same range of environments. The
models are trained on 4 and 1024 environments with 4 trajectories per environments corresponding
to different initial conditions. The evaluation is performed on 32 new trajectories from the same
set of environments. As shown in Figure 2, Transolver, FNO, MP-PDE, and CNN fail to capture
the diversity of behaviors and their performance stagnate when increasing the number of training
environments. Non-conditioned methods are not able to capture the diversity of behaviors for several
environments, regardless of the backbone used, when using only an initial state as input. Poseidon
on its side behaves much better on Gray-Scott and is able to capture this diversity of dynamics.
Our adaptive conditioning approach (GEPS on the figures) performs significantly better than all the
baselines, outperforming also the large Poseidon foundation model. We can also observe that GEPS
benefits from being trained on a large amounts of environments, as its generalization performance
improves with the number of training environments.

Figure 2: Comparison of ERM approaches (shades of blue) and Poseidon foundation model (green)
with our framework GEPS (red) when increasing the number of training environments.

Scaling w.r.t. the number of trajectories per training environment. For this second series of
experiments, we fix the number of environments at 4 and vary the number of training trajectories per
environment from 4 up to 1024. Figure 3 shows the same behavior as for the previous experiments:
ERM approaches rapidly reach a plateau and do not capture the variety of behaviors, even with a large
number of trajectories, while GEPS scales well and improves with the number of training samples
per environment. We additionally make a comparison with a CNN model trained and evaluated
separately for each environment. We plot the average of the models’ scores (indicated as "average"
on the figure). This is an upper-bound of the performance that could be obtained with ERM models
trained from scratch (no pretraining as for Poseidon). Note that this requires as many models as
environments and is not scalable. While this performs significantly better than training over all the
environments, GEPS matches or surpasses this approach.
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Figure 3: Comparison of ERM approaches (shades of blue) and Poseidon (green) with our framework
GEPS (red) when increasing the number of trajectories per environment.

The experiments highlight that non-conditioned ERM approaches are unable to learn multi-
environments datasets for solving IVP, whereas adaptive conditioning approaches like GEPS exhibit
strong generalization performance, scaling with the number of training trajectories and environments.

3.2 Out-of-distribution generalization to new environments for IVP: classical vs. adaptive
conditioning approaches

Let us now consider the out-of-distribution behavior of the two approaches. The models are trained
on a sample of the environments from Etr and their associated trajectories, in the same condition as
for section 3.1. They are then evaluated on the trajectories of new environments. We report in figure
4 the out-of-distribution generalization performance of ERM methods and GEPS, for the Gray-Scott
and Burgers equations, when pretrained on 4 (left) and 1024 (right) environments, with 4 trajectories
per environment. For the test, one considers 4 new environments and evaluate on 32 trajectories per
environment. Adaptation (GEPS) or fine tuning (baselines) is performed on one trajectory of a new
environment. As for the baselines, we consider CNN and Transolver, plus the Poseidon foundation
model for the 2-D Gray-Scott equation only. As above, one may observe a large performance
gap between the non adaptive approaches and the adaptive GEPS. This supports our claim on the
limitations of pure ERM based approaches to generalize to unseen dynamics configurations and new
environments.

Figure 4: Out-distribution generalization on 4 new environments using one trajectory per environment
for fine-tuning or adaptation. Models have either been pretrained on 4 environments (left column) or
1024 environments (right columns). Metric is Relative L2 loss.

3.3 In and out-of-distribution generalization performance with temporal conditioning

So far we have considered the classical IVP setting with only one initial state provided at time t0. We
consider now the situation where the model has access at t0 to an history of past states and not to a
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single initial state only. This is a common setting for learning PDE solvers: this allows the model
to infer information on the dynamics and represents a more favorable case for the ERM baselines.
We report in table 1 the in-distribution (In-d) and out-distribution (Out-d) distribution performance
of ERM methods and GEPS, for Burgers and Gray-Scott PDEs. We did not consider the Poseidon
(Herde et al., 2024) model that has been pre-trained only for one initial state IVPs. For in-distribution
results, all methods are trained on 4 environments and evaluated on 32 new trajectories from the same
environments. For out-of-distribution, adaptation (GEPS) and fine-tuning (baselines) is done on 1
trajectory per environment; 4 new environments are sampled and evaluation is performed on 32 new
trajectories. We consider three different history sizes: 3, 5 and 10. Considering past history helps
improve all the models. GEPS and the baselines show close performance for in-distribution, while
GEPS is an order of magnitude better than the baselines for out-of-distribution.

Table 1: In-distribution and out-distribution results comparing different history window sizes. Metric
is the Relative L2 loss.

History → 3 5 10

Method In-d Out-d In-d Out-d In-d Out-d

Burgers equation
Transolver 1.95e-1 3.22e-1 1.12e-1 3.03e-1 5.64e-2 2.49e-1
FNO 4.28e-1 7.68e-1 3.07e-1 6.43e-1 6.13e-2 2.55e-1
CNN 1.84e-1 4.44e-1 1.62e-1 3.34e-1 3.16e-2 6.32e-2
GEPS 1.25e-2 1.63e-2 8.61e-3 1.04e-3 6.14e-3 8.73e-3

Gray-Scott equation
Transolver 1.82e-1 4.33e-1 9.88e-2 3.90e-1 9.57e-2 3.60e-1
FNO 1.86e-1 4.67e-1 1.76e-1 3.87e-1 1.93e-1 4.03e-1
CNN 7.12e-2 3.51e-1 5.96e-2 2.18e-1 6.54e-2 2.23e-1
GEPS 4.02e-2 5.78e-2 3.04e-2 5.02e-2 3.82e-2 5.14e-2

4 GEPS method

We introduce our framework for learning to adapt neural PDE solvers to unseen environments. It
leverages a 1st order adaptation rule and low-rank adaptation to a new PDE instance. We consider
two settings commonly used for learning the PDE solvers. The first one leverages pure agnostic
data-driven approaches, as already considered in section 3. The second one leverages incomplete
physics priors and considers hybrid approaches that complement differentiable numerical solvers
with deep learning components. The general framework is illustrated in Figure 5.

Figure 5: Our adaptation framework for our data-driven model. Block in blue refers to the data-driven
module Ga. Blocks Li in pink refer to the trainable modules. The green block describes the adaptation
mechanism for the data-driven component, with WLi

the weights of layer Li. Context vector ce
conditions all the layers WLi

.

4.1 Adaptation rule

We aim to train a model Gθ to forecast dynamical systems coming from multiple environments. We
perform adaptation in the parameter-space: some parameters are shared across all the environments
while others are environment-specific. Training consists in estimating the shared parameters and
learning to condition the model on environment specific parameters. At test time, the shared
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parameters are frozen and adaptation is performed on the environment specific parameters only. This
setting is common to adaptation based approaches (Zintgraf et al., 2019; Kirchmeyer et al., 2022),
however most of them do not scale to large problems while GEPS introduces an efficient scalable
adaptation mechanism.

Formulation We adapt the parameters of our model Gθ using a low-rank formulation. Most deep-
learning architectures can be decomposed into modules or layers - in our experiments we use MLPs,
CNNs and FNOs. For simplification let us then consider a layer Li from Gθ parameterized by a
weight matrix WLi

∈ Rdin×dout . Adaptation to an environment is performed through a low-rank
matrix ∆W e

Li
= ALidiag(ce)BLi , where ALi ∈ Rdin×r,BLi ∈ Rr×dout , ce ∈ Rr. The weights

of layer Li with the adaptation mechanism are then:

W e
Li

= WLi +ALidiag(ce)BLi (4)

where diag(ce) is a diagonal matrix capturing environment specific information and ALi
,BLi

,WLi

are shared parameter matrices across all environments. Ideally, we want ce to capture the number of
degrees of variations for our environments. If for example our model Gθ is an MLP, the adaptation
mechanism for a linear layer Li corresponds to:

ze
i = (WLi

+ALi
diag(ce)BLi

)ze
i−1 + b1Li

+ b2Li
ce (5)

where WLi
,ALi

,BLi
, b1Li

, b2Li
are the parameters of layer Li, shared across all environments. Only

ce is specific to each environment, but shared across all the layers of the network (cf Fig. 5).

Considering a low-rank adaption rule is popular in NLP, where large pre-trained models are adapted
to new tasks by learning a low-rank matrix ∆W = AB added to the frozen weights W of the
pre-trained model (Hu et al., 2022). Our approach differs in two ways from this setting: (i) the
model is learned from scratch without pretraining, i.e., we learn parameters {W ,A,B, ce} jointly,
(ii) during adaptation, we can adapt to new environments e ∈ Eev by optimizing only the context
vector ce, where it is initialized as ce = c̄tr, with c̄tr the averaged value of contexts learned during
training. We experimentally show in Appendix D.3 that the classical Gaussian parameter initialization
proposed in LoRA is inefficient in our context.

4.2 Two-step training procedure

This meta-learning framework operates in two steps: Training and Adaptation at inference. The goal
is to learn an initial starting point during the training stage using a sample of environments, allowing
adaptation to a new environment by adjusting a small subset of parameters based on a limited data
sample from the new environment. Unlike many meta-learning gradient based approaches, GEPS
does not involve an inner loop and is a 1st order method. During the adaptation phase, all the
parameters except the context parameters ce are frozen and ce is learned from the new environment
sample. This approach ensures rapid adaptation by keeping ce low-dimensional. For simplicity, we
refer to parameters shared across environments as θs and parameters specific to each environment as
δθe ≜ ce, and denote θe = {θs, δθe}. The optimization problem can thus be formulated as follows:

min
θs,δθe

∑
De

tr∈Etr

L({θs, δθe},De
tr)

subject to δθe = argmin
δθe

∑
De

ev∈Eev

L({θs, δθe},De
ev)

(6)

We separate training and adaptation steps into a training and an adaptation loop as described in the
pseudo-code Algorithm 1.

4.3 Hybrid formulation for learning dynamics

We consider here an alternative problem to the above agnostic formulation. We assume that part of
the physics is modeled through a PDE equation and shall be complemented with a statistical module.
This is a common situation in many domains where prior physical knowledge is available, but only in
an incomplete form. We follow the formulation in Yin et al. (2021) were starting from a complete
PDE, we assume that part of the equation is known and will be modeled with a differentiable solver,
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Algorithm 1: Training and adaptation for our method
Training:
Input: {De

tr}e∈Etr with #De
tr = Ntr;

Choose proper initialization for θs. Assign ce ← 0, θe = {θs, ce}
while no convergence do

Sample De
tr from

⋃
e∈Etr
De

tr
θe ← θe − η∇θeL({θs, ce},De

tr)
end
Adaptation:
Input: {De

ev}e∈Eev with #De
ev = 1;

Load pre-trained weights θs. Assign ce ← c̄tr
while no convergence do

Sample De
ev from

⋃
e∈Eev

De
ev

ce ← ce − η∇ceL({θs, ce},De
ev)

end

while it is complemented with a deep learning component for modeling the unknown part. We also
assume that the coefficients of the known part of the PDE are unknown and shall be estimated. We
thus aim at solving both a direct problem (the NN parameters) and an inverse problem (the PDE
coefficients of the known PDE part). We consider dynamics for a given environment of the form:

∂ue(x, t)

∂t
= H(F e (u(x, t), . . .) , Re (u(x, t), . . .)), ∀x ∈ Ω,∀t ∈ (0, T ] (7)

F e and Re respectively represent the known and unknown physics of environment e and H is a
function combining the two components which is unknown in practice. As for Gθ, our model of the
evolution operator for this physics-aware setting, we will use a simple combination:

Gθ = Ga ◦ Gp (8)

where Gp encodes the physical knowledge and corresponds to the known part of the PDE physical
model and Ga is the data-driven model term complementing Gp. With this model, we use an auto-
regressive formulation to generate the full trajectory, using a Neural ODE (Chen et al., 2018) as
time-stepper for predicting the state ut+τ as ut+τ = u0 +

∫ τ

t0
Gθ(u(τ))dτ , as illustrated in Figure 15.

The model is trained directly from trajectories simulated with the full PDE (known + unknown PDE
components) using the MSE loss De

tr (more details in Appendix C):

L(θ,De
tr) =

N∑
j=1

∫
t∈I,x∈Ω

∥(Gθ(uj(x, t))−H(F e (x, t,uj(x, t)) , R
e (x, t,uj(x, t)))∥22dxdt (9)

The NN component is adapted as in section 4.1 through a ce parameter context vector. For estimating
the PDE coefficients, we considered two alternatives. One consists in using the learned code ce for
adapting the physical parameters θep = θp +Wpc

e, where θp,Wp are shared parameters across all
environments. The second one directly learns the parameters θep for each environment by gradient
descent on the loss function. In the first approach, only context vectors ce are learned while in
the second approach, ce and θep are learned jointly during adaptation. The performance of the two
methods are similar. For the experiments, we evaluated both and used the better-performing one.

5 Experiments

5.1 Dynamical systems

We performed experiments on four dynamical systems, including one ODE and 3 PDEs. The ODE
models the motion of a pendulum, which can be subject to a driving or damping term. We consider
a Large Eddy Simulation (LES) version of the Burgers equation, a common equation used in CFD
where discontinuities corresponding to shock waves appear (Basdevant et al., 1986). We additionally
study two PDEs on a 2D spatial domain: Gray-Scott (Pearson, 1993), a reaction-diffusion system
with complex spatio-temporal patterns and a LES version of the Kolmogorov flow, a 2D turbulence
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equation for incompressible flows. For the pure data-driven approaches, we make no prior assumption
on the underlying physics, while for the physics-aware hybrid modeling problem, we assume that the
physical equation is partially known and that the deep learning component targets the modeling of
the unknown terms (details on the known/unknown terms for each equation are provided in Appendix
B). The setting is the classical IVP formulation when only one initial state ue

0 is provided.

5.2 Evaluation Setting

While in section 3 we compared GEPS with baselines ERM approaches and with a foundation model,
our objective here is to assess the performance of GEPS w.r.t. alternative adaptation based approaches.
We evaluate the model performance on two key aspects. • In-distribution generalization: the model
capability to predict trajectories defined by unseen ICs on all training environments e ∈ Etr, referred
as In-d. • Out-of-distribution generalization: the model ability to adapt to a new environment
e ∈ Eev by predicting trajectories defined by unseen ICs, referred as Out-d. Each environment e ∈ E
is defined by changes in system parameters, forcing terms or domain definition. dp represents the
degrees of variations used to define an environment for each PDE equation; dp = 4 for the pendulum
equation, dp = 3 for the 1D Burgers, dp = 2 and dp = 3 for the Gray-Scott and the Kolmogorov
flow equation respectively (more details in Table 4 in Appendix B). For each dataset, we collect
Ntr trajectories per training environment. For adaptation, we consider Nad = 1 trajectory per new
environment in Eev to infer the context vector ce. Evaluation is performed on 32 new test trajectories
per environment. We report in Table 2 the relative MSE: 1

N

∑N
i=1

∥yi−ŷi∥2
2

∥yi∥2
2

.

5.3 Generalization results

Implementation We used a standard MLP for the Pendulum equation, a ConvNet for GS and
Burgers equations and FNO for the vorticity equation. All activation functions are Swish functions.
We use an Adam optimizer over all datasets. Contrary to Section 3, we perform time-integration
with a NeuralODE (Chen, 2018) with a RK4 solver, as it was done for other multi-environments
frameworks for physical systems (Yin et al., 2022; Kirchmeyer et al., 2022). Architectures and
training details are provided in Appendix E.

Baselines As baselines, for the pure data-driven problem, we consider four families of multi-
environment approaches. The first one consists in gradient-based meta-learning methods with CAVIA
(Zintgraf et al., 2019) and FOCA (Park et al., 2023). The second one is a multi-task learning method
for dynamical systems: LEADS (Yin et al., 2022). The third one is a hyper-network-based meta-
learning method which is currently SOTA among the adaptation methods, CoDA (Kirchmeyer et al.,
2022). As for the hybrid physics-aware problem, we implemented a meta-learning formulation of the
hybrid method APHYNITY (Yin et al., 2021), where the adaptation is performed on the physical PDE
coefficients only while the NN component is shared across all the environments. GEPS-Phy is our
physics-aware model (section 4.3) were all the parameters, PDE coefficients and context vector ce
are adapted at inference. We also implemented "Phys-Ad", where we use the same formulation as for
the hybrid GEPS-Phy, but adaptation is performed on the coefficients of the physical component only
while the neural network component is shared across all environments. All the baselines share the
same network architectures than the ones used for GEPS, indicated in the implementation paragraph
above. More details on baselines implementation are provided in Appendix E.6.

In-distribution and out-of-distribution results We report results for in and out-of-distribution
generalization in table 2 for both the data-driven and the hybrid settings. Across all datasets, our
framework performs competitively or better than the baselines for the two settings. Our method is
able to correctly adapt to new environments in an efficient manner, updating only context parameters
ce. For the agnostic data-driven experiments, GEPS obtains the best results, although being on the
same range of performance as other methods.

The main differentiator of GEPS w.r.t. the baselines lies in its lower complexity. In terms of training
time, GEPS is way less expensive than gradient-based approaches like CAVIA that involves an outer
and inner loop and LEADS, which learns a model specific to each environment. In terms of number
of parameters, CoDA needs more training parameters because of its adaptation mechanism relying
on a hyper-network. A comparison with the baselines in terms of parameter complexity is provided
in table 10. Additional results in Appendix D, show that our data-driven framework adapts faster
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Table 2: In-distribution and Out-of-distribution results on 32 new test trajectories per environ-
ment. For out-of-distribution generalization, models are fine-tuned on 1 trajectory per environment.
Metric is the relative L2 loss. ’–’ indicates inference has diverged.

Method Pendulum (×10−2) Gray-Scott (×10−2) Burgers (×10−3) Kolmogorov (×10−1)

In-d Out-d In-d Out-d In-d Out-d In-d Out-d

Data-driven
LEADS 20.8± 1.01 51.1± 3.47 3.11± 0.25 3.81± 0.77 6.31± 0.52 64.1± 2.65 5.61± 0.37 9.18± 0.14
CAVIA 56.8± 9.73 91.8± 15.8 1.63± 3.82 23.1± 6.86 15.5± 1.06 225± 7.94 6.19± 0.02 8.48± 0.16
FOCA 41.0± 4.31 91.4± 9.70 1.71± 5.10 14.5± 3.34 92.2± 8.21 157± 23.6 6.30± 0.02 9.18± 0.14
CoDA 21.7± 1.08 66.2± 3.17 3.19± 0.07 2.89± 4.03 4.98± 0.19 74.5± 6.15 4.02± 0.57 6.34± 1.11
GEPS 20.8± 0.10 50.8± 3.90 2.22± 0.18 1.86± 2.11 2.59± 0.02 52.9± 5.87 2.94± 0.04 5.10± 0.11

Hybrid
APHYNITY 67.2± 9.68 69.0± 0.35 0.14± 0.04 0.20± 0.01 31.9± 0.08 307± 1.40 – –
Phys-Ad 64.4± 1.10 58.4± 1.85 1.55± 1.41 1.82± 6.42 15.1± 0.10 89.9± 8.65 – –
GEPS-Phy 8.04± 0.81 46.0± 3.64 0.67± 0.05 0.83± 0.05 5.43± 0.35 68.1± 3.75 2.78± 0.03 4.47± 0.17

than the strong baseline CoDA. Concerning the hybrid learning problem, incorporating physical
knowledge leads to better results on all datasets except Burgers, where the fully data-driven method
performs better. GEPS-Phy is better on all the datasets but Gray-Scott for which APHYNITY baseline
is best. For Kolmogorov, the baselines did not converged at training.

5.4 Scaling to a larger dataset

To further illustrate the benefits of GEPS, we compare it to CoDA, the SOTA adaptation model, on a
large dataset with a larger model than the ones used for the previous experiments. We use a dataset
generated from a PDE with multiple differentiable terms that encompasses several generic PDEs,
inspired from Brandstetter et al. (2022). The PDE writes as (more details in Appendix B):

[∂tu+ ∂x(αu
2 − β∂xu+ δ∂xxu+ γ∂xxxu)](t, x) = 0, (10)

We report the results in table 3. All the methods are trained using a ResNet (He et al., 2016)
architecture, using a context size ce of size 8. For In-d, we trained our model on 1200 environments
with 16 training trajectories per environment and evaluated it on 16 new trajectories. For Out-d, we
further adapt each model to 10 new environments given 1 context trajectory per environment and
then evaluate it on 16 new trajectories per environment.

Table 3: In-distribution and Out-distribution results. Metric is the relative L2.

Method Combined (×10−2)

In-d Out-d # Params

GEPS 7.52e-3 8.29e-2 4M
CoDA 9.32e-2 1.78e-1 35M

GEPS outperforms CoDA in terms of performance and number of parameters. This demonstrates the
importance of scalable adaptation for few shot learning: GEPS is able to scale on large datasets using
deep models while remaining parameter efficient.

6 Discussion and limitations

Limitations We have seen that adaptation is essential for learning to generalize neural PDE solvers,
and that within this setting, integrating physical knowledge may help. Adaptation still requires
sufficient training samples - both environments and trajectories. These findings are still to be
confirmed for more complex dynamics and real world conditions for which the variety of behaviors
should be much larger than for the simple dynamics we experimented with.

Conclusion We empirically demonstrated the importance of adaptation for generalizing to new
environments and its superiority with respect to ERM strategies. We proposed a new 1st order and
low-rank scalable meta-learning framework for learning to generalize time-continuous neural PDE
solvers in a few-shot setting. We also highlighted the benefits of directly embedding PDE solvers as
hard constraints in data-driven models when faced with scarce environments.
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A Related Work

We review data-driven methods for learning parametric PDEs and existing works for incorporating
physical priors in neural networks, in the context of dynamical systems.

A.1 Learning parametric PDEs

Traditional ML paradigm The majority of current approaches for learning parametric PDEs
considers a traditional ERM approach by sampling from the PDE parameter distribution. In MP-
PDE (Brandstetter et al., 2023), PDE parameters are directly embedded in the graph, allowing
generalization to PDE parameters sampled from the same data distribution as those used for training.
Neural operators (Kovachki et al., 2023; Takamoto et al., 2023) do similarly but require large training
sets and often perform poorly for out-of-distribution (OOD) data. Alternatives to ERM such as
invariant risk minimization (IRM) have shown stronger generalization by learning domain invariants
(Arjovsky et al., 2020; Krueger et al., 2021). However, even for simple classification problems, IRM
methods can fail to capture natural invariances and are extremely sensitive to sampling (Kamath et al.,
2021).

Multi-environment paradigm Several works have explored multi-environment/meta-learning
settings for dynamical systems. • Data-driven methods like DyAd Wang et al. (2022) adapt
dynamics models using a time-invariant context from observed state histories, which are often not
accessible. Yin et al. (2022) developed LEADS, a multi-task method for dynamical systems that
adapts in the functional space but requires training a new model for each environment. Park et al.
(2023) proposed FOCA to address the limitations of second-order optimization of gradient-based
meta-learning approaches (Zintgraf et al., 2019). (Kirchmeyer et al., 2022) make use of a hyper-
network for fast adaptation to new dynamics by updating an environment dependent context encoding.
While effective, gradient-based and hyper-network-based approaches respectively involve inner-loop
updates or parameter increases with respect to context dimension. • Model-based approaches
like physics-informed neural networks (PINNs) have been adapted for parametric PDEs (Cho et al.,
2023); Huang et al. (2022) used meta-learning with PINNs through context vectors c learned via
auto-decoding. One drawback of PINN is their inability to handle scenarios where some physics are
unknown.

A.2 Hybrid learning

Data-driven methods with soft constraints Physics losses as proposed by (Raissi et al., 2019)
have been used as prior knowledge under the form of soft constraints for neural operators, with the
objective to alleviate data scarcity issues (Wang et al., 2021; Li et al., 2023).

Data-driven methods with hard constraints Alternatively, physical priors can be incorporated
directly as hard constraints, leveraging the training of neural networks with differentiable physics. It
has been particularly successful for accelerating computational fluid dynamics (CFD) by addressing
numerical errors inherent in PDE discretization and for augmenting incomplete physics (Kochkov
et al., 2021; Yin et al., 2021; Takeishi & Kalousis, 2021; Tathawadekar et al., 2023). Most of these
approaches do not consider the parametric PDE setting.

B Dataset details

We present the equations and the data generation settings used for all dynamical systems considered
in this work. In table 4, we report the different PDE parameters changed to generate training and
adaptation environments.

B.1 Damped and driven pendulum equation

We propose to study the damped and driven pendulum equation. The ODE represents the motion of a
pendulum which can be subject to a damping and a forcing term. Even simple dynamical systems
such as the pendulum equation can present a variety of complicated behaviors (e.g., under-damped,
critically damped, resonance, super/sub-harmonic resonance, etc.), presented in figure 6.
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Table 4: A description of the pivotal factors used to generate environments
PDE training ODE/PDE parameters adaptation ODE/PDE parameters

Damped driven pendulum

w0 ∈ {0.5, 0.7} w0 ∈ {0.5, 0.75, 1.0}
wf ∈ {0, 0.75, 1.0} wf ∈ {0.3, 0.5, 0.7, 1.0}
F ∈ {0.0, 0.1, 0.2} F ∈ {0.05, 0.1, 0.15, 0.2}
α ∈ {0., 0.2, 0.5} α ∈ {0.1, 0.5}

1D Burgers
ν ∈ {5e−1, 5e−2, 5e−4} ν ∈ {1.0, 5e−5}

f(x, t) = {F (sin(wfx) + cos(wf t)), 0} f(x, t) = F exp(−wfx
2)

wf = 1.5 wf = {1.5, 3.0}

2D Gray-Scott F ∈ {0.03, 0.039} F ∈ {0.025, 0.042}
k ∈ {0.058, 0.062} k ∈ {0.050, 0.065}

2D Kolmogorov Flow
ν ∈ {1e − 3, 1e − 4} ν ∈ {5e − 4}

f(x, y, t) = {F sin(wfy), 0} {F exp(wfy
2), F (cos(wfx) + sin(wf t)}

Domain = {[0, 0.75π], [0, π]} Domain = {[0, 1.25π]}

Figure 6: Visualization of different behaviors for the damped and driven pendulum equation

The form of the ODE is:

d2θ

dt2
+ ω2

0 sin θ + α
dθ

dt
= f(t) (11)

where θ(t) is the angle, ω0 the natural frequency, α the damping coefficient, f(t) is a forcing function
of the form f(t) = F cos(wf t), where wf is the forcing frequency and F the amplitude of the
forcing. In our case where we suppose we only have incomplete knowledge of the phenomenon, we
consider we do not know the damping term. For the initial condition, the pendulum is dropped from
a distribution θ(t0) ∼ U(0, π/12) and dθ

dt (t0) ∼ U(0, 1).

Data generation Each environment is defined by changes in the system parameters resulting in
different behaviors. In training environments, the pendulum is either subject to damping or forcing,
e.g., environment 1 is a damped pendulum (F = 0) while environment 2 is a driven pendulum
(α = 0). We generate trajectories using a Runge-Kutta 8 solver. For training, we generated 4 distinct
environments, each composed of 8 trajectories on the time horizon [0, 25] with a time step ∆t = 0.5.
We also generate 32 trajectories on a longer time horizon [0, 50] per training environment to evaluate
in-distribution generalization. For adaptation, we evaluate our method on 4 distinct environments
defined by parameters unseen during training. Only one trajectory is generated per environment with
a time horizon is [0, 25] to adapt the model to new dynamics; we evaluate the model’s performance
on 32 trajectories per environment on a time horizon [0, 50]. During adaptation, environments are
defined such that trajectories are subject both to the forcing and damping term simultaneously.
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B.2 Gray-Scott equation

The PDE describes reaction-diffusion system with complex spatiotemporal pattern through the
following 2D PDE:

du

dt
= Du∆u− uv2 + F (1− u) (12)

dv

dt
= Dv∆v − uv2 − (F + k)v (13)

where u, v represent the concentrations of two chemical components in the spatial domain S with
periodic boundary conditions. Du, Dv denote the diffusion coefficients respectively for u, v and F, k
are the reactions parameters. We consider complete knowledge of the physical model, but instead
uses a RK4 solver with ∆t = 1 instead of using an adaptive RK45 solver. We generated environments
by changing F, k values, while Du, Dv are kept constant across all environments. For experiments
in Section 3, we sampled uniformly values for F and k in ranges [0.03, 0.04] and [0.058, 0.062]
respectively. For experiments in Section 5.3, details about the environments are given in table 4.

Data generation We generated trajectories on a temporal grid using an adaptive RK-45 solver. S
is a 2D space of dimension 32× 32 with a spatial resolution of ∆s = 2. For training, we generate
4 environments with one trajectory per environment defined on a temporal horizon [0, 200]. We
evaluate in-distribution generalization on 32 trajectories per environment defined on a temporal
horizon [0, 400]. For adaptation, we adapt to 4 new environments in one-shot learning manner. We
evaluate the model’s performance on 32 new trajectories per environments, defined on a temporal
horizon [0, 400].

B.3 Burgers equation

Burgers’ equation is a nonlinear equation which models fluid dynamics in 1D and features shock
formation:

du

dt
+

du

dx
− ν

d2u

dx2
+Rclosure(ū, u) = f(x, t) (14)

where u is the velocity field and ν is the diffusion coefficient and f(x, t) is a forcing term. The
unresolved scales Rclosure(ū, u) and the forcing function is typically unknown, and needs to be
directly learned from data. For the experiments done in Section 3, environments have been generated
by sampling uniformly ν ∈ [1e− 4, 0.5]. For experiments in Section 5.3, we generated environments
by changing the diffusion coefficient or changing the forcing function, as detailed in table 4.

Data generation For the DNS, we generate complex trajectories using a 5th order central difference
scheme using Runge-Kutta 45 solver with a time-step ∆t = 1e−5 and ∆x = 2π

16384 . Such trajectories
are particularly costly to generate, therefore, we rather use LES. To obtain the ground truth LES
trajectories, we apply a spatial filtering operator on the DNS trajectories. We also down-sample the
temporal and spatial grid. Therefore, we obtain LES trajectories with a timestep ∆t = 1e−3 and
∆x = 1

256 .

For training, we generate 6 environments with 4 trajectories per environment. Trajectories have
been generated on a temporal horizon [0, 0.05] for training and for in-distribution evaluation. For
adaptation, we adapt our model on 4 new unseen environments using only trajectory per environment.
We evaluate out-distribution performance on 32 new ICs on a time horizon [0, 0.05]. For the generation
of the data, we define a [0, 2π] periodic domain and consider the following initial condition:

E(k) =
2

3

√
π

(
k

k0

)4
1

k0
exp

(
−
(

k

k0

)2
)

(15)

Velocity is linked to energy by the following equation :

u(k) =
√
2E(k) (16)

B.4 Kolmogorov flow

We propose a 2D turbulence equation. We focus on analyzing the dynamics of the vorticity variable.
The vorticity, denoted by ω, is a vector field that characterizes the local rotation of fluid elements,
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defined as ω = ∇ × u. Like Burgers, we generate LES, leading to an unknown unclosed term
appearing in the vorticity equation, expressed as:

∂ω

∂t
+ (u · ∇)ω − ν∇2ω +Rclosure(ū, u) = f(x, y, t) (17)

Here, u represents the fluid velocity field, ν is the kinematic viscosity with ν = 1/Re and f(x, y, t)
is a forcing term. The unresolved scalesRclosure(ū, u) and the forcing function is typically unknown,
and needs to be directly learned from data. For the vorticity equation, environments can be defined
either by changes in the viscosity term, the domain size or the forcing function term.

Data generation For the data generation of DNS, we use a 5 point stencil for the classical central
difference scheme of the Laplacian operator. For the Jacobian, we use a second order accurate scheme
proposed by Arakawa that preserves the energy, enstrophy and skew symmetry (Arakawa, 1966).
Finally for solving the Poisson equation, we use a Fast Fourier Transform based solver. We discretize
a periodic domain into 512× 512 points for the DNS and uses a RK4 solver with ∆t = 5e− 3. We
obtain the ground truth LES by applying a spatial filtering operator on the DNS trajectories. We also
down-sample temporal and spatial grid, thus obtaining LES trajectories with a timestep ∆t = 5e− 2
on a 64× 64 grid.

We generate 8 environments with 16 trajectories per environments for training. Trajectories have been
generated on a temporal horizon [0, 1] for training and [0, 2] for in-distribution evaluation. During
adaptation, we adapt our model on 4 unseen environments in a one-shot manner, using only one
trajectory per environment. We evaluate out-distribution performance on 32 new ICs on a time
horizon [0, 2]. We consider the following initial conditions:

E(k) =
4

3

√
π

(
k

k0

)4
1

k0
exp

(
−
(

k

k0

)2
)

(18)

Vorticity is linked to energy by the following equation :

ω(k) =

√
E(k)

πk
(19)

B.5 Combined equation

We used the setting introduced in Brandstetter et al. (2023), but with the exception that we do
not include a forcing term and add the 4thorder spatial derivative. The combined equation is thus
described by the following PDE:

[∂tu+ ∂x(αu
2 − β∂xu+ δ∂xxu+ γ∂xxxu)](t, x) = 0, (20)

u0(x) =

J∑
j=1

Aj sin(2πℓjx/L+ ϕj). (21)

α, β, δ and γ are the parameters that are varied.

Data generation We used the spectral solver proposed in Brandstetter et al. (2022) to generate
the solution. We sampled 1200 environments for training, by sampling uniformly within the ranges
α ∈ [0.5, 1], β ∈ [0, 0.5], δ ∈ [0, 1] and γ ∈ [0, 1]. For each parameter instance, we sampled 16
trajectories, resulting in 19200 trajectories. We then evaluate it on 19200 new trajectories. The
trajectories were generated with a spatial resolution of 256 on a temporal horizon [0, 30]. We only
keep 10 time-steps. For out-distribution evaluation, we sample 10 new environments from the same
ranges of parameters, but for parameters not seen during training. We have access to one trajectory
from each evaluation environment for adapting the model, and evaluate it on 16 new trajectories.

C Trajectory based formulation

In practice, F e is unavailable and we can only approximate it from discretized trajectories. As done
in (Kirchmeyer et al., 2022), we use a trajectory-based formulation of Eq. (9). We consider a set of
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trajectories discretized over a uniform temporal and spatial grid includes T
∆t (

s
∆s )

ds states, where ds
is the spatial dimension. ∆t and ∆s represent respectively the temporal and spatial resolution. T and
S are the temporal horizon and spatial grid size. Our loss writes as:

L(θ,De
tr) =

N∑
j=1

(s/∆s)∑
k=1

T/∆T∑
l=1

∥ue
j(sk, tl)− ũe

j(sk, tl)∥22

where ũe(tl) = ue
0 +

∫ tk

t0

Gθ(ũe(τ))dτ

(22)

ue
j(sk, tl) is the state value in the jth trajectory from environment e at the spatial coordinate sk and

time tl ≜ l∆t. ue(t) ≜ [u(s1, t), . . . , u(s(S/∆s)ds , t)]
T is the state vector in the jth trajectory from

environment e over the spatial domain at time t and ue
0 is the corresponding IC.

D Additional results

We conduct a comprehensive ablation study across various datasets to assess the robustness of our
method. Our investigation explores several key aspects, including the learnability of PDE parameters
within our hybrid framework. We also examine the adaptability of context-based methods to new,
unseen environments, with varying numbers of adaptation trajectories Nad. Then, we show the
effectiveness of our model in terms of complexity and performance when varying the size of the
context vector. Additionally, we study the impact of initialization strategies for adaptation parameters
in our meta-learning framework. Finally, we demonstrate the ability of our method to adapt rapidly
to unseen environments with minimal gradient updates.

D.1 PDE parameter estimation

Existing works combining hard physical constraints and data-driven components either learn the
PDE parameters or assume availability of the real parameters for a single PDE instance (Yin et al.,
2021). In our case, we are trying to learn the PDE parameters in an unsupervised manner for each
environment. In section 4.3, we proposed two strategies for estimating the PDE parameters. We report
in the Figure 7 the training and adaptation MAE of the PDE parameters pendulum equation, where
the first strategy has been adopted. In Figure 10, we report the training and adaptation convergence
for the gray-scott equation, where the second strategy has been applied.

Figure 7: MAE loss of the PDE parameters for the Pendulum equation during training and adaptation

Figure 8: Convergence of PDE parameter esti-
mation during training

Figure 9: Convergence of PDE parameter esti-
mation during adaptation

Our framework successfully estimates PDE parameters during both training and adaptation steps for
the Pendulum and Gray-Scott equations. Notably, the accuracy of our framework in predicting PDE
parameters is heavily dependent on the initialization of physical parameters. The specific initialization
values used for PDE parameters are detailed in Table E.1.
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Figure 10: MAE Convergence of the PDE parameters for the Gray-Scott equation

Figure 11: Convergence of PDE parameter esti-
mation during training

Figure 12: Convergence of PDE parameter esti-
mation during adaptation

D.2 Number of adaptation trajectories

Context adaptation While our methods remain effective on the Gray-Scott and the Burgers
equation when adapting to unseen environments, meta-learning frameworks perform poorly on
the Kolmogorov flow equations. This is particularly due to (i) the complex dynamics and very
different behaviors that appear, (ii) the diversity of behaviors observed within a same environment for
different initial conditions. Thus, the number of trajectories for training and for adaptation need to be
sufficiently large for learning such dynamics; one-shot learning is therefore a very complex task for
such systems. We report in table 5 the results when increasing the number of adaptation trajectories
for Kolmogorov flow when adapting only context vectors:

Table 5: Relative MSE loss with respect to number of adaptation trajectories when adapting context
vectors ce.

Model ↓ Number of adaptation trajectories Nad

1 4 8 16

CoDA 6.23e-1 6.22e-1 6.22e-1 6.20e-1
CAVIA 6.42e-1 6.40e-1 6.33e-1 6.29e-1
GEPS 5.22e-1 5.22e-1 5.21e-1 5.20e-1

We remark that context based frameworks do not scale well when increasing the number of adaptation
trajectories.

Low-rank adaptation To overcome this issue, we propose to take advantage of the low-rank
adaptation formulation proposed, which enable a cost-efficient adaptation of our model with respect
to adapting all the parameters of the model. Instead of adapting ce, we adapt parameters AceB. We
report results in table 6:

Table 6: Relative MSE loss with respect to number of adaptation trajectories when adapting low rank
adaptation parameters.

Model ↓ Number of adaptation trajectories Nad

1 4 8 16

GEPS 4.5e-1 4.23e-1 3.97e-1 3.64e-1

D.3 Data-driven Parameter initializations

Initialization of adaptation parameters is essential for correctly adapting to environments. We study
how initialization impacts the training of our model on the Gray-Scott and Burgers equation. In LoRa,
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it is typically advised to initialize A using a Gaussian distribution and set B = 0. In table 7, we
report the relative loss for different initialization, including LoRa initialization. On both Gray-Scott
and Burgers equation, the orthogonal initialization performs best.

Table 7: Relative MSE loss with respect to parameter initialization
Model initialization Gray-Scott Burgers

Kaiming 7.26e-2 1.50e-2
Xavier NaN 1.57e-2

LoRA init 2.35e-1 4.95e-1
Orthogonal 2.22e-2 1.46e-2

D.3.1 Code dimension

In CoDa, the authors advocate to choose relatively small code size, corresponding to the degree
of variations defining each environment. In our case, we proposed datasets with more degree of
variations than the datasets used by (Kirchmeyer et al., 2022), presenting much more differences,
necessitating larger code dimension size. In table 8, we show the performance of our model on both
Gray-Scott and Burgers equation when varying the code dimension for CoDA and our method and
the increase in number parameters.

Figure 13: Model size with respect to code dimension

Table 8: Relative MSE on the full trajectory with varying code dimen-
sion

code size ↓ CoDA GEPS

Burgers Gray-Scott Burgers Gray-Scott

1 2.04e-2 9.72e-2 1.49e-2 1.10e-1
2 2.03e-2 8.73e-2 1.35e-2 7.12e-2
4 1.96e-2 9.29e-2 1.46e-2 5.65e-2
8 1.78e-2 9.38e-2 1.43e-2 7.27e-2

16 1.84e-2 1.01e-1 1.30e-2 5.82e-2

D.3.2 Adaptation speed

One important property of meta-learning framework is their ability to adapt to unseen environments
in few adaptation steps. Our framework allows fast adaptation to new environments, compared to a
state-of the art method like CoDA. We report in Figure the convergence of the loss during adaption
for both our method and CoDA. With our framework, we are able to adapt to new environments in
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Figure 14: Convergence speed of the model Gθ to adapt to new environments for the Burgers dataset

less than 100 steps, compared to CoDA which needs 500 steps. For both runs, we used the same
learning rate lr = 0.01.

D.3.3 Out-range temporal horizon generalization

We evaluate the ability of the different adaptation mechanisms for out-range temporal horizon
extrapolation. All models have been trained on a temporal horizon [0, T ]. We thus evaluate the
performance of our models when extrapolating outside the trained temporal horizon. For out-range
extrapolation, models are evaluated on the horizon [T, 2T ]. We report in-distribution and out-
distribution performance in table 9. Error accumulates over time and leads to lower performance
outside the training horizon, but GEPS still outperforms existing baselines.

Table 9: Generalization results for in-distribution and out-distribution environments - Test
results for out-range time horizon (Out-t). Metric is the relative L2 loss. ’–’ indicates inference has
diverged.

Type ↓ Dataset → Pendulum Gray-Scott Burgers Kolmo

Model ↓ In-d Out-d In-d Out-d In-d Out-d In-d Out-d

LEADS 6.30e-1 7.28e-1 1.45e-1 1.27e-1 4.55e-2 3.22e-1 9.80e-1 1.01

Data-driven

CAVIA 40.4 1.88 3.73e-1 5.51e-1 6.44e-2 6.72e-1 1.06 1.06
FOCA 14.0 1.08 3.56e-1 3.34e-1 3.12e-1 4.60e-1 1.0 1.05
CoDA 9.54e-1 9.75e-1 1.52e-1 1.19e-1 3.41e-2 3.35e-1 8.29e-1 9.99e-1
GEPS 4.92e-1 8.45e-1 8.37e-2 6.91e-2 2.23e-2 2.68e-1 7.70e-1 9.74e-1

Hybrid APHYNITY 99.5 1.32 6.05e-3 4.19e-3 1.12e-1 8.09e-1 – –
GEPS-Phy 2.88e-1 7.12e-1 2.38e-2 1.92e-2 4.72e-2 3.59e-1 7.33e-1 9.32e-1

D.3.4 Training time and number of parameters

We report in table 10 the training time and number of parameters for each adaptive conditioning
method for all datasets:

21



Table 10: Number of parameters (# Params) and training time (Time) for all different adaptive
conditioning methods.

Method Pendulum Gray-Scott Burgers Kolmogorov

# Params Time # Params Time # Params Time # Params Time

LEADS 43K 10h 380K 14h 400K 1d 19h 1.8M 2d 23h
CAVIA 9K 1d 4h 76K 1d 15h 58K 4d 19h 278K 4d 21h
CoDA 43K 6h 380K 5h 280K 10h 726K 2d 12h
GEPS 13K 5h 90K 4h 69K 9h 387K 2d 2h

E Implementation details

The code has been written in Pytorch (Paszke et al., 2019). All experiments were conducted on a
single GPU:NVIDIA RTX A5000 (25 Go). We estimate the computation time needed for development
and the different experiments to approximately 200 days.

E.1 Architecture

Figure 15: Our adaptation framework for the two instances of our model: agnostic and physics-aware.
Blocks in blue refer to the physical model gp and data-driven component ga. Blocks in pink refer
to the trainable modules. The green block describes the adaptation mechanism for the physical and
data-driven components. We use a NeuralODE (ODESOLVE) for time-integration.

E.2 Data-driven model

We implement the dynamical model Gθ with the following architectures:

• Pendulum: we used MLPs composed of 4 hidden layers of width 64.

• Gray-Scott: 4-layer 2D ConvNet with 64-channel hidden layers, and 3 × 3 convolution
kernels with circular padding.

• Burgers: 4-layer 1D ConvNet with 64-channel hidden layers, and 7× 7 convolution kernels
with circular padding.

• Kolmogorov flow: 4 Fourier layers with 12 modes and a width of 16.

For all networks, we use Swish activation layers. We use an RK4 solver for the Neural ODE.
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E.3 Physical model

For each dataset, we assume availability of some prior knowledge of the studied dynamical system,
given as hard constraints. We report in the table 11 the physical knowledge assumed, the number of
training parameters and the values of the parameters used at initialization:

Table 11: Physical model details
Physical Model # trainable params Parameter initialization

Pendulum d2θ
dt2

+ ω2
0 sin θ − F cos(wf t) 3 w2

0 = 0.1, F = 0.2, wf = 0.5

Burgers du
dt

+ du
dx

− ν d2u
dx2 1 ν = 1e− 2

Gray-Scott
du
dt

−Du∆u+ uv2 − F (1− u) 2 F = 5e− 2
dv
dt

−Dv∆v + uv2 + (F + k)v k = 5e− 2

Kolmogorov ∂ω
∂t

+ (u · ∇)ω − ν∇2ω 1 ν = 5e− 3

E.4 Optimizer

For all datasets, we use the Adam optimizer and (β1, β2) = (0.9, 0.999) for both training and
adaptation. For training, we used a learning rate scheduler which reduces the learning rate when the
loss has stopped improving. We set the threshold to 0.01 with a patience of 250 epochs with respect
to the training loss. The minimum learning rate is 1e− 5.

E.5 Hyper-parameter details

We report the hyper-parameters used for each dataset in the table:

Table 12: Framework hyper-parameters
Hyper-parameter Pendulum Burgers Gray-Scott Kolmogorov Flow

Gθ

c 16 4 4 4
depth 4 4 4 4
width 64 64 64 64

activation Swish Swish Swish Swish

Training hyper-parameters

batch size 8 4 4 4
epochs 20000 20000 20000 20000

learning rate 1e-2 1e-2 1e-2 1e-2
Scheduler decay 0.9 0.9 0.9 0.9
Teacher forcing Yes No No No

Adaptation hyper-parameters
batch size 4 4 4 4

epochs 500 500 500 500
learning rate 1e-2 1e-2 1e-2 1e-2

E.6 Baselines implementation

For all baselines, we followed the recommendations given by the authors.

ERM experiments We use the following baselines for the ERM experiments:

• MP-PDE: We implement MP-PDE as a 1-step solver, where the time-bundling and pushfor-
ward trick do not apply. We use 6 message-passing blocks and 64 hidden features. We build
the graph with the 8 closest nodes. We use a learning rate of 1e− 3 and a batch size of 16.
We train for 5000 epochs on Burgers and Gray-Scott equations.

• FNO: FNO is trained for 5, 000 epochs on Burgers and Gray-Scott equations with a learning
rate of 1e-3. We used 12 modes and a width of 32 and 4 Fourier layers. We also use a step
scheduler every 250 epochs with a decay of 0.5.
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• CNN: We implement a CNN as 1-step solver, composed of 4 layers of 64 features with
Swish activation functions. We train our model on 5000 epochs on Burgers and Gray-Scott
equations with a learning rate of 1e− 3. We also use a step scheduler every 250 epochs with
a decay of 0.5.

• GEPS: We implement a CNN as 1-step solver with a multi-environment setting, composed
of 4 layers of 64 features with Swish activation functions. We train our model on 5000
epochs on Burgers and Gray-Scott equations with a learning rate of 1e− 3. We also use a
step scheduler every 250 epochs with a decay of 0.5.

In-distribution and out-distribution experiments We use the following baselines for the general-
ization experiments:

• LEADS: We implement one-per-env method of the multi-task learning framework LEADS.
For all datasets, we train the model during 20000 epochs with a learning rate lr = 0.01,
with a step scheduler every 250 epochs. We used the same batch size used for our framework
across all datasets. All other hyper-parameters are the same than the one used in the paper.

• CAVIA: We adapt CAVIA’s framework for learning dynamical systems. We train CAVIA
during 20000 epochs with a inner learning rate lrinner = 0.1 and an outer learning rate
lrouter = 0.001. For all datasets, we train the model during 20000 epochs with a step
scheduler every 250 epochs. We used the same batch size used for our framework across all
datasets. We tested different inner step values, and fixed to 7 for all datasets. We followed
the authors recommendations for the experiments.

• FOCA: We implement a first-order gradient-based method called FOCA to learn dynamical
systems. We train CAVIA during 20000 epochs with an inner learning rate lrinner = 1.0 and
an outer learning rate lrouter = 0.001. For all datasets, we train the model during 20000 with
a step scheduler every 250 epochs. We used τ = 1 for the exponential moving average and
5 inner steps.

• CODA: We implement CoDA, a meta-learning framework for learning dynamical systems.
We implemented the l1 and l2 regularization of the CoDA framework. We train the model
during 20000 epochs with a step scheduler every 250 epochs. For the size of the contexts,
we first fixed the size following the authors recommendations, but we observed improved
performance using the same dimension used with our framework.

• APHYNITY: We implemented a multi-environment version of the APHYNITY framework.
We learn physics for each environment and learn to correct the physics model using a data-
driven model that corrects all environments. During adaptation, we tune all the parameters
of the model. For all datasets, we train the model during 20000 epochs with a learning rate
lr = 0.001, with a step scheduler every 250 epochs. We used the same batch size used for
our framework across all datasets.

F Qualitative results

In this section, we show different visualization of the predictions made by our framework and compare
with the different baselines.

F.1 In-distribution and out-distribution generalization for Burgers dataset

We provide in Figure 16 in-distribution and out-distribution generalization for the Burgers equation.

F.2 Out-distribution generalization for Gray-Scott dataset

We provide in Figure 17 out-distribution generalization for the Gray-scott equation.
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F.3 In-distribution generalization for Kolmogorov dataset

We provide in Figure 17 in-distribution generalization for the Kolmogorov equation.

Figure 16: Comparison of in-distribution and out-distribution predictions of a trajectory on 1D
Burgers. The trajectories are predicted from t = 0 (purple) to t = 0.1 (red).
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Figure 17: Prediction per frame for our approach on 2D Gray-Scott for an out-of-distribution
trajectory. The trajectory is predicted from t = 0 to t = T’. In our setting, T = 19 and T’ = 39.
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Figure 18: Prediction per frame for our approach on 2D Kolmogorov flow for an in-distribution
trajectory. The trajectory is predicted from t = 0 to t = T’. In our setting, T = 19 and T’ = 39.
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