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RESEARCH ARTICLE

Directional Subthalamic Deep Brain
Stimulation Better Improves Gait and

Balance Disorders in Parkinson’s Disease
Patients: A Randomized Controlled Study
Saoussen Cherif, PhD ,1,2 Nicolas Tempier,1† Mathieu Yeche,1† Gizem Temiz, PhD,1

Julia Perrière,1 Marco Romanato, PhD,1 Déborah Ziri, PhD,1 Sara Fernandez-Vidal, PhD,1

Elodie Hainque, MD, PhD,1,3 David Maltête, MD, PhD,4,5 Stéphane Derrey, MD, PhD,6

Eric Bardinet, PhD,1,7 Brian Lau, PhD,1 Carine Karachi, MD, PhD,1,8† and

Marie-Laure Welter, MD, PhD 1,2,9†

Objective: To investigate the effects of directional subthalamic deep brain stimulation (STN-dDBS) on gait and balance
disorders, including freezing of gait (FOG), in patients with advanced Parkinson’s disease (PD).
Methods: We included 10 participants who underwent STN-DBS and presented severe preoperative FOG, in a
randomized, double-blind, crossover study. We used segmented DBS electrodes to investigate whether directing the
predicted volume of tissue activated (VTA) to overlap the central STN preferentially improved gait and balance disor-
ders compared to directional DBS applied in the more posterior STN (sensorimotor). We also assessed non-directional
(ring-mode) STN-DBS. Our primary outcome was gait and balance control measured using instrumented gait record-
ings. Each patient had a pre-operative structural and diffusion-weighted imaging to model individual VTAs and to
examine cortico-subthalamic connectivity. We used linear mixed-effects models to contrast the effects of central
STN-dDBS, posterior STN-dDBS, and ring-mode STN-DBS.
Results: Central STN-dDBS produced significantly better improvement in gait and balance control compared to poste-
rior STN-dDBS (p = 0.027), with fewer FOG episodes (p < 0.001). Conversely, ring-mode STN-DBS resulted in wors-
ened postural control compared to central STN-dDBS (p = 0.009). The cortico-subthalamic connectivity with the STN
VTAs involved mostly primary sensorimotor, premotor, and medial frontal cortices, with a higher overall cortico-STN
connectivity with ring-mode STN-DBS.
Interpretation: Central STN-dDBS represents the best option to improve gait and balance disorders in PD patients,
including FOG. Our findings raise the possibility of reprogramming STN-DBS toward the central area in selected
patients with disabling FOG and/or postural instability after surgery.
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Gait and balance disorders represent the main motor
disabilities in advanced stages of Parkinson’s disease

(PD), with freezing of gait (FOG) episodes and falls
reported in 50 to 70% of patients after 10 years of disease
duration.1 FOG and falls show only partial and inconsis-
tent improvement with dopamine replacement therapy
and become increasingly resistant to pharmacological
interventions as the disease progresses.1 This results in a
significant burden on patients, impacting their quality of
life and increasing the rates of institutionalization, morbid-
ity, and mortality.2,3 Although the neural underlying
mechanisms of FOG and falls are not yet fully under-
stood, recent studies have reported structural and func-
tional anomalies in a number of brain regions including
the supplementary motor area (SMA) and dorsolateral
prefrontal cortex (DLPF), as well as the basal ganglia, cere-
bellum, and mesencephalic locomotor region (MLR).4–6

Deep brain stimulation (DBS) of the subthalamic
nucleus (STN) is an effective treatment for alleviating
motor and non-motor symptoms of PD.7 On average,
STN-DBS improves significantly FOG.8–10 However,
approximately 1 of 3 PD patients show residual, wors-
ened, or de novo FOG after surgery.10–13 Advanced age,
dysexecutive syndrome, prior FOG (OFF-DOPA), and
specific DBS parameter settings have been linked to an
increased risk of post-operative FOG.10,14–16 However,
the precise factors contributing to post-operative FOG for
individual patients remain incompletely identified. In a
prior retrospective cohort study we showed that the best
FOG alleviation with STN-DBS is achieved when stimu-
lating contacts are positioned within the central part of
the STN.10 Another retrospective study showed that FOG
improvement was obtained when stimulating contacts were
preferentially localized in the posterior-central two-thirds of
the STN.13 Such FOG improvement was also related to
the recruitment by the STN-DBS of the right primary
sensorimotor, premotor, and SMA cortico-subthalamic
streamlines while avoiding prefrontal cortices.13,17,18

These data raise the possibility that targeting the
central STN area could potentially better improve FOG.
This could be achieved by the means of directional DBS
(dDBS) for more precise targeting through current shaping,
which could also bring supplemental benefits through
optimization of the therapeutic window, reducing dopa-
minergic medications, energy consumption, and side
effects.19–22

In this study, we evaluated the impact of directional
STN-DBS on gait and balance disorders, including FOG,
in a randomized double-blind cross-over controlled trial.
We used segmented electrodes to specifically direct
predicted volume of tissue activated (VTAs) to target the
central associative part of the STN, or the posterior

sensorimotor part of the STN usually considered to be the
ideal target for akinesia and rigidity.23–26 We hypothesized
that central STN-dDBS would yield superior improve-
ments in gait and postural control, with fewer FOG epi-
sodes compared to posterior STN-dDBS, while achieving
improvements in overall motor disability similar to usual
non-directional (ring-mode) STN-DBS. We measured
changes in gait and balance control using kinetic and kine-
matic parameters derived from instrumental gait record-
ings.27 We focused on gait initiation, because alterations in
this process are associated with a predisposition for FOG
and are reliable indicators of this gait complication.28–30

We also examined individual brain diffusion tractography
to determine whether clinical differences between STN-
DBS conditions could be explained by differences in
cortico-subthalamic connectivity profiles.

Patients and Methods
Participants
In this study, we recruited participants from the Pitié-
Salpêtrière Hospital and Rouen University Hospital, using
the following inclusion criteria: (1) age between 18 and
70 years, (2) diagnosis of idiopathic PD according to the
United Kingdom Parkinson’s Disease Society Brain Bank
criteria, (3) eligibility for bilateral STN-DBS, including a
>50% improvement in motor disability with L-dopa treat-
ment, (4) FOG in the OFF-DOPA condition (item 2.13 of
the Movement-Disorders Society-Unified Parkinson’s Dis-
ease Rating Scale [MDS-UPDRS] >0), (5) stability of other
medical disorders and that do not interfere with the research,
and (6) social insurance coverage. Non-inclusion criteria
included: (1) active and severe psychiatric or neurological dis-
orders; (2) dementia (Mini-Mental State <24/30); (3) any
contraindication for the research magnetic resonance imaging
(MRI); or (4) for surgery; (5) hypersensitivity to contrasts
agents; (6) individuals under guardianship, tutorship, or any
other legal deprivation of rights and liberty; (7) ongoing
exclusion from other research studies; and (8) pregnancy, lac-
tation, or a lack of documented and effective contraception
according to the World Health Organization definition.

We performed the study in accordance with the dec-
laration of Helsinki and Good clinical practice guidelines.
The local ethics committee approved the study, and all
patients signed written informed consent to participate
(N� 2019-A01717-50). The study was registered on a
clinical trial website (ClinicalTrials.gov: NCT04223427).

Surgical Procedure and Stimulation Parameters
Patients underwent a comprehensive assessment at the time
of enrollment (baseline), followed by bilateral STN-DBS
implantation (Fig 1). As part of the baseline evaluation, all
patients had a 3 Tesla (T) MRI at the Paris Brain Institute
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(see Supplemental Methods). The 2 segmented electrodes
(Boston Scientific Neuromodulation Vercise system,
Marlborough, MA) were implanted the same day, as previ-
ously reported,10 with direct targeting of the STN using
3 dimensional (3D) T2 fluid attenuated inversion recovery
weighted images on preoperative 3 T MRI, and an addi-
tional indirect targeting using the basal ganglia atlas for
patients operated at the Salpêtrière hospital.7,31 The elec-
trodes were connected to the programmable pulse generator
(Boston Scientific Neuromodulation Vercise system) and a
post-operative computed tomography (CT)-scan was per-
formed to confirm the absence of early surgical complica-
tions and localization of the leads. Another scan was done
2 months later to ascertain the definitive electrode position.

Following surgery, the parameters for DBS were ini-
tially established based on patient’s clinical examination
using non-directional (ring-mode) DBS and further refined
during outpatient visits over the subsequent 6 months.

Six months after surgery (M7), patients were allocated
to central and posterior sensorimotor STN-dDBS condi-
tions applied in a randomized order and in a double-blind
fashion (OFF-DOPA, ≥12 hours since their last administra-
tion of their PD medication). Each STN-DBS condition
was applied for 30 minutes with a 30-minute wash-out
period between each (see Fig 1). Non-directional (ring-
mode) and OFF-DBS conditions (1 hour after switching
off the stimulator) were also tested. We also examined out-
side STN-dDBS condition with VTAs directed away from
the STN. Randomization was done using block randomiza-
tion in RedCap using a randomization sequence that was
revealed only to the unblinded clinical expert responsible
for programming the DBS parameters.

Electrode Locations and DBS Programming for
STN-dDBS
At month 7, for each patient, we determined the place-
ment and rotation of the electrodes on the CT images

performed 2 months after surgery using Guide XT soft-
ware (Brain Lab, Boston Scientific). The CT images were
then co-registered with the pre-surgical T1-weighted MRI
to visualize the electrode location within the STN area
using our in-house basal ganglia atlas (Fig 2).31 We deter-
mined the parameters for each STN-DBS condition using
the Vercise software, with a standard pulse width of 60μs
and a frequency of 130Hz. The current was set to gener-
ate a VTA including the target of interest (ie, the posterior
STN and central STN),10 whereas minimizing overlap
between targets, and visualized using lead DBS32 (see
Fig 2A–D, Fig S2). The unblinded neurologist set DBS
parameters below the threshold for side effects.

After this first assessment of central STN-dDBS at
month 7, all patients received central STN-dDBS for the
following months in an open-label manner (see Fig 1).
Central STN-dDBS parameters were adjusted as necessary
and patients underwent reassessments at month 8 and
month 13 (ie, after 6 months with central STN-dDBS)
(see Fig 1).

Gait and Balance Disorders Assessment
All participants underwent complete gait recordings and
comprehensive clinical scales to assess the severity of gait
and balance disorders, including FOG.

The primary outcome measure was gait and balance
control measured using kinetic parameters during gait ini-
tiation using a force platform (0.9 � 1.8 m, AMTI,
Advanced Mechanical Technology. Watertown, MA).
Patients were instructed to commence walking for 6 to
8 meters following a visual cue, make half-turn, and
return to their initial position (Fig S1).27 Patients per-
formed on average 20 trials per treatment condition. The
following parameters of gait initiation were calculated
using MATLAB R2018b: (1) antero-posterior and lateral
displacements of the center of foot pressure (CoP) during
the anticipatory postural adjustment phase (APAs,

FIGURE 1: Study design. DBS, deep brain stimulation; Dopa, dopamine medication; M, month; PREOP, preoperative assessment;
STN, subthalamic nucleus
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FIGURE 2: Leads locations and volume of tissue activated (VTAs) for ring-mode, directional central and posterior subthalamic
deep brain stimulation (STN-DBS). (A–C) Coronal, axial, sagittal, and 3 dimensional (3D) posterior views of the VTAs of the
10 Parkinson’s disease (PD) patients with central (C, green) and posterior (D, purple) STN-directional DBS (dDBS), and ring-mode
STN-DBS (E, orange), for the right and left electrodes. (D) The graph reports the VTAs included in (IN) and outside (OUT) the STN,
and the total volumes (SUM), for the central (green) and posterior (purple) STN-dDBS, and ring-mode STN-DBS (orange), for the right
(R) and left (L) sides. (E) Individual electrode positions illustrated in a posterior 3D view (Montreal Neurological Institute [MNI] space).
The central STN target is shown in color for the STN of each hemisphere. The different subregions of the STN are represented in light
green (posterior-motor), pink (central-associative), and yellow (anterior-limbic). (F) Posterior 3D view of the location of the barycenter
of each VTA with central (green) and posterior (purple) STN-dDBS, and ring-mode STN-DBS (orange), within the 3D atlas of the basal
ganglia in MNI space. Each sphere represents 1 barycenter of 1 individual patient and for 1 side. (G) The graphs report the
anteroposterior (Y_axis) and depth (Z_Axis) coordinates of the barycenter of each individual VTAs for ring-mode (RING) STN-DBS, and
central (CENT), and posterior (POST) STN-dDBS. *p < 0.05.
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occurring between t0 and the first foot-off), (2) duration
of APAs and double stance phases, and (3) length, width
and velocity of the first step (Fig S1). We then applied
principal component analysis (PCA) on these measures to
reduce dimensionality and distinguish the different com-
ponents of gait initiation. For this, we rescaled each vari-
able to zero mean and unit standard deviation, and
selected the number of principal components (PC) to
retain using a parallel analysis with 200 resamples.33 We
included 1,188 gait trials in the PCA analysis. We
summarized data across retained PCs using the Euclidean
distance of the PC scores relative to the mean PC scores
measured in a cohort of 10 healthy controls matched for
age (mean age [SD] = 55.3 [4.1] years, 4 females
[F]/6 males [M]).34

Kinematic parameters during straight-ahead walking
and turn were also recorded using a motion capture sys-
tem using 32 markers (Vicon, Oxford, England), and the
following parameters calculated: velocity, stride length,
double stance and turn durations, and the number and
duration of FOG episodes (Fig S1).

Additional prespecified secondary outcomes included
clinical scales to assess the severity of gait and balance dis-
orders and motor disability: the MDS-UPDRS part III
(motor disability) with the “axial” subscore (“speech,”
“arising from chair,” “gait,” “freezing of gait,” “postural
stability,” and “posture” items); the Gait and Balance
Scale (GABS) and the FOG Questionnaire (FOG-Q) (see
Supplemental references).

Gait parameters and clinical scales were assessed
both in the OFF-DOPA condition (withdrawal of
12 hours of antiparkinsonian treatment) and in the
ON-DOPA condition (after administering a sup-
rathreshold dose of L-dopa) at baseline, month 8, and
month 13.

Cortico-Subthalamic Connectivity
We assessed the cortico-subthalamic streamlines
encompassed by the individual VTAs for each STN-DBS
condition for each hemisphere of each patient, as previ-
ously reported (Fig 2E, F, see Supplemental methods).18

Each VTA was modeled using the Lead-DBS toolbox,32

by computing the electrical fields using the Simbio/
Fieldtrip technique35 and thresholding at 0.2V/mm. We,
then, extracted the connectivity of each VTA with the
39 cortical Brodmann areas (BA) from the whole brain
tractography, and segmented using the Brodmann atlas
included in MRIcro (https://www.mccauslandcenter.sc.
edu/crnl/mricro). We used the normalized sum of
streamline weights involved in tracks of interest and the
fiber bundle capacity (FBC),18 as a quantitative measure
of connectivity (see Fig 2).

Statistical Analysis
We used linear mixed-effects models to test the planned
comparison between central STN-dDBS, posterior STN-
dDBS and ring-mode STN-DBS (all conditions OFF-
DOPA) at month (randomized double-blind period).
Treatment condition was coded as a factor and included
as a fixed effect as well as a random slope, where patient
identification was used as the grouping factor in the ran-
dom effects. Separate models were fit for the Euclidean
distance of the PC scores and individual PC scores derived
from gait initiation data, as well as clinical scores at month
7. We used linear mixed-effects models with the same
fixed and random effects structures to compare data col-
lected before surgery in the OFF-DOPA and ON-DOPA
states, and between central STN-dDBS at month 7, month
8, and month 13 (OFF-DOPA). We used a binomial gen-
eralized linear mixed model to examine the probability of
experiencing FOG during a gait trial.

We performed a repeated measures analysis of vari-
ances to analyze the differences between STN-DBS condi-
tions (ring-mode, central, and posterior) at month 7, for
the VTAs, both within and outside the STN, the total
electrical energy delivered (TEED), the coordinates of the
barycenter of the VTAs (laterality_X axis, antero-
posteriority_Y axis, depth_Z axis, relative to the horizontal
plane connecting the anterior and posterior commissures
[AC-PC]), and the FBC for cortico-STN connectivity pro-
file. Mauchly’s tests were used to check the assumption of
sphericity. To assess variations in the connectivity profile,
in line with previous studies,13,18,36 we separated VAT
connectivity into 2 large clusters: a “prefrontal” cluster
(including predominantly BA 8, 9, 10, 11, 32) and a
“sensorimotor” cluster (including predominantly BA
1–2-3, 4, 6). Post hoc Wilcoxon rank sum tests were per-
formed to identify differences between conditions.

Additionally, the effects of the outside STN-DBS
conditions were examined as exploratory outcomes (see
Supplemental materials).

We performed statistical analyses using R (version
4.3.1) with the following packages: lme4 (version 1.1–35),
GLMMadaptive (0.9–1), lmerTest (3.1–3), emmeans
(1.10.0), and JASP (version 0.18.3). We adjusted p-values
for post hoc comparisons to control the false discovery rate,
and we considered a significance level of p < 0.05.

Results
Cohort Analysis
Between December 2019 and April 2022, we enrolled
11 PD patients in the study. All patients underwent sur-
gery, but 1 patient (P02-07) had to be withdrawn before
randomization because of relocation abroad, which

5
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prevented the planned assessments. The remaining 10 patients
(8 M/2F) were randomly allocated and successfully
completed the study (Table 1), with 1 patient (P02-03)
declining to perform the OFF-DOPA assessment at
month 13.

At baseline, all patients exhibited gait and balance
disorders, with disabling FOG, that were responsive to
L-dopa treatment, with a 70% and 82% decrease in the
axial and GABS scores, respectively (Table 1).

Electrode Locations, Stimulation Parameters,
VTAs, and Cortico-Subthalamic Connectivity
The implanted electrodes were accurately positioned
within the STN in all patients (see Fig 2). For each
patient, we were able to adjust the current to generate a
VTA targeting the central and the posterior STN areas,
with minimal or no overlap between these 2 dDBS condi-
tions (see Fig 2, Fig S2). The stimulation parameters used
for each STN-DBS condition are reported in the
Table S1. The mean TEED was significantly higher for
ring-mode STN-DBS relative to both central (p = 0.013)
and posterior (p = 0.016) STN-dDBS, with no significant

differences between central and posterior STN-dDBS
(p = 0.43) (Table S2, Fig S3).

The VTAs were significantly different between
STN-DBS conditions (F [4, 36] = 4.99, p = 0.003) (see
Fig 2A–D). The VTAs both within and outside the STN
were significantly larger for ring-mode STN-DBS com-
pared to both central and posterior STN-dDBS
(p = 0.002), with no significant differences between
central and posterior STN-dDBS. The coordinates of
the barycenter of the VTAs were significantly different
between conditions (F [9, 18] = 12.337, p < 0.001).
The VTAs from central STN-dDBS were significantly
more anterior and ventral within the STN compared to
VTAs from posterior STN-dDBS (see Fig 2E–G), with
no significant differences for the laterality (Table S3).
The VTA barycenter for ring-mode STN-DBS was
more anterior compared to posterior STN-dDBS, with
no significant differences with VTA barycenter for
central STN-dDBS (Table S3). Looking at overlaps
and differences between ring-mode and directional
STN-DBS conditions, we found that ring-mode over-
lapped with both central and posterior STN-dDBS, and

TABLE 1. Demographic and Clinical Characteristics of PD Patients at Inclusion

P02-01 P02-02 P02-03 P02-04 P02-05 P02-06 P01-01 P01-02 P01-03 P01-04 Mean � sd

Age (y) 60 63 62 68 58 68 54 63 51 48 59.5 � 6.7

Sex M/F M M M M M M F M F M 8 M/2F

Disease
duration (y)

13 16 9 17 6 11 11 11 12 10 11.6 � 3.2

MDS-UPDRS
part III OFF/ON
DOPA

43/10 51/10 44/2 35/11 34/10 23/6 64/14 34/7 56/20 39/9 42.3 � 12.1/
9.9 � 4.8

Axial Score
OFF/ON
DOPA

11/3 5/2 12/0 15/7 8/3 6/1 20/3 8/2 17/10 12/4 11.4 � 4.8/
3.5 � 2.9

GABS part B
Score OFF/ON
DOPA

32/4 11/0 23/0 43/12 26/8 17/1 55/9 17/6 41/9 32/7 29.7 � 13.0/
5.6 � 4.0

FOG-Q 25 19 28 28 22 21 22 24 35 33 25.7 � 5.2

MoCA 26 29 27 27 28 28 26 26 25 30 27.2 � 1.5

HAD 25 9 15 17 15 10 14 16 14 4 13.9 � 5.5

LEDD OFF
(mg/day)

1,630 875 860 1725 625 2,200 1,545 800 2,200 1,500 1.396 � 578

F = female; FOG-Q = freezing of gait questionnaire; HAD = Hospital Anxiety and Depression; LEDD = L-dopa equivalent daily dosage (mg/day);
M = male; MDS-UPDRS = Movement Disorders Society-Unified Parkinson’s Disease Rating Scale; GABS = Gait and balance Scale;
MoCA = Montreal Cognitive Assessment; PD = Parkinson’s disease; PDQ-39 = Parkinson’s Disease questionnaire; sd = standard deviation.
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ring-mode VTAs outside the STN were predominantly
located either medially or laterally to the STN (see
Fig 2A–C, Fig S2).

Tractography analyses showed that VTAs of central
and posterior STN-dDBS included mainly cortico-STN
streamlines from primary sensorimotor, premotor, SMA,
and medial frontal cortices (see Fig 3A, B, Fig S4). Ring-
mode STN-DBS produced VTAs with a similar relative
distribution across these cortico-STN streamlines, but
exhibited significant overall higher connectivity with both
prefrontal and sensorimotor networks (F [2, 18] = 5.815,
p = 0.011), and relative to both central and posterior
STN-dDBS (vs central, p = 0.026; vs posterior,
p = 0.05). We found no significant differences between
central and posterior STN-dDBS (p = 1.00) (see Fig 3,
Fig S4).

Regarding the outside STN DBS condition, the
TEED, and VTAs were lower compared to all other STN-
DBS conditions (Figs S2 and S3, Tables S2 and S3).

Effects of Directional STN-DBS on Gait and
Balance Disorders during the Randomized
Period
We applied PCA to reduce gait initiation measures
(Fig 4A), which yielded 3 significant PC accounting for
73% of the data variance (see Fig 4B). The first PC (PC1)
correlated positively with anteroposterior and mediolateral
APAs, step length, maximal velocity, and step swing dura-
tion, and negatively with APAs and double stance
durations, and vertical velocities (V1 and V2). PC1, there-
fore, reflected forward propulsive forces, with higher scores
indicating better propulsion. The second PC (PC2) corre-
lated positively with APAs, double stance and swing
phases durations, vertical velocities, step length and veloc-
ity, and negatively with step width, anteroposterior and
mediolateral APAs. PC2, therefore, reflected mainly
dynamic postural control. The third PC (PC3) correlated
positively with the durations of APAs and double stance,
and step width, and negatively with the vertical velocities
(V1 and V2), and anteroposterior and mediolateral APAs.
PC3 mainly reflected static postural control during gait
initiation, with lower and negative scores indicating better
postural control.

We examined the overall effect of dopaminergic
treatment before surgery using the Euclidean distance of
the PC scores compared to PC scores measured in
10 healthy age-matched controls (see Fig 4C). L-Dopa sig-
nificantly improved gait initiation, reducing the average
distance for patients close to that obtained for healthy
controls. Both forward propulsive forces (PC1) and
dynamic postural control (PC2) were significantly lower
in PD patients compared to controls, and significantly

improved by the L-dopa treatment (PC1: p = 0.00032,
PC2: p = 0.0019). PC3 was not different in PD patients
compared to controls and not significantly modified by
L-dopa treatment (p = 0.13) (see Fig 4C) (Table S2).

Effects of Directional STN-DBS on Gait Initiation
Parameters
At month 7, the mean Euclidian distance for gait initia-
tion PC scores was significantly lower for all STN-DBS
conditions compared to OFF-DBS (see Fig 4D).

The mean Euclidian distance was the greatest devia-
tion from healthy controls with posterior STN-dDBS, and
significantly worse compared to central STN-dDBS (see
Fig 4D, p = 0.027). Ring-mode STN-DBS (p = 0.027)
resulted in gait initiation scores closest to healthy controls,
followed by central STN-dDBS, with no significant differ-
ences between the 2 (see Fig 4, p = 0.85).

Forward propulsive forces (PC1) were significantly
higher and closer to healthy controls with STN-DBS com-
pared to OFF-DBS (see Fig 4, Table 2). We found no sig-
nificant differences in the PC1 between central and
posterior STN-dDBS (Table 2). PC1 was higher with
ring-mode relative to posterior STN-dDBS, with no sig-
nificant differences between ring-mode and central STN-
dDBS (see Fig 4D, Table 2). Dynamic postural control
(PC2) did not significantly differ between OFF-DBS and
directional STN-dDBS conditions, nor between central
and posterior STN-dDBS conditions, and was closer to
scores for healthy controls (Table 2). Conversely, PC2
scores were significantly reduced with ring-mode STN-
DBS compared to OFF-DBS, as well as compared to cen-
tral and posterior STN-dDBS, indicating poorer dynamic
postural control. Last, PC3 scores did not show significant
differences between DBS conditions, although central
STN-dDBS produced scores that were the closest to
healthy controls, indicating a better static postural control
(Table 2).

Effects of Directional STN-DBS on Freezing of
Gait, Gait and Balance Disorders, and Motor
Disability
During straight-ahead walking and turns, the probability
of experiencing at least 1 FOG episode per walking trial
was significantly lower with central STN-dDBS compared
to both posterior STN-dDBS and OFF-DBS (Fig 5).
Additionally, the probability was significantly lower with
ring-mode relative to posterior STN-dDBS, with no sig-
nificant differences between ring-mode and central STN-
dDBS (see Fig 5). In straight-ahead walking, although not
statistically significant, step length tended to be longer and
turn duration shorter with central compared to posterior
STN-dDBS (Fig S5).
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The axial and GABS scores were significantly
improved for all STN-DBS conditions compared to OFF-
DBS, with a significantly greater improvement for central

compared to posterior STN-dDBS (see Fig 5, Table S4).
There were no significant differences in axial and GABS
scores between ring-mode and either central or posterior

FIGURE 3: Cortico-subthalamic streamlines included in the volume of tissue activated (VTAs) for ring-mode, central and posterior
subthalamic deep brain stimulation (STN-DBS). (A) Visualization of the cortico-subthalamic streamlines included in the central
(green) and posterior (purple) STN-dDBS, and ring-mode STN-DBS (orange) for the right VTAs in 1 Parkinson’s disease
(PD) patient. (B) Three dimensional (3D) representation of the cortico-subthalamic streamlines included in the central (green) and
posterior (purple) STN-directional DBS (dDBS), and ring-mode STN -DBS (orange), in the 2 STN in 1 PD patient. 3D view of the
cortico-STN connectivity with all VTAs for the ring-mode (left) and directional central (middle) and posterior (right) STN-DBS
conditions (high connectivity = yellow, low connectivity = purple). (C) The graph reports the mean and standard error (SE) of the
fiber bundle counts (FBC) for the sensorimotor (SM) and prefrontal (Pf) networks fiber tracts included in the VTAs for central
(green dots) and posterior (purple dots) STN-dDBS and ring-mode STN-DBS (orange squares). (D) The graph reports the mean
FBC between each of the 48 Brodmann areas included in the VTAs for central (green) and posterior (purple) STN-dDBS, and
ring-mode STN-DBS (orange), for the right and left sides.
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FIGURE 4: Gait initiation parameters, principal component analysis, effects of L-dopa and subthalamic deep brain stimulation
(STN-DBS) on gait initiation performance. (A) Gait initiation parameters extracted from the mediolateral (ML) and
anteroposterior (AP) displacements of the center of foot pressure (CoP); and AP and vertical (V) velocities of the center of mass
(CoM). Included are the width (W), length (L), maximal velocity (Vm) of the first step, the minimal vertical velocity (V1) during the
anticipatory postural adjustments (APA) phase (V1) and at the time of foot-contact (FC, V2). The duration of the APA phase was
the delay between the first biomechanical event (t0) and the foot-off of the limb (FO1). The double-stance duration (DS) is the
delay between the FC and the second foot-off (FO2). (B) Results of the principal component analysis performed on gait
parameters, and correlation values for the parameters included in the first 3 principal components. Blue colors reflect negative
correlations whereas purple colors reflect positive correlations. (C) The effects of L-dopa treatment before surgery on gait
initiation. Left most panel represents the Euclidean distance summarizing the 3 significant PC scores compared to PC scores
measured in 10 healthy age-matched controls (blue horizontal line). The 3 remaining panels illustrate the scores for each
individual principal component. Small unfilled circles represent the mean distance or PC scores for each patient. The rectangles
represent the estimated marginal mean for each condition with 95% confidence intervals (vertical line). The blue lines represent
the distance or PC scores obtained in healthy controls (mean of individual control means). *p < 0.05, **p < 0.01, ***p < 0.001.
(D) The effects of STN-DBS on gait initiation during the randomized period (month 7). Formatting as for C.
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STN-dDBS. The MDS-UPDRS III score was significantly
improved for all DBS conditions compared to OFF-DBS
(see Fig 5, Table S4). The MDS-UPDRS III score was
lower with central compared to posterior STN-dDBS, and
with ring-mode compared to posterior STN-dDBS, with
no significant differences between ring-mode and central
STN-dDBS (Table S4). Last, the MDS-UPDRS III score
was higher with outside STN-dDBS relative to all other
STN-DBS conditions (Fig S6).

Effects of Chronic Directional STN-DBS on Gait
and Balance Disorders during the Open Label
Period
During the open-label follow-up period (M7 to M13),
parameters settings were adjusted in response to the resur-
gence of PD motor signs, including motor fluctuations,
akinesia, or gait difficulties observed in 8 patients. This
adjustment involved increasing stimulation intensity,
resulting in a significant rise in the TEED at month 13 rel-
ative to month 7 (Table S2, Fig S3). Central STN-dDBS
was maintained in all patients except 1 (P02-04), who

preferred ring-mode STN-DBS with reports of better
motor improvement.

When stimulating 6 months with central STN-
dDBS (month 13), we observed a significant increase in
PC1 scores compared to the acute central STN-dDBS
condition at month 7, with no significant changes in PC2
and PC3 scores (see Fig 6, Table 2), indicating improved
propulsive forces without degradation in dynamic and
static postural control during the 6-month application of
central STN-dDBS.

Clinically, there were no significant changes in the
MDS-UPDRS part III, axial, and GABS scores with
chronic central STN-dDBS at month 8 and month
13 compared to month 7 with acute central STN-dDBS
(see Fig 6). For FOG-Q scores, although not statistically
significant, scores were lower at month 8 and month
13 with chronic central STN-dDBS compared to
month 7 with chronic ring-mode STN-DBS (Fig S7).

Side Effects
We did not observe any adverse events during the ran-
domized phase of the study. During the follow-up period,

TABLE 2. Linear Mixed Effects Models of Gait Initiation Principal components with Directional Central STN,
Posterior STN, and Ring-Mode DBS

PC1 PC2 PC3

Randomized period

OFF-DBS vs

Ring-mode �4.08 (0.68)*** 1.37 (0.30)** 0.60 (0.38)

Central STN �3.28 (0.46)*** 0.62 (0.29) 0.94 (0.38)

Posterior STN �2.46 (0.54)** 0.72 (0.35) 0.42 (0.32)

Central STN vs

Ring-mode �0.81 (0.37) 0.76 (0.19)** �0.34 (0.20)

Posterior STN 0.81 (0.40) 0.11 (0.22) �0.52 (0.28)

Posterior STN vs

Ring-mode �1.62 (0.50)* 0.65 (0.14)** 0.18 (0.34)

Open-label period

Central STN M7 vs

Month 8 �0.68 (0.53) 0.06 (0.32) 0.30 (0.15)

Month 13 �1.18 (0.26)** 0.03 (0.20) 0.15 (0.18)

Values are estimates (SEM). Asterisks indicate significant difference from zero between STN-DBS conditions.
DBS = deep brain stimulation; M = month; PC = principal component; SEM = standard error of the mean; STN = subthalamic.
*p < 0.05;
**p < 0.01;
***p < 0.001.
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in addition to the resurgence of PD signs in some
patients, 5 non-serious adverse events were reported in
4 patients, including primarily rheumatological issues such
as lombosciatalgia and knee arthrosis. Additionally, 3 seri-
ous adverse events were also reported. One patient
(P01-03) had an unexpected neurostimulator arrest
because of a complete discharge that occurred between
2 scheduled visits. One patient (P02-02) experienced a fall
during the night, resulting in a minor scalp wound. One
patient (P01-02) exhibited transient mild confusion the
day following the STN-DBS surgery, which resolved
spontaneously.

Discussion
In this randomized study in PD patients, we provide new
evidence that central dDBS offers superior improvements
in gait and postural disorders, with reduced FOG episodes
compared to dDBS oriented toward the posterior STN.
Moreover, central STN-dDBS relative to non-directional
ring-mode STN-DBS yielded better postural control. The
advantages of central STN-dDBS were even more
apparent when applied over a longer period during the open-
label follow-up, showing superior improvements in forward
performance, with efficient static and dynamic postural con-
trol, and a sustained clinical improvement in FOG severity.

Central STN-dDBS Better Improves Gait,
Balance, and FOG
We included PD patients with severe FOG before surgery,
and both directional central and posterior STN-dDBS

yielded remarkable improvements in gait and balance dis-
orders, with mean reductions of 61 and 51% decreases in
the GABS score relative to OFF-DBS, respectively. This
benefit could be linked to the modulation of the premotor
and motor hyperdirect cortico-STN pathways.18,24,37

However, stimulating the central STN was superior to
posterior STN-dDBS for treating gait and balance disor-
ders, as measured by better outcomes in gait initiation,
straight-ahead walking and turns, and fewer FOG epi-
sodes. These findings also align with previous retrospective
studies conducted in large cohorts where FOG relief post-
surgery was associated with DBS located in a more central
part of the STN.10,13 The superiority of STN-dDBS
applied in the more central part of the STN could be
attributed to different factors that are not necessarily
mutually exclusive, and suggests that gait and balance out-
comes do not solely rely on the modulation of hyperdirect
cortico-STN pathway, but may also depend on the modu-
lation of other STN subparts or afferent/efferent fiber
tracts. First, this could be because of the selective modula-
tion of lower limb-related neurons shown to be located at
the ventro-central portion of the STN.38,39 Second, in line
with previous anatomical and histological studies per-
formed in non-human primates, this could reflect the
preferential modulation of the associative contingents of
the STN-external globus pallidus (GPe) network located
within the more central area,40,41 with better cognitive
adaptation for effective gait and an improvement in the
loss of automaticity.1 It is also possible that central STN-
dDBS modulates other key structures for gait and balance

FIGURE 5: Effects of ring-mode, directional central and posterior subthalamic (STN) deep brain stimulation (DBS) on freezing of
gait (FOG) episodes during forward walking, and clinical gait and balance disorders and motor disability. Small unfilled circles
represent the mean for each patient of the measure indicated by the ordinate label. The rectangles represent the estimated
marginal mean for each condition with 95% confidence intervals (vertical line). *p < 0.05, **p < 0.01, ***p < 0.001. GABS, Gait
and Balance Scale; MDS-UPDRS, Movement Disorders Society-Unified Parkinson’s Disease Rating Scale.
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control, such as the MLR, as recently reported in a retro-
spective study,13,17 and the cerebellum, the STN being
interconnected with these 2 structures shown to be altered
in PD patients with FOG.42–47

Ultimately, the combination of modulation of
hyperdirect premotor-STN and possibly STN-MLR path-
ways, with minimal impact on prefrontal cortico-STN
pathway, together with the modulation of the center of
the STN, appears to be the best pattern to improve PD
gait, balance disorders, and FOG.13,18

Long-Term Central STN-dDBS May Prevent
Postural Instability and FOG
We observed that FOG continued to be improved when
chronically stimulating the central STN, with a 52 and
55% reduction in the FOG-Q score 7 and 12 months
after surgery, and a 72 and 61% reduction in the GABS
and axial scores, respectively, 12 months after surgery.
With central STN-dDBS applied for a 6-month period,
gait recordings revealed continued and supplemental
improvement in forward propulsive forces. Additionally,
we observed no deterioration in postural control (PC2 and
PC3), whereas the TEED increased at a level similar to
the ones used with ring-mode STN-DBS. This indicates
that ring-mode STN-DBS does not only fail to improve
postural control,48 but it appears to worsen it, which
aligns with results from prior studies.10,12,49 This decline
in postural control associated with the ring-mode DBS
could potentially contribute to the exacerbation of FOG
after surgery as reported in approximately one-third of
patients, as well as postural instability and falls.10,13 This
phenomenon might be linked to the spread of current

affecting other neuronal pathways beyond the STN.
When comparing the VTAs cortical connectivity profile,
we observed increased connectivity in all cortico-STN
fiber tracts with ring-mode compared to the central STN-
dDBS, including the left prefrontal and temporal cortico-
STN fiber tracts (44–48 Brodmann areas). Increased con-
nectivity with prefrontal areas has previously been linked
to FOG4,6 and less improvement with STN-DBS.13,18 It
is, therefore, possible that ring-mode STN-DBS disrupts a
frontally mediated compensatory mechanism, potentially
worsening FOG or falls. Another possibility is that ring-
mode DBS influences other descending pathways or
closed structures. Comparing the VTAs location between
ring-mode and directional STN-DBS, higher VTAs were
found in more medial areas, and also laterally close to the
STN, with possible modulation of the red nucleus or the
ponto-cerebellar tracts,13,44 known to impact postural
control. In line with this hypothesis, decreased metabolic
activity44 and increased effective connectivity between the
putamen and the cerebellum have been reported after
STN-DBS,50 with increased metabolism in the reticular
pontine formation and right motor cerebellum suggested
to contribute to gait disorders after STN-DBS.51

Limitations
Several limitations should be acknowledged. First, the
small sample size restricts the generalizability of our find-
ings. However, we selected a relatively homogeneous
group of patients, all with severe FOG before surgery.
Additionally, we conducted a randomized double-blind
study, incorporating quantitative instrumented gait

FIGURE 6: Effects of chronic central subthalamic (STN) directional deep brain stimulation (dDBS) on kinetic gait parameters, and
clinical gait and balance disorders and motor disability. Left 3 panels indicate mean scores for the 3 principal components of gait
initiation with central STN-dDBS at M7 (green dark), M8 (green light), and M13 (green). Small unfilled circles represent the mean
for each patient of the measure indicated by the ordinate label. The rectangles represent the estimated marginal mean for each
condition with 95% confidence intervals (vertical line). *p < 0.05. Right 3 panels illustrate the parkinsonian disability (MDS-
UPDRS part III), axial, and GABS scores obtained in the same STN-DBS conditions. Symbol formatting as for left panels. GABS,
Gait and Balance Scale; MDS-UPDRS, Movement Disorders Society-Unified Parkinson’s Disease Rating Scale.
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recordings and comprehensive clinical assessments. We
used a histological and deformable atlas registered to indi-
vidual patient preoperative MRIs. We used personalized
VTAs instead of using normative brain atlases. This
method may pose inaccuracies, especially in patients with
larger third ventricles, and electrode locations and subse-
quent VTA modeling may vary slightly between patients.
However, normative brain atlases may not accurately
reflect individual brain anatomy, and we endeavored to
maintain consistency by selecting similar current orienta-
tions and quantities for dDBS, with posterior orientation
for sensorimotor STN and anterior one for central. Simi-
larly, we conducted individual whole-brain tractography
to examine cortico-STN streamlines for each patient,
rather than relying on brain connectomes derived from
larger patient groups that necessitate a common space
brain. Although this approach may introduce a higher
signal-to-noise ratio, our primary focus was on accounting
for individual cortico-STN streamlines.

Conclusion
Our study demonstrates that PD patients with severe
FOG can benefit from directional STN-DBS, in particular
individualized current shaping toward the central region
of the STN. This approach may help mitigate potential
side effects associated with standard ring-mode STN-DBS,
especially on postural control. Future investigation is
warranted to explore the potential clinical benefit of repro-
gramming STN-DBS toward the central STN in PD
patients who continue to experience disabling FOG post-
surgery. Additionally, further research is also needed to
explore the relationship between FOG improvement and
the individual connectivity profiles of the generated VTAs,
encompassing not only hyperdirect cortical pathways, but
also smaller fiber tracts, such as the STN-GPe, STN-
MLR, or cerebellar networks, which are challenging to
reconstruct.
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