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Abstract
Trust between humans and AI in the context of decision-
making has acquired an important role in public policy, re-
search and industry. In this context, Human-AI Trust has
often been tackled from the lens of cognitive science and psy-
chology, but lacks insights from the stakeholders involved.
In this paper, we conducted semi-structured interviews with
7 AI practitioners and 7 decision subjects from various deci-
sion domains. We found that 1) interviewees identified the
prerequisites for the existence of trust and distinguish trust
from trustworthiness, reliance, and compliance; 2) trust in
AI-integrated systems is strongly influenced by other hu-
man actors, more than the system’s features; 3) the role of
Human-AI trust factors is stakeholder-dependent. These re-
sults provide clues for the design of Human-AI interactions
in which trust plays a major role, as well as outline new
research directions in Human-AI Trust.

CCS Concepts: • Human-centered computing → HCI
theory, concepts and models.

Keywords: trust, artificial intelligence, decisionmaking, qual-
itative study, AI practitioners, decision subjects

1 Introduction
Decision making assisted by artificial intelligence (AI) has
become more widespread in high-stakes domains, where
decisions have real impacts on people’s lives such as public
safety [47], hiring [3] or loan approval [75]. Typically, the
AI-based systems considered are based on automated pro-
cesses (such as data-driven machine learning techniques)
that provide assistance to human decision makers in a form
of recommendations. Because Human-AI trust plays an im-
portant role in the adoption of these technologies [41] and

∗Both authors contributed equally to this research.

the improvement of decision making [9], it has become a pri-
ority for their design and development, as well deployment
and regulation [73]. To understand how to achieve appropri-
ate levels of human trust in these systems, more research at
the intersection of Human-Computer Interaction and social
study of AI is needed.
Trust is a complex and multifaceted concept [56, 61] and

several studies have focused on a better understanding of the
factors that can affect Human-AI trust (e.g., [64, 74, 106, 112,
116]). In these studies, trust is predominantly investigated
through the lens of users, who are the persons interacting
with the AI-assisted decision making system and its recom-
mendations in order to deliver their decision [54]. Less is
known about the perspectives from which other stakehold-
ers involved in, and impacted by the design, deployment
and use of these systems, view the notion of trust in AI,
while this outlook on Human-AI trust can be shaped by their
role. Jakesch et al. [46] demonstrate that the ethical values
embedded in AI-assisted decision making systems can hold
varied significance and interpretations for different groups.
For example, people working on AI, on average, considered
responsible AI values less important than general public and
crowdworkers that contributed to the training of AI models.
Such differences might also be reflected in the understanding
of and opinions on Human-AI trust of the various stakehold-
ers. For example, Lockey et al. [60] identify that different
types of users do not encounter the same issues related to
Human-AI trust: trust in AI of domain experts, e.g., doctors
in medical decision-making, might be particularly affected
by the factors that challenge their professional knowledge,
skills, identity, and reputation. In contrast, fairness-related
factors might impact general users’ and society’s trust in AI.
Therefore, examining how stakeholders other than AI users
view the definitions and factors of Human-AI is essential to
advance the understanding of how trust is accounted for in
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the development and design of AI-embedded systems assist-
ing decision-making and whether the existing approaches
match the varying needs of different stakeholders.
In this article, we investigate how two groups of stake-

holders - AI practitioners and decision subjects - understand
Human-AI trust. Exploring the views of these groups on
Human-AI trust definitions and factors allows to understand
to which extent they prioritize and value the same aspects
of Human-AI trust. AI practitioners are involved in system
design and deployment (from AI developers to project man-
agers). Given that they make decisions that influence the
shape of human-AI interaction, impacting trust in AI-based
technology and its acceptance for decision-making, under-
standing AI practitioners’ views on trust can shed light on
the factors they prioritize to build trust in AI among differ-
ent stakeholders. Therefore, we explore the following first
two research questions: RQ1a) According to AI practitioners,
what are the critical elements of human-AI trust in decision-
making? ; RQ1b)What do AI practitioners think influences the
trust of various stakeholders in AI in the context of decision-
making?
The second group is decision subjects, i.e., people who

do not interact directly with the systems incorporating AI
but are affected by the decisions made by users based on
the recommendations of these systems. For example, doctors
are users, and patients are decision subjects in the medical
context. Although decision subjects do not generally inter-
act with AI-based systems the same way as users, they may
nevertheless want to decide whether or not they wish to
be impacted by the system [36]. For example, if a patient
decides that the doctor’s AI-based recommendation is not
fair or trustworthy, they may want to change doctors or clin-
ics. Therefore, we are investigating the following research
questions: RQ2a) According to decision subjects, what are the
critical elements of trust between humans and AI in decision-
making? ; RQ2b)What factors influence decision subjects’ trust
in AI?

We thus conducted semi-structured interviews with 7 AI
practitioners related to AI-assisted decision making and 7 de-
cision subjects from various risk-sensitive contexts (finance,
law, management, medicine). The questions revolved around
defining trust and trustworthiness when related to AI, and
what they think can affect Human-AI trust. Using thematic
analysis [14, 24], we established three themes: 1) definition
of trust through three prerequisite elements and differenti-
ation from other related concepts. The interviewees define
Human-AI trust similarly to the literature with vulnerabil-
ity and positive expectations, and additionally propose task
complexity as a trust prerequisite. Moreover, AI practition-
ers distinguish trust from trustworthiness and trust-related
behaviors such as reliance and compliance; 2) the effect of
relationships between various stakeholders on Human-AI
trust. We found that the extent to which decision subjects,
AI practitioners, and users trust each other has an impact on

their trust towards AI and can moderate the effect of some
factors on Human-AI trust; 3) stakeholder-dependency of
the role and effects of some factors on Human-AI trust. We
found that AI transparency, AI literacy, and interactivity of
the system affect Human-AI trust differently for different
stakeholders. Based on our findings, we provide a set of impli-
cations for academic researchers in HCI and AI practitioners.
In particular, we recommend investigating the breaking and
calibration points of trust between humans and AI beyond
direct interaction with the system, and re-examining the
techno-centric trust factors between humans and AI from
a socio-technical point of view, as well as from the point of
view of stakeholders other than users.

2 Related Work
In this section, we provide a brief overview of the methods
to study Human-AI trust in assisted decision making and the
different stakeholders at play with such systems.

2.1 Background on AI-embedded Systems Assisting
Decision Making

While there is no universally accepted definition of AI [30], in
this paper, we follow the definition provided by the European
Commission: AI is a system capable of “perceiving their en-
vironment through data acquisition, interpreting the collected
structured or unstructured data, reasoning on the knowledge, or
processing the information, derived from this data and deciding
the best action(s) to take to achieve the given goal” [81]. There-
fore, what we refer to as “AI-embedded systems assisting de-
cision making” are the systems that analyse data to derive in-
formation used to facilitate human decision making [23, 88].
Usually, such systems provide assistance to human decision
makers in a form of one or multiple recommendations, and
when the system is not fully automated, it is the human who
has the last word while making decisions. If the AI’s recom-
mendation differs from the decision maker’s initial opinion,
the decision maker finds themselves in conflict between her
initial opinion and the new information received, which
means that she has to choose between their opinion and the
recommendation in order to make a better decision [110].
Making a better decision based on a recommendation

means to be able to interpret the quality of the recommen-
dation. However, it can sometimes be difficult to understand
how a system arrived to a certain conclusion due to their
“black box” nature [1, 53]. This, in turn, obfuscates under-
standing why a certain AI recommendation was produced,
anticipating potential biases in decision making, and iden-
tifying the reasons for wrong predictions [87, 113]. When
one is uncertain about how to correctly assess the quality of
a recommendation [95], one can rely on their level of trust
towards it to decide whether to stick to one’s own opinion or
to follow the system [100, 105]. As AI-embedded systems are
becoming more widespread for assisting in making decisions
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have real impacts on people’s lives, such as public safety [47],
hiring [3] or loan approval [75], to name a few, the need for
considering what contributes to human trust in the design
of AI has arisen [13, 26, 34, 35, 51, 71, 92, 97, 104].

2.2 Human-AI Trust
Human-AI trust literature has two major themes of interest:
defining what trust is and what factors affect it. The first line
of research builds primarily on theoretical works, e.g. [45],
taking a top-down approach to understanding Human-AI
trust. A systematic literature review on Human-AI trust in
the decision-making [103] defines Human-AI trust through
three prerequisite elements, all encompassed in the trust
definition by Lee and See [55]: An attitude that an agent
will achieve an individual’s goal in a situation characterized
by uncertainty and vulnerability. These three prerequisites
are: vulnerability (or risk) of humans to the actions of the AI-
based system, positive expectations of humans with respect
to the AI-based system outcomes, and attitude as opposed
to a behavior. Some scholars further define more granular
facets of trust such as affective and cognitive trust [57, 70],
weak and strong trust [10], warranted and unwarranted trust
[45] or differentiate between trust in a particular AI tool, in
people who built this tool and in AI in general [80].
The second major theme investigates Human-AI trust

through a bottom-up approach, empirically studying what
factors can affect users’ trust. Glikson and Woolley [37] in a
literature review of studies empirically investigating Human-
AI trust factors identify that the main ones for trust in AI
are: tangibility, transparency, performance (reliability), task
characteristics, anthropomorphism, and socially-oriented be-
haviors of the system. While they did not propose any classi-
fication of the factors, almost all of them belong to a category
related to the system characteristics (a category present in
trust frameworks from the fields other than Human-AI in-
teraction [2, 11, 40, 41, 84, 85]). Type of task is the only trust
factor that is related to the context of interaction, rather than
the interaction with the system itself. Another framework
on Human-AI trust factors in the medical context [17] calls
for expanding the current literature’s focus on the contexts
other than users’ interaction with the system. Browne et
al. [17] argue that considering trust factors in the contexts
beyond use reflects better the entire clinical AI deployment
process in the real settings and, thus, opens up the floor to
new trust calibration points. As most of the work on Human-
AI trust targets a single type of stakeholder - direct users
of the systems, we expand the analysis of Human-AI trust
definition and factors to the stakeholders other than users
that are related to the Human-AI decision making systems.

2.3 Human-AI Trust and Stakeholders Other Than
Users

In this article, we focused on stakeholders that are the most
linked to the development or the use of AI-assisted deci-
sion making systems: AI practitioners, people who de-
velop the systems; users, people who use these systems
to make decisions; and decision subjects, people who are
affected by those decisions (see Table 1). Additional stake-
holders, however, exist, such as regulators and policy mak-
ers, whose contributions, although interesting, are out of
the scope of this paper (the reader can refer to different
taxonomies [8, 29, 39, 46, 90, 115] for more information).
The stakeholders that have received the most attention

in the literature on Human-AI trust are the users of the
systems [54]. Researchers have repeatedly pointed to the
need to explore and assess users’ trust in these systems to
facilitate their adoption (see, for instance, [12, 89, 91]). It is
not surprising that the literature focuses on system users, as
understanding what affects their trust in the AI algorithms
embedded in these systems can inform the development of
interfaces and interactions that would facilitate the emer-
gence of trust. However, different stakeholders may have
different needs, expectations or roles when it comes to trust
between humans and AI, and may also have an implicit im-
pact on users’ trust in systems. The research on AI with
human-centered values has investigated the perspectives
and needs stakeholders other than users, notably AI practi-
tioners (e.g. [7, 28, 49, 101, 102, 111]) and decision subjects
(e.g. [36, 59, 62, 63, 68, 114]). Here we first present a set of
previous works that have explicitly demonstrated differences
between these stakeholders when it comes to concepts such
as AI ethics, explanations, or fairness. While these results
are not directly about Human-AI trust, they are related to
our domain and motivate our approach.

Regarding responsible AI, which aims to deploy AI-based
systems in line with ethical and legal frameworks, previous
work shows the importance of including the AI practition-
ers’ perspectives to ensure that the system is designed to
meet the actual needs of business and industry [42]. Typi-
cally, AI practitioners are pushed to quickly develop a service
or a product that one can sell, which sometimes conflicts
with ethical practices valued by the users [4, 65, 78, 107]. Re-
garding Explainable AI (XAI), which aims to propose means
to explain AI-based predictions and help their interpreta-
tion, the usefulness of the explanation of a recommendation
given by AI can vary depending on who sees it [32, 88]. A
user might want to learn to which extent a recommendation
can help them save money for instance [67], while decision
subjects might want to know to which extent this recommen-
dation is biased against a certain population in which they
may belong [16, 108]. Regarding fairness, Smith et al. [94]
take the case of microlending and show that depending on
the different strategies to achieve fairness, stemming from
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Icon Acronym Stakeholder Definition

U Users Individuals directly interacting with the system

P AI practitioners Individuals who design, develop and deploy AI-based solutions

DS Decision subjects Individuals affected by an AI-assisted decision-making system

Table 1. The different stakeholders related to the AI assisted decision making systems. This article focuses on AI practitioners
and Decision subjects, two stakeholders who received less attention in the Human-AI trust literature.

Id Role Background Organization Type of AI AI Application
P1 XAI R&D CS and Maths Large CNNs Transport, paleontology
P2 XAI R&D Eng. and Maths Small OR Task planning
P3 CEO Maths Small Supervised ML Evaluation of law cases

P4 Research mgr. HCI Large OR, supervised
and unsupervised ML Project-based

P5 Research mgr. Human Factors Large Not specified Project-based
P6 CPO Engineering Small ML (not specified) Finance and business
P7 CEO Bio. Eng. & Research Small Deep learning Medical

Table 2. Characterization of AI practitioners, their companies, and AI they work with as reported by the interviewees
themselves. “Small” refers to the companies with less than 20 employees, “Large” - with over 1000 employees. Explanation
for abbreviations: XAI - explainable AI, R&D - research and development, mgr. - manager, CEO - chief executive officer, CPO
- chief product officer, CS - computer science, eng. - engineering, CNNs - convolutional neural networks, OR - operations
research, ML - machine learning.

its different definitions, Human-AI decisions favor decision
subjects, direct users or the organization behind the system.
Finally, regarding power relations in interaction, users and
AI practitioners might see AI recommendations as tools, as-
sistants or servants [50], while decision subjects might see
the same AI recommendations as coming from someone in
a more powerful position than they are. Such difference in
perceived hierarchical roles between different stakeholders
and AI can influence their attitude towards the system and
interaction with it [21, 43, 83].

Previous work thus demonstrates the importance to study
different stakeholders in the context of Human-AI interac-
tion. In the context of Human-AI trust, Passi and Jackson
[76] investigate how AI practitioners establish trust among
themselves while working with data. Ammitzbøll Flügge
et al. [5] and Okolo et al. [72] emphasize the importance of
trust between users and decision subjects. Ferrario and Loi
[32] analyze the importance of XAI for decision subjects’
trust in AI. Lastly, Ramesh et al. [79] show that decision
subjects overtrust AI due to seeing it as a higher authority
for financial decisions. These works tend to focus on a small
set of factors influencing Human-AI trust. A more global
perspective of how AI practitioners and decision subjects
build and perceive Human-AI trust is yet to be explored.

3 Methodology
We adopted an interview-based qualitative methodology to
answer our research questions about what trust is and what
that trust depends on in the context of AI-assisted decision-
making from the perspective of the real-word stakeholders.
The project started in 2021.

3.1 Participants
We recruited participants through a convenience sampling
technique combined with snowballing among colleagues and
friends, and through announcements at events and on the
project’s social media channels. We had two selection criteria
to find interview participants: 1) they either work (as practi-
tioners) on AI-embedded systems that support risk-sensitive
decision making (e.g., in health, law, finance)1 or they have
been affected by their decisions (as decision subjects), 2) the
system is used in the real world. We did not focus on any par-
ticular corporate position nor on any specific AI application
in order to obtain a diversity of perspectives among intervie-
wees. In total, we conducted 14 semi-structured interviews
(7 with AI practitioners2, 7 with AI decision subjects).

1Risk in risk-sensitive applications is understood as defined by the European
Union (EU) regulatory framework proposal on AI: https://digital-strategy.
ec.europa.eu/en/policies/regulatory-framework-ai
2We initially contacted 14 AI practitioners, 5 of them did not reply, and 2
did not have availability for an interview
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Id Background Decision Context
DS1 Software developer Job application
DS2 Medical student Access to services
DS3 Mechanical engineer Job application
DS4 Business economics researcher Loan application
DS5 Mechanical engineer Job application
DS6 Accounting and project management Job application
DS7 Computer engineer Job application

Table 3. Characterization of decision subjects, notably their
background and in what context they received a Human-AI
decision.

The participation in the study was on a voluntary basis.
The AI practitioners are based in Europe and Oceania, and
each worked for a different company. Table 2 provides an
overview of the AI practitioners’ backgrounds, their roles in
the company, and the application areas of AI. Three partici-
pants work on XAI (two are responsible for implementation
and research, and another is the company’s chief executive
officer - CEO). Three other participants are senior project and
product managers. The AI decision subjects are all based in
Europe and had been affected by AI decision making in three
different risk-sensitive areas: job application, access to ser-
vices, loan application. The decision subjects we interviewed
were not the people affected by the AI tools developed by
the AI practitioners who participated in our study. Table 3
provides an overview of the decision subjects’ backgrounds
and in what context they received a Human-AI decision. Al-
though 4 out of the 7 interviewed decision subjects have a
background in computer science and engineering, we did
not explicitly evaluate their prior experience with AI or their
level of expertise in the field.

3.2 Interview Protocol
We conducted semi-structured interviews [66] of the re-
cruited participants. The questions were compiled by the
two first authors. They were independently reviewed by
the other two authors and approved by the ethics commit-
tee of the research institution. In addition, we conducted a
mock interview with an AI practitioner and a decision sub-
ject and adjusted the wording of the questions to improve
their understanding. These data were not used for analysis.
The questions were designed in English and translated to
French and German for those participants preferring one of
these languages. Interviews took place either by telephone
or videoconference, whichever participants preferred. Par-
ticipants could choose to allow us to record the interviews
for note-taking purposes. All 14 participants agreed to do
so. A total of 685 minutes were recorded, and each interview
lasted an average of 50 minutes. Participants had access to
our written notes before we used them in the article to en-
sure that their anonymity was maintained. All participants
allowed us to quote them in the study.

The interview protocol consisted of four parts (Table 4)
evolving around: the context with respect to their interaction
with AI, Human-AI trust definitions, trust factors, and trust
evaluation. In this article, we focused on the data regarding
definitions and factors in the analysis. Where possible, we
kept the formulation of questions identical (see Trust Def-
inition in Table 4) for both groups of the participants. We
adjusted the formulation of the questions related to the per-
sonal experiences to reflect the role of each group (example
in Trust Factors, Table 4). We asked the questions around the
Human-AI and trustworthiness definitions to understand
what participants consider to be prerequisites of trust, that is
in what contexts it is appropriate to consider Human-AI trust.
We asked AI practitioners about their strategies to establish
trust in their AI tool to understand what factors AI practition-
ers think influence trust of other stakeholders and which fac-
tors and stakeholders they prioritize. We did not explicitly re-
fer to any group of stakeholders in our questions to let the AI
practitioners spontaneously name the stakeholders relevant
to the discussions aroundHuman-AI trust.We asked decision
subjects to share their experiences with receiving Human-AI
decisions and, notably, what made them trust these decisions
to identify the factors that influence their trust in AI. We
also wanted to know whether decision subjects thought they
trusted these decisions or AI in general too much or too little
to gain more insights about what factors they prioritized to
calibrate their trust towards more appropriate levels.
There were 8 questions in total as approximate guidance

for the interviewers (Appendices A and B). When needed,
we deepened the topic with follow-up questions about all the
stakeholders involved in an anecdote, clarifying theoretical
terminology, possible solutions to a described challenge, and
whether a proposed factor always has effect on Human-AI
trust.

3.3 Analysis of the Interviews
The first and second authors transcribed all interviews, re-
moved all personal information (name of team, company,
city, etc.) from the text, and assigned a code name to each in-
terviewee, P for AI practitioners andDS for decision subjects.
After transcription, the researchers deleted the audio files
and allowed participants to review the interview text if they
wished. The two researchers also translated the French and
German texts to English and validated the translation with
native speakers of the respective languages. Subsequently,
the two researchers independently read all interviews at
least twice, first without taking any notes and the second
time highlighting the phrases or words related to people’s
experiences and needs with AI, to get familiarized with the
data.

The further data analysis was based on the inductive the-
matic analysis [14, 24], that is a bottom-up approach to cod-
ing and analysis driven by the data itself. The two authors
independently assigned to each highlighted phrase a code
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AI practitioners Decision Subjects

Context
How would you describe your role in the company?
What is the main objective of your system?

Could you please tell me about your experience
with Human-AI decision making?

Trust Definition How would you define Human-AI trust in your own words?
How would you define Trustworthy AI in your own words?

Trust Factors What is your strategy to establish trust of various stakeholders
in your AI?

Have you ever trusted AI too much / too little?

Trust Evaluation How would you know if someone trusts your AI? Do you think AI developers consider human trust?

Table 4. Structure and examples of questions per each group of participants. Data analysis of this paper mostly relies on
answers around the definitions and factors of Human-AI trust. A full list of questions is in Appendices A and B.

that encapsulates the best its main message, focusing on the
semantic content of the data. They then compared the list
of highlighted phrases and their codes, discussed whether
to include or not the phrases highlighted only by one of the
researchers, and fine-tuned the wording of the codes for the
finalized list of the selected phrases. After three iterations,
the first author organized the codes in a series of sub-themes.
They were further reformulated or merged with the consen-
sus of all four authors in the process of writing the paper,
and organized, under three main themes: one on the def-
inition of trust, one on the role of interpersonal relations,
and one on the divergent opinions between AI practitioners
and decision subjects on the factors affecting trust (further
described in the next section).

4 Findings
The thematic analysis yielded three main themes discussed
in this section. We first explore the definitions of Human-AI
trust from the perspectives of AI practitioners and decision
subjects. Secondly, we find that both groups of respondents
attribute significant importance to trust in interpersonal
relationships, rather than in system characteristics. We con-
clude the results section by emphasizing some differences
in opinions between the groups regarding the impact of AI
transparency, AI literacy, and interactivity on Human-AI
trust.

4.1 On the Definition of Trust
When prompted to define Human-AI trust in decision mak-
ing, the interviewees identified three prerequisites for trust:
positive expectations that AI will be beneficial in achieving
the goals, the perceived risk associated with a decision, and
the complexity of the task at hand. Importantly, the inter-
viewees differentiated between trust, trust-related behavior,
and trustworthiness.

4.1.1 Positive expectations and perceived risk are pre-
requisites for the emergence of trust, but the nature
of risk is debated. The interviewees state that for trust to
emerge, people must have positive expectations that AI
will help them achieve their goal and is aligned with their
interest. They defined goal as “the best answer in the shortest

time” (DS5, DS7). P6 also highlights that AI recommenda-
tions must be aligned with the goal of people interacting
with or affected by the system as opposed to the technol-
ogy owner’s interest: “It is important that the owner [of an
AI-embedded system] does not recommend something in the
company’s interest” (P6).
Moreover, the interviewees refer to the perceived risk

associated with a decision as another prerequisite for the
emergence of trust: “When my physical integrity or money
is at risk, trust becomes a consideration, especially when some-
thing important is at stake for me” (P4)3. Several participants
associate risk with health (DS2, DS4, DS5, DS6) or financial
stability (DS4, DS5, DS6). P4 refers to risks related to eco-
nomic loss or threats to life and health as universal, stating,
“... a foundation [for defining risk] would be the physical needs
and individual and social integrity from the Maslow’s Hier-
archy.” However, some, like P5 and P2, broaden the concept
of risk to include “vulnerability” (P5) or “responsibility” (P2),
showing that risk extends beyond just financial or health
concerns. P4 notes that what is considered risky varies from
person to person, as “not everyone has the same priorities”.
For example, DS4 found even Tinder recommendations could
induce vulnerability, recounting moments when “the algo-
rithm says that I am ugly, something about myself that I do not
want to accept” (DS4). Therefore, DS4’s experience of feeling
vulnerable when their appearance was judged by AI indi-
cates that the associated risk goes beyond monetary losses
or health hazards and is closely related to one’s personal vul-
nerabilities and priorities. This points to the situatedness of
the risks involved and suggests that the mere application do-
main of the AI-assisted decision is not enough to indicate the
level of risk associated; rather, it is the perceived risk based
on individual vulnerabilities and priorities that matters.

4.1.2 Task complexity as a new prerequisite for the
emergence of Human-AI trust. Besides positive expecta-
tions and perceived risk as prerequisites for human trust in
AI to emerge, some interviewees (P2, P4-P6, DS5) also men-
tion task complexity. P2 and P6 describe “complex task” as
a situation when a person cannot determine the quality of AI

3In this quote, AI practitioner P4 refers to their general reflection about
what could trigger one’s trust to emerge, not taking a particular perspective
as an AI practitioner nor a decision subject
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recommendation and, as a result, has many doubts around
the final decision. DS5 agrees with P2 and P6, citing data
analysis as an example of a task that is complex because: “it
is very difficult for a human to perform calculations and test
the system.” A task is also perceived as more complex if the
decision to make is a long-term one (P4). P5 suggests that
when users face a complex task, trust emerges as a tool to
mitigate the complexity: “Sometimes you can’t evaluate every-
thing, you sort of use that quick «I just trust you, I just trust you
to do the right thing».” Interestingly, while the interviewees
reported task complexity as one prerequisite for trust, it is
not present in the usual definitions of trust [45, 103], which
typically considers two prerequisites: “positive expectations”
and “vulnerability”.

4.1.3 Trust is differentiated from trust-related behav-
iors and trustworthiness. Some interviewees differentiate
between trust (which is defined as an attitude [45]) and trust-
related behaviors. For instance P4, P5, and P6 postulate that
inferring users’ level of trust in AI from simply observing
their behaviors could be misleading. Because users “can have
a complex and elaborate way of thinking [about AI-embedded
systems and recommendations]” (P4). P3 indicates that a user
might follow AI recommendations not out of trust, but be-
cause they “have no other solutions” (P3). The interviewees
thus clarify that it is trust-related behaviors, not trust itself,
that are in action. But trust-related behaviors are useful as
they can serve as “indicators” of trust. As P2 notes, “as long
as there aren’t too many complaints, no negative comments,
[...] and the user uses the solutions, we can consider that trust
is not broken” (P2).
Additionally, four interviewees (P2, P4, P5, P7) explicitly

differentiate trust in AI from AI trustworthiness. Contrary to
trust, which is seen as “human reaction” (P5), trustworthiness
relates to features of the system (P2, P5), e.g., “whether the job
has been well done” in designing and developing the system
(P7). Such distinction further supports the stance that it is
important to focus not only on what makes AI trustworthy,
but also on what makes people trust AI [58]. Interestingly,
two interviewees associated trustworthiness with AI gover-
nance, i.e., the institution or organization behind the AI. P4
states: “For me, it [trustworthiness] is not so much a question
of AI, it’s more between the individual and the entity or the
organization that makes the system.”

4.2 The Role of Inter-personal Relations on Trust
We discovered that trust between humans and AI is influ-
enced by the trust among various stakeholders involved in
the creation, use, and evaluation of the AI-based decision
support system. Furthermore, AI certification, as a potential
solution, is also contingent on trust within an interpersonal
relational network.

4.2.1 The team behind AI plays an important role in
(Human-AI) trust. The interviewees indicated that an indi-
vidual’s trust in AI is closely linked to the level of trust they
have in other stakeholders (Human-Human trust) within the
socio-technical ecosystem. This ecosystem includes interac-
tions between various stakeholders (such as AI practitioners,
users, and decision subjects) and even the technical charac-
teristics of the system. We found four cases illustrated in
Figure 1. AI practitioners (P2, P4, P7) particularly emphasize
Case 1: trust between the users and the AI team, where
the AI team is the group of people behind the creation of the
system. If users trust the AI team, their trust in AI "[...] is
established before the system exists. [...] Trust is very strong
in the co-design phase [between users and the AI team]” (P4).
Interestingly, previous work on Human-AI trust does not
generally consider trust between users and the AI team as a
factor in Human-AI trust, even though it is likely to occur
in real-world scenarios.

Figure 1. Schematic representation of the extent to which
trust between different stakeholders groups discussed in
relation to how it can affect Human-AI trust in the context
of decision making.

AI practitioners (P3 and P6) also talk about the trust be-
tween theusers and other users of the same system (Case 2).
They claim that previous experiences of other users influence
users’ trust in AI: “We have 10,000 users, and 90% of them say
«the feedback from the AI was very interesting», now [knowing
this, current users] will tend to trust the AI” (P6). This trust in
AI is further strengthened if “a domain expert confirms what
the AI recommends” (P6).

Case 3 examines the trust that decision subjects place in
the users of the system, concerning their usage and purpose.
For instance, DS3 noted that trust in the system and its users
are intertwined: “There is trust in the system and trust in
those who use the system [...]. They [the users] should at least
tell you they are using such a system [embedding AI] so you
don’t lose your chance, just because you don’t know how it
works [...]”. DS7 highlighted the complexity of this trust
dynamic involving both humans (users) and machines from
the perspective of the person being impacted by the decision:
“I don’t trust mixing humans and machines. Either the decision
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should be entirely made by a machine or a human. If you have
only one machine, then you know what to expect. But if you
have a machine and a human, then it would be very unfair
because the users’ roles are not defined, and the priority is not
clear."
Finally, one decision subject also talked about the role

of trust in AI team for decision subjects (Case 4). DS7
cites the example of Elon Musk and Tesla (at the time of the
interviews), explaining that the trust of decision subjects
in the company’s high-level management influence their
perceptions of and trust in the AI systems they develop:
“[he] is building trust with people through his own presence in
the media [...]. People trust him and love his personality, so
they trust his product even if it does not benefit them in the
end.”

4.2.2 The effect of AI certification on Human-AI trust
depends on who is behind it. The interviewees (P1, P4, P6,
DS1-DS3, DS5, DS7) share the view that knowing that an AI
system has been certified is a factor that influences trust in
that system, because “certification has always been a way to
gain confidence in technological tools, whether they are AI [or
not]” (P6). This is especially true for critical systems: “The ob-
jective is clear - we [AI team] want certification” (P1). P4 says
that “the certification alone should be enough [for Human-AI
trust] if it is done well.” However, some interviewees high-
light the importance of who is behind the certification, rather
than the sole fact of AI having been certified (DS1-DS3, DS5,
DS7): “AI certificates are very important [for Human-AI trust]
if there are organizations [that issue them] that people can
trust” (DS2).

Finally, P5 and DS7 are more suspicious about certification
in general because they think there is not yet enough scien-
tific evidence that “certification will build trust [in AI], I am
not quite convinced of that yet” (P5) or because a certification
does not warrant that everything will be alright “if there is a
hack or a problem” (DS7).

4.3 Diverging Opinions on Three Factors impacting
Human-AI trust

Three factors playing a role for Human-AI trust were con-
sidered differently by AI practitioners and decision subjects,
and are important to be highlighted. These factors are: AI
transparency, AI literacy, and the increase of interactivity on
the system. We decided to focus on them, rather the factors
that both groups of stakeholders agreed on (e.g. AI perfor-
mance and errors, marketing of the system, expectations
about the system), as we believe that the identified diverging
opinions provide interesting insights and implications for
the research community.

4.3.1 AI practitioners and decision subjects do not
share the same view on the role of AI transparency on
trust. AI transparency is one of the most discussed Human-
AI trust factors in the interviews (P1-P7, DS3, DS4, DS7). The

interviewees define two levels of transparency: a) explaining
why a specific AI recommendation was shown and its
quality, and b) explaining the working processes of AI
development team.
The opinions about the effect of explanations of AI

recommendations (a) on trust diverges not only between
decision subjects and AI practitioners, but also among AI
practitioners themselves. Some AI practitioners believe that
explaining why a specific recommendation was shown can
affect Human-AI trust, because it provides better understand-
ing of how the recommendation was derived and, thus, lets
estimate recommendation’s quality (P2, P3, P6). At the same
time, P4 strongly questions the necessity of understating
for trust: “One has to stop wondering how one can make tools
that are more explainable, interpretable, or whatever, because
sometimes there are tools that are not explainable in which
we trust, a plane or a car, we don’t know how it works inside,
and yet we use them [...]” (P4). Additionally, P1 and P7 raise
concerns about the extent to which explanations can con-
tribute to one’s understanding of an AI recommendation:
“All the latest methods [of explainability] that have been de-
veloped are often so complex that humans [laypeople] do not
understand them, so the methods do not help them at all” (P1).
Decision subjects further disagree with the AI practitioners
supporting usefulness of AI explanations (P2, P3, P6). They
state that besides AI explanations being complex (DS3, DS4),
they have limited contribution to understanding of AI rec-
ommendations and, consequently, trust, because of the real
world constraints: “If people had the time to go through the
explanations and review them in practice, they would have
made the decision themselves in the first place” (DS7).

Additionally, the AI practitioners (P3, P4, P7) seem to put
considerable importance on transparency around the work-
ing processes (b) of AI development team, while decision
subjects did not mention this aspect of transparency at all
in connection to trust. The AI practitioners believe that the
working process is the most actionable means of AI trans-
parency for their clients, i.e. users that request development
of a specific AI algorithm either for their own business or
for a third party. The examples of explaining the working
processes could be explaining the data, e.g., “you have to
be very, very transparent about how you prepared the data,
because any AI is biased just because of the quality of the data
(and also the quantity)” (P7) and explaining the specifics of
the system and AI in general, e.g. “when we [...] try to be as
transparent as possible on how it [the AI-embedded system]
works, we try to explain it to them [clients], because it can be
sometimes quite technical, even mathematical, and then there
are no more problems, no problem of trust...” (P4).

4.3.2 AI literacy: decision subjects perceived AI liter-
acy asmore specific and operational than AI practition-
ers. There have been diverging opinions about the role of
AI literacy for Human-AI trust between AI practitioners and
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decision subjects: while AI practitioners emphasize the need
for raising general public awareness around AI, decision sub-
jects believe in system-related literacy, i.e. more specific and
operational knowledge about AI. P5 believes public educa-
tion on the general understanding of AI could be beneficial
for calibrating human trust in AI, “because people will say
«I do not trust AI», without really understanding what AI is”
(P5). Similarly, P7 believes that users should understand the
boundaries in AI performance - what AI can do and cannot
do. However, for decision subjects, it is not enough to raise
public awareness about how AI works in general, because it
is not specific enough, e.g. “educational events [about AI] do
not really make sense to me, because often nobody knows how
the system really works” (DS4), or not actionable enough, e.g.
“the educational sessions [about AI] do not make sense to me,
how can they help?..” (DS6). Therefore, affecting Human-AI
trust through AI literacy seems to be possible by accounting
for needs of a specific stakeholder group. For example, for
decision subjects to understand how a Human-AI decision is
made to be able to act upon it, P7 provides training tailored
for their decision subjects: “[we] create materials, [...] flyers,
[...] content for patients so that they are informed, that they
are not afraid of this new technology” (P7).

4.3.3 Interactivity: exploration tool for AI practition-
ers, means to be included in the loop for decision sub-
jects. AI practitioners and decision subjects agree that in-
teractivity is another factor impacting Human-AI trust in
the context of decision making (P1-P4, DS2, DS3, DS4, DS6).
They also agree that interactivity is often limited. For in-
stance, “I give you [AI] input data - you [AI] send me back
the solution, and I have no other contextual elements, elements
of interaction with you" (P2), “I would like to have the op-
portunity to negotiate and influence the [the AI’s] decision
and say, «Hey, but look at this and that»” (DS4) or “these
[AI] systems should be more tolerant to human error. Right
now, it’s so strict" (DS6). However, their opinions differ when
considering the consequences of this limited interactivity.
For AI practitioners, it hampers one’s ability to explore the
system, “asking for more explanations” (P3) and establish
“a dialogue” (P4) or “cooperation” (P1) between users and
AI. For decision subjects, the limited interactivity leads to
more serious consequences. It provides a feeling of being
excluded from the loop. Decision subjects feel they lose their
sense of agency. They see themselves as “statistics” (DS2) or
simply “filtered out” by AI (DS3) because the system is not
“flexible” (DS3) or does not allow “to negociate” (DS4).

5 Discussion
In this paper, we investigated Human-AI trust from two per-
spectives - what AI practitioners think is important for trust
in AI of other stakeholders and what decision subjects think
is important for their trust in AI. Combining these perspec-
tives allows for understanding similarities and differences

in how these different stakeholders define Human-AI trust
in the context of decision making and what factors affecting
Human-AI trust they prioritize. In this section, we discuss
what our results mean for 1) re-envisioning what factors
affect Human-AI trust in the socio-technical ecosystem; 2)
defining Human-AI trust and its key prerequisite elements
for its existence; and (3) in terms of stakeholders’ agency over
the system. Finally, we present some limitations of our study
and propose future research directions that could address
these limitations.

5.1 On the Important Role of Inter-personal
Relations on Trust Within the Socio-technical
System

Our results revealed the important role of interpersonal re-
lationships on trust. In other words, AI practitioners and
decision subjects stressed the importance of trust links with
other stakeholders involved in the system: its design, de-
velopment, deployment or use in real applications. More-
over, this importance seems to take precedence over the
technical characteristics of the system. These results comple-
ment recent findings on the under-explored concept of social
transparency for AI-assisted decision-making [31]. Through
highlighting the history of other users’ interactions with
AI recommendations rather than the inner workings of AI,
social transparency embraces the interviewees’ emphasis on
trust factors related to social interactions, information ac-
tionability, and expectations as a part of the system’s design.
In this sense, our findings about the importance of interper-
sonal relationships also support recent approaches arguing
for trust calibration beyond direct interaction of people with
AI [17].

From the different cases of trust links between stakehold-
ers elicited in the findings, trust in the AI team (cases 1 and
4 in Figure 1) is generally absent in the literature, while re-
spondents believe that this plays an important role in the
trust between humans and AI. So far, the literature suggests
that the reputation of the organization that develops AI plays
a role for doctors’ trust in AI recommendations [20, 93], and
our study confirms this for the domains beyond medical deci-
sion making. Another difference is that users’ trust in other
users (case 2) is more emphasised in the academic literature
than in the interviews [16, 31, 44, 72, 82]. Research shows
that observing other users (especially colleagues) trusting
the recommendations of the system can increase one’s own
trust in AI [31, 44]. However, from the interviews, AI prac-
titioners often serve as intermediaries between users and
convey feedback as product reviews. Finally, the relation-
ship of trust between decision subjects an other users (case
4) is barely present in the interviews. The academic liter-
ature shows that if decision subjects (e.g., a patient) trust
the direct user (e.g., a clinician) and the direct user trusts
the AI recommendations, then they would also trust the AI
recommendations [72] and vice versa [16, 27].
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Our results suggest that these bonds of trust are either
transversal (e.g. users to users) or upstream (e.g. users to AI
team). We believe that trust, in this case, relates to the people
who have either more expertise on the domain and technol-
ogy or means of actions over the technology (such as the AI
team). Therefore, these trust links might take an even more
important role for decision subjects than other stakehold-
ers. In fact, we saw this in the perception of the role of AI
transparency on trust. Contrary to AI practitioners, decision
subjects do not see how transparency can affect their trust
in AI since explanations might be difficult to understand and
the additional information about AI or a specific system is
usually not actionable. Specifically, neither the interviewed
AI practitioners, nor the literature provide ample reflections
for the role of transparency for trust in AI of decision subjects.
Transparency is, hence, viewed as a factor affecting primarily
users’ trust in AI, targeting their needs for quality evaluation
of an AI recommendation and for refining their mental model
about AI, which does not necessary encompass actionability
and contestability - the needs of decision subjects [68, 114].

Research implications.
1. Investigating the points ofHuman-AI trust break-

downs and calibrations beyond direct interaction
with the system. To this end, research needs to in-
volve more fieldwork with the various stakeholders to
understand how trust in AI is shaped and influenced
within the complex web of relationships among AI
practitioners, decision subjects, users, and other stake-
holders, and identify key patterns and dynamics of
trust flow among these stakeholders.

2. Re-examining the techno-centric trust factors
between humans and AI with a social lens. Fol-
lowing the example of Ehsan et al. [31], who proposed
the term of social transparency, moving away from
providing more information about how AI works to
more information about how other users make deci-
sions with the system, we envision other Human-AI
trust factors can be relooked in the same manner. For
instance, in addition to reporting AI accuracy, one can
inform users about how AI recommendations affected
the performance of other users.

5.2 On the Prerequisites for the Existence of Trust
In order to understand what AI practitioners and decision
subjects expect from a system they trust, we analysed how
these stakeholders understand trust, i.e. what essential el-
ements, or prerequisites, they associate with this notion.
Both groups elicited the need for positive expectations and
a situation of vulnerability. These two prerequisites are how
theoretical work in the literature defines trust. This was
unexpected, because trust is a complex and abstract the-
oretical concept that leads to frequent theoretical confu-
sions [45, 58, 103]. It remains that we found a more nuanced

outlook on the key elements of trust in comparison with
the academic literature. The interviewees’ discussions high-
light that vulnerability and positive expectations cannot be
boiled down to monetary losses and high levels of accuracy
as they are often presented in the empirical studies [103].
Vulnerability denotes a state in which someone feels the
possibility of being emotionally attacked, and therefore finds
themselves in a position of weakness. In our results, we had
the example of a judgement based on physical appearance.
So these prerequisites for the existence of trust depend on
the individual or the community with which the individual
identifies. Recent examples of the behaviour of algorithms
that discriminate against a certain population, such as black
women [19], place them in a vulnerable position more than
other individuals. Additionally, decision subjects report to
feel vulnerable, because they have no control over how the
data they share about themselves for Human-AI decision
making get interpreted by the users in charge of these deci-
sions [27]. Sometimes, in order to appear cooperative, they
provide more data about themselves than needed, which
puts them at risk of “algorithmic stigmatization” [6, 83] -
wrongfully assigned a certain label “at risk”, e.g., risk of re-
cidivism, child maltreatment, suicidal tendencies, based on
the an algorithmic assemblage.
Our results also highlighted a new prerequisite for the

existence of trust, namely the complexity of the task. Behind
this prerequisite is the idea that if the task is simple, it can
be easily solved by the person using the system or receiving
a decision from it. Thus, if one knows the right answer, eval-
uating the quality of AI recommendation is straightforward,
the conflict of between one’s own opinion and the AI recom-
mendation does not emerge, and consequently, neither does
the state of trust. However, there is an ambiguity about the
definition of complexity. Typically, we could envisage two
scenarios. Firstly, complexity can arise from the impossibility
for a human to process a large amount of information (for
example, a large amount of data in a database) in order to pro-
duce a decision. Secondly, complexity can arise from a lack
of expertise, either related to the decision domain, or related
to the underlying AI techniques. If task complexity is a pre-
requisite for the emergence of trust, along with vulnerability
and positive expectations, this implies that future research
should study it and include it in the way experimental tasks
are designed to focus on trust, rather than confidence [103].

Research implications.

1. Understanding the role of vulnerability in AI-
based decision-making systems. As our findings in-
dicate that feeling vulnerability to AI-based decision-
making systems can go beyond monetary gains and
losses, especially in the case of decision subjects, qual-
itative studies, such as interviews and case studies,

10



1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

Trust in AI-assisted Decision Making: Perspectives from Those Behind the System and Those for Whom the Decision is Made

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

could be utilized to gain deeper insights into individ-
ual and community experiences of vulnerability to-
wards AI in order to inform further research on trust.

2. Incorporating complexity into experimental stud-
ies of trust. Given that task complexity could be a
key element in trust formation, it should be accounted
for in designing experiments that study trust in AI
to distinguish between trust and confidence in the
system’s recommendations. Future research should
investigate what aspects of task should be considered
to vary the task complexity as well as to which extent
it contributes to the formation of trust as a function
of different levels of task complexity.

5.3 On the Notion of Agency over the System
AI practitioners and decision subjects both stress the im-
portance of AI interactivity for trust, but their views on the
purpose of interactivity differ. For AI practitioners, inter-
activity is a means to explore AI recommendations. From
this point of view, they agree with what previous work has
shown about the fact that interactivity contributes to explore
to which extent nuances are accounted for AI recommen-
dations [82]. Other works have shown, in addition, that in-
teractivity also contributes to the refinement of the mental
model about AI [22] and gives a sense of striving to improve
decision making [72]. Decision subjects, on the other hand,
see interactivity as a way of getting involved in the decision-
making loop. In other words, they see interactivity first as
a way of being represented in the decision-making process,
before being able to formalise what this representation could
bring in terms of understanding the system’s mechanisms
and creating a mental model of its behaviour. We therefore
see, in these different opinions between the stakeholders, a
difference in power relationships. AI practitioners have the
means to act on the system, and are therefore in a position
to imagine what these means can bring them.

This interpretation suggests that interactivity is related to
the notion of agency. In fact, decision subjects discuss the
sense of agency and its relationship to Human-AI trust more
than AI practitioners, which is expected considering the
mentioned frustrations about their lack of actionability and
power over the systems. This means that decision subjects
value more the factors of trust linked to their inclusion in the
decision-making loop in comparison with AI practitioners.
It is an empowerment over Human-AI decisions so as not
to feel solely “part of the statistics”, as put by DS2. These
findings align with the prior work [46] showing that different
groups of stakeholders prioritize ethical values differently.
Our findings extend this line of research by demonstrating
this for trust and underlines the importance of undertaking
a multi-stakeholder approach [115] for Human-AI trust.

That being said, although the academic literature onHuman-
AI trust examining the interactivity of AI recommendations
have led to certain results, as those mentioned above, this

research remains scarce [15, 22, 38, 72, 82]. Moreover, these
studies are primarily about users rather than decision sub-
jects. Similarly, while previous work has investigated the
relationship between agency and trust in AI, it focuses exclu-
sively on the agency of direct users (e.g., [18, 33, 48, 86, 96,
98, 109]). Additionally, in all these articles, participants are
fully aware to which extent they have control over AI recom-
mendations, and their level of agency remains unchanged
throughout the experiment. Hence, the issue of varying lev-
els of control over AI is not largely studied in the Human-AI
trust literature in the context of decision making. Moreover,
in the interviews, agency is mostly referred to as ability to
contest a Human-AI decision, while in the literature, it is
mainly represented as control over seeing an AI recommen-
dation: full - AI recommendations are optional and appear on
demand [18, 52, 52, 86, 96, 99], limited - mandatory AI recom-
mendations that appear immediately [18, 33, 52, 77, 86, 96, 98,
99] or only after users’ initial decision [18, 33], and none - AI
recommendations executed autonomously [52, 69, 77, 98, 99].
Therefore, it remains unclear to which extent the solution
of “introducing four levels [of AI recommendations] instead
of the binary [...]” proposed by P7 to increase the sense of
agency for decision subjects would work.

Research implications.
1. Investigating the role of different mechanisms

of interactivity for trust in AI of various stake-
holders. Our findings indicate that interactivity plays
a different role for decision subjects than for AI users,
and thus might affect their trust in AI not through
the same mechanisms. HCI researchers could conduct
in-depth studies to examine how different interactive
features (e.g., feedback loops, adjustable parameters)
empower decision subjects or change trust links be-
tween them and practitioners or users.

2. Investigating agency as human capability instead
of a feature of the system. Our results have shown
the importance of human agency, particularly for de-
cision subjects. While agency tends to be seen as a
feature of the system (e.g., providing means to act on
system behavior), it is also related to people’s percep-
tion of actions on the system and their representation
by the system. In the same way as trust, this concept
needs to be better understood from a human-centric
point of view in the context of interactions with AI-
based decision-making systems.

5.4 Future Work Directions
In this article, we interviewed representatives from a varied
panel of decision domains (e.g. medicine, finance, recruit-
ment). Although our main objective was to study the factors
of trust between humans and artificial intelligence for risk-
sensitive applications, each domain may nuance the effects
on trust due to the diversity of decision-making flows, types
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of stakeholders involved, etc., which is one of the limitations
in the interpretation of the study’s results. Considering that
type of task and level of risk also have impact on Human-AI
trust, it could be interesting to conduct a cross-domain com-
parison to see to which extent they put importance on the
same Human-AI trust factors. Understanding the differences
and similarities between various task domains can inform re-
searchers and policy makers on higher level classification of
domains [54]. Additionally, we did not account for individual
differences such as gender, age, and explicitly assess prior
experience with AI, and other demographic information in
our analysis while these factors can further influence how
certain ethical values are prioritized [46].

Secondly, we considered two types of stakeholders that are
not users - AI practitioners and decision subjects.While there
is no widely established categorization, some researchers
propose a set of 11 stakeholders’ groups [8] that are con-
nected to the AI ecosystem, spanning from policy makers
that work on high level strategies to hiring managers that re-
cruit AI developers. An interesting research direction would
be to extend the presented research to these stakeholders
and inspect differences and commonalities in findings.

Lastly, we took an organization-focused approach to study-
ing Human-AI trust when talking to AI practitioners. In other
words, the AI-embedded systems that they are responsible
for are developed, trained, designed, deployed, and moni-
tored by the same company. However, nowadays AI tech-
nologies are often a product of “algorithmic supply chains”
[25], that is multiple independent actors are responsible for
commissioning different phases of production and deploy-
ment. As these actors have distributed responsibility over
the outcomes of Human-AI decisions with imperfect control
over how their work is used further down in an algorithmic
supply chain, this can raise additional concerns over whether
an AI recommendation produced by “many hands” can be
trusted. Further investigating implications for Human-AI
trust resulting from such a production set-up can shed light
on new nuances about interpersonal dynamics between dif-
ferent stakeholders and identify new potential Human-AI
trust breakdown points and factors that affect it.
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