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MEXMA: Token-level objectives improve sentence
representations
JoãoMaria Janeiro1,2, Benjamin Piwowarski2, Patrick Gallinari2,3, Loïc Barrault1

1Meta AI, 2Sorbonne Université, CNRS, ISIR, F-75005 Paris, France, 3Criteo AI Lab, Paris, France

Current pre-trained cross-lingual sentence encoders approaches use sentence-level objectives only. This
can lead to loss of information, especially for tokens, which then degrades the sentence representation.
We propose MEXMA, a novel approach that integrates both sentence-level and token-level objectives.
The sentence representation in one language is used to predict masked tokens in another language,
with both the sentence representation and all tokens directly updating the encoder. We show that
adding token-level objectives greatly improves the sentence representation quality across several tasks.
Our approach outperforms current pre-trained cross-lingual sentence encoders on bi-text mining as
well as several downstream tasks. We also analyse the information encoded in our tokens, and how
the sentence representation is built from them.

Correspondence: João Maria Janeiro at joaojaneiro@meta.com

1 Introduction

Creating general-purpose multilingual embeddings has attracted significant attention from the research
community in recent years, driven by the growing need for efficient and effective cross-lingual representations.
Cross-Lingual Sentence Encoders (CLSE) create fixed-size sentence representations that are able to capture
the relevant information in a sentence, and are aligned across languages. By capturing relevant sentence
information in a shared multilingual space, these aligned representations enable efficient comparison and
retrieval based on distance measures, thereby facilitating their effective utilization in various downstream
applications.

Current CLSE (Duquenne et al., 2023; Feng et al., 2022) typically build upon pre-trained encoders, often
language models (Conneau et al., 2020; Devlin et al., 2019) or translation models (NLLB Team et al., 2022).
These pre-trained encoders have been trained using objectives that focus on individual words or tokens, i.e.
token-level objectives. Examples of such objectives include unmasking, where the model is required to predict
each token individually, and all predictions are used to update the encoder directly. However, Muennighoff
et al. (2023); Hu et al. (2020) show that pre-trained encoders without objectives that consider entire sentences,
i.e. sentence-level objectives, do not create good sentence representations. This means that CLSE need to
train sentence-level representations, in order to effectively capture the relevant information of the sentences.

Although CLSE start from encoders pre-trained with token-level objectives, they are commonly trained with
sentence-level objectives that only update the encoder through the sentence representation (Duquenne et al.,
2023; Feng et al., 2022; Yang et al., 2019; Artetxe and Schwenk, 2019a), without any objective for each token
individually. We hypothesize that token-level objectives should be kept during the training of CLSE, coupled
with the sentence-level objectives, to better update the encoder and improve sentence representation quality
and alignment. The intuition is that only using sentence-level objectives leads to a degradation of token level
information, especially lexical information, which in turn can impact the sentence representation.

Recently, there have been approaches exploring the use of both token-level and sentence-level objectives for
better sentence representations. DAP (Li et al., 2023) uses both objectives, but the token-level objective
is only used to update the token representations in the encoder, without influencing directly the sentence
representation. On the other hand, RetroMAE (Xiao et al., 2022) also employs both objectives, but uses
two different token objectives to update the individual tokens and the sentence, with the latter having to be
created from a masked input.
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To effectively combine token and sentence-level objectives, we propose MEXMA, a new approach that uses
the sentence representation in one language to predict masked tokens in another language, and uses both
the sentence and tokens’ information to update the encoder. This token-level objective is combined with a
sentence-level objective to enforce sentence alignment across languages.

Our approach outperforms state-of-the-art pre-trained cross-lingual sentence encoders, LaBSE and SONAR on
several key tasks, including bitext mining, classification, and pair classification. Specifically, we report notable
gains on the xsim++ benchmark computed over the FLORES200 test set, where MEXMA achieves an error
rate of 9.60%, surpassing SONAR’s 12.08%. Additionally, in classification tasks evaluated on MTEB and
SentEval, MEXMA achieves an accuracy of 65.35% compared to SONAR’s 63.02%. The larger supervision
in MEXMA enables training smaller models with better alignment than LaBSE (≈2× size) and close to
SONAR’s performance (≈3× size).

Our main contributions are:

• We introduce a novel architecture leveraging both sentence-level and token-level objectives outperforming
current approaches.

• We perform ablation studies that show the impact of token-level objectives on the sentence-level
representations performance.

• We provide an extensive analysis of the inner working of our model, by analysing its tokens’ contents,
and the way the sentence embedding is built. We show that as a byproduct of our training, individual
tokens are also well aligned across languages.

• We show that our approach can also be coupled with existing alignment approaches, specifically
contrastive learning, and improve its quality.

2 RelatedWork

Sentence embeddings have been well studied in the last decade. Initially, recurrent networks were trained
to predict previous and next sentence (Kiros et al., 2015) or sentence entailment (Conneau et al., 2017).
Universal Sentence Encoder (Cer et al., 2018) trains a transformer network on both tasks. Reimers and
Gurevych (2019) propose to continue the training of a BERT model to include a sentence-level objective.
These initial works have been extended to multilingual settings, to capture the relevant information in the
sentences, and to have aligned representations across languages. These new approaches are called cross-lingual
sentence encoder. We describe those works next.

Update via sentence representation Most current cross-lingual sentence encoder approaches only
update their encoder via the sentence representation objective, without having any token-level objective in
the output of the encoder that would update each token individually (Guo et al., 2018; Yang et al., 2019;
Feng et al., 2022; Artetxe and Schwenk, 2019a; Duquenne et al., 2023; Heffernan et al., 2022). They are
most commonly based on contrastive learning (Hadsell et al., 2006) methods, that aim to reduce the distance
between positive pairs (translations) and increase the distance between negative pairs (non-translations) (Guo
et al., 2018; Yang et al., 2019; Feng et al., 2022). Notably, LaBSE (Feng et al., 2022) uses the contrastive loss,
with the additive margin softmax approach of Yang et al. (2019). A common non-contrastive solution is to
use translation (Artetxe and Schwenk, 2019a; Duquenne et al., 2023) with a fixed-size sentence representation
after the encoder (bottleneck), assuming that a model can translate a sentence into many languages only if a
good sentence-level conceptual representation is learned. The bottleneck however prevents gradients from the
decoder to directly update the individual token representations of the encoder, which we hypothesize leads
to a degradation of token level information and consequently of the sentence representation. Our method
also uses a sentence representation as context for the unmasking, but allows direct token-level gradients to
propagate to the encoder token representations.

Update via sentence and token representations Recent approaches (Li et al., 2023; Xiao et al.,
2022) have shown that combining token and sentence level objectives can improve sentence representations.
RetroMAE (Xiao et al., 2022), is an Information Retrieval (IR) method that utilizes fixed-size sentence
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Figure 1 MEXMA architecture. Given two translations, we create two views for each, a masked and a clean version
(symmetrical architecture), and use the sentence representations from one language to unmask the other (cross-
unmasking). We align the clean sentence representations via the alignment loss, and increase the usage of the space
with the KoLeo loss.

representations to guide token unmasking, demonstrating its effectiveness in enhancing sentence representation
quality. The encoder itself is only updated by its own MLM loss with light masking (forcing the sentence
representation to come from a masked input) and the sentence representation, but not from the direct
token-level gradients of the heavy unmasking with the sentence representation as context. DAP (Li et al.,
2023) proposes to jointly align tokens and sentence representations. It performs unmasking with all tokens of
the other language as context, which means it updates the encoder with each token individually, however, it
relies exclusively on the contrastive loss to update the sentence representations, and the sentence representation
is not used to perform the token unmasking. In our work, we show that sentence and token-level objectives
can be much more intertwined, with both individual tokens and the sentence representation updating the
encoder, and each other.

3 Methodology

We propose MEXMA, a novel multilingual alignment technique based on both token-level and sentence-level
objectives. The goal is to create a sentence representation that is able to encode the syntactic, semantic
and lexical information in a sentence, with representations well aligned across languages. To achieve this
goal, inspired by monolingual masked auto-encoding techniques (Xiao et al., 2022), we use the sentence
representation in one language to unmask the tokens in another language, updating both the sentence and
individual tokens, while forcing the sentence representation to encode the relevant parts of the sentence.
Using masking also allows us to use a non-contrastive loss to align sentence representations, since it prevents
the collapse. Both sentence and token-level objectives are used to improve the quality of the sentence
representation. Our architecture is depicted in Figure 1, and is composed of several components, that we
describe now. For the explanation, we refer to inputs (and the output of their encoders) that have no masking
as clean, and masked for their masked counterparts. Additionally, we consider two languages, language A and
language B, which are associated with the sentence representations SA and SB (from the clean encoders).
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The cross-unmasking To ensure that our sentence vector captures the meaningful information of the
sentence, we mask a significant portion of the input tokens in language A. This makes it challenging for
the encoder and the MLM head to recover the missing tokens without any additional context. To overcome
this challenge, we provide the unmasking head with the sentence vector SB, derived from the clean sentence
in language B. This forces the model to leverage the information in SB to predict the masked tokens in
language A. By doing so, we encourage the sentence vector to capture the essential information of the sentence.
Furthermore, by alternating languages, we enforce the sentence vector to encode information that is useful
across languages. We formulate this component into a symmetrical cross-entropy loss (CE), applied over the
outputs of the encoders:

Lmlm = CE([SB , Â], A) + CE([SA, B̂], B),

where Â and B̂ are the outputs of the masked encoders without the CLS embedding, A and B the token
targets, and [X,Y ] represents the concatenation of X and Y.

The alignment loss The cross-unmasking generates an implicit alignment due to the switching of languages
to perform the unmasking. However, as is, that implicit alignment does not strongly enforce the same sentence
representations in two different languages to be equal in the embedding space. Following SONAR Duquenne
et al. (2023), to further reinforce the spatial proximity of semantically equivalent sentences across languages, we
use an additional non-contrastive alignment objective. The two losses, unmasking and alignment, complement
each other to provide both aligned and meaningful vector representations of sentences in multiple languages.
We formulate this component as a Mean Squared Error (MSE) loss between sentence representations:

Lalignment = MSE(SA, SB),

The symmetrical architecture To align all languages and maximize data usage, we adopt a symmetrical
approach that unmasks the tokens of language A with SB, and vice versa, simultaneously. We thus create four
instances of the encoder (with shared parameters). For each language, we have two versions of each sentence:
one heavily masked and one clean. This allows us to generate two clean sentence vectors, SA and SB, which is
essential for aligning representations between languages. A non-symmetrical approach with only two encoders
(one per language) would not produce the desired alignment as it would force the model to align a heavily
masked sentence vector with a clean one, which is not ideal.

The KoLeo loss In preliminary experiments, we noticed that our representations exhibited more anisotropy
than those learned with contrastive approaches. This has been shown to impact the quality of the representa-
tions (Godey et al., 2024). Inspired by DINOv2 (Oquab et al., 2024), we employ the KoLeo loss (Sablayrolles
et al., 2019) to encourage sentence representations to spread out evenly in the latent space. The KoLeo loss is
based on the Kozachenko-Leonenko differential entropy estimator (see Beirlant et al. (1997)). We define below
the KoLeo loss, LKoLeo, for a set of n representations, as well as the symmetrical version, LK , we use to train
our models:

LK = LKoLeo(SA) + LKoLeo(SB) with LKoLeo = − 1

n

n∑
i=1

log(dn,i)

where dn,i = minj ̸=i ∥ xi − xj ∥ is the distance between xi and its nearest point in the batch.

Our training loss is a weighted combination of all previous losses:

LMEXMA = α · Lalignment + β · Lmlm + γ · LK

where α, β and γ are hyper-parameters that control the weight of each loss term. To show that MEXMA
can be used on top of existing alignment approaches, we provide in Section 5.2 experimental results when
replacing the MSE alignment loss in MEXMA with a contrastive loss.

3.1 Experimental setup

Encoder backbone As our encoder, we utilize a modified version of the XLM-RoBERTa model (Conneau
et al., 2020) provided by HuggingFace that uses a more efficient attention (details in Appendix A). Our
sentence representation from the encoder is obtained via the CLS embedding of the last layer, without any
further processing.
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Model xsim ↓ xsim++ ↓ BUCC ↑ o-xsim ↓ o-xsim++ ↓ d-xsim ↓ d-xsim++ ↓

DAP - - 98.68 - - 2.90 32.82
SONAR 0.09 12.08 98.25 0.08 11.68 0.04 10.55
LaBSE 0.92 18.65 98.75 0.31 16.21 0.26 14.51
MEXMA 0.06 9.60 98.93 0.05 9.01 0.02 8.26

Table 1 Results in mining (%). xsim and xsim++ are computed on 81 languages (FLORES200 dataset, X-eng pairs),
with o-. . . columns showing results for 72 supported languages from LaBSE and d-. . . columns showing results for 34
languages supported by DAP. BUCC is computed with F1 on its 4 languages.

Training data Our training dataset is a subset of the NLLB-200 corpus (NLLB Team et al., 2022), which
comprises 200 languages. We cover 81 languages, utilizing only publicly available data, all sourced from Opus
(Tiedemann, 2012). The specific languages used are listed in Appendix C. We always train using one sentence
in English associated with its translation in one of the remaining 80 languages. The dataset consists of a
combination of human-translated and synthetic data, where we attempt to impose a minimum of 15 million
sentences per language. For languages with limited human-annotated data, we supplemented the dataset with
mined data from NLLB (Schwenk et al., 2020; Fan et al., 2020; NLLB Team et al., 2022) to reach the 15
million sentence threshold. Conversely, to ensure that our dataset is somewhat balanced across languages, for
languages with abundant human-annotated data, we capped the dataset at 25 million sentences per language.
The datasets used are detailed in Table 15.

We provide additional details about the parameters and configurations of our model in Appendix A.

4 Results

To assess the quality and alignment of our embeddings, we evaluate them on a range of tasks. These tasks
fall into two categories: mining tasks and other downstream tasks. Mining tasks measure how aligned our
representations are across languages, while downstream tasks evaluate the generalization power and overall
quality of our embeddings.

4.1 Multilingual alignment throughmining

We evaluate on three alignment tasks, namely xsim1, xsim++ (Chen et al., 2023) and BUCC (Zweigenbaum
et al., 2018, 2017). xsim and BUCC are composed of sentences translated in many languages, and the goal is
to be able to retrieve the correct translation of a query sentence. xsim++ extends this task by introducing
variations in the existing sentences in English, creating hard negatives that are difficult to distinguish from
the correct sentence. We follow Heffernan et al. (2022) and do not evaluate on Tatoeba because of the small
amount of data available for some language pairs and the low-quality translations created by non-professional
volunteers.

xsim and xsim++ use a margin-based similarity approach (Artetxe and Schwenk, 2019b). We use the same
setup as described in Heffernan et al. (2022); Duquenne et al. (2023). For BUCC, the similarity is the cosine
similarity as is commonly done. The xsim and xsim++ scores are the error rate of wrongly aligned sentences
in the test set. For BUCC, the score is the F1 score of the alignment, computed using the MTEB benchmark
(Muennighoff et al., 2023).

BUCC evaluates on 4 languages: German, French, Russian and Chinese. The detailed results (per language)
are available in Appendix E. We evaluate our model using xsim and xsim++ on the FLORES200 dataset,
covering the 81 languages supported by our model (listed in Appendix C). For fairer comparison, we also
report results for the 72 languages supported by LaBSE, SONAR, and MEXMA ("o-xsim"), and separately
for the 34 languages common to DAP and the other models ("d-xsim").

The results are shown in Table 1. MEXMA outperforms previous SOTA on all three benchmarks, showcasing
the improved alignment achieved in our new approach. The improvements in xsim and BUCC suggest that our

1https://github.com/facebookresearch/LASER/tree/main/tasks/xsim
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Model average SentEval en zh fr da nb pol
DAP 61.80 78.18 66.35 67.46 63.76 52.27 51.58 53.03
SONAR 63.02 85.82 65.63 63.13 61.88 54.01 55.59 55.09
LaBSE 62.77 85.63 66.75 68.69 62.05 49.53 50.76 56.00
MEXMA 65.35 86.38 68.20 66.25 66.07 55.38 58.08 57.09

Table 2 Classification results, reported as accuracy (%), on SentEval and MTEB (last 6 columns), averaged across
languages. Full results in Appendix E.

Model average en zh fr
DAP 66.01 63.87 61.12 73.03
SONAR 69.70 70.73 60.80 77.57
LaBSE 68.47 69.75 61.95 73.70
MEXMA 71.55 74.39 62.12 78.13

Table 3 Pair classification results, reported as average precision (%), on MTEB, averaged across languages. Full results
in Appendix E.

approach improves the semantic alignment of the embeddings. The large improvement in xsim++ (+2.48%
absolute improvement against the previous best model SONAR) also indicates the increased robustness of our
model with regard to hard negatives, likely due to handling better lexical information.

4.2 Downstream tasks

To understand the quality of our embeddings and how generic they are, we evaluate them on several tasks
from the MTEB benchmark (Muennighoff et al., 2023). We report the averaged results for each language. For
the full list of results for every task, see Appendix E.

Single sentence classification We evaluate our model’s classification performance on two benchmarks.
First, the SentEval suite (Conneau and Kiela, 2018) is used to assess the performance across various tasks in
English. We only evaluate on the tasks considered in LaBSE. Second, we evaluate the multilingual classification
capabilities using the available datasets from the MTEB benchmark. Table 2 shows the aggregated results.
We can see that MEXMA outperforms all baseline models on average, and more specifically gains +2.33%
when compared with SONAR.

Pairwise sentence Classification We further evaluate on the pair classification task. This task consists
in classifying two sentences, e.g. determining if a pair of sentences are duplicates or not. The metric, as
reported in MTEB, is the Average Precision (AP) based on the distance between sentence representations.
The results are in Table 3. MEXMA consistently outperforms all baselines on average, by at least +1.85%.
These results, combined with our single sentence classification results, suggest that our model can effectively
encode the relevant information in the sentence vectors.

Semantic Textual Similarity (STS) The STS task evaluates the model’s ability to replicate human
judgments on sentence similarity. The metric, as reported in MTEB, is the Spearman correlation based on
distance. The results are in Table 4. We can see that LaBSE outperforms all other methods, and in particular

Model avg eng zh fr pl
DAP 59.39 67.45 45.31 67.74 57.06
SONAR 58.04 67.24 42.15 65.60 57.17
LaBSE 64.65 70.93 47.50 74.33 65.82
MEXMA 63.99 70.62 51.56 70.10 63.67

Table 4 STS results, reported as Spearman correlation (%), on MTEB, averaged across languages. Full results in
Appendix E.
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component xsim ↓ xsim++ ↓ SentEval ↑

Only sentence-level grads 1 0.15 11.37 85.06
+ Token-level grads 2 0.10 ↓0.05 9.67 ↓1.7 85.98 ↑0.92

+ KoLeo loss 3 - MEXMA 0.06 ↓0.04 9.60 ↓0.07 86.38 ↑0.4

Table 5 Ablation study of the different components of the model. All experiments are conducted with the final
parameters of the model, as reported in Section 3.1.

Model xsim ↓ xsim++ ↓ SentEval ↑

Contrastive XLM-RoBERTa 0.13 33.30 85.5
Contrastive MEXMA without MLM token-level gradients 0.13 12.78 85.86
Contrastive MEXMA 0.12 10.93 85.94

Table 6 Using contrastive loss as the alignment loss in MEXMA.

MEXMA by 0.66%. MEXMA outperforms SONAR (+5.95%) and DAP (+4.6%). The results indicate that
the contrastive loss better suits the STS task, given that this is the only task where DAP is able to outperform
SONAR, and where LaBSE outperforms MEXMA.

5 Ablations and Analyses

In this section, we conduct a comprehensive analysis of our MEXMA architecture, examining the impact
of its individual components, how it scales with varying model and data sizes, and its potential to improve
other alignment approaches. We also examine the characteristics of the token embeddings and sentence
representations learned by our model.

5.1 Model components

In Table 5 we ablate the impact of having direct token-level gradients in MEXMA. In model 1 , we have all
of MEXMA’s components, as covered in Section 3, without the KoLeo loss. However, the gradients from the
unmasking task are only back propagating through the sentence representations back to the encoder, and
are deactivated for the individual tokens the encoder outputs, i.e. in the Lmlm mentioned in Section 3, Â/B̂
have no gradients flowing back to the encoder. This model already achieves results that are competitive with
current state of the art, but does not outperform them. However, if we allow the gradients to flow through
the tokens directly, model 2 , we are able to outperform the current state-of-the-art. As we hypothesized,
adding updates on the tokens directly, coupled with the sentence updates largely improves results across all
tasks. Additionally, we also show that adding the KoLeo loss, model 3 , also slightly improves results across
all tasks. The ablation on all components of the model is provided in Appendix B.

5.2 Contrastive alignment loss

To further assess the improvements given by the direct token updates in MEXMA, and understand MEXMA’s
scalability to other alignment approaches, we replaced our alignment loss, MSE, with a contrastive loss (also
dropping the KoLeo loss). We used a siamese network with XLM-RoBERTa-large trained on the symmetric
cross-entropy loss (InfoNCE from van den Oord et al. (2019)) as the baseline model, having an architecture
similar to LaBSE (Feng et al., 2022). Our training used a batch size of 1.2k, with the rest of the parameters
the same as reported in Section 3.1. The results are presented in Table 6. Our baseline model performed well
on xsim and SentEval but struggled with xsim++. Switching to the MEXMA architecture without token-level
gradients, as done in model 1 in Section 5.1, improved performance, already close to state-of-the-art xsim++
performance. Moreover, incorporating token-level gradients, allowing the full MEXMA architecture with
contrastive loss, as done in model 2 in Section 5.1, resulted in competitive performance, already outperforming
previous approaches in SentEval and xsim++. This demonstrates the positive impact of direct token-level
gradients and shows that MEXMA can be easily integrated with existing alignment approaches, such as
contrastive learning, to improve their results.
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Model #parameters xsim ↓ xsim++ ↓ SentEval ↑ d-xsim ↓ d-xsim++ ↓

DAP 277M 78.18 2.90 32.82
MEXMA-base 277M 0.13 13.03 85.30 0.06 11.01
LaBSE 471M 0.92 18.65 85.63 0.26 14.51
MEXMA 559M 0.06 9.60 86.38 0.02 8.26
SONAR 766M 0.09 12.08 85.82 0.04 10.55

Table 7 Model size comparison. MEXMA-base is based on the XLM-RoBERTa-base, and MEXMA is based on
XLM-RoBERTa-Large. The d-xxx columns are computed on 34 languages supported by DAP.

Model 81 xsim ↓ 81 xsim++ ↓ SentEval ↑ 90 xsim ↓ 90 xsim++ ↓ SentEval ↑

SONAR 0.09 12.08 85.82 0.05 11.42 85.82
MEXMA 0.06 9.60 86.38 0.05 9.06 86.64

Table 8 Training data size comparison. We train MEXMA on either 81 languages, or 90 languages. See Appendix C
for the list of covered languages.

5.3 Model and data sizes

Table 7 shows how our model’s results scale with the model size. We train two models, MEXMA-base
with 277M parameters, based on XLM-RoBERTa-base, and MEXMA with 559M parameters, based on
XLM-RoBERTa-large. It is possible to see that even the smaller model (277M parameters) outperforms
LaBSE (471M parameters), on both xSIM and xSIM++, and gets a close result in SentEval, with a 0.3%
decrease in performance, with 58.81% of the size. This smaller model also gets surprisingly close to the results
of SONAR, which has 766M parameters, i.e. ≈2.77 times its size. These results show that our approach
works on smaller and larger models, and it seems to enable quite powerful small models, due to our stronger
training signal. Our larger model, MEXMA, with ≈73% the size of SONAR, is able to largely outperform it
across all tasks.

To investigate the impact of training data, we conducted experiments using two different language subsets of
the FLORES200. We trained separate MEXMA models on each subset, using the same hyperparameters as
reported in Section 3.1. For comparison, we evaluated the publicly available SONAR model, which was trained
on all available 200 languages, on both language subsets. The results, presented in Table 8, demonstrate that
MEXMA outperforms SONAR on both subsets, highlighting the adaptability and robustness of our approach
to varying training data.

5.4 Masking ratio

NLP models typically use masking percentages around 15%, whereas vision papers have explored much higher
masking ratios, ranging from 40% in BEiT (Bao et al., 2022) to as high as 90% in MAE (He et al., 2022)
and V-JEPA (Bardes et al., 2024), usually aligning augmentations. For text, there is less redundancy and
the representations are more information-dense. In our case, we are aligning the same sentence in several
languages, which can be viewed as augmentations of a pivot sentence, i.e. the sentence in English. We need
to know how much we can mask, to make the unmasking task hard, but to not deteriorate the performance of
our encoder. Table 12 shows the results we obtained for the different masking ratios. The range 30%-60%
seems to be the best operating region. We selected 40% for all experiments conducted in this paper, since it
had the best balance between alignment and classification. More information is provided in Appendix B.

5.5 Token embeddings analysis

Sentence vectors are pooled representations of their tokens. In this section, we investigate the information
encoded in the tokens from the last layer across different models. Our goal is to determine whether the
tokens primarily convey semantic, lexical, and/or contextual information. Although these categories can be
intertwined, understanding the dominant characteristics of each model’s tokens provides valuable insights into
their behavior.

8



Model % other % same language % same sentence % translation
XLM-RoBERTa 1.19 63.89 2.65 32.28
LaBSE 0.00 0.13 42.33 57.54
DAP 0.00 0.66 20.11 79.23
No-tok-MEXMA 0.13 0.40 11.90 87.57
NLLB 0.40 3.17 1.72 94.71
SONAR 0.00 0.13 0.20 99.67
MEXMA 0.26 1.33 0.53 97.88

Table 9 Result of the token matching analysis.

To gain insight into the information encoded in individual tokens, we examined their nearest neighbors in the
contextual embedding space. We categorized these neighboring tokens into four groups based on the sentence
they belong to. Same language: the matched token is the same token in a different sentence in the same
language, which means that it encodes lexical information. Same sentence: the token matches another one in
the same sentence, meaning the tokens representations are heavily influenced by the context. Translation: the
token matches its equivalent in a translation of the original sentence. It means that the tokens are aligned
across languages. Other : tokens that do not belong to previous classes.

We conducted these experiments by encoding all tokens from all sentences of the 81 languages (see Appendix C
for the list) on the FLORES200 test set using each model. We randomly select three tokens among each of
the first 250 English sentences of the dataset as query, and for each query, we retrieve the five closest tokens
among all tokens of all sentences (but itself). We analyze the properties of the sentence encoders as well as
some respective backbones, XLM-RoBERTa (used to initialize MEXMA) and NLLB-200 (used for SONAR).
For the sake of comparison, we also examine "no-tok-MEXMA", a variant of MEXMA that does not use
token-level gradients during training. The statistics are shown in Table 9.

Our analysis reveals distinct characteristics for the considered models and we can cluster them in three different
overall behaviours. XLM-RoBERTa exhibits strong lexical relationships (high same language percentage) but
weaker semantic and contextual relations.

LaBSE, DAP and no-tok-MEXMA show higher semantic capabilities as shown by the larger translation rate.
However, we can also observe a high percentage of matches with adjacent tokens (same sentence column),
indicating that those models encode a very large amount of context in their tokens.

NLLB, SONAR and MEXMA have strong cross-lingual semantic capability as shown by the very high
percentage in the translation column. This is expected as SONAR and NLLB were trained to perform
translation, and MEXMA cross-lingual unmasking. Notice that for SONAR and MEXMA, this cross-lingual
token level alignment is guided by the decoding using the sentence representation as context (and additionally
the direct token-level gradients for MEXMA).

Note also that LaBSE and DAP are the only models trained with a sentence-level contrastive loss, and even
though DAP has an additional loss to enforce the semantic alignment of the tokens, it does not manage to
achieve the same alignment as SONAR and MEXMA.

Notably, comparing the backbones NLLB and XLM-RoBERTa, we can see that the former exhibits more
semantical tokens than the latter, as shown by its higher translation rate and lower same sentence rate, which
can be attributed to its translation-based pre-training that enhances semantic properties and cross-lingual
alignment. SONAR, which starts from NLLB, also matches translated tokens with a high rate, >99%, but
does not encode a lot of lexical information (low same language rate). MEXMA also matches translated tokens
very frequently, but additionally displays more lexicality (higher same language rate) and increased semantic
robustness (higher other rate). We verified MEXMA’s other matches, and the matched tokens belong to
sentences in other languages that are not translations of the original one, matching the translated token,
exhibiting semantic properties. All properties displayed by MEXMA allow it to create sentence representations
that inherit those same properties, allowing it to outperform other models on downstream tasks. We provide
examples to illustrate the behavior of the models in Appendix F.
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Model xsim ↓ xsim++ ↓ STS ↑ Classification ↑

Uni LaBSE 2.02 20.73 63.50 58.03
Uni MEXMA 0.19 18.21 54.24 56.98
CLS LaBSE 0.92 18.65 64.65 62.77
CLS MEXMA 0.06 9.60 63.99 65.35
∆ LaBSE -119.65 -11.19 +1.78 +7.55
∆ MEXMA -212.50 -89.73 +15.24 +12.81

Table 10 Downstream results for LaBSE and MEXMA, using both a uniform attention distribution (Uni xxx in the
table), and the CLS distribution (CLS xxx in the table). The last two rows provide the delta between the uniform
and CLS distributions, in relative terms. Classification and STS results are across all datasets mentioned under
Appendix E.

5.6 Sentence vector analysis

The sentence representations are created by combining the tokens’ representations in various ways (average
or CLS/attention pooling). Previous section looked at the properties encoded in those tokens, and in this
section, we aim to look at how those representations are combined to create the sentence embedding.

For SONAR, the attention weight distribution is uniform, given that SONAR averages the tokens to create
their sentence representation. MEXMA and LaBSE both use a CLS token to perform pooling over the tokens
in the sentence.

MEXMA’s and LaBSE’s attention distribution are rather different, with LaBSE having a more uniform
attention distribution across its tokens, and MEXMA having a more skewed representation. We verify this by
computing the average entropy of the attention probabilities in the last layer given by the CLS token, for
both models on the test set of the FLORES200, in the languages supported by both LaBSE and MEXMA.
LaBSE gets an entropy of ≈ 3.4, while MEXMA gets an entropy of ≈ 2.5. The entropy values obtained for
LaBSE and MEXMA are difficult to interpret in absolute terms, but the relative difference between them is
informative. Specifically, LaBSE exhibits a higher entropy compared to MEXMA, suggesting that it has a
more uniform distribution of attention probabilities. We provide examples of the distributions in Appendix G.

We perform an additional analysis, where we push the uniformity of the sentence representation to the extreme,
by using the average of tokens as our sentence representation. By doing this for both MEXMA and LaBSE,
we aim to understand the importance/impact of the distribution for each model. The results are provided in
Table 10. The deltas are computed in terms of relative change from the uniform to the CLS representation.
We can see that for all tasks, MEXMA has a larger change in performance compared to LaBSE, showing
that indeed since our representations are more skewed, we suffer more from an increase in uniformity of the
distribution. For those tasks, it is noticeable that MEXMA having a uniform distribution, will loose its ability
to focus on the important tokens, decreasing its results. For LaBSE the decrease is not as accentuated, since
it was already not focusing as much on the important tokens with its more uniform CLS pooling.

6 Conclusion

We introduced MEXMA, a novel multilingual alignment technique that leverages both token-level and
sentence-level objectives. We show that integrating token-level objectives into the training of cross-lingual
sentence encoders greatly improves their sentence representation quality, achieving new state-of-the-art results
in bitext mining and other downstream tasks. We additionally validate these improvements via ablations.
Notably, MEXMA also achieves strong token alignment across languages and effectively encodes meaningful
information within each token. Since the sentence representation is built from these tokens, as we analysed,
this leads to better sentence representations. Looking ahead, we plan to explore MEXMA’s scalability to
more languages, and potentially modalities.
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Appendix

A Experimental Setup

A.1 Encoder backbone

The available implementation of XLM-RoBERTa in HuggingFace employs an inefficient attention mechanism,
which we have modified to incorporate the memory-efficient attention from xFormers (Lefaudeux et al., 2022).
This modification was necessary due to the random batching process used in our training, which results in a
significant amount of padding and increased computational cost. To address this issue and eliminate padding,
we have employed the BlockDiagonalMask 2, which through custom CUDA kernels, avoids computations in
padding altogether. With this change we are able to increase our batch size in each GPU by a factor of ≈ 8.

A.2 Unmasking head

For the unmasking head, we use 6 transformer layers, also leveraging the memory-efficient attention.

A.3 Compute and training length

Our models were trained on a single node of 8 A100 GPUs. Each GPU had a batch size of 150, totalling
1,200 batch size across all GPUs. We accumulated two gradients, making our effective batch size 2,400. We
trained our models for 300k steps.

A.4 Losses

Our models were trained with α = 1, β = 1
2 and γ = 0.01

2 .

A.5 Training parameters

We utilize the AdamW optimizer for our training process. The learning rate is linearly increased from 1e-5 for
the 300k steps. To optimize memory usage, we employ mixed precision training, where the model is stored in
float32, while most computations are performed in float16. The maximum sequence length for our input data
is set to 200 tokens. Finally, we apply a masking ratio of 40% to the input data.

2https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.fmha.attn_bias.BlockDiagonalMask
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B Ablations

B.1 Model components

component xsim ↓ xsim++ ↓ SentEval ↑

Non-symmetrical 1 0.09 14.75 84.68
+ Symmetrical architecture 2 0.09 0.00 14.39 ↓0.36 84.83 ↑0.15

+ Alignment loss (clean to dirty alignment) 3 0.21 ↑0.12 12.09 ↓2.3 85.61 ↑0.78

+ Clean to clean alignment 4 0.15 ↓0.06 11.37 ↓0.72 85.06 ↓0.55

+ Token-level grads 5 0.10 ↓0.05 9.67 ↓1.7 85.98 ↑0.92

+ KoLeo loss 6 - MEXMA 0.06 ↓0.04 9.60 ↓0.07 86.38 ↑0.4

Table 11 Ablation study of the different components of the model. All experiments are conducted with the final
parameters of the model, as reported in Section 3.1.

In Table 11, we ablate the different components of our architecture described in Section 3. We briefly explain
each entry in the table. Model 1 has only two encoder instances, one for each language, where one of the
inputs is masked, and the other is left clean. The token unmasking is performed with the clean sentence
representation as context. The languages are randomly swapped at every new sample, to eliminate potential
biases. The gradients from the unmasking task are only propagated back to the encoder via the sentence
representation, and there is no gradient propagation from the individual tokens back to the encoder. There
is also neither alignment nor koleo losses. Model 2 adds two additional encoder instances, totalling four
instances, two for each language, where now each language has its clean and masked input. This allows to
unmask language A with language B, and vice-versa, and will also allow (once added) to align two clean
sentence representations. Model 3 adds the alignment loss, but it is performed between the masked sentence
representation of language A and the clean sentence representation of language B, to better emphasize the
advantages of having a symmetrical architecture with an alignment loss between two clean representations.
Model 4 then changes the alignment loss to be performed between the two clean sentence representations of
each language. In model 5 we allow the gradients from the unmasking to be propagated to the encoder via
each individual token, as well as its sentence representation. Finally, model 6 adds the KoLeo loss.

The results indicate that each component always enhances performance on at least two out of the three tasks.
Notably, the alignment loss, 3 - 4 , and token-level gradients, 5 , emerge as the most critical components.
More precisely, the alignment loss yields substantial improvements on two tasks while also resulting in a
notable decline in performance on another task. In contrast, the token-level gradients consistently provide
significant performance gains across all three tasks.

B.2 Masking ratio

Masking % xSIM ↓ xSIM++ ↓ SentEval ↑

20% 0.06 10.50 85.87
30% 0.06 9.82 86.00
40% 0.06 9.60 86.38
50% 0.07 9.56 86.37
60% 0.08 9.79 86.13
70% 0.09 10.65 86.41
80% 0.10 12.81 85.85
90% 0.11 14.62 84.99

Table 12 The model performance across different masking ratios.

Classical NLP masked encoders like BERT use a small masking percentage, usually ≈ 15%, without aligning
any augmentations. Recent vision approaches use much higher masking percentages. BEiT (Bao et al., 2022)
was one of the first masked image modelling (MIM) approaches, in a BERT-style training, and masked 40%.
MAE (He et al., 2022) is another BERT-like model for images, and masks 75%, but shows that even masking
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80% or 90% still achieves good results. DINO v2 (Oquab et al., 2024) and I-BOT (Zhou et al., 2022) mask
between 10%-50% in a block-wise masking scenario, aligning augmentations. I-BOT can use 65%-75% masking
ratio, if randomly masking (instead of block-wise masking). For videos, V-JEPA (Bardes et al., 2024) masks
with a very high percentage of 90%. Recent textual approaches, namely RetroMAE experiment with masking
percentages of up to 50∼70%, but this task will not update the actual encoder.

For MEXMA, since these masking gradients are updating our encoder, we need to strive for a balance where
unmasking is hard, and cannot be done by the encoder and head, but also not too much that will deteriorate
the representations of the encoder. Table 12 shows the results we obtained for the different masking ratios.
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C Language information appendix

In this section, we cover the languages used by our model. The list of languages used to train our model is
reported in Table 13. The list used to conduct the experiments with 90 languages is available in Table 14.

FLORES200 code Language FLORES200 code Language
acm_Arab Mesopotamian Arabic kan_Knda Kannada
aeb_Arab Tunisian Arabic kat_Geor Georgian
afr_Latn Afrikaans kaz_Cyrl Kazakh
amh_Ethi Amharic khm_Khmr Khmer
ary_Arab Moroccan Arabic kir_Cyrl Kyrgyz
arz_Arab Egyptian Arabic kor_Hang Korean
asm_Beng Assamese lao_Laoo Lao
azb_Arab South Azerbaijani mal_Mlym Malayalam
azj_Latn Azerbaijani mar_Deva Marathi
bel_Cyrl Belarusian mkd_Cyrl Macedonian
ben_Beng Bengali mya_Mymr Burmese
bos_Latn Bosnian nld_Latn Dutch
bul_Cyrl Bulgarian nno_Latn Norwegian
cat_Latn Catalan nob_Latn Norwegian Bokmål
ces_Latn Czech npi_Deva Nepali
ckb_Arab Central Kurdish pol_Latn Polish
cym_Latn Welsh por_Latn Portuguese
dan_Latn Danish ron_Latn Romanian
deu_Latn German rus_Cyrl Russian
ell_Grek Greek san_Deva Sanskrit
eng_Latn English sin_Sinh Sinhala
epo_Latn Esperanto slk_Latn Slovak
est_Latn Estonian slv_Latn Slovenian
eus_Latn Basque snd_Arab Sindhi
fin_Latn Finnish som_Latn Somali
fra_Latn French spa_Latn Spanish
gla_Latn Scottish Gaelic srp_Cyrl Serbian
gle_Latn Irish sun_Latn Sundanese
glg_Latn Galician swe_Latn Swedish
guj_Gujr Gujarati swh_Latn Swahili
hau_Latn Hausa tam_Taml Tamil
heb_Hebr Hebrew tel_Telu Telugu
hin_Deva Hindi tha_Thai Thai
hrv_Latn Croatian tur_Latn Turkish
hun_Latn Hungarian uig_Arab Uyghur
hye_Armn Armenian ukr_Cyrl Ukrainian
ind_Latn Indonesian urd_Arab Urdu
isl_Latn Icelandic vie_Latn Vietnamese
ita_Latn Italian xho_Latn Xhosa
jav_Latn Javanese zho_Hant Chinese (Traditional)
jpn_Jpan Japanese

Table 13 81 languages set.
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FLORES200 code Language FLORES200 code Language
afr_Latn Afrikaans kmr_Latn Kurdish (Kurmanji)
als_Latn Albanian kor_Hang Korean
amh_Ethi Amharic lao_Laoo Lao
arb_Arab Arabic lit_Latn Lithuanian
asm_Beng Assamese lvs_Latn Latvian
azj_Latn Azerbaijani mal_Mlym Malayalam
bel_Cyrl Belarusian mar_Deva Marathi
ben_Beng Bengali mkd_Cyrl Macedonian
bos_Latn Bosnian mya_Mymr Burmese
bul_Cyrl Bulgarian nld_Latn Dutch
cat_Latn Catalan nno_Latn Norwegian
ces_Latn Czech npi_Deva Nepali
cym_Latn Welsh ory_Orya Oriya
dan_Latn Danish pan_Guru Punjabi
deu_Latn German pbt_Arab Pashto
ell_Grek Greek plt_Latn Malagasy
eng_Latn English pol_Latn Polish
epo_Latn Esperanto por_Latn Portuguese
est_Latn Estonian prs_Arab Persian
eus_Latn Basque ron_Latn Romanian
fin_Latn Finnish rus_Cyrl Russian
fra_Latn French san_Deva Sanskrit
gaz_Latn Oromo sin_Sinh Sinhala
gla_Latn Gaelic slk_Latn Slovak
gle_Latn Irish slv_Latn Slovenian
glg_Latn Galician snd_Arab Sindhi
guj_Gujr Gujarati som_Latn Somali
hau_Latn Hausa spa_Latn Spanish
heb_Hebr Hebrew srp_Cyrl Serbian
hin_Deva Hindi sun_Latn Sundanese
hrv_Latn Croatian swe_Latn Swedish
hun_Latn Hungarian swh_Latn Swahili
hye_Armn Armenian tam_Taml Tamil
ind_Latn Indonesian tel_Telu Telugu
isl_Latn Icelandic tha_Thai Thai
ita_Latn Italian tur_Latn Turkish
jav_Latn Javanese uig_Arab Uyghur
jpn_Jpan Japanese ukr_Cyrl Ukrainian
kan_Knda Kannada urd_Arab Urdu
kat_Geor Georgian uzn_Latn Uzbek
kaz_Cyrl Kazakh vie_Latn Vietnamese
khk_Cyrl Mongolian xho_Latn Xhosa
khm_Khmr Khmer ydd_Hebr Yiddish
kir_Cyrl Kyrgyz zho_Hans Chinese (Simplified)
zsm_Latn Malay zho_Hant Chinese (Traditional)

Table 14 90 languages set
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D Datasets

In this section we report the data used to train our models. Table 15 reports all the datasets used to train the
models.

Dataset Source Origin
bible-uedin Opus Christodouloupoulos and Steedman (2015); Tiedemann (2012)
DGT Opus Steinberger et al. (2012); Tiedemann (2012)
ECB Opus Tiedemann (2012)
EMEA Opus Tiedemann (2012)
EUbookshop Opus Tiedemann (2012)
infopankki Opus Tiedemann (2012)
memat Opus Tiedemann (2012)
OpenSubtitles Opus Lison and Tiedemann (2016); Tiedemann (2012), Link: opensubtitles.org
QED Opus Abdelali et al. (2014); Tiedemann (2012)
Tanzil Opus Tiedemann (2012), Link: tanzil.net/trans
Tatoeba Opus Tiedemann (2012)
Ted20 Opus Reimers and Gurevych (2020); Tiedemann (2012)
Tico19 Opus Anastasopoulos et al. (2020); Tiedemann (2012)
UNPC Opus Ziemski et al. (2016); Tiedemann (2012)
Wikimedia Opus Tiedemann (2012)
NLLB mined Opus Schwenk et al. (2020); Fan et al. (2020); Tiedemann (2012)

Table 15 Datasets used to train our models.
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E MTEB datasets

In this section, we report the scores for each task of the MTEB benchmark reported in Section 4. We report
the scores per task, with every dataset used per task, and per language. MEXMA is able to outperform the
previous SOTA results on mining, while also improving the downstream results on classification and pair
classification. LaBSE outperforms all other models on STS.

E.1 BitextMining

Results for mining are in Table 16, for the BUCC dataset. We report the scores on the four available languages:
German, French, Russian and Chinese.

LP DAP SONAR LaBSE MEXMA
de-en 99.45 98.82 99.35 99.52
fr-en 98.58 98.09 98.72 98.98
ru-en 97.74 97.37 97.78 98.06
zh-en 98.96 98.72 99.16 99.18

Table 16 BUCC results for each language pair (LP).

E.2 Classification

Classification results for English are available in Table 17, for SentEval, and in Table 18 for the English MTEB
classification datasets. Classification results for Chinese, French, Danish, Norwegian and Polish are reported
in Table 19, Table 20, Table 21, Table 22, Table 23, respectively. MEXMA outperforms all other models on
average.

Task DAP SONAR LaBSE MEXMA
Average 78.18 85.82 85.63 86.38
MR 74.33 81.23 78.89 80.14
SST2 81.88 86.49 83.64 86.16
TREC 75.00 95.00 92.80 94.80
CR 78.70 85.67 86.44 84.43
SUBJ 91.83 93.70 93.14 94.27
MPQA 78.86 89.38 89.66 89.41
MRPC 66.67 69.28 74.84 75.42

Table 17 SentEval results.

E.3 Pair Classification

Pair classification results for English, French and Chinese are reported in Table 24, Table 25, and Table 26,
respectively. MEXMA outperforms all other models on average.

E.4 Semantic Textual Similarity (STS)

Semantic Textual Similarity (STS) results are reported in Table 27, Table 29, Table 30 and Table 28 for
English, French, Polish and Chinese, respectively. LaBSE outperforms MEXMA and the remaining models on
STS. MEXMA and LaBSE outperform SONAR by large margins.
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Dataset DAP SONAR LaBSE MEXMA
Average 66.35 65.63 66.75 68.20
AmazonCounterfactualClassification 77.16 81.49 75.93 78.06
AmazonPolarityClassification 65.73 62.73 68.95 64.96
AmazonReviewsClassification 34.03 31.55 35.80 32.77
Banking77Classification 71.83 73.50 69.85 75.14
ImdbClassification 62.06 55.75 62.04 62.08
MTOPDomainClassification 85.54 89.92 86.06 89.85
MTOPIntentClassification 64.17 70.85 63.03 75.18
MasakhaNEWSClassification 77.95 55.42 77.77 72.28
MassiveIntentClassification 63.48 64.37 61.46 66.64
MassiveScenarioClassification 68.75 69.05 66.41 70.38
ToxicConversationsClassification 59.14 67.28 66.90 62.85

Table 18 MTEB English classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 67.46 63.13 68.69 66.25
AmazonReviewsClassification (zh) 34.35 31.91 32.98 33.40
MassiveIntentClassification (zh-CN) 71.99 62.08 63.86 74.41
MassiveScenarioClassification (zh-CN) 65.45 68.88 70.85 65.28
JDReview 71.54 69.59 79.13 70.73
MultilingualSentiment 62.03 57.69 65.52 60.34
OnlineShopping 85.03 75.64 85.62 80.09
Waimai 81.82 76.12 82.85 79.52

Table 19 MTEB Chinese classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 63.76 61.88 62.05 66.07
AmazonReviewsClassification 35.60 34.91 38.52 35.62
MTOPDomainClassification 84.43 86.19 84.14 86.70
MTOPIntentClassification 65.78 66.75 62.01 74.12
MassiveIntentClassification 64.51 58.55 60.47 65.59
MassiveScenarioClassification 68.50 63.02 65.1 68.31

Table 20 MTEB French classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 52.27 54.01 49.53 55.38
DanishPoliticalCommentsClassification 36.44 37.59 38.69 38.75
LccSentimentClassification 58.27 54.27 50.07 52.40
MassiveIntentClassification (da) 58.74 62.03 58.25 65.75
MassiveScenarioClassification (da) 66.15 67.76 65.24 69.26
NordicLangClassification 41.73 48.40 35.38 50.74

Table 21 MTEB Danish classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 51.58 55.59 50.76 58.08
MassiveIntentClassification 55.85 59.90 57.91 64.48
MassiveScenarioClassification 62.67 65.81 64.29 68.22
NoRecClassification 46.06 48.25 45.44 48.88
NordicLangClassification 41.73 48.40 35.38 50.74

Table 22 MTEB Norwegian classification results.
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Dataset DAP SONAR LaBSE MEXMA
Average 53.03 55.09 56.00 57.09
AllegroReviews 31.58 29.62 34.89 31.09
MassiveIntentClassification (pl) 58.53 65.86 59.71 66.85
MassiveScenarioClassification (pl) 63.05 69.99 64.58 70.20
PAC 67.97 73.87 68.11 73.31
PolEmo2.0-IN 61.75 52.80 64.00 59.10
PolEmo2.0-OUT 35.32 38.40 44.72 42.00

Table 23 MTEB Polish classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 63.87 70.73 69.75 74.39
PawsX 55.30 75.05 54.07 73.18
SprintDuplicateQuestions 72.47 77.08 89.26 86.89
XNLI 63.83 60.06 65.92 63.10

Table 24 MTEB English pair classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 73.03 77.57 73.70 78.13
PawsX (fr) 55.57 71.36 54.63 71.07
Opusparcus (fr) 100.00 100.00 100.00 100.00
XNLI 63.52 61.34 66.48 63.32

Table 25 MTEB French pair classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 61.12 60.80 61.95 62.12
PawsX(zh) 56.20 65.35 54.26 63.68
Cmnli 69.29 61.86 72.67 67.45
Ocnli 57.86 55.18 58.91 55.23

Table 26 MTEB Chinese pair classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 67.45 67.24 70.93 70.62
BIOSSES 70.51 79.11 78.70 75.97
SICK-R 69.18 62.94 69.99 66.00
STS12 64.69 65.46 65.08 67.32
STS13 63.50 62.79 67.98 67.05
STS14 61.49 57.54 64.03 62.73
STS15 75.38 74.25 76.59 75.72
STS16 68.00 75.73 72.98 76.93
STS17 (en-en) 77.03 79.94 79.45 80.97
STS22 (en) 53.38 47.12 60.97 57.11
STSBenchmark 69.39 67.39 72.25 73.53
STSBenchmarkMultilingualSTS (en) 69.39 67.39 72.25 73.53

Table 27 MTEB English STS results.
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Dataset DAP SONAR LaBSE MEXMA
Average 45.31 42.15 47.50 51.56
ATEC 28.01 26.18 26.61 29.68
BQ 40.01 37.66 42.60 44.37
LCQMC 54.97 50.11 52.19 61.34
PAWSX 12.99 32.75 10.23 27.77
STS22(zh) 52.05 52.82 63.02 63.49
STSB 63.67 50.18 68.38 65.75
STSBenchmarkMultilingualSTS (zh) 65.46 45.33 69.50 68.55

Table 28 MTEB Chinese STS results.

Dataset DAP SONAR LaBSE MEXMA
Average 67.74 65.60 74.33 70.10
SICKFr 66.84 66.1 69.94 65.94
STS22 (fr) 64.44 61.72 77.95 72.19
STSBenchmarkMultilingualSTS (fr) 71.92 68.99 75.1 72.17

Table 29 MTEB French STS results.

Dataset DAP SONAR LaBSE MEXMA
Average 57.06 57.17 65.82 63.67
CDSC-R 74.12 85.77 85.53 85.95
SICK-R-PL 60.63 62.98 65.90 64.31
STS22 (pl) 28.16 25.31 39.28 32.51
STSBenchmarkMultilingualSTS (pl) 65.31 54.62 72.58 71.93

Table 30 MTEB Polish STS results.
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F Token level analysis

In this section, we illustrate the behaviour of each model by visualizing the closest tokens in the space. We
observe that MEXMA matches tokens in translations but also different contexts when tokens are used with
the same meaning. This is further broken down in Table 9, which distinguishes between two types of matches
MEXMA does: (1) "same language" matches, where the model identifies the same token used in a different
context (monolingual), and (2) "other" matches, where it recognizes translated tokens in a sentence in another
language that is not a translation (multilingual). We observe that SONAR primarily matches tokens across
translations, but does not tend to match the same token when it appears in different sentences within the same
language. Examples of MEXMA and SONAR comparisons of matching the same token in other sentences is
in Figure 5, and both models matching translations in Figure 6. In both figures, we show the three closest
tokens to the selected token, denoted as query on the green box, with the blue text. The closest tokens are in
the purple boxes with the pink text. Additionally, we show examples of how LaBSE and MEXMA without
direct token-level gradients (no-tok MEXMA), match adjacent tokens in the same sentence regularly. These
are shown for LaBSE in Figure 2, and for no-tok MEXMA in Figure 3. Lastly, we show how XLM-RoBERTa
mostly matches the same tokens in other sentences in the same language, presented in Figure 4. For these last
three models, we show the top-2 closest tokens, with the same color scheme as mentioned above. Each image
has two examples for the given model.

The governor's office said nineteen of the
injured were police officers.

Token: nineteen Token: bell

The governor's office said nineteen of the
injured were police officers.

The governor's office said nineteen of the
injured were police officers.

He built a WiFi door bell, he said.

He built a WiFi door bell, he said.

He built a WiFi door bell, he said.

Figure 2 Example of LaBSE’s token matching. The token in blue is the query token, the tokens in pink are the closest
tokens to the query token in the space.

. Scientists say this animal's plumage ...
with a pale ... underside.

Token: plumage Token: down

. Scientists say this animal's plumage ...
pale ... underside.

. Scientists say this animal's plumage
... pale ... underside.

"The researchers suggested ... this is the
tail ... chick's down."

"The researchers suggested ... this
is the tail ... chick's down."

"The researchers suggested ... this is the
tail ... chick's down."

Figure 3 Example of MEXMA no token-level grad’s token matching. The token in blue is the query token, the tokens
in pink are the closest tokens to the query token in the space.
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"We now have 4-month-old mice that are non-
diabetic that used to be diabetic," he added.

Token: diabetic Token: particles

Some venues offer alcoholic beverages on the
house. ...

You can also have alloys that include small
amounts of non-metallic elements like carbon.

This theory says that most dark matter around a
galaxy is located around a galaxy in a kind of halo,

and is made of lots of small particles.

A curry is a dish based on herbs and spices,
together with either meat or vegetables.

Examples include control, planning and ...

Figure 4 Example of XLM-RoBERTa token matching. The token in blue is the query token, the tokens in pink are the
closest tokens to the query token in the space.
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He built a WiFi door bell, he said.

SONAR

তিনি জানান যে তিনি একটি ওয়াই-
ফাই ডোর বেল তৈরি করেছিলেন।

అతను WiFi డోర్ బెల్
నిర్మిం చాడు. అని చెప్పా డు.

അദ്ദേഹം ഒരു WiFi
ഡോർ ബെൽ

ഉണ്ടാക്കിയെന്ന് അവൻ
പറഞ്ഞു.

Dheweke mbangun bel 
lawang WiFi, jarene.

Previously, Ring's CEO, 
Jamie Siminoff, remarked 
the company started when 
his doorbell wasn't audible 
from his shop in his garage.

WiFi ile çalışan bir kapı 
zili yaptığını söyledi.

MEXMA

The find also grants insight into the evolution of feathers
in birds.

SONAR

यह खोज पक्षियों में पंखों के  
विकास की पूरी जानकारी भी प्रदान

करती है.

கண் டுபிடிப்பானது
பறவைகளில்  இறகுகளின்

பரிணாம 
வளர்ச்சியைப் பற்றிய

நுண் ணறிவை வழங்குகிறது.

ഈ കണ്ടുപിടിത്തം 
പക്ഷികളിലെ തൂവലുകളുടെ 
ഉൽഭവത്തിലേക്ക് വെളിച്ചം 

വീശി.

Oppdagelsen gir i tillegg 
innsikt i utviklingen for 

fjær hos fugler.

The area is also home to 
an extremely wide variety 
of animal and bird species.

But there are a lot of 
things about birds that 
still look like a dinosaur.

MEXMA

The researchers suggested that, even though this is the tail of
a young dinosaur, the sample shows adult plumage and not a

chick's down.

SONARMEXMA

The number of people present was so large that it was not
possible for everybody to gain access to the funeral in St.

Peter's Square.

SONARMEXMA

The feathers' structure
suggests that they were not
used in flight but rather for
temperature regulation or
display. The researchers

suggested that, even though
this is the tail of

a young dinosaur, the sample
shows adult plumage 

and not a chick's down.

Token: bell Token: birds

Token: young Token: funeral

Cercetătorii au sugerat că, 
deși aceasta este coada 

unui dinozaur tânăr, 
eșantionul arată un penaj 
adult și nu puful unui pui.

Os pesquisadores 
sugeriram que, apesar do

rabo ser de um
dinossauro jovem, a amostra

revela uma plumagem 
adulta, não uma penugem.

Fue tanta la cantidad de
gente que se concentró, que
no todos pudieron acceder

al funeral en la Plaza de San
Pedro.

O número de pessoas
presentes era tão grande 
que não foi possível que
todos tivessem acesso
ao funeral na Praça de 

São Pedro.

Foi tal o número de persoas
que acudiu que non todo o

mundo puido acceder
ao funeral na praza de 

San Pedro.

Els investigadors 
suggereixen que, tot i que 

es tracta de la cua d'un
dinosaure jove, la mostra
revela un plomatge adult, 

i no pas plomissol.

Հետազոտողները
ենթադրում են, որ չնայած

սա երիտասարդ դինոզավրի
պոչ է, նմուշը ցույց է տալիս
մեծահասակի փետուր և ոչ

ձագի:

研究者らは、この標本が若い恐竜
の尻尾であるにもかかわらず、ひ
なの羽毛ではなく大人の羽毛が生
えていることを示唆している。

O número de pessoas
presentes era tão grande 
que não foi possível que
todos tivessem acesso
ao funeral na Praça de 

São Pedro.

Over four million people 
went to Rome to attend

the funeral.

Hi havia tanta gent present
que no tots van aconseguir
accedir al funeral a la Plaça

de Sant Pere.

Figure 5 Comparison of SONAR and MEXMA token matching. MEXMA displays the ability to match a token in
another sentence in the same language. SONAR matches a translated token. The token in blue is the query token, the
tokens in pink are the closest tokens to the query token in the space. MEXMA is on the left, SONAR on the right.
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 "We now have 4-month-old mice that are non-diabetic that
used to be diabetic," he added.

SONAR

انہوں نے مزید بتایا کہ، "اب ہمارے پاس
غیر ذیابیس والے 4 مہینے کی عمر کے
"چوہے ہیں جنہیں شوگر ہوجایا کرتا تھا۔

"Ni havas nun 4-monataĝajn
musojn, kiuj ne estas

diabetaj, sed estis diabetaj",
li aldonis.

"Agora temos ratos de 4
meses de idade que não são
diabéticos e que antes eram
diabéticos,"complementou.

“Ons het nou 4-maand oue
muise wat nie diabeties is,

wat eenmaal diabeties was,”
het hy bygevoeg.

"Agora temos ratos de 4
meses de idade que não são
diabéticos e que antes eram
diabéticos,"complementou.

"Mae gennym ni nawr lygod
pedwar mis oed sydd ddim yn
ddiabetig oedd yn arfer bod

yn ddiabetig", 
ychwanegodd e.

MEXMA

He did not set a figure for the cuts, saying they will be
made based on China's economic output.

SONAR

മുറിവുകൾക്കായി അദ്ദേഹം ഒരു
ചിത്രം സജ്ജമാക്കിയിട്ടില്ല,
ചൈനയുടെ സാമ്പത്തിക

ഉൽ‌പാദനത്തെ 
അടിസ്ഥാനമാക്കിയാണ്അ

വ നിർമ്മിക്കുക എന്ന് പറഞ്ഞു.

Ông ấy đã không đưa ra con
số cắt giảm, mà nói rằng 

việc đó sẽ được thực
hiện dựa vào kết quả của 
nền kinh tế Trung Quốc.

ລາວບໍ່ ໄດ້ກຳ ນົ ດຕົ ວເລກສຳ ລັ ບການຕັ ດ
ອອກ ເຊິ່ ງກ່ າວວ່ າພວກເຂົ າຈະເຮັ ດໂດຍ
ອີ ງໃສ່ຜົ ນໄດ້ຮັ ບທາງດ້ານເສດຖະກິ ດຂອງ

ຈີ ນ.

चीनच्या आर्थिक आउटपुटवर 
आधारित ते ठरवले जाईल असे 
म्हणून त्यांनी कटसाठी 

कोणतीही संख्या ठरवली नाही.

Níor shocraigh sé figiúr do na
giorrúcháin, á rá go ndéanfar

iad bunaithe ar aschur
geilleagrach na Síne.

Han satte ikke tall for
kuttene, og sa at disse ville
bli foretatt basert på Kinas
økonomiske produksjon.

MEXMA

Siminoff said sales boosted after his 2013 appearance in a
Shark Tank episode where the show panel declined funding the

startup.

SONARMEXMA

Liberal criticism of the reconstruction effort has focused on the
awarding of reconstruction 

contracts to perceived Washington insiders.

SONAR

Либеральная критика усилий
по восстановлению

сосредоточивалась на том,
что контракты на

восстановительные работы
отдавались

предположительно имеющим
связи с правительством.

MEXMA

A crítica liberal sobre o
esforço de reconstrução 
focou na concessão de

contratos de reconstrução a
pessoas com influência em

Washington.

Liberal kritik av
återuppbyggnadsarbetet

har fokuserat på tilldelningen
av återuppbyggnadskontrakt
till förmodade Washington-

insiderpersoner.

Liberal kritik av
återuppbyggnadsarbetet

har fokuserat på 
tilldelningen av

återuppbyggnadskontrakt 
till förmodade Washington-

insiderpersoner.

Liberal kritik af
genopbygningsindsatsen

har fokuseret på tildelingen 
af genopbygningskontrakter
til betragtede Washington-

insidere.

Критика на либералите 
към опитите за
реконструкция

се фокусира върху
възлагането на договори за

реконструкция на
предполагаеми

вашингтонски вътрешни
лица.

Ο Σίμινοφ δήλωσε πως οι
πωλήσεις αυξήθηκαν μετά 
την εμφάνισή του σε ένα

επεισόδιο του Shark Tank το
2013 στο οποίο το πάνελ της

εκπομπής αρνήθηκε να
χρηματοδοτήσει την

επιχείρηση.

Siminoff afirmou que as 
vendas aumentaram após 
sua aparição de 2013 em 

um episódio do Shark Tank, 
no qual os jurados do
programa recusaram o

financiamento da startup.

Симинофф сказал, что
продажи выросли после 

его появления в выпуске шоу
"Shark Tank" в 2013 году, где

члены жюри отказались
финансировать его стартап.

Siminoff afirmou que as 
vendas se

incrementaron despois 
da súa aparición en 2013 no
episodio Shark Tank, no que 

o panel do programa 
rexeitou financiar a empresa

emerxente.

Siminoff afirmou que as 
vendas aumentaram após 
sua aparição de 2013 em 

um episódio do Shark Tank, 
no qual os jurados do
programa recusaram o

financiamento da startup.

Smirnoff sa att försäljningen
ökade efter hans medverkan 

i ett avsnitt av Shark Tank
2013, där panelen sa nej till

att finansiera startupen.

Token: diabetic Token: based

Token: boosted Token: focused Token: focused

Figure 6 Comparison of SONAR and MEXMA on translated tokens in translations.
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G Attention distribution over tokens

In this section, we provide some examples of MEXMA and LaBSE’s attention probabilities given by the CLS
token to the word tokens. The examples are provided in Figures 7, 8, 9 and 10. Across all figures, it is possible
to see that LaBSE tends to be more uniform across all tokens, while MEXMA tends to focus more attention
on a smaller subset of the tokens. All examples are taken from the FLORES200 test set with the xsim++
extension, where some words in the original sentences are replaced, and the models have to be able to still
match the correct translation, and not a sentence with a small change. From Figure 7 to Figure 8 "nineteen"
is replaced with "twenty nine". From Figure 9 to Figure 10 the word "white" is replaced with "black".

Figure 7 shows the attention placed by MEXMA and LaBSE on the same sentence in English and Portuguese.
It is possible to see that MEXMA in Portuguese places most of the attention in two tokens, "governador" and
"19", where the token in "19" is very relevant here since it is the one needed to distinguish the examples in
xsim++. LaBSE seems to have many tokens with a lot of attention, and does not have "19" as one of the
tokens with the most attention.

In Figure 8, we have the English example with nineteen (as previously shown in Figure 7) compared to the
same sentence with nineteen replaced by twenty-nine. Interestingly, LaBSE places more attention on the
"##teen" token than the "nine" token, but similar attention to the "twenty", "-" and "nine" tokens. MEXMA
places similar attention in all nineteen tokens, and in twenty nine it places a small amount of attention on the
irrelevant "-", with a higher degree of attention in "nine" and a smaller amount of attention in "twenty".
MEXMA also seems to do a good job ignoring irrelevant tokens like "of", while LaBSE places a lot of attention
in it.

Figure 9 has the same sentence in English and Portuguese, where, in xsim++ the models need to be able
to match the color "white" instead of other colors. It is possible to see that, for LaBSE, white is not one
of the most relevant tokens in English, but for MEXMA it is, along with "television". In Portuguese the
behavior is similar, the token "bran" in "esbranquiçada" has a large degree of attention from MEXMA, while
for LaBSE is it not a token with a lot of attention, and "çada" which is a token that does not convey the idea
of white, is the one with the most attention out of the 4 tokens of the word, for LaBSE. In Portuguese it is
also noticeable that MEXMA gives a small amount of attention to most of the less relevant tokens, while
LaBSE seems to have a lot more tokens with a high degree of attention.

Figure 10 shows the same English sentence as Figure 9, with the word white replaced with the word black.
Interestingly, MEXMA’s attention remains the same with black and white, while for LaBSE the token "black"
seems to get less attention than the token "white". The remaining tokens get similar attention in both models.

Additionally, Figure 11, provides a comparison for MEXMA and LaBSE with the probabilities of all heads,
and all tokens, using BertViz (Vig, 2019). It is possible to see that MEXMA places a lot of attention on the
EOS token, </s>, which is used as an attention dump, i.e. an irrelevant token that receives a very large
attention probability, a common phenomena in transformers, as explored in Xiao et al. (2024); Darcet et al.
(2024); Sun et al. (2024). This happens frequently with MEXMA. It is, again, possible to see the difference in
uniformity for MEXMA and LaBSE, with LaBSE having a more uniform attention in the figure. If we remove
the BOS and EOS tokens from the entropy computation, we now get an entropy of ≈ 3.5 and ≈ 3 for LaBSE
and MEXMA, respectively. MEXMA’s entropy increases, while LaBSE stays mostly similar, which shows
that MEXMA indeed frequently uses the EOS token as a dump. However, MEXMA still has a lower entropy
and a more skewed distribution over its word tokens, with or without BOS and EOS, as shown by the lower
entropy and the Figures 7-10.
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L: The governor ' s office said nine ##teen of the injured were police officers .
M: ▁The ▁governo r ' s ▁office ▁said ▁ni nete en ▁of ▁the ▁in ju red ▁were ▁police ▁officer s .

L: O gabinete do governador afirmou que 19 dos feridos eram agentes policiais .
M: ▁O ▁gabinet e ▁do ▁governador ▁afirmou ▁que ▁19 ▁dos ▁fer idos ▁eram ▁agentes ▁policiais .

Figure 7 Comparison of LaBSE and MEXMA’s probabilities distribution over the tokens. In this example, the models
had to match the sentence with "19" in Portuguese and English. LaBSE’s entries are preceeded with "L:", and
MEXMA’s with "M:".

L: The governor ' s office said nine ##teen of the injured were police officers .
M: ▁The ▁governo r ' s ▁office ▁said ▁ni nete en ▁of ▁the ▁in ju red ▁were ▁police ▁officer s .

L: The governor ' s office said twenty - nine of the injured were police officers .
M: ▁The ▁governo r ' s ▁office ▁said ▁twenty - nine ▁of ▁the ▁in ju red ▁were ▁police ▁officer s .

Figure 8 Comparison of LaBSE and MEXMA’s probabilities distribution over the tokens. In this example, the models
had to distinguish the sentence with "19" and "29" in Portuguese and English. LaBSE’s entries are preceeded with
"L:", and MEXMA’s with "M:"

L: Television reports show white smoke coming from the plant .
M: ▁Television ▁reports ▁show ▁white ▁smo ke ▁coming ▁from ▁the ▁plant .
L: Reportage ##ns televisiva ##s divulga ##m a fum ##aça es ##bran ##qui ##çada saindo da planta .

M: ▁Report agens ▁televisi vas ▁divulga m ▁a ▁fum a ça ▁es bran qui ça da ▁sa indo ▁da ▁planta .

Figure 9 Comparison of LaBSE and MEXMA’s probabilities distribution over the tokens. In this example, the models
had to match the sentence with "white" in Portuguese and English. LaBSE’s entries are preceeded with "L:", and
MEXMA’s with "M:"

L: Television reports show white smoke coming from the plant .
M: ▁Television ▁reports ▁show ▁white ▁smo ke ▁coming ▁from ▁the ▁plant .

L: Television reports show black smoke coming from the plant .
M: ▁Television ▁reports ▁show ▁black ▁smo ke ▁coming ▁from ▁the ▁plant .

Figure 10 Comparison of LaBSE and MEXMA’s probabilities distribution over the tokens. In this example, the models
had to distinguish the sentence with "white" and "black" in Portuguese and English. LaBSE’s entries are preceeded
with "L:", and MEXMA’s with "M:"
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[SEP]
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Figure 11 Attention distribution of MEXMA and LaBSE across all heads, and all tokens. On the left is LaBSE, on the
right is MEXMA. MEXMA uses the EOS token as an attention dump, and has a more skewed distribution, while
LaBSE has a more uniform distribution.
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H Baseline architectures

We report SONAR, LaBSE’s, DAP’s and RetroMAE’s architectures in Figures 12b, 12a, 12c and 12d,
respectively for easier comparison. LaBSE employs a slightly modified contrastive loss, to increase separation,
and SONAR is based on translation. DAP uses token-level objectives, but it does not leverage them to update
the sentence representation. RetroMAE uses the sentence in the heavy unmasking, but that unmasking does
not update the tokens outputted by the encoder, it is monolingual, and the sentence representation does not
come from an unmasked input. MEXMA is based on cross unmasking and has direct token level gradients
updating its internal representations.

mBERT mBERT

[CLS] [CLS]

The car is red. El coche es rojo.

Contrastive

(a) LaBSE’s architecture.

The car is red. [EOS]

El coche es rojo.

Average pooling

NLLB-200
Encoder NLLB-200

Decoder

M
S

E

[BOS]The car is red.

Cross attention

Translation + AE

(b) SONAR’s architecture.

XLM-R XLM-R

[CLS] [CLS]

The car is red. El coche es rojo.

Contrastive

100 % Masking

Head

MLM

(c) DAP’s architecture.

BERT
1-layer decoder

[CLS]

The car is red.

Head

MLM

15% Masking

The car is red.

The car is red.

70% Masking

The car is red.

MLM

(d) RetroMAE’s architecture.

Figure 12 Architecture of the baselines.
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