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Being able to study the dynamics of quantum systems interacting with several environments is
important in many settings ranging from quantum chemistry to quantum thermodynamics, through
out-of-equilibrium systems. For such problems tensor network-based methods are state-of-the-art
approaches to perform numerically exact simulations. However, to be used efficiently in this multi-
environment non-perturbative context, these methods require a clever choice of the topology of
the wave-function Ansätze. This is often done by analysing cross-correlations between different
system and environment degrees of freedom. We show for canonical model Hamiltonians that simple
orderings of bosonic environmental modes, which enable to write the joint {System + Environments}
state as a matrix product state, reduce considerably the bond dimension required for convergence.
These results suggest that complex correlation analyses in order to tweak tensor networks topology
(e.g. entanglement renormalization) are usually not necessary and that tree tensor network states
are sub-optimal compared to simple matrix product states in several applications.

I. INTRODUCTION

The theory of open quantum systems describes
how realistic quantum systems are influenced by their
interactions with external degrees of freedom [1–3].
These external degrees of freedom that influence the
open systems’ dynamics can be of a different nature
(bosonic, fermionic, spins), or with different charac-
teristics (vibrational, electromagnetic or at different
temperatures) and are thus said to belong to separate
‘environments’. Different methods have been developed
to describe the dynamics of the system of interest’s
populations and coherences. In cases where the inner
dynamics of the environment can be neglected, Lindblad
and Redfield master equations are tools of choice [3, 4].
However, when this inner dynamics cannot be neglected,
more involved methods are needed [5–12]. A number
of these methods are numerically exact and rely on
tensor networks to efficiently encode this environmental
dynamics, for example in the form of an influence
functional [7–9] or the total state of the {System +
Environment} [10–12]. Indeed, tensor networks give a
compressed and computationally efficient representation
of these objects.
An example, of high interest for quantum technologies,
comes from quantum thermodynamics where one might
be interested in studying the heat exchange of a quantum
system interacting with hot and cold reservoirs (e.g.
a quantum heat engine) [13]. Another example comes
from molecular systems where electronic excitations
can effectively couple to several different vibrational
environments [14, 15] or environments of a different
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nature [16].
Having several environments interacting with the system
leads to an increase of the required computational
resources needed to perform an accurate simulation,
because the amount of correlation between the system
and the environmental degrees of freedom grows. For
instance, for Matrix Product States (MPS) the com-
putational cost associated with the computation of
observables is related to their bond dimension, which is
itself related to the amount of correlations (or the degree
of entanglement) between bi-partitions of the quantum
state. For methods based on tensor network states
(TNS), a few techniques exist to reduce the computa-
tional cost (the bond dimension) of such simulations.
They are either based on – what we coin – ‘structural
renormalisation’, i.e. changing the structure of the TNS
Ansatz to locally lower the entanglement [14, 17], or on
‘clustering’ of environmental modes, i.e. changing the
order of modes for a fixed geometry [18–21].
The structural renormalisation approach relies on
expressing the joint quantum state as a tree tensor
network (TTN) state and then analysing the en-
tanglement properties of system/environments and
environments/environments partitions. From this analy-
sis, a new topology of the TTN is deduced [17] or a new
layer of so called entanglement renormalising (ER) ten-
sors is constructed and placed in between the system and
the environments to lower the entanglement but keep
correlations between environments [14]. This approach
necessitates a thorough analysis of the entanglement
structure between the system and the environments and
between the environments themselves before being able
to write the TTN state.
On the other hand, the methods relying solely on
the reordering of the environmental modes preserve a
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simple TTN or MPS structure. How environmental
modes are ordered in the MPS representation of the
quantum state is a priori arbitrary. One just has to
make sure that the operators in the Matrix Product
Operators (MPOs) applied to the state follow the same
ordering (which might make their expression more
complex). Nevertheless, it does not mean that all
orderings of the environmental modes are equivalent. In
the case of bosonic modes, the On the Fly Swapping is
a procedure applied during the sweeps of the (real or
imaginary) time evolution where neighbouring tensor
sites are swapped if it results in decreasing a given
cost function (entanglement entropy or the truncation
error) [19]. Even though this method is a practical
way of improving computational performance, it needs
to be applied at each time step of the state evolution.
In the case of fermionic bath modes, the reordering
is particularly simple and consists of alternating bath
modes corresponding to filled orbitals with modes corre-
sponding to empty ones [20, 22]. Whereas the reordering
procedure for bosonic degrees of freedom is a dy-
namic procedure, this fermionic reordering is static and
done once and for all when writing down the initial state.

A natural question then emerges: is there a similar
efficiency-increasing static reordering of bath modes in
the bosonic case? If this were the case, it would spare
complex beforehand analyses of system-environments
correlations or dynamical updates of the ordering of en-
vironmental modes. In this paper, we focus on meth-
ods where a TNS describes the whole {System + Envi-
ronment(s)} wave-function. We use a specific instance
of such methods called Thermalized-Time Evolving Den-
sity operator with Orthogonal Polynomials Algorithm (T-
TEDOPA) [10, 23–26]. We study here the influence of
different bosonic modes arrangements on the efficiency
of open quantum systems simulations. We initially con-
jecture that entanglement in MPS states can be lowered
by diminishing the ‘correlation length’ between two en-
vironmental excitations created at the same time. In-
vestigating the convergence of different arrangements of
baths modes we are able to give a negative answer to this
hypothesis. This exploration brings us to study another
property of tensor network states that we show to be
related to entanglement: the connectivity of the system
with its environments. In the case of a single environ-
ment, it has been argued based on empirical results that
TTN states encode many-body correlations more effi-
ciently than MPS [27]. In this paper, considering the case
of a system coupled to several environments, we bring ev-
idence that adopting a geometry of the TNS with a single
‘interface’ between the system and the environments it
connects to reduces the amount of entanglement in the
state. Contrary to previous comparative studies between
MPS and TTN, a strength of this paper is to compare
different MPS and TTN representations of a quantum
state on an equal footing. Indeed, the same numerical
method (T-TEDOPA) and the same time-evolution al-

gorithm (the Time-Dependent Variational Principle) are
used for all TNS.
The paper is organized as follow: The T-TEDOPA nu-

merical method is presented in Section II. In Section III
we define different orderings of the environmental modes
and compare their efficiency for a system coupled to two
environments. The case of three environments is studied
in Section IV. All these results are discussed in Section V.

II. NUMERICAL METHOD

When considering a quantum system linearly coupled
to a continuum of bosonic modes (e.g. the electromag-
netic field or vibrational modes in molecules), we need to
discretize the environment in order to perform numerical
simulations of the {System + Environment} dynamics.
Instead of sampling the infinitely many normal modes of
the environment to keep only a discrete set of modes, one
can use a chain mapping approach to keep all the rele-
vant bath modes easily and at the same time generate
a discrete representation of the environment [23]. This
method consists of using an exact unitary transforma-
tion defined through a family of orthonormal polynomials
that transforms a continuous bosonic environment into a
semi-infinite chain and is known as Time Evolving Den-
sity operator with Orthonormal Polynomials Algorithm
(TEDOPA) [24, 25]. At zero temperature, this chain-
mapped environment is well-suited for a representation
of the joint {System + Bath} wave-function as a MPS be-
cause the bath is now made of discrete modes, and all the
couplings of the joint system are local. Moreover, in this
representation, a MPS reflects the underlying structure
of the Hamiltonian. This method is very efficient to sim-
ulate OQS non-perturbatively and in the non-Markovian
regime as it allows to simulate the evolution of the full
wave-function of the system and its environment.
We consider a bosonic bath described by the Hamilto-
nian ĤB and interacting with a reduced system of inter-
est with the Hamiltonian Ĥint

ĤB + Ĥint =

∫ ωc

0

dωωâ†ωâω + Â

∫ ωc

0

dω
√
J(ω)(âω + â†ω) ,

(1)

where â†ω creates a bosonic excitation at the frequency ω,
ωc is the bath cut-off frequency, J(ω) is the bath spectral

density (SD), and Â is a system operator.
We can introduce the following transformation of the

bath operators

â†ω =

∞∑
n=0

Un(ω)b̂
†
n (2)

where Un(ω) is defined with orthonormal polynomials Pn

Un(ω) =
√
J(ω)Pn(ω) . (3)

Equation (2) expresses the decomposition of the contin-
uum of independent bosonic modes onto a new infinite set
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of discrete modes. The unitarity of the transformation
imposes an orthogonality relation for the polynomials∫ ωc

0

dωUn(ω)Um(ω) =

∫ ωc

0

dωJ(ω)Pn(ω)Pm(ω) = δn,m .

(4)

This orthogonality relation defines the family of poly-
nomials used for the transformation. Thus, the chosen
polynomials depend on the bath spectral density J(ω).
Another useful property of these polynomials is that

they obey a recurrence relation

Pn(ω) = (ω −An−1)Pn−1(ω) +Bn−1Pn−2(ω) , (5)

where An is related to the first moment of Pn and Bn

to the norms of Pn and Pn−1 [23]. This recurrence rela-
tion can be used to construct the polynomials with the
conditions that P0(ω) = 1 and P−1(ω) = 0.
If we apply this unitary transformation to the interac-

tion Hamiltonian

Ĥint =
∑
n

Â

∫ ωc

0

dωJ(ω)Pn(ω)(b̂n + b̂†n)

= Â(b̂0 + b̂†0) , (6)

we notice that the system only couples to the first mode
of the transformed bath.

The same transformation applied to the bath Hamilto-
nian yields to the following nearest neighbours hopping
Hamiltonian where ωn is the energy of the chain modes
n and tn is the coupling between mode n and n+ 1

ĤB =
∑
n

ωnb̂
†
nb̂n + tn(b̂

†
nb̂n+1 + b̂†n+1b̂n) . (7)

From the new bath and interaction Hamiltonians of
Eqs. (6) and (7) we can see that the unitary transfor-
mation Un(ω) transforms the bosonic environment com-
posed of a continuum of independent modes — which is
called the star environment — into a semi-infinite chain
of interacting modes. Figure 1 shows such a mapping
in the case of two environments. Initially the system
was coupled to all the normal bath modes, and after this
transformation it is only coupled to the first chain mode
n = 0. An excitation injected into this mode, i.e. the
system dissipating energy into the environment, can then
travel along the chain as a wavefront [28].
For practical purposes, the chain is truncated to contain
only Nm modes. The only constraint is that this number
should be large enough so that the wavefront generated
by the interaction with the system does not reflect back
to the beginning of the chain. Retaining only a finite
number of modes in the chain representation also cor-
responds to considering a finite set of normal modes in
the original bath. Truncating the chain can thus be seen
as an optimal sampling procedure where the bath modes
are not sampled arbitrarily [29].
It has recently been shown that the procedure can be

extended to describe finite temperature baths by re-
placing the finite temperature bath by a fictitious zero
temperature one with a temperature-dependent coupling
to the system and a spectrum allowing negative ener-
gies [10, 30, 31]. This ‘trick’ enables the use of MPS to
describe the quantum states of systems coupled to finite
temperature Gaussian baths and is the cornerstone of the
T-TEDOPA method.
We carry out simulations using mainly a one-site imple-
mentation of the Time-Dependent Variational Principle
(1TDVP) [32, 33]. This implementation of the TDVP
has the advantages of conserving the unitarity of the
evolution, the total energy, and has a better scaling of
its computational cost with respect to the local Hilbert
space dimension of the bath modes than its multi-site al-
ternative. However, it requires the MPS to be embedded
in a manifold of fixed bond dimension D. To perform
TDVP simulations, we express the Hamiltonian describ-
ing the system, its environment(s) and their interaction
as a MPO.

III. TWO ENVIRONMENTS: MODE
ARRANGEMENTS

In several cases the quantum system of interest is in-
teracting with two baths. A first instance comes from
the study of thermodynamic properties and dynamics of
quantum systems. For example, this occurs when study-
ing heat flows when a quantum system is between a cold
bath and a hot bath or the system thermalization be-
haviour [34, 35]. This category of situations are impor-
tant in the context of quantum thermal machines. An-
other example comes when describing propagating and
counter-propagating modes in 1D for spatially extended
systems [26]. More generally, the two bosonic baths could
be of different nature, for example one representing a vi-
brational environment and the other an electromagnetic
environment [16, 36]. There, the two environments could
play a different role, and their effects can simply add up,
alternatively, new features that don’t result from such
simple addition can emerge (such behaviour is called non-
additive) [37], which has been observed in several studies
of ultrafast molecular photophysics [14, 15]. In any case,
the problem of a quantum system interacting with two
bosonic environments is more than just a case study and
has physical relevance.
When the two environments have similar characteristic

timescales, energy dissipation from the system results in
the generation of environmental excitations that are then
propagating in their respective chains in a dynamically
correlated way [38]. It thus appears ‘natural’ to define a
‘correlation length’ ξ between these excitations, namely
the number of MPS’s sites in between them. The hy-
pothesis that directly follows is that the degree of entan-
glement (described by the bond dimension) grows with
this correlation length. Though not formulated in this
way, this hypothesis forms a main conclusion of the work
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FIG. 1. Schematic drawing of the unitary transformation U
– the chain mapping – changing two baths of independent
bosonic modes into two chains with nearest neighbour inter-
actions. The correlation length ξ(t) measures the distance
in between two dynamically correlated environmental excita-
tions.

previously performed on mode reordering in the context
of fermionic baths [22]. Indeed, several promising nu-
merical techniques for simulating open system dynamics
with MPS or MPO techniques have been developed to
manage, or remove, these numerically costly correlations
through the addition of dissipation or dephasing to the
environment [11, 39].

Hence, in this section we introduce three different or-
derings of bath modes (depicted in Fig. 2) that display
three different behaviours for the correlation length ξ,
and we compare the minimum bond dimension they re-
quire in order to reach convergence in 1TDVP simula-
tions.

A. Left-Right arrangement

Usually, the MPS and MPO representation of the joint
{System + Environments} state and Hamiltonian follows
what we call a ‘Left-Right’ ordering where the system
is placed in between the two chains. This arrangement
is ‘intuitive’ because it reproduces the structure of the
Hamiltonian and, thus, often used when describing a
quantum system interacting with two independent baths
[20, 34]. However, this ordering of the environmental
modes might lead to a non-optimal maximal bond di-
mension. Indeed, the initial environmental excitations
created by the environment propagate towards the end
of their respective chains but are dynamically correlated.
Hence, as time passes, these excitations that are highly
correlated move further apart thus a priori requiring a
higher bond dimension for the MPS as the correlation
length grows linearly with time ξ ∝ t. Figure 1 shows a
representation of this correlation length. Notice that the

FIG. 2. Diagram of the different mode arrangements in the
MPS for a system interacting with two bosonic baths. The
dotted lines represent the long-range couplings between the
system and chain modes. (a) ‘Left-Right’ arrangement of the
chain-mapped environment. Chain modes are symmetrically
placed on both sides of the system. The correlation length
between the excitations of the two chains grows linearly in
time. (b) ‘Successive’ arrangement of the chain-mapped en-
vironment. One chain connects directly to the system and
the second one is appended to the first one. The correlation
length between the excitations of the two chains is a constant
of the order of the length of the chain. (c) ‘Interleaved’ ar-
rangement of the chain-mapped environment. Chain modes
are alternating and thus coupling to their next nearest neigh-
bours. The correlation length is constant of the order of 1.

Left-Right MPS is ‘isomorphic’ to a TTN state with two
branches: one for each environment.

B. Successive arrangement

An alternative ordering of the chain modes corresponds
to placing the system at one end of a chain and the other
chain at the other end (i.e. concatenate the two chains),
as shown in Fig. 2 (b). We coin this ordering of the bath
modes ‘Successive’. This might seem counter-intuitive
as the initial bath excitations thus immediately induce a
correlation over a chain-long region. However, the cor-
relation length stays approximately constant ξ ≈ Nm as
the excitations propagate along the chain.

C. Interleaved arrangement

To reduce the bond dimension a solution would be to
bring closer the modes that are highly correlated with
one another. In the Successive arrangement case, com-
pared to the Left-Right one, this is done by having a fixed
distance of ξ ≈ Nm between the correlated excitations.
An improvement could be achieved by interleaving the
two chains together into a single one. This is done by
alternating the mode of one chain with the correspond-
ing mode of the other one, as shown in Fig. 2 (c). Thus,
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correlated excitations are now separated by a fixed dis-
tance of ξ ≈ 1 thus diminishing the correlation length.
This type of mode ordering has already been applied to
fermionic problems, namely Anderson impurity model,
where one bath describes empty orbitals and the other
one filled orbitals.

D. Comparison

To compare these three different mode arrangements,
we are first going to apply them to a well known and stud-
ied OQS model, the Independent Boson Model (IBM),
and later on to the Spin Boson Model (SBM). The Spin
Boson Model is a paradigmatic model of OQS where a
single two-level system (TLS) interacts linearly with a
bosonic environment

Ĥ =

(
ϵ

2
σ̂z +

∆

2
σ̂x

)
⊗ 1̂E + 1̂S ⊗

∫ +∞

0

ωâ†ωâωdω

+
σ̂x
2

⊗
∫ +∞

0

(gωâω + h.c.) dω , (8)

where σ̂i are the Pauli matrices, â†ω (âω) is a bosonic cre-
ation (annihilation) operator for the mode of frequency

ω, 1̂S (1̂E) is the identity operator on the Hilbert space of
the system (environment), ϵ is the TLS energy gap and
∆ its tunnelling term, and gω is the coupling strength

between the TLS and the mode of frequency ω. When
the energy gap is zero (ϵ = 0) the SBM reduces to the
so-called Independent Boson Model where the system
and interaction Hamiltonians commute. Contrary to the
SBM, the IBM is analytically solvable. In the IBM, be-

cause
[
ĤS , Ĥint

]
= 0, the system’s populations are in-

variant. The system only experiences pure dephasing of
its initial coherences and is not subjected to decay.

1. Independent Boson Model

We first show that all arrangements are able to ac-
curately describe system’s dynamics at zero and finite
temperature by considering the IBM. The Hamiltonian
we consider has two bosonic baths

Ĥ =
∆

2
σ̂x +

2∑
i=1

∫
R
ωkâ

i†
k â

i
kdk +

σ̂x
2

2∑
i=1

∫
R

(
gkâ

i
k + h.c.

)
dk ,

(9)

where âi†k creates an excitation in bath i with energy ωk,
and gk is the coupling strength between bath mode k
and the system for both baths. Because the coupling
constants gk are the same for both baths, this model
could also be written as a single bath IBM with a coupling
twice as strong. The expectation value ⟨σz⟩ is given by [1,
2]

⟨σz⟩(t) = cos(∆t)Re

[
ρ↑↓(0) exp

(
−
∫ ∞

0

J(ω)

ω2
(1− cos(ωt)) coth

(
βω

2

))]
, (10)

where ρ↑↓(0) is the initial coherence of the system,

J(ω)
def.
=

∑
k |gk|2δ(ω − ωk) = 2αωH(ωc − ω) is cho-

sen to be an Ohmic SD and β = (kBT )
−1 is the bath

inverse temperature. Figures 3 (a) and 3 (b) show that
the Left-Right, Successive and Interleaved arrangements
all recover the analytical expression for the smallest non-
trivial bond dimension D = 2 for widely different values
for ∆ and α. This small bond dimension is expected as
the analytical solution of state of the system (for the ini-
tial state given below) is known to be an entangled state
between the system and a displaced environment

|ψ(t)⟩ =e−iθ(t)

√
2

(
|↑x⟩ ⊗ D̂({αk(t)}) |{0}k⟩

− |↓x⟩ ⊗ D̂({−αk(t)}) |{0}k⟩
)

(11)

where θ(t) and αk(t) depend solely on the SD J(ω) and

the energies of bath modes ωk and D̂({αk}) is a multi-
mode displacement operator. Given that the environ-
ment state is simply a displaced state, manifesting no

entanglement of its own, the information about the joint
state can be stored with a single bit of information, hence
the value of the bond dimension D = 2. Similarly,
Fig. 3 (c) shows that the analytical behaviour is also
recovered at finite temperature for the first non-trivial
bond dimension. The initial joint state is a product state{

|↓z⟩ ⊗ |{0}k⟩ if β = ∞
|↓z⟩ ⟨↓z| ⊗ exp

(
−βĤB

)
/Z if β ̸= ∞ , (12)

where |↓z⟩ is the eigenstate of σ̂z associated with the
eigenvalue −1, and Z is the bath partition function.

2. Correlated Environment

Now that we have established that our three different
arrangements are able to accurately describe OQS dy-
namics, we are going to study the convergence behaviour
of these different orderings with a non-trivial model: a
system interacting with propagating modes. We consider
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FIG. 3. Dynamics of the ⟨σz⟩ for the Interleaved, Successive and Left-Right chain arrangements for several maximal bond
dimensions D for the Independent Boson Model. (a) The model parameters are ∆ = 0.8ωc, β = ∞, α = 0.2. (b) The model
parameters are ∆ = 0.2ωc, β = ∞, α = 0.1. (c) The model parameters are ∆ = 0.4ωc, ωcβ = 10, α = 0.1. The three different
arrangements are able to recover the analytical results at zero and finite temperature for the first non trivial bond dimension
D = 2.

a 1D system composed of two sites labelled by γ placed in
space at the position rγ . These two sites are interacting
with a common bosonic bath of plane waves labelled by
the wave-vector k ∈ R. The corresponding Hamiltonian
is

Ĥ =
∑
γ

Eγ f̂
†
γ f̂γ + ω0

(
f̂γ f̂

†
γ+1 + h.c.

)
+

∫
R
ωkâ

†
kâkdk

+
∑
γ

f̂†γ f̂γ

∫
R

(
gke

ikrγ âk + h.c.
)
dk , (13)

where f̂†γ creates an excitation on site γ, â†k creates a
plane wave of energy ωk = |k|c with c the phonon speed
(and ℏ = 1), and gke

ikrγ is a coupling strength between
bath mode k and the site γ. In that case, the bosonic
environment is mapped to two chains, one for the prop-
agating bath modes and the other one for the counter-
propagating modes, with long-ranged couplings with the
system [26]. We comment on the fact that this is a par-
ticular instance of a system coupled to two bosonic baths
(they happen to be described by the same parameters up
to complex conjugation). We consider this specific type
of environment because it is general and can be easily
extended to the case of two bosonic baths with differ-
ent parameters. Furthermore, in that case, the dynamics
of the two environments are highly correlated. The re-
sults shown hereafter are for degenerate sites Eγ = 0 at
positions kcr1 = 0 and kcr2 = 5 for different values of
coupling strengths to the bath α (the SD is again taken
to be Ohmic) and coherent coupling ω0. Initially the
system state is localised on the first site{

|r1⟩ ⊗ |{0}k⟩ if β = ∞
|r1⟩ ⟨r1| ⊗ exp

(
−βĤB

)
/Z if β ̸= ∞ , (14)

where |r1⟩ is the state corresponding to site 1 being oc-

cupied, i.e. ⟨r1| f̂†γ f̂γ |r1⟩ = δγ,1. Figure 4 shows the
population of the second site at zero temperature for a

FIG. 4. Population of the second site in the correlated envi-
ronment model. Int., Succ. and L.-R. respectively stand for
an Interleaved, a Successive, and a Left-Right chain arrange-
ment. All the arrangements are converged for D = 10. Gen-
erally the Left-Right arrangement converges for higher bond
dimensions than the Interleaved and Successive arrangements
that have a similar convergence behaviour. The model pa-
rameters are Eγ = 0, α = 0.2, ω0 = 0.4ωc, β = ∞.

strong system-bath coupling α = 0.2 and a strong tun-
nelling energy ω0 = 0.4ωc, obtained with the three ar-
rangements for different bond dimensions. The different
mode arrangements are all converged forD = 10 but only
Interleaved one is represented at this bond dimension for
readability. We can see that Left-Right is generally per-
forming worse than the Successive and Interleaved ar-
rangements. For non-converged values ofD, this arrange-
ment exhibits dynamics that are further away from the
converged one than the Successive and Interleaved ar-
rangements. These two arrangements look similar but
interleaved seems to catch the coherent oscillations bet-
ter for D = 6. In Appendix A we show additional con-
vergence comparisons across a wider range of parame-
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ters including finite temperature. From these examples,
we can rule out the explanation in terms of correlation
length because the Interleaved and Successive arrange-
ments have very similar convergence properties despite
having an order of magnitude difference in their correla-
tion lengths. Nevertheless, these two orderings are still
converging faster than the usual Left-Right one. This
result might be surprising as these arrangements don’t
reproduce the structure of the underlying Hamiltonian.
This leads us to consider another hypothesis related to
the connectivity of the system-environment couplings. In
the Left-Right case the system is connected twice to the
environment, doubling – so to speak – its surface of ex-
change with it, whereas the Successive and Interleaved
ones are coupled only once to a composite environment.
A second piece of evidence that the correlation length is
not a valid explanation for the efficiency of the compu-
tation is given by a fourth mode arrangement which has
a constant correlation length and two points of connec-
tion – ‘interfaces’ – between the system and the environ-
ment. Keeping a Left-Right arrangement of the mode
but taking one of the chains in the reverse order (see
Fig. 5 (a)) gives a situation where the correlation length
is fixed (and similar to the Successive arrangement) as
the excitations are now propagating in the same direc-
tion. Hence, this new Reverse Left-Right arrangement
has the same topology as the Left-Right ordering but a
different correlation length. Figure 5 (b) shows the sec-
ond site population for the same choice of parameters as
in Fig. 4. The two versions of the Left-Right arrangement
have a similar convergence behaviour despite having rad-
ically different correlation lengths.
Hence, we can rule out the hypothesis that the important
metric for the MPS bond dimension is the correlation
length between excitations in both environments.

Now that the hypothesis of the connection between the
correlation length and the bond dimension has been re-
futed, it is important to notice that the intuitive relation
between the dynamics of correlated excitations and the
growth of bond dimension – often invoked to justify the
feasibility of a given TNS representation – is hand-wavy.
As convincing as it may sound initially, there is no firm
ground on which this assertion is set. Indeed, one could
argue that dynamically correlated excitations carry very
low entanglement in the MPS as the only information
they share is their distance from the system which is up-
dated by the action of the time evolution operator.

IV. THREE ENVIRONMENTS:
CONNECTIVITY

To test the hypothesis of the importance of connectiv-
ity on the growth of bond dimensions, we study a spin
interacting with three identical bosonic baths. We name
these baths ‘up’, ‘left’ and ‘right’. The Hamiltonian of

FIG. 5. (a) ‘Reverse Left-Right’ arrangement of the chain-
mapped environment. Chains modes are symmetrically
placed on both side of the system but on one chain they are
in the reverse order. The correlation length between the ex-
citations of the two chains remains constant and is the same
as in the ‘Successive’ ordering. (b) Comparison of the Left-
Right and Reverse Left-Right ordering of chains modes for the
same parameters as in Fig. 4 (Eγ = 0, α = 0.2, ω0 = 0.4ωc,
β = ∞). Even though the correlation length ξ of correlated
environmental excitations are different by an order of magni-
tude, the convergence behaviour of the dynamics with respect
to D is the same.

this three baths Spin Boson Model (S3BM) is

Ĥ =
ϵ

2
σ̂z +

∆

2
σ̂x +

3∑
i=1

σ̂x

∫ ∞

0

dω
√
J(ω)(âiω + â†ω

i) ,

(15)

where σ̂j are Pauli matrices, J(ω) is the bath spectral
density and â†ω

i creates a bosonic excitation of energy
ω in the ith bath. We keep an Ohmic spectral density
with a hard cut-off J(ω) = 2αωcH(ωc − ω). Again, this
simple model can be mapped to a SBM with a single en-
vironment, and is used here as a first investigation of our
hypothesis. Three different configurations are looked at
to test the hypothesis of the role of connectivity in the
growth of maximal bond dimension: (1) the tree config-
uration where the system is connected directly to three
baths; (2) the left-right configuration where the system
is connected to the left and (right + up) chains; and
(3) the successive configuration where the system is con-
nected to a single chain (left + right + up). Figure 6
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FIG. 6. Different orderings of a system interacting with three bosonic baths presenting different System-Environments connec-
tivity: (a) Tree topology, (b) Left-(Successive Right + Up) arrangement, (c) Left-(Interleaved Right + Up) arrangement, and
(d) Successive Left + Right + Up arrangement.

shows these different configurations. In order to study
in real time the evolution of the required bond dimen-
sion necessary for the convergence of the MPS state, we
time-evolve the state using a 2-site variant of the TDVP
method (2TDVP) [32] and the adaptive variant of the
1-site TDVP (DTDVP) [34]. These two variants are able
to update in real time the bond dimensions of the MPS
state. Figure 7 (a) shows the evolution of the bond di-
mension of the MPS with a Left-(Successive Right+Up)
arrangement during a time evolution performed with
2TDVP. The chains all have Nm = 30 modes. We can see
that the bond dimension grows quickly and reaches the
cut-off bond dimension of the simulation (DMax = 50) at
ωct ≈ 6. The other noticeable element is that the third
chain which was appended to the right chain was not
updated by 2TDVP. This is consistent with the known
fact that 2TDVP has difficulties taking into account long-
ranged interaction. Hence, this case has also been studied
with an Interleaved arrangement of the (right + up) chain
to make it tractable with 2TDVP as shown in Fig. 7 (b).
The main conclusion on the growth of the bond dimen-
sions is unchanged. These heat maps directly show that
the growth of the bond dimensions is localised around the
system. The DTDVP algorithm which enables a one-site
update of the MPS and dynamically evolving bond di-
mensions was also tried on this arrangement but always
got stuck in the initial manifold.

However, the DTDVP method was used to study
the one chain (Left + Right + Up) case shown in
Fig. 7 (c). This chain was in a Successive arrangement
and the long range coupling was handled correctly by
the method. Here, the bond dimensions grow at a
slower pace and reach maximal allowed bond dimension
DMax = 50 at ωct ≈ 25, which corresponds to a fourfold
improvement on the case Left-(Right+Up) geometry
that has a connectivity of 2. The growth of the bond
dimension with this arrangement is not localised around
the system per se but at the beginning of each chain,
i.e. at the point of contact between the system and the
environments.

Unfortunately, the 2TDVP and DTDVP algorithms
used in this work are not straightforward to apply to
TTN. In that case we went back to the 1TDVP method
and chose the relative error of the expectation value ⟨σz⟩
with respect to the D = 50 results to be our metric for
the growth of the bond dimension as we are not inter-
ested in the dynamics of this observable in itself. Fig-
ure 8 shows the relative error for D ∈ {10, 20, 30} for
a selection of parameters spanning a variety of dynam-
ics. In most cases a residual error still persists in the
D = 30 case whose value is on the order of a percent.
Most importantly, these errors consistently manifest at
early times ωct ≲ 5. This observation points in the same
direction as the results obtained for the Left-Right and
Successive arrangements.

With these examples we can see that connectivity
seems to play an important role in limiting the growth of
the bond dimensions needed to accurately describe the
state in time. An angle of inquiry to investigate this
importance of the connectivity is reasoning in terms of
entanglement entropy. The entanglement entropy gives
a lower bound on the required bond dimension S =
−tr [ρ̂ ln (ρ̂)] ≤ ln(D). When looking at a bi-partition of a
quantum state, the maximal entanglement entropy SMax

is set by the dimensionality d of the ‘smallest’ Hilbert
space of the two reduced states on each side of the par-
tition SMax = ln (d). Hence, the larger SMax, the more
room there is for the bond dimension to grow. Let us call
dS the local Hilbert space dimension of the system, and
dE the local Hilbert space dimension of each of the Nm

environmental modes of each chain. The dimensionality
d to consider for a bond between the system and is right-
ward environmental modes is (i) d = (dE)

Nm for a tree,
(ii) d = dS(dE)

Nm for a Left - (Right + Up) ordering,
(iii) d = dS for a fully successive interleaved ordering.
Thus, when there is only a single ‘interface’ between the
system and its environment(s) there is less room for the
bond dimension to grow. However, this argument should
not be considered to be more than just ‘food for thought’
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FIG. 7. Evolution for a S3BM at β = ∞ of the bond dimensions of the MPS with: (a) a Left - S - (Successive Right + Up)
configuration obtained with 2TDVP. The cut-off value for the bond dimensions DMax = 50 is quickly reached and 2TDVP is
not able to handle the long range coupling induced by appending the right and up chains. (b) a Left - S - (Interleaved Right
+ Up) configuration obtained with 2TDVP. The cut-off value for the bond dimensions DMax = 50 is quickly reached. (c) a S -
(Successive Left + Right + Up) configuration obtained with DTDVP. The bond dimensions evolve more slowly.

FIG. 8. Relative error between the dynamics of ⟨σz⟩ for different values of D and D = 50 obtained with 1TDVP for different
simulation parameters (all in the strong coupling regime) with a TTN state. In every case small errors of the order of a percent
are always present for D = 30 at early time. The simulation parameters are (a) α = 0.1, ϵ = 0.2ωc and ∆ = 0.2ωc, (b) α = 0.5,
ϵ = 0.2ωc and ∆ = 0.2ωc, and (c) α = 0.5, ϵ = 0.2ωc and ∆ = 0.5ωc.

as is does not explain the core of the observations pre-
sented in Figs. 7&8, namely the dynamics of the growth
of the bond dimension.

V. DISCUSSION

In this paper, we have shown that, contrary to wide-
spread beliefs, the TNS geometry that reflects the under-
lying structure of the Hamiltonian is not the most effi-
cient one to perform OQS simulations. When a system is
interacting with several environments, different arrange-
ments of the environmental modes – and crucially, not
only the ‘intuitive’ TTN structures – can lead to well-
converged results. Moreover, counter-intuitive but sim-
ple to implement arrangements (like the Successive one
where environments are concatenated) require a lower
bond dimension to reach convergence. This first result
has a consequence of practical importance as it implies
that joint system-environments state can always be writ-
ten as MPS which are easier to implement than TTN.
The argument often given against arrangements where
independent environments are not coupled directly to the

system, namely that the growth of bond dimension in the
multi-environments MPS states is related to the correla-
tion length ξ(t) of dynamically correlated environmental
excitations, has been disproved for bosonic environments.

Showing that the usual Left-Right ordering of bath
modes is less efficient than the less ‘natural’ Successive
and Interleaved arrangements leads us to consider an
alternative hypothesis. For bosonic environments, the
number of bonds connecting the system to the environ-
ments (‘interfaces’) is a quantity associated with the
growth of the bond dimension. The lower the number of
interfaces, the lower the required bond dimension. For
simple models that can be mapped easily to single envi-
ronment problems, our results agree with this hypothesis.

These results have a compounding impact on the effi-
ciency of TN simulations as the number of elements in
the system’s tensor scales proportionally to DN with N
the number of interfaces between the system and its en-
vironments. For instance, in the S3BM the scaling is
proportional to D3 for TTN states, D2 for Left-Right
MPS, and only D for Successive and Interleaved MPS.
The results presented here thus imply that simple TTN
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states can always be recast as Successive-ordered MPS,
thus a priori removing the need for structural renormal-
isation of environmental couplings. These results add to
the diverse body of knowledge around the importance of
selecting the appropriate geometry when using TNS and
highlight that the appropriate geometries are not always
the ones reproducing the structure of the interactions in-
side the Hamiltonian.
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Appendix A: Additional convergence comparison for L.-R., Succ. and Int. arrangements

Figure 9 (a) shows the population of the second site at zero temperature for a strong system-bath coupling α = 0.1
and a weak tunnelling energy ω0 = 0.1ωc. The Left-Right arrangement converges at D = 5 whereas successive and
interleaved are already converged at D = 4. One can notice that for the first non-trivial bond dimension D = 2,
the Interleaved ordering is slightly better than the Successive one. Increasing the system-bath coupling and the
tunnelling energy requires a larger bond dimension to describe accurately the dynamics of the system, as shown
in Fig. 9 (b). The system-bath coupling has been doubled α = 0.2 and the tunnelling energy multiplied by four
ω0 = 0.4ωc compared to the previous case. The different mode arrangements are all converged for D = 10 but only
the Interleaved one is represented for readability. We can see that Left-Right is generally performing worse than the
Successive and Interleaved arrangements. For unconverged values of D, it exhibits dynamics that are further away
from the converged one than the Successive and Interleaved arrangements. These two arrangements look similar but
interleaved seems to catch the coherent oscillations better for D = 6. In order to require a higher bond dimension
for the state, we now consider a finite temperature ωcβ = 1 case. The couplings are the same as in Fig. 9 (a). We
do not show the converged results in Fig. 9 (c) (which are for D = 15) as we are only interested in the differences
between the different arrangements, and want to prevent the graph to be too cluttered. We can see in Fig. 9 (c) that
the Left-Right ordering is again less accurate than the other two for smaller bond dimensions. It exhibits a dynamic
similar to the other orderings only when reaching D = 10. The Interleaved arrangement performs better than the
Successive one for D = 5, but both become similar for larger values.
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FIG. 9. Population of the second site in the correlated environment model. Generally the Left-Right arrangement converges
for higher bond dimensions than the Interleaved and Successive arrangements that have a similar convergence behaviour. The
amount of correlations in the joint state is increasing throughout the three parameter regimes (a), (b) and (c). In the legends,
Int., Succ. and L.-R. respectively stand for an Interleaved, a Successive, and a Left-Right chain arrangement. The model
parameters are (a) Eγ = 0, α = 0.1, ω0 = 0.1ωc, β = ∞, (b) Eγ = 0, α = 0.2, ω0 = 0.4ωc, β = ∞, and (c) Eγ = 0, α = 0.1,
ω0 = 0.1ωc, β = 1.
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