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Problems in the field of open quantum systems often involve an environment that strongly influ-
ences the dynamics of excited states. Here we present a numerical method to model optical spectra
of non-Markovian open quantum systems. The method employs a process tensor framework to effi-
ciently compute multi-time correlations in a numerically exact way. To demonstrate the efficacy of
our method, we compare 2D electronic spectroscopy simulations produced through our method to
Markovian master equation simulations in three different system-bath coupling regimes.

I. INTRODUCTION

Two-dimensional electronic spectroscopy (2DES) is a
valuable tool for probing photophysical processes in light-
harvesting systems [1–11]. Generally, these systems do
not exist in isolation, and measured quantities are sig-
nificantly impacted by a vibrational environment. 2DES
has yielded key insights into the role of such environment-
mediated processes [5–9, 11]. However, extracting the
underlying mechanism remains challenging. Theoreti-
cally, realistic environments are often non-Markovian,
meaning that time-local (Markovian) equations of mo-
tion are not sufficient [12, 13]. Experimentally, the com-
plexity of measured signals can make it difficult to accu-
rately interpret observed spectral features. For example,
the as-yet-unclear origin of long-lived coherences in bio-
logical light absorbing pigments highlights the necessity
of accurate theoretical models to explain experimental
observations [6–9, 11, 14–16].

Here we present an efficient tensor network method to
simulate optical spectra of non-Markovian open quan-
tum systems. To demonstrate its capabilities, we intro-
duce a model describing the essential features of a broad
class of molecular chromophores. It consists of a three-
level electronic system coupled via a vibrational bath,
enabling the intramolecular transfer of energy between
system states. We first compare numerical results to
master equations in weak and strong (polaronic) system-
bath coupling regimes to test the validity of our method.
Then, we highlight key differences between the 2D spec-
tra obtained via these methods in an intermediate cou-
pling regime. Namely, we find that there are significant
differences in peak positions at high temperatures, re-
lated to the Lamb shift. At low temperatures, we fur-
thermore find that a master equation underestimates the
dephasing time of the optical response, as has been ob-
served in previous work [14].

Mathematically, a 2DES signal is expressed as a sum
of four-time correlation functions that encode all pos-
sible light-matter interactions. A common approach to
calculating multi-time correlation functions is to use the
quantum regression theorem, which is based on the Born-
Markov approximation [12]. In many realistic scenarios
however, a Markovian picture is not sufficient. Even if

it accurately represents the reduced dynamics of the sys-
tem, a Markovian description does not necessarily cap-
ture multi-time correlations correctly [17]. Some light-
harvesting complexes are furthermore known to oper-
ate in the intermediate coupling regime, where electronic
couplings within the system are comparable in strength
to system-bath interactions and a Markovian approxima-
tion is not justified. [18–20].
Simulating non-Markovian open quantum systems is

a challenging task. Nonetheless, numerous numerical
methods have been developed to achieve this [6, 13, 14,
16, 21–40]. Most relevant to this work, one group of such
methods uses a process tensor (PT) formalism to capture
the influence of the environment on the system. Impor-
tantly, the process tensor is cast into a matrix product op-
erator format (PT-MPO), such that only the physically
most relevant part of the Hilbert space is efficiently rep-
resented [21–30, 40]. Moreover, since PT-MPO methods
rely on constructing a reduced density matrix descrip-
tion of the system, they are particularly well-tailored to
calculating temporal correlations.
The remainder of this paper is organized as follows.

Section II introduces the model, Section III specifies the
multi-time correlation functions relevant to our results,
and Section IV provides an overview of the PT-MPO
computation method. The results are presented in Sec-
tions V and VI; Section V compares spectra obtained via
PT-MPO methods versus Markovian master equations
in weak and strong system-bath coupling regimes, while
Section VI further analyses the PT-MPO results in an
intermediate coupling regime.

II. THE MODEL

As illustrated in Fig. 1(a), our model consists of a
three-level system with excited states linearly coupled to
a bosonic bath, Ĥ = ĤS + ĤB + ĤI with:

ĤS = (ϵ+ λ)(|1⟩⟨1|+ |2⟩⟨2|) + Ω(|1⟩⟨2|+H.c.), (1)

ĤB =
∑
k

ωkb
†
kbk, (2)

ĤI = (|1⟩⟨1| − |2⟩⟨2|)
∑
k

(gkbk + g∗kb
†
k). (3)
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FIG. 1. (a) Sketch of our model, consisting of a three-level
system coupled to a bosonic bath. (b) Tensor network of four
time steps for calculating a two-time correlation function with
a PT-MPO.

Here, the three terms correspond to the system (ĤS),

bath (ĤB) and system-bath interaction (ĤI). The en-
ergy of the excited states (|1⟩ , |2⟩) is given by the bare
energy ϵ plus the reorganization energy of the bath λ
(defined below), and electronic coupling Ω. Physically,
|1⟩ and |2⟩ could describe two excited states of a chro-
mophore with ground state |0⟩. These excited states
could be intramolecular in nature, as in the S1, S2 states
found in many biological pigments, organic dye molecules
and nanoparticles [41–43], or the lowest single-particle
excitations of coupled chromophores, such as exciton-
ically coupled H-dimers, or charge-transfer complexes
[44, 45]. For clarity in later discussions, we imagine our
system to be an excitonic dimer so that the coupling
Ω can be thought of as creating electronic eigenstates
(i.e. excitons; |±⟩ = 1√

2
(|1⟩ ± |2⟩)) that are delocalized

across the internal chromophore monomers with ener-
gies E± = ϵ + λ ± Ω (Fig. 1(a)). Since chromophores
in biological systems often display photophysics (dynam-
ics) on a picosecond time scale, we set ϵ = 5 ps−1 and
Ω = 0.2 − 2 ps−1 [7]. The bath is described by vi-
brational modes with frequency ωk and creation (anni-

hilation) operators b†k (bk). The system-bath coupling
constants gk are characterized by the spectral density
J(ω) =

∑
k |gk|

2
δ(ω−ωk). We set J(ω) to be Ohmic, as

is common in the modeling and interpretation of molec-
ular spectroscopies [1, 2]:

J(ω) = 2αωe−
ω
ωc , (4)

where α is a dimensionless parameter for the system-
bath coupling strength and ωc = 3.04 ps−1 represents
the bath cut-off frequency. The reorganization energy
is then given by λ =

∫∞
0

dω 1
ωJ(ω) = 2αωc. We set the

initial state ρ0 to be a product state of the system ground
state |0⟩ and the thermal state of the environment at
temperature T .

III. 2D ELECTRONIC SPECTROSCOPY

2DES involves probing a quantum system with three
short laser pulses while systematically varying the time
delays between each pulse. For a comprehensive review
on 2DES, we refer to Refs. [2, 3]. Here, we will consider

the measured third-order optical response, which consists
of a series of four-time correlation functions. In order to
predict the spectra resulting from this model, we will
initially simulate laser pulses that induce transitions be-
tween the ground state and excited state |2⟩, correspond-
ing to the dipole operator V̂2 = |0⟩⟨2|+H.c.. We will as-
sume we are in the semi-impulsive limit, such that we can
neglect the temporal width of the laser pulses [1, 2, 46].
We will furthermore make the rotating-wave approxima-
tion and assume that the laser pulses applied at times
τi are time-ordered [1, 46]. Consequently, only the fol-
lowing four multi-time correlation functions contribute
to the 2D signal:

R1 = Tr
[
V̂2(τ4)V̂2(τ1)ρ0V̂2(τ2)V̂2(τ3)

]
R2 = Tr

[
V̂2(τ4)V̂2(τ2)ρ0V̂2(τ1)V̂2(τ3)

]
R3 = Tr

[
V̂2(τ4)V̂2(τ3)ρ0V̂2(τ1)V̂2(τ2)

]
R4 = Tr

[
V̂2(τ4)V̂2(τ3)V̂2(τ2)V̂2(τ1)ρ0

]
, (5)

which are commonly grouped together as rephasing
(R2, R3) and non-rephasing (R1, R4) pathways, accord-
ing to the experimental phase matching conditions [1–
3]. The real parts of these pathways in the frequency
domain sum up to give the total 2D spectrum; this
is a function of an excitation (ωexc) and detection fre-
quency (ωdetec) corresponding to Fourier transforms of
the first (τ2 − τ1) and third time delay (τ4 − τ3) between
pulses. Note that in this work, we will only consider
2D spectra for which the so-called waiting time τ3 − τ2
is zero. For the linear response, there is only a single
pathway: Tr

[
V̂2(τ2)V̂2(τ1)ρ0

]
, which is similarly Fourier

transformed with respect to τ2 − τ1 to obtain a linear
absorption spectrum as a function of frequency ω.

IV. SYSTEM RESPONSE FUNCTIONS AND
PT-MPOS

In order to calculate the multi-time correlation func-
tions in Eq. (5), we will employ the Time Evolving MPO
(TEMPO) method to acquire a PT-MPO that captures
any possible non-Markovian effects on the system dynam-
ics [22, 24, 40, 47–49]. The Python code for PT-TEMPO
is available in the open-source package OQuPy [50]. The
following sections will give further details on how multi-
time correlation functions are calculated in a PT frame-
work, and how a PT-MPO is constructed with the PT-
TEMPO method. For a more detailed description of the
tensor network methods used in this work, we refer the
reader to Refs. [40] (overview of the OQuPy package),
[48] (general TEMPO framework), [23, 24] (PT-TEMPO)
and [40, 49] (calculating multi-time correlations with PT-
MPOs).
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A. Calculating multi-time correlation functions

Let us consider time-ordered multi-time correlations of
a general form:

R =

〈
P∏

p=1

V̂p(τp)

〉
=

〈
P∏

p=1

V̂p(Mpδt)

〉
(6)

such that P operators V̂p are applied at times τp = Mpδt,
where δt denotes the time step. A formal approach to
calculating R is to consider the time evolution of the
total (i.e. system and bath) density matrix ρ0. First,
ρ0 is propagated up to M1 time steps according to the
formal solution of the von Neumann equation:

ρ(M1δt) = eLM1δtρ0, (7)

with the total Liouvillian L = −i
[
Ĥ, ·

]
. Then, after

application of the first operator V̂1, the resulting density
matrix is propagated for M2 −M1 time steps, and so on,
up to the application of the final operator V̂P . Thus, we
can write Eq. (6) in terms of the time propagators:

R = Tr

[
P∏

p=1

(
V̂ L,R
p

[
eLδt(Mp−Mp−1)

])
ρ0

]
, (8)

where M0 = 0. Here the superscript L,R signifies that
the super-operator V̂ can act to the left (V̂ L = V̂ ·) or to
the right (V̂ R = ·V̂ ) of the density matrix.

However, applying this approach directly would require
direct evolution of the full density matrix ρ0, which is not
practical. Instead, we calculate Eq. (8) by constructing
a tensor network in which the influence of the bath on
the system is encoded in a PT-MPO. The PT is a multi-
linear map from operations performed on a system, at
a sequence of time steps, to its final state. Crucially,
since the PT is completely independent of the system
Hamiltonian ĤS , it can be calculated before specifying
any system parameters, the initial system state ρS0 or the

operators V̂ in Eq. (8). To separate system and bath
propagation, we perform a second-order Suzuki-Trotter
splitting [51]:[

eLδt
]M

=
[
eLS

δt
2 eLEδteLS

δt
2

]M
+O

(
δt3
)
, (9)

such that LS = −i
[
ĤS , ·

]
and LE = −i

[
ĤB + ĤI , ·

]
.

Once the PT-MPO is constructed (see the next section),
multi-time correlation functions are calculated by com-
bining the PT-MPO with the operators V̂p at times Mpδt

and system propagators K = eLS
δt
2 .

Fig. 1(b) shows a tensor network diagram of a PT-
MPO for four time steps (red squares) and illustrates
how multi-time correlations are calculated. The tensor
network is expressed in Liouville space, such that den-
sity matrices are represented by vectors and superoper-
ators by matrices. Diagrammatically, the initial system

state
[
ρS0
]j

therefore corresponds to a tensor with a sin-
gle leg (purple circle), where the index j runs from 1 to
the squared dimension of the system Hilbert space. Sim-

ilarly, the dipole operators [V ]
j′

j (orange diamonds) and

system propagators [K]
j′

j (two per single time step, blue

ovals) have two legs. Thus, multi-time correlation func-
tions are computed by applying the system propagators
and dipole operators as a set of interventions at the rele-
vant time steps and subsequently tracing over the bonds
in the network to obtain R [40, 49, 52]. Since the final

dipole operator V̂P is applied at the end of the chain, we
only have to run the simulation once to calculate R over a
range of the final timesMP δt. When varying some earlier
time arguments Mpδt, e.g. over a range of i time steps,
the simulation is repeated i times, moving the position
of V̂p in the tensor network (Fig. 1(b)) with each repeti-
tion. For further details on the required computational
resources, see Appendix A and Ref. [40].

B. PT-MPO construction

The method described above is general, and there exist
multiple algorithms to construct the PT-MPO [21–30,
40]. In this work, we employ the PT-TEMPO method to
construct a PT-MPO, which we will summarize here [23,
24, 40, 50]. For readers already familiar with PT-MPOs,
this section can be skipped.
The general TEMPO framework expresses the (non-

Markovian) impact of the bath on the system in terms of
a discretized Feynman-Vernon influence functional [48,
53–55]. In PT-TEMPO, the parts of the TEMPO net-
work corresponding to the influence functional are con-
tracted into a PT-MPO that does not depend on the sys-
tem propagators. To illustrate how the tensor network is
constructed, let us consider the propagation of the sys-
tem density matrix ρS for M time steps, such that the
total propagation consists of M propagators over short

time steps δt:
[
eLδt

]M
. We start with the Suzuki-Trotter

splitting in Eq. (9). Then, resolutions of identity are
added between each system and bath propagator. By
tracing over the environment, we obtain a path sum over
system states composed of the discretized influence func-
tional and system propagators:

ρSjM (Mδt) =
∑

j0,...,jM−1

j′0,...,j
′
M−1

[
M−1∏
m=0

Km(jm+1, j
′
m)

×
(

m∏
k=0

Ik(j
′
m, j′m−k)

)
Km(j′m, jm)

]
ρSj0 . (10)

In this expression, the system propagators are given by
K(j, j′) =

[
exp

(
LS

δt
2

)]
j,j′

. Because each propagator

evolves ρSj by half a time step, we require two indices:
jm runs over each full step, while j′m connects the pairs
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of propagators within a step. The influence functions
Ik(j, j

′) capture the effect of the bath on the system, and
connect system states separated by k time steps. For the
exact form of Ik, see Ref. [48].
Fig. 2(a) illustrates how Eq. (10) can be constructed

as a tensor network. Per time step, we apply two sys-
tem propagators (blue ovals, each evolving by half a time

step), represented by the rank-2 tensors Kj′

j . The in-
fluence functions are incorporated as the following bath
tensors:

[bk]
α,j
α′,j′ = δjj′δ

α
α′Ik(α, j), (11)

which are drawn as red squares (labeled with index k) in
Fig. 2(a). At the left and top edges of the network, we
instead require tensors that lack the α′ or j′ leg. These
are obtained from Eq. (11) by respectively omitting the

δαα′ or δjj′ Kronecker deltas. To illustrate how Eq. (10)

maps to a tensor network, consider the propagation of ρS

for a single time step (M = 1):

ρSj1 =
∑
j0,j′0

K0(j1, j
′
0)I0(j

′
0, j

′
0)K0(j

′
0, j0) ρ

S
0 , (12)

which can be written as the tensor contraction[
ρS
]j1

=
∑

j0,j′0,α

[K0]
j1
α [b0]

α
j′0
[K0]

j′0
j0

[
ρS
]j0

, (13)

shown in Fig. 2(b).
The number of bath tensors—and thus the bath

memory—builds up with each time step, such that at
time mδt, m bath tensors are added to the tensor net-
work (Fig. 2(a)). We can introduce a maximal memory
time of the bath, set by the parameter ∆Kmax, which
ensures that the number of bath tensors added to the
network per time step stops increasing after ∆Kmax time
steps.

With PT-TEMPO, the bath tensors of the TEMPO
network shown in Fig. 2(c) are contracted into a PT-
MPO using a sequence of standard tensor contraction
and compression techniques [21]. Through the truncation
of singular values, the compression steps ensure that the
tensor bond dimensions (and thus their size) are kept
to a minimum. The truncation threshold is determined
by the convergence parameter ϵrel, which sets the upper
bound to the singular values to be discarded, relative
to the largest singular value in the tensor. For further
information on the convergence parameters used in this
work, see Appendix B.

V. MASTER EQUATION COMPARISON

To test the validity of our method, we compare spectra
obtained with PT-TEMPO against a Markovian weak-
coupling master equation (WCME) and polaron master
equation (PME). To do this, we first present the results
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FIG. 2. (a) The TEMPO tensor network. The bath tensors bk
are represented by red squares, labeled with index k. (b) The
network for a single time step. (c) The bath tensors of the
TEMPO network are horizontally contracted into a process
tensor.

in two different regimes: a weak system-bath coupling
regime (α = 0.005) where the WCME is expected to
give accurate results, and a polaron regime with strong
system-bath coupling (α = 0.4) and reduced electronic
coupling (Ω = 0.2 ps−1), suitable for the PME. As with
PT-TEMPO, the master equation spectra were simulated
with OQuPy [50], which has a Lindblad master equation
solver implemented that works in tandem with the multi-
time correlations module.

A. Weak-coupling master equation

Starting with the WCME, we obtain the following
master equation in Lindblad form using standard tech-
niques [12]:

d

dt
ρS = −i

[
Ĥ ′

S , ρS

]
+

2∑
n

γn

(
L̂nρSL̂

†
n − 1

2

{
L̂†
nL̂n, ρS

})
, (14)

where L̂1 = |−⟩⟨+| and L̂2 = L̂†
1. The rates γn are given

by γ1 = 2πJ(2Ω)(N(2Ω) + 1) and γ2 = 2πJ(2Ω)N(2Ω),
where N(ω) is the Bose-Einstein occupation number and
J(ω) is the spectral density in Eq. (4). The electronic
energies are furthermore modified by a Lamb shift so
that

Ĥ ′
S = (E− + S(−2Ω)) |−⟩⟨−|+ (E+ + S(2Ω)) |+⟩⟨+| ,

(15)
in the eigenbasis |±⟩ with E± = ϵ+ λ± Ω, and

S(ν) = P
∫ ∞

−∞

J(ω)(N(ω) + 1) + J(−ω)N(−ω)

ν − ω
. (16)
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FIG. 3. Comparison of linear absorption and 2D spectra in (a-d) a weak system-bath coupling regime, (e-h) a strong-coupling
(polaronic) regime and (i-l) an intermediate-coupling regime, calculated using PT-TEMPO (blue solid in linear spectra), a
weak-coupling master equation (WCME; orange dashed in in linear spectra) or a polaron master equation (PME; green dot-

dashed in linear spectra). All spectra were calculated at T = 13 ps−1 (100 K), using dipole operator V̂2. For (j) and (k), the
vertical purple dashed lines mark the diagonal peak maxima.

Here P denotes the Cauchy principal value and we define
J(ω) = 0 for ω < 0.
We note that S(+2Ω) corresponds to a positive shift to

E+, while S(−2Ω) corresponds to a negative shift to E−.
The total energy splitting between the excited eigenstates
therefore becomes:

δE = 2Ω + S(+2Ω)− S(−2Ω) (17)

= 2Ω

(
1 + 2

∫ ∞

0

dω
J(ω) coth (ω/(2kBT ))

(2Ω)
2 − ω2

)
. (18)

As illustrated in Figs. 3(a-c), the PT-TEMPO simu-
lations of linear absorption and 2D spectra agree well
with the WCME in the weak-coupling regime. In the 2D
spectra, the two peaks along the diagonal of the spectra
reflect the transition frequencies of the model, which co-
incide with the peak frequencies in the linear absorption

spectrum. For α = 0.005, the Lamb shift, Eq. (16), is
small compared to ϵ and Ω, such that the splitting be-
tween peaks is close to the bare splitting 2Ω. The 2D
spectra furthermore contain two cross-peaks that corre-
late the transition frequencies and are a signature of the
coupling between the electronic excited states.
For some problems with weakly-structured environ-

ments, i.e. those with non-constant J(ω), one can im-
prove on the Lindblad master equation by restoring non-
secular terms from Redfield theory [56, 57]. For our par-
ticular choice of dipole operators and initial conditions,
the non-secular terms in the master equation do not af-
fect the outcome. To show this, consider the individual
components of the reduced system density matrix

ρS =

 ρ00 ρ0− ρ0+
ρ−0 ρ−− ρ−+

ρ+0 ρ+− ρ++

 , (19)
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expressed in terms of system eigenstates. The non-
secular terms in the master equation would have the
form:

2∑
n

γn

(
L̂nρSL̂n + L̂†

nρSL̂
†
n

)
, (20)

where L̂1 = |−⟩⟨+|, L̂2 = L̂†
1 and γn are the transition

rates stated in the main text. Note here that L̂nL̂n =
L̂†
nL̂

†
n = 0, and terms involving these are therefore not

included in Eq. (20). For the individual components of
ρS in Eq. (19), we find that only ρ−+ and ρ+− would be
modified by these non-secular terms. The dipole operator
V̂2 = |0⟩⟨2|+H.c., on the other hand, only creates ρ0± and
ρ±0 components when applied to the initial state |0⟩⟨0|.
Thus, for the absorption spectra presented in this work,
there would be no difference between secular and non-
secular master equations. For the 2D spectra, ρ+− and
ρ−+ components would be created after application of the
second dipole operator at time τ2, Eq. (5). Since in this
work we are only considering multi-time correlations for
which τ2 = τ3 (the third operator is applied immediately
after the second), there would be no difference for the 2D
spectra presented here either.

B. Polaron master equation

To derive a master equation for our three-level system,
Eq. (1), in the strong-coupling regime, we first apply a
polaron transformation to the Hamiltonian [58–61]:

H̃ = eGĤe−G; G =
∑
k

gk
ωk

(
b†k − bk

)(
|1⟩⟨1| − |2⟩⟨2|

)
,

(21)
to obtain:

H̃S = ϵ(|1⟩⟨1|+ |2⟩⟨2|) + Ω′(|1⟩⟨2|+H.c.)

H̃B = ĤB

H̃I = ΩDc|1⟩⟨2|+H.c.. (22)

In the polaron frame, the interaction Hamiltonian ĤI

contains the coupling operator Dc, which depends on the
displacement operator

D = exp

{∑
k

2gk
ωk

(b†k − bk)

}
, (23)

such that Dc is given by:

Dc = D − ⟨D⟩. (24)

Here, the expectation value of D

⟨D⟩ = exp

{
−2
∑
k

g2k
ω2
k

coth
(βωk

2

)}
(25)

has been subtracted from D and is instead added to ĤS ,
which now contains the renormalized electronic coupling:

Ω′ = Ω⟨D⟩. (26)

Note here that for our choice of an Ohmic spectral den-
sity in Eq. (4), ⟨D⟩ (and therefore Ω′) are infinitesimally
small. Following the same standard techniques as for the
WCME, we can now perturbatively expand H̃I to find
the polaron master equation:

d

dt
ρ̃S = −i

[
H̃ ′

S , ρ̃S

]
+

3∑
n

Λn

(
L̂nρ̃SL̂

†
n − 1

2

{
L̂†
nL̂n, ρ̃S

})
, (27)

with Lindblad operators L̂1 = |−⟩⟨+| = L̂†
2

and L̂3 = |−⟩⟨−| − |+⟩⟨+|. The transition
rates Λn depend on the four bath correlation
functions ⟨Dc(t)Dc(0)⟩, ⟨D†

c(t)D†
c(0)⟩, ⟨D†

c(t)Dc(0)⟩ and
⟨Dc(t)D†

c(0)⟩. For example:

⟨Dc(t)D†
c(0)⟩ = ⟨eiP̂ (t)e−iP̂ (0)⟩ − ⟨D⟩2 , (28)

where P̂ (t) = −i
∑

k
2gk
ωk

(
b†k(t)− bk(t)

)
. To solve

Eq. (28), we can add the exponents together using the
Baker-Campbell-Hausdorff formula:

⟨Dc(t)D†
c(0)⟩ =

〈
eiP̂ (t)−iP̂ (0)+ 1

2 [iP̂ (t),−iP̂ (0)]
〉
− ⟨D⟩2 .

(29)
Then, since the problem is Gaussian in the bosonic op-
erators, we can shift the expectation to the exponent. In

our case
〈
P̂
〉

= 0, so only the second order term in P̂

survives: 〈
eP̂
〉
= exp

[
1

2

〈
P̂ 2
〉]

. (30)

This leaves us with the following expression:

⟨Dc(t)D†
c(0)⟩ = exp

[
1

2

〈
P̂ (0)2

〉
+
〈
P̂ (t)P̂ (0)

〉]
− ⟨D⟩2 ,

(31)
which we can further simplify by defining the phonon
propagator

ϕ(t) =

∫ ∞

0

dω
J(ω)

ω2

(
cos(ωt) coth

( ω

2kBT

)
− i sin(ωt)

)
.

(32)
Note here that for an Ohmic spectral density, the inte-
grand of ϕ(0) diverges as ω → 0, meaning that e−4ϕ(0) =
0. Applying this limit to all four bath correlation func-
tions leaves us with:〈

Dc(t)D†
c(0)

〉
=
〈
D†

c(t)Dc(0)
〉
= e4(ϕ(t)−ϕ(0));〈

D†
c(t)D†

c(0)
〉
= ⟨Dc(t)Dc(0)⟩ = 0. (33)
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Finally, taking the time integral over these correlations
and inserting the coupling Ω gives us the transition rates
Λn in the master equation in Eq. (27):

Λ1 = Λ2 =

∫ ∞

0

dtΩ2e4(ϕ(t)−ϕ(0)),

Λ3 = 2Λ1, (34)

which can be solved numerically. As for the WCME,
the imaginary parts of these integrals correspond to the
Lamb shift, and are incorporated into H̃ ′

S . For the PME
however, we find that the Lamb shift is about two orders
of magnitude smaller than system frequency scales, and
thus has a limited impact on the peak locations in Fig. 3.

As shown in Fig. 3(e-g), the PME results agree well
with PT-TEMPO in the polaron regime (α = 0.4, Ω =
0.2 ps−1). Unlike the WCME spectrum (Fig. 3(g)) in
which the peak is homogeneously broadened in all di-
rections, the PT-TEMPO and PME results capture cor-
relations between excitations at t1 and t3, leading to a
inhomogeneously broadened peak stretched along the di-
agonal axis. For the PME, the transition rates Λn in
Eq. (34) are negligibly small. Rather, the peak broaden-
ing in Fig. 3(h) comes from the polaron transformation
in Eq. (21), which encodes optical dephasing between the
ground and excited states.

Because H̃I is proportional to Ω (see Eq. (22)), larger
values of Ω would not give correct results. This is il-
lustrated in Fig. 3(a)(d), which shows the 2D and linear
spectrum obtained with the PME in the weak-coupling
regime (α = 0.005, Ω = 2.0 ps−1). Since Ω′ is infinitesi-
mally small, only a single peak (and therefore no cross-
peaks) can be resolved. Additionally, because the rates
in Eq. (34) are proportional to Ω2, this peak is strongly
broadened compared to the PT-TEMPO and WCME so-
lutions.

VI. DIFFERENCES IN THE INTERMEDIATE
COUPLING REGIME

We will now shift our focus to the intermediate cou-
pling regime found in photosynthetic complexes, where
neither the weak-coupling nor polaron master equation
are expected to give accurate results. For this purpose,
we will set Ω = 2 ps−1 and α = 0.1 [18–20]. As in
the weak-coupling regime, the 2D spectrum obtained
with PT-TEMPO for these parameters, Fig. 3(i), con-
tains two diagonal peaks and cross-peaks, although the
peaks are more broadened due to the stronger system-
bath coupling. Firstly, we observe that the PME spec-
tra, Fig. 3(i)(l), cannot replicate the double peak struc-
ture found in the numerically exact result, because the
electronic coupling Ω is renormalized to zero (see Sec-
tion VB). The WCME spectra, Fig. 3(i)(k), on the other
hand do accurately reflect the presence of all peaks. For
the chosen parameters however, the Lamb shift in the
WCME spectra, Eq. (18), overestimates the splitting be-
tween the peaks compared to the PT-TEMPO results.

2
D

E
S

 s
ig

n
a
l

-10 0
0

0

4

0

10 20

0 10 20 30

T (ps 1)

0

10

E
2

20

20

50

detec = exc (ps 1)
PT-TEMPO, = 0.1

PT-TEMPO,    = 0.02

Lamb shift,   = 0.02

Lamb shift, = 0.1

PT-TEMPO

WCME

(a) T = 6.5 ps-1 

T = 3.9 ps-1 

T = 25 ps-1 

(b)

(c)

(d)

FIG. 4. (a) Splitting between diagonal peaks in 2D spectra
as a function of temperature, as predicted by PT-TEMPO
and the WCME (Lamb shift). Data is shown for system-
bath couplings α = 0.1 (green solid, blue dots) and α = 0.02
(red dashes and orange cross markers). Note that due to
increasing computational resources with decreasing T , data
points for PT-TEMPO below 3.9 ps−1 (30 K) are not shown.
(b-d) Diagonal slices through the 2D spectra for α = 0.1,
corresponding to the data points T = 3.9 ps−1 (30 K), T =
6.5 ps−1 (50 K) and T = 25 ps−1 (190 K) in panel (a). For
all: Ω = 2 ps−1.

This difference is illustrated in more detail in Fig. 4(a):
for both PT-TEMPO and the WCME, the relative split-
ting between peaks (δE − 2Ω, Eq. (18)) increases with
temperature. For the WCME, this increase is linear for
large temperatures ( ωc

2kBT ≪ 1). Although the splitting
predicted by PT-TEMPO agrees well with the Lamb shift
below T ≈ 4 ps−1, an increasing discrepancy arises when
the temperature is increased. Since the Lamb shift is di-
rectly proportional to α for our choice of spectral density,
Eq. (4), this discrepancy decreases when α is decreased,
depicted by the red dashes and orange cross markers in
Fig. 4(a) for α = 0.02.

While the WCME gives more accurate predictions for
peak splitting in the intermediate coupling regime as
temperature is decreased, its prediction for peak height
breaks down. As shown in Figs. 4(b-d), the ratio between
diagonal peak amplitudes increases with decreasing tem-
perature. While this is also the case for the numerically
exact results, the WCME predicts a sharper and higher
amplitude peak for the |−⟩ transition at sufficiently low
T (Fig. 4(b)), and similarly a broader peak for |+⟩ tran-
sition. From the WCME in Eq. (14), we can observe
that the transition rate γ1 is always finite, while γ2 tends
to zero as temperature decreases. As a result of this and
the absence of a pure dephasing rate, the optical response
predicted by the WCME decays more slowly at low tem-
peratures compared to PT-TEMPO, leading to a more
pronounced peak corresponding to the |−⟩ state [14]. As
temperature increases on the other hand, Fig. 4(c), γ1
and γ2 become more comparable in magnitude, decreas-
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ing the relative difference between diagonal peak ampli-
tudes.

VII. CONCLUSIONS

In this work, we have presented a tensor network
method for the efficient calculation of multi-time correla-
tion functions, based on a process tensor framework. We
have employed our technique to simulate linear absorp-
tion and 2D spectra in three different system-bath cou-
pling regimes, comparing the results to a weak-coupling
and polaron master equation. Here we observed that in
an intermediate coupling regime, both master equations
break down in the following ways: for an Ohmic spec-
tral density, a polaron master equation fails to resolve
the two energy transitions probed in our model. A weak-
coupling master equation on the one hand overestimates
peak splitting (given by the Lamb shift) at high tempera-
tures. At low temperatures on the other hand, it overes-
timates the decay time of the optical response, leading to
discrepancies in peak amplitude ratios compared to our
numerically exact results.

We furthermore note that several PT-MPO methods

were recently developed that exploit time translational
invariance to improve the scaling of the algorithm with
the number of time steps [29, 30]. Employing such algo-
rithms could further reduce the computational effort of
calculating multi-time correlation functions with process
tensors.
Finally, we hope that beyond light-harvesting, the

methods employed in this work may aid in the study
of other non-Markovian open quantum systems, such as
coherent dynamics in semiconductor quantum dots and
the polaronic wave functions of excitons in perovskite
materials [62–65].
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APPENDIX A: COMPUTATIONAL RESOURCES

For this work, the required PT-MPOs were constructed
using the open source package OQuPy [40, 50]. For
the Ohmic spectral density used in this work, J(ω) =

2αωe−
ω
ωc (α = 0.1, ωc = 3.04 ps−1), it took 8.7 mins

to construct a PT (150 time steps) at a temperature
T = 13.09 ps−1 on a single core of an Intel i5 (8th Gen)
processor. Computing a single four-time correlation func-
tion as a function of τ4 (e.g. R(τ4; τ1 = τ2 = τ3 = 0) took
101 s on a single CPU core. This computation time scales
linearly with the number of additional time steps when
one of the earlier time arguments (τ1,2,3) is varied. For
example, the 2D spectra in Fig. 2 were computed over 50
time steps each in τ1 and τ4. Taking into account that it
is composed of four correlation functions (Eq. (5)), the
total 2D spectrum in Fig. 2(a) required 5.6 core hours
with a pre-computed PT.

For a set number of time steps, constructing the PT
at lower temperatures reduces the computation time.
However, since multi-time correlations generally take
longer to decay to zero with decreasing temperature, a
longer PT has to be constructed to capture the full sig-
nal. For example, the PT constructed for Fig. 4(a) and
T = 3.9 ps−1 was 300 time steps in length and took
12 mins to compute on a single CPU core.

APPENDIX B: CONVERGENCE OF
MULTI-TIME CORRELATIONS

The PT-TEMPO algorithm relies on three computa-
tional parameters: the time step δt, the maximum mem-
ory length ∆Kmax and the maximal relative error in the
singular value cutoff ϵrel [40]. The product δt∆Kmax

corresponds to the maximal memory time of the bath
captured by the computations. Therefore, the value of
δt∆Kmax should be larger than the time it takes for the
bath autocorrelation function to decay to zero:

C(τ) =

∫ ∞

0

dωJ(ω)

[
cos(ωτ) coth

(
ω

2kBT

)
− i sin(ωτ)

]
.

(A1)
For an Ohmic spectral density (Eq. (4)) with α = 0.1 and
ωc = 3.04 ps−1, we find that C(τ) decays to a value 10−3

times smaller than its maximum when τ = 10.3 ps. In
this work, we have set ϵrel = 10−6, ∆Kmax = 1000 and
δt = 0.05−0.1 ps, which places the cutoff well beyond the
memory time of the bath. To justify our choice of δt and
ϵrel, we test for numerical convergence by computing the
four-time correlation function R4(τ4; τ1 = τ2 = τ3 = 0)
in Eq. (5):

R4(τ4) = Tr
[
V̂2(τ4)V̂2(0)V̂2(0)V̂2(0)ρ0

]
. (A2)

Fig. A1(a) shows R4(τ4) for a range of ϵrel values and a
constant time step δt = 0.1 ps. To better illustrate the
convergence, the absolute difference ∆R4 between the
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FIG. A1. Numerical convergence of the four-time correlation
function R4(τ4) (Eq. (A2)) with respect to (a-b) the trun-
cation error ϵrel for a constant time step δt = 0.1 ps and
(c-d) with respect to δt and ϵrel = 10−6. Figures (b) and
(c) show the absolute difference between R4 calculated with
the most precise convergence parameter ((b) ϵrel = 10−8, (c)
δt = 0.025 ps) and with each lower precision.

curve with the highest precision (ϵrel = 10−8) and each
subsequent lower precision curve is plotted in Fig. A1(b).
Similarly, Fig. A1(d) shows ∆R4 for different δt, taking
δt = 0.025 ps as the baseline.
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