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Abstract
Motivation: Exhaustive experimental annotation of the effect of all known protein variants remains daunting and 
expensive, stressing the need for scalable effect predictions. We introduce VespaG, a blazingly fast missense 
amino acid variant effect predictor, leveraging protein Language Model (pLM) embeddings as input to a minimal 
deep learning model.
Results: To overcome the sparsity of experimental training data, we created a dataset of 39 million single amino 
acid variants from the human proteome applying the multiple sequence alignment-based effect predictor GEMME 
as a pseudo standard-of-truth. This setup increases interpretability compared to the baseline pLM and is easily 
retrainable with novel or updated pLMs. Assessed against the ProteinGym benchmark (217 multiplex assays of 
variant effect - MAVE - with 2.5 million variants), VespaG achieved a mean Spearman correlation of 0.48±0.02, 
matching top-performing methods evaluated on the same data. VespaG has the advantage of being orders of 
magnitude faster, predicting all mutational landscapes of all proteins in proteomes such as Homo sapiens or 
Drosophila melanogaster in under 30 minutes on a consumer laptop (12-core CPU, 16 GB RAM).
Availability: VespaG is available freely at https://github.com/jschlensok/vespag. The associated training 
data and predictions are available at https://doi.org/10.5281/zenodo.11085958.
Supplementary information: Supplementary data are available at Bioinformatics online.

1. Introduction 
Proteins are the essential building blocks of life, fulfilling a wide range of 
vital roles within cells and organisms. Hence, understanding the effect of 
variations such as point mutations on protein stability and function is 
crucial for comprehending disease mechanisms (Murray, Laurieri, and 
Delgoda 2017) and modulating their activities through engineering. 
Multiplexed assays of variant effect (MAVEs), in particular deep 
mutational scans (DMS) (Fowler and Fields 2014), have enabled the 
quantification of mutational outcomes on a much larger scale than ever 

before. They allow for an in-depth characterization of protein mutational 
landscapes by assessing the impact of virtually all possible single amino 
acid substitutions. Nevertheless, conducting experimental assays for entire 
proteomes remains elusive (Atlas of Variant Effects Alliance, 
https://www.varianteffect.org).
Leveraging the power of computational models can help to gain insights 
into the functional consequences of protein variants and to prioritize them 
for further experimental validation. However, the sparseness of 
annotations challenges the development of such models. While many 
supervised machine learning (ML) methods have proven accurate 
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(Adzhubei, Jordan, and Sunyaev 2013; Gray et al. 2018; Hecht, Bromberg, 
and Rost 2015), they are inherently biased towards the limited number of 
proteins characterized by MAVEs or having annotated disease-associated 
variants (Livesey and Marsh 2023). As a result, different methods tend to 
correlate highly for the tiny subset of experimental data, while their 
predictions for, e.g., all possible mutations in the human proteome 
correlate very poorly (Hecht, Bromberg, and Rost 2013; Mahlich et al. 
2017). Prediction methods are also sensitive to the noise and uncertainty 
in these data. MAVE annotations, for instance, may vary substantially 
across experiments, even when measuring the same phenotype for the 
same protein (Reeb, Wirth, and Rost 2020). These difficulties have 
stimulated a growing interest in unsupervised or weakly supervised 
methods predicting variant effects by only exploiting information from 
protein sequences observed in nature (Ng and Henikoff 2003). 
Among the best-performing unsupervised methods, GEMME explicitly 
models the evolutionary history of protein sequences (Laine, Karami, and 
Carbone 2019; Notin et al. 2023). Starting from a multiple sequence 
alignment (MSA), it determines how protein sites are segregated along the 
topology of phylogenetic trees to quantify the sensitivity of each site to 
mutations and the number of changes required to accommodate a 
substitution. It relies on only a few biologically meaningful parameters 
and is robust to low variability in the input MSA. GEMME proved 
instrumental for investigating the interplay between protein stability and 
function, and elucidating disease mechanisms (Abildgaard et al. 2023; 
Cagiada et al. 2023; Gersing et al. 2023; Tiemann et al. 2023; Tsuboyama 
et al. 2023). Combining GEMME with a fast MSA generation algorithm 
allows for producing proteome-wide substitution score matrices within a 
few days (Abakarova et al. 2023). 
Other methods rely on protein Language Models (pLMs) pre-trained over 
large databases of raw sequences (Elnaggar et al. 2021; Lin et al. 2023). 
The log-odds ratios computed from the masked marginal probabilities can 
already provide highly accurate estimates of mutational effects (Livesey 
and Marsh 2023, Meier et al. 2021). Nevertheless, the quality of the 
protein sequence representations learned by foundation pLMs is highly 
variable, and especially poor for viral proteins (Ding and Steinhardt 2024; 
Elnaggar et al. 2021; Lin et al. 2023; The UniProt Consortium et al. 2023; 
Notin et al. 2023). While pLM performance can be further boosted through 
incorporating information about evolutionary conservation, population 
genetic polymorphism and 3D structures (Su et al. 2024, Cheng et al. 
2023; Marquet et al. 2022; Meier et al. 2021; Nijkamp et al. 2022; Notin, 
Dias, et al. 2022; Truong Jr and Bepler 2023), the computational cost of 
zero-shot inference over full-length proteins remains high. 
Here, we optimized prediction speed by circumventing the 
computationally expensive masked token reconstruction task and directly 
mapping pLM embeddings to complete mutational landscapes using the 
evolutionary-informed model GEMME as a teacher (Fig. 1). To this end, 
we trained a comparatively shallow (660k free parameters) neural network 
on top of a pre-trained pLM without computing log-odds ratios to learn 
GEMME predictions. Our strategy overcomes the bottleneck of sparsely 
annotated experimental training data. Moreover, it avoids the noise and 
inconsistencies of the experimental assays. We implemented our approach 
as a lean tool for fast Variant Effect Score Prediction without Alignments 
enabled by GEMME (VespaG). We assessed prediction performance 
against over 3 million (M) missense variants across diverse protein 
families. VespaG performed on par with state-of-the-art (SOTA) methods 
and in some cases, the student even surpassed the teacher GEMME. As 
we circumvent the need to compute log-odds ratios of substitution 
probabilities, VespaG enables proteome-wide predictions in less than a 

half hour on a standard consumer laptop. We also demonstrated VespaG 

to generalize across organisms and protein families.
Fig. 1. Outline for VespaG’s expert-guided approach. VespaG takes as sole input a 

d=2560-dimensional vector representation of a wild-type residue in a protein 
computed by the pre-trained protein language model (pLM) ESM-2 with 3 billion 
parameters (Lin et al. 2023), and outputs a 20-dimensional vector of predicted 
mutational outcome estimates. The training loss measures the mean squared error 
between the predicted estimates and the evolutionary scores computed by GEMME 
(Laine, Karami, and Carbone 2019). We generate millions of training samples 
through the MMseqs2-based ColabFold protocol for searching and aligning 
sequences (Abakarova et al. 2023; Mirdita et al. 2022; Steinegger and Söding 
2017). We do not use alignments at inference time (dotted rectangle). VespaG’s 
framework can be adapted to any pre-trained pLM.

2. Methods

1. Comparison to State-of-the-art methods 
We compared VespaG to seven SOTA predictors, namely GEMME 
(Laine, Karami, and Carbone 2019) as it is (1) tied for the best performing 
method on ProteinGym (Notin et al. 2023, https://github.com/OATML-
Markslab/ProteinGym), (2) a purely MSA-based method not using 
machine learning, and (3) was used to annotate VespaG’s training data; 
zero-shot log-odds by the pLMs ESM-2 (Lin et al. 2023), the sequence-
only pLM used as input to VespaG and SaProt (Su et al. 2024), a top-
ranked pLM in ProteinGym which takes structure and sequence as input; 
TranceptEVE L (Notin, Niekerk, et al. 2022) as it is the best performing 
method on ProteinGym next to GEMME and SaProt, and because it is a 
hybrid model, making use of both MSAs and pLM embeddings as input, 
combining the previously developed autoregressive Tranception (Notin, 
Dias, et al. 2022) with the Bayesian variational autoencoder EVE (Frazer 
et al. 2021); PoET (Truong Jr and Bepler 2023), a recently developed 
autoregressive generative method modeling protein families as sequences-
of-sequences and slightly outperforming other methods against the first 
version of the ProteinGym set; AlphaMissense (Cheng et al. 2023), also 
recently introduced and building up on the protein structure predictor 
AlphaFold (Jumper et al. 2021) by incorporating population frequency 
data; and VESPA (Marquet et al. 2022),     which predicts per-residue 
conservation scores and combines them with per-mutation protein-
dependent log-odds scores and per-mutation protein-independent 
substitution scores, as it is currently the best purely sequence pLM-based 
method in ProteinGym. We mainly relied on the Spearman rank 
correlation coefficient to assess predictive performance. PoET and 
AlphaMissense were evaluated on the first ProteinGym iteration but are 
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Expert-guided pLM-based fitness prediction

not included in the updated benchmark. See SOM Supplementary 
Methods for details on producing or retrieving the predictions.

2. Method development
2.2.1 Datasets 
To generate training data, we constructed a main set based on the Homo 
sapiens proteome and additional sets representing diverse origins, namely 
Drosophila melanogaster, Escherichia coli, as well as all viruses  (SOM 
Table S1). Each training dataset was curated following the same process 
of first downloading the UniProt (The UniProt Consortium et al. 2023) 
reference proteome(s) with one protein sequence per gene and removing 
any proteins of less than 25 or more than 1024 residues. We redundancy 
reduced the training data in two steps, firstly against the test data to 
prevent data leakage and secondly against themselves to reduce the 
number of training samples — see SOM Supplementary Methods for 
details. We generated training and validation sets using a random 80/20 
split. To circumvent the need for a large, comprehensive set of 
experimental variant effect annotations, we employed the established 
method GEMME following the protocol introduced in (Abakarova et al. 
2023). Specifically, for each protein from the training set, we retrieved 
and aligned a set of homologous sequences with the MMseqs2-based 
multiple sequence alignment (MSA) generation strategy implemented in 
ColabFold (Mirdita et al. 2022). We then used the generated MSA as input 
for GEMME. GEMME outputs a complete substitution matrix of 
dimension L x 20, with L being the length (in residue) of the input query 
protein sequence. GEMME scores range from -10 to 2. Drawing from our 
previous findings (Abakarova et al. 2023), we flagged the mutational 
landscapes derived from fewer than a couple hundred homologous 
sequences as lowly confident. 
Additionally, we compared VespaG against SOTA methods on the two 
test sets ProteinGym (with nine subsets) and StabilityDeNovo146. The 
substitution benchmark ProteinGym (Notin et al. 2023) comprised 217 
DMS from 187 unique proteins with diverse lengths (37 - 3,423 residues 
with a median of 245), protein families (e.g., polymerases, tumor 
suppressors, kinases, transcription factors), sizes, functions (e.g., drug 
resistance, ligand binding, viral replication, thermostability), and taxa, 
totalling about 696k single missense variants and 1.76M multiple 
missense mutations from 69 of the 217 proteins (SOM Fig. S3). The first 
iteration of the benchmark, which we also considered, contained 87 DMS 
from 73 unique proteins (72 - 3,423 residues with a median of 379), 
totalling about 1.5M variants with mostly single and, for 11 proteins, 
multiple missense mutations (SOM Fig. S4). See SOM Supplementary 
Methods for more details. To additionally assess the predictors on de novo 
domains, we compiled the test set StabilityDeNovo146 from the most 
comprehensive available dataset assessing how amino acid substitutions 
affect thermodynamic folding stability (Tsuboyama et al. 2023). 
StabilityDeNovo146 comprises 123k variants across 146 proteins 
designed using TrRosetta (Yang et al. 2020) with the hallucination 
protocol described in (Anishchenko et al. 2021; Norn et al. 2021) or the 
blueprint-based approach described in (Huang et al. 2011; Kim et al. 
2022). We selected all mutations with tabulated free energy changes 
(ΔΔG) annotations, discarded all deletions, insertions, and wild-type 
sequences, and averaged multiple measurements for the same mutation.

2.2.2 Model specifications 
All developed models rely solely on embeddings computed from pre-
trained pLMs as input. Specifically, we used ProtT5-XL-U50 (Elnaggar 
et al. 2021), an encoder-decoder transformer architecture trained on the 
Big Fantastic Database (Steinegger and Söding 2017) and fine-tuned on 

UniRef50, and ESM2-T36-3B-UR50 (Lin et al. 2023), a BERT (Devlin et 
al. 2019) style 3-billion-parameter encoder-only transformer architecture 
trained on all clusters from Uniref50, augmented by sampling sequences 
from the Uniref90 clusters of the representative chains (excluding 
artificial sequences). In the following, we refer to these pLMs as ProtT5 
and ESM-2, respectively. For both pLMs, we downloaded the encoder 
weights from HuggingFace (Wolf et al. 2020) at 
https://huggingface.co/docs/transformers/model_doc/esm and extracted 
the embeddings from the encoder's last hidden layer. These embeddings 
comprise 1024-dimensional vectors for each residue in a sequence for 
ProtT5 (Elnaggar et al. 2021) and 2560-dimensional vectors for ESM-2 
(Lin et al. 2023). There is no length restriction for either pLM at inference, 
so proteins were processed in full.  A guide to embedding extraction for 
ProtT5 and ESM-2 can also be found in our GitHub repository 
https://github.com/jschlensok/vespag. We used the pre-trained pLMs as 
is, without fine-tuning their weights, and without combining the 
embeddings either by concatenating the input or averaging the outputs. 
We built the predictors with the following architectures: (1) Linear 
regression, i.e., a feed-forward neural network (FNN, (LeCun, Bengio, 
and Hinton 2015)) without any hidden layer, dubbed LinReg; (2) FNN 
with one dense hidden layer, called VespaG; (3) FNN with two hidden 
layers, called FNN_2_layer; (4) Convolutional neural network (CNN, 
(LeCun, Bengio, and Hinton 2015)) with one 1-dimensional convolution 
and two hidden dense layers, referred to as CNN; and (5) an ensemble of 
separately optimized FNN and CNN (with the same architecture as the 
best stand-alone model for each architecture), with the output being the 
mean of the two networks. No activation function was used for the output 
layer. To ease score interpretability, the users can opt for a normalisation 
of raw VespaG scores to the [0,1] interval where values close to 1 indicate 
high functional impact, following the Atlas of Variant Effects Alliance 
guidelines (Livesey et al. 2024). See SOM Supplementary Methods for 
more details.

3. Results
The method introduced in this work, VespaG, is a feed-forward neural 
network (FNN) with one hidden layer with 256 hidden units solely 
inputting sequence embeddings from the protein language model (pLM) 
ESM-2 (Lin et al. 2023). We trained VespaG on a set of about 5,000 
human proteins to learn a mapping between the input pLM embeddings 
and the evolutionary scores computed by GEMME. The latter served as 
surrogates for mutational phenotypic outcomes. The proteins used for 
training represented a non-redundant subset of the human proteome 
(Methods and SOM Table S1). 
We initially considered five different architectures for learning from 
GEMME (“MSE loss” in Fig. 1), including linear regression and 
convolutional neural networks, and two foundation pLMs, namely ESM-
2 (Lin et al. 2023) and ProtT5 (Elnaggar et al., 2021) (Supporting Online 
Material, SOM Table S2). Performance was similar for all evaluated 
models (SOM Fig. S1-2), indicating that both pLMs provide robust results 
under supervision of GEMME regardless of downstream architecture. As 
we obtained the best performance with a one-hidden-layer FNN and ESM-
2 embeddings against the validation set (random 80/20 split, SOM Fig. 
S2), we report test set results for this configuration in the following.

1. VespaG competitive with state-of-the-art (SOTA)
VespaG predicted mutational outcomes with an average overall Spearman 
correlation coefficient (⍴) of 0.480±0.021 (±1.96 standard errors, i.e., 95% 
Confidence Interval, CI; SOM Supplementary Methods) against all 217 
experimental DMS assays from the ProteinGym substitution benchmark 
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(Notin et al. 2023), June 2024). It performed on par with the top methods 
from the ProteinGym leaderboard, including its teacher GEMME, and 
substantially better than the zero-shot ESM-2 baseline (Fig. 2, SOM 
Tables S3, S4).
Most of the assays (189 out of 217), were from proteins from eukaryotic 
and prokaryotic organisms (SOM Fig. S3). On these proteins, VespaG 
reached an average ⍴=0.491±0.024 (Fig. 2A and SOM Table S3, 
PGOrganismal189). Its prediction accuracy exceeded all of the 
following: zero-shot ESM-2 log-odds ratios between the mutant and wild-
type amino acids (Δ⍴=0.036, one-tailed paired t-test p-value<10-5), pLM-
based VESPA (Δ⍴=0.027, p-val<10-8) and the ensemble sequence- and 
MSA-based predictor TranceptEVE L (Δ⍴=0.013, p-val=0.006). VespaG 
performed on par with its teacher GEMME (|Δ⍴|<0.01, p-val>0.1) and 
the top-ranked method in ProteinGym (as of June 2024), namely the 
sequence- and structure-based pLM SaProt (Su et al. 2024). Accuracy 
varied substantially across different experimental DMS assays (SOM Fig. 
S3). Yet, VespaG was stable, in the sense that the distribution of its Δ⍴ 
values with respect to the mean ⍴ over the six highlighted methods was 
very narrow and centered around zero (SOM Fig. S5). By contrast, the 
distributions for the ESM-2 baseline and SaProt were much wider, 
displaying performance worse than the mean by Δ⍴<-0.35 for some assays 
(SOM Fig. S5-S6). Simply put: VespaG appeared to be the most average 
method with the lowest spread between assays (SOM Fig. S6). On a subset 
of PGOrganismal189, dubbed PGOrganismal66, we could extend the 
comparison to the SOTA methods AlphaMissense and PoET (predictions 
not readily available for other data sets). On this subset, VespaG’s  
predictive performance, with an average ⍴=0.484±0.044, outperformed 
the pLMs SaProt and ESM-2 (Δ⍴>0.27, p-val < 0.007), and was slightly 
better than GEMME and TranceptEVE-L (Δ⍴>0.07, p-val < 0.04); it was 
on par with PoET (|Δ⍴|<0.01, p-val>0.1) and comparable to 
AlphaMissense (Δ⍴=-0.021,  p-val~10-3; SOM Fig. S7). 

Fig. 2. VespaG accuracy on-par with SOTA. Each panel corresponds to a different test 
set (with partially overlapping proteins between the test sets in C w.r.t A and B) 
from the ProteinGym substitution benchmark (Notin et al. 2023): (A) 
PGOrganismal189, containing 189 experimental assays for 161 eukaryotic and 
prokaryotic proteins; (B) PGViral28, containing 28 assays for 26 viral proteins; (C) 
217 assays in ProteinGym divided into subsets named according to assessed 
phenotype and number of experiments: PGActivity43, PGBinding13, 
PGExpression18, PGFitness77, PGStability66. For A and B, methods are ordered 
from best (left) to worst (right), for C we follow a set order. We did not recompute 
results for TranceptEVE L (Notin, Niekerk, et al. 2022), ESM-2 (Lin et al. 2023), 
and SaProt (Su et al. 2024), therefore all depicted in shades of gray, and directly 
extracted the predictions from ProteinGym. The error bars show the 95% 
confidence interval.

The experimental DMS assays represent an unbalanced panel of different 
phenotypes (SOM Fig. S3), namely organismal fitness (PGFitness77, 
highest number of DMS), stability (PGStability66), activity 
(PGActivity43), expression (PGExpression18), and binding 
(PGBinding13). Balancing the calculation of the average 
performance according to the phenotypes’ cardinalities yielded 

⍴=0.459±0.049 for VespaG, outperforming TranceptEVE L, VESPA, 
SaProt and ESM-2, and bested only by teacher GEMME (SOM Table S3). 
VespaG consistently outperformed VESPA and ESM-2. Its relative 
performance w.r.t. the other methods was reasonably stable across all 
phenotypes (Fig. 2C, SOM Table S3). In contrast, SaProt performed much 
better than the other methods on stability (Δ⍴>0.059), likely due to the 
fact that it was trained on both sequences and 3D structures, but much 
worse than all methods except ESM-2 on organismal fitness (Δ⍴<-0.066). 
Overall, predictions for stability were the most accurate across all methods 
followed by activity, organismal fitness, expression, and finally, binding. 
We observed a large amplitude between the worst average performance, 
obtained by ESM-2 on binding (⍴=0.312), and the best one, obtained by 
SaProt on stability (⍴=0.592).
In addition, assessing VespaG performance in function of mutation depth 
revealed higher Spearman correlations on single missense variants 
compared to multiple ones (SOM Table S4). We observed a similar trend 
for all tested predictors, with GEMME consistently yielding the best 
correlations. Compared to TranceptEVE L, VESPA, and ESM-2, 
VespaG’s multi-mutant performance was more stable and more closely 
aligned to its teacher GEMME, especially for mutations of three or more 
residues.

2.  VespaG integrating complementary strengths
We specifically investigated how VespaG improved over its teacher 
GEMME and its baseline ESM-2 for exploiting the protein sequence 
universe, dealing with viral proteins, and handling de novo proteins. 
Only a small subset of 28 DMS assays from ProteinGym concern viral 
proteins, including eight from Influenza A virus, six from Human 
immunodeficiency virus, four from bacteriophages, and two from 
SARS-Cov-2 (SOM Fig. S3). While VespaG did not match the 
performance of the top method on this subset, (GEMME, Δ⍴=-0.048, p-
val<10-4), it improved substantially over the ESM-2 baseline (Δ⍴=0.140, 
p-val<10-4) and the sequence- and structure-based pLM SaProt 
(Δ⍴=0.113, p-val<10-3, Fig. 2B, PGViral28; SOM Fig. S5). Thus, 
VespaG was more accurate on viral proteins than other ESM and SaProt 
versions (SOM Fig. S8-9). This analysis suggests that supervision via 
GEMME partially counterbalances the poor quality of pLM embeddings 
for viral proteins. We obtained similar results on a subset of 21 DMS 
from ProteinGym’s first iteration (SOM Fig. S7). 
The proverbial student VespaG bested the teacher GEMME by a large 
margin (Δ⍴ > 0.1) for the human protein LYAM1, the murine MAFG, the 
bacterial proteins DN7A, F7YBW7, ISDH, NUSA, and SBI, the plant 
RCD1, and the yeast ubiquitin RL40A (SOM Fig. S5). In particular, 
VespaG correctly identified the glycines G75 and G76 in the top five 
ubiquitin residues most sensitive to mutations, whereas GEMME 
incorrectly predicted them as mildly sensitive (Fig. 3). These two residues 
play essential roles for E1 activation (Mavor et al. 2016). Reciprocally, 
VespaG agreed with the experiment on the mild tolerance of K27, whereas 
GEMME predicted this residue as highly sensitive (Fig. 3). We can 
interpret these discrepancies in light of previous works showing that 
ubiquitin stands out from the general trends between evolutionary 
sequence conservation and the experimentally measured tolerance to 
substitutions (Mavor et al. 2016, 2018; Roscoe et al. 2013). It challenges 
the common view that high selection pressure implies high mutational 
sensitivity. Hence, applying this principle on an input MSA, as GEMME 
does, leads to a limited accuracy (⍴ in the 0.36-0.44 range). VespaG’s 
representation learning-based approach allows overcoming this limitation 
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and capturing key aspects of the peculiar sequence-phenotype ubiquitin 
relationship (⍴ in the 0.48-0.54 range). 

Fig. 3. Details of student VespaG vs teacher GEMME. For the yeast ubiquitin 
(RL401A_YEAST), we compared experimental measurements (left panel, labeled 
Exp.; Mavor et al. 2016) with predictions by mapping the per-residue mutational 
sensitivities onto the 3D structures predicted by AlphaFold2 (AF-P0CH08-F1-
model_v4, residues 2 to 76, Jumper et al. 2021). We estimated the extent to which 
a residue is sensitive to mutations as the rank of its average predicted or measured 
effect over the 19 possible substitutions. The more reddish the more sensitive. We 
highlighted six residues (labeled by one-letter amino acid code followed by position 
in the sequence, e.g., G76: glycine at position 76) for which VespaG agreed with 
the experiment (rank difference <5) while GEMME strongly disagreed (rank 
difference >15). The experimental values reflect ubiquitin fitness landscape under 
normal growth conditions (Mavor et al. 2016).

More generally, VespaG has the advantage of being independent of any 
alignment, whereas GEMME results may substantially differ depending 
on the chosen MSA generation protocol. Namely, GEMME Spearman 
correlations displayed large variations (in the [0.1-0.3] range) for 16 
assays when retrieving the input MSAs using ColabFold’s MMseqs2-
based strategy (Mirdita et al. 2022) versus taking the ProteinGym MSAs 
(SOM Fig. S10). The latter were generated with the more sensitive profile 
Hidden Markov Model search algorithm JackHMMER (Johnson, Eddy, 
and Portugaly 2010). For almost all these assays (13/16), VespaG 
achieved a ⍴ value similar to or higher than the maximum ⍴ over the two 
GEMME runs, regardless of the associated MSA generation protocol 
(SOM Fig. S10). This result suggests that the VespaG framework is at 
least equivalent to a high-quality MSA-based setup. 
Furthermore, VespaG’s independence from alignments makes it 
applicable to de novo  proteins. It reached an average Spearman 
correlation of ⍴nov=0.404±0.011 on an additional test set of 146 assays 
reporting mutation-induced thermodynamic folding stability changes for 
de novo designed 40-72 amino acid long protein domains (Tsuboyama et 
al. 2023) (SOM Fig. S11). By contrast, the baseline zero-shot ESM-2, 
although technically able to handle de novo sequences, yielded an 
extremely poor average Spearman correlation of 0.034. The teacher 
GEMME only produced predictions for four de novo proteins due to a 
lack of sufficient input alignments. Its Spearman correlation on this small 
subset was nearly zero (0.085), compared to 0.393 for VespaG.

3. VespaG generalising across multiple organisms

We further assessed the impact of the training set on VespaG’s predictive 
performance and ability to transfer knowledge across organisms. 
Specifically, we retrained from scratch the same architecture with the 
same hyperparameters on non-redundant sets of ~4,000 proteins from the 
insect Drosophila melanogaster, ~2,000 proteins from the bacterium 
Escherichia coli, ~1,500 proteins coming from several viruses, and ~9,000 
proteins from a combination of all. Training VespaG on a few thousand 

diverse proteins from a single organism sufficed to generalize across 
diverse taxa (Fig. 4). Overall, the performance differences for respective 

taxa were small across organismal training sets (Δ⍴ ≤ 0.1). However, we 

consistently observed a lower agreement between VespaG predictions and 
the experiments for viral proteins, compared to other taxa, across all 
training sets. In particular, exclusively learning from ~1,500 viral proteins 
did not improve performance for viral proteins (Fig. 4). Inputting 
embeddings from other pLMs did not alter this trend (SOM Fig. S2).
Fig. 4. Per-taxon performance of VespaG independent of taxa included in training. 

For each training set, indicated on the x-axis, we reported the average Spearman 
correlations computed for each of the five taxa represented in ProteinGym 
benchmark (Notin et al. 2023). The error bars show the 95% confidence interval. 
Regardless of training data (all data sets were redundancy reduced, names reflect 
training and bars the test set; All9k: about 9,000 proteins mixing all taxa shown to 
the right; Hum5k: ~9,000 human proteins, Droso4k: ~4,000 fruit fly proteins 
(drosophila melanogaster) , Ecoli2k: ~2,000 E.coli proteins (Escherichia coli), 
Virus1k: mix of ~1,500 viral proteins), VespaG generalized equally well for all taxa 
assessed. For all training sets, it performed best for prokaryotes and non-human 
eukaryotes, followed by human. Even when trained explicitly on viral proteins, 
VespaG performed the worst for viral proteins.

4. VespaG predictions blazingly fast
Out of the top performing methods evaluated on the ProteinGym 
benchmark, VespaG was, in our hands, the most scalable for proteome-
wide analyses. Inference on CPU with VespaG needed 5.7 seconds (s) for 
the 73 unique proteins from ProteinGym first iteration (SOM Figure S4) 
on low-end hardware (Intel i7-1355U with 12x5 GHz, 1.3 GB RAM, no 
GPU; SOM Table S5). GEMME completed the predictions on the same 
hardware in 1.27 hours (h) (4.2 GB RAM, SOM Table S5). Even when 
considering the time required for input pre-processing, the highly efficient 
MSA generation of ColabFold could not overcome the runtime advantage 
of VespaG with a total runtime <1h on a consumer CPU (SOM Table S6). 
Accessing high-end GPU and CPU resources for pre-processing led to a 
total execution time of ~1 minute (min) (64.3s) for VespaG versus ~90 
min (5,468.4s) for GEMME (SOM Table S5-6). By comparison, 
computing zero-shot ESM-2 log-odds took ~5.35 days and VESPA 
required 17h (SOM Table S5). 
Thus, VespaG was five orders of magnitude faster than ESM-2 (factor 
10^5, i.e., 100,000-times), and three orders of magnitude faster than 
GEMME and VESPA. The authors of PoET observed their method and 
TranceptEVE L to be three orders of magnitude slower than GEMME 
(Truong Jr and Bepler 2023) providing some base to triangulate an 
estimate between those and VespaG (~ factor of 10^6 faster). 
Additionally, VespaG, unlike other pLM-based methods, does not require 
a GPU for fast inference (SOM Table S5). On a consumer-grade laptop 
(SOM Supplementary Methods), VespaG computed the entire single-site 
mutational landscape for a human proteome with 20k proteins (Sinitcyn et 
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al. 2023) in fewer than 30 minutes. On the same machine, at the same time, 
GEMME completed predictions for 25 proteins. If we assumed that 
methods such as PoET or TranceptEVE L were executable on low-end 
hardware, they would have processed 0.025 proteins.

4. Discussion
In this work, we explored the possibility of modeling the sequence-
phenotype relationship by learning a simple mapping function from 
protein Language Model (pLM) representations, or embeddings, to 
evolutionary scores predicted by an expert method. We demonstrated the 
validity of this approach on several hundred diverse proteins across 
different organisms. The performance of the resulting method, dubbed 
VespaG, reached that of much more sophisticated methods. 
Using predicted scores instead of curating a dataset of experimental 
measures allowed the creation of a larger training set (totaling 39M 
mutations) than those used previously. By comparison, the SNAP2 
development set contained about 100,000 mutational effect annotations 
from 10,000 proteins (Hecht, Bromberg, and Rost 2015). In addition, 
exploiting only the pLM embedding of the wild-type protein of interest, 
instead of explicitly modeling its mutants through log-odds probability 
estimates, enabled reaching a much higher efficiency and inference speed 
than previous pLM-based methods. The feasibility of this strategy also 
emphasized the usefulness of the information encoded in a wild-type 
protein query embedding for assessing all its variants. 
VespaG reached SOTA despite its simplicity.  The fact that prediction 
accuracy for VespaG reached the SOTA level proves that even relatively 
shallow neural networks (660k free parameters) can effectively leverage 
the knowledge encoded in an unsupervised method such as GEMME 
(Laine, Karami, and Carbone 2019). A fundamental difference between 
student (VespaG) and teacher (GEMME) is its usage of a universal protein 
representation space. More specifically, VespaG can relate proteins with 
each other via representations generated by a pLM pre-trained over a huge 
diversity of natural protein sequences across protein families. This 
property allows VespaG to generalize across organisms without 
considering any specific input generation or training schema. Training 
VespaG on a few thousand proteins from either Homo sapiens, or 
Drosophila melanogaster, or Escherichia coli sufficed to produce high 
quality predictions on a diverse set of proteins. For eukaryotic and 
prokaryotic proteins, the pLM-based student VespaG performed overall 
numerically higher and more consistently than the MSA-based teacher 
GEMME. For instance, VespaG improved for cases such as ubiquitin 
which do not follow the general trends between evolutionary conservation 
and mutational outcomes. Nevertheless, biases in the pLM representation 
space may lead to poor predictions for some protein families. Namely, the 
ProteinGym assessment consistently reported lower accuracy on viral 
proteins for all zero-shot pLM predictors (Notin et al. 2023). Our results 
demonstrated that supervising on GEMME scores partially 
counterbalanced this trend. VespaG’s performance decreased for viral 
proteins, even when explicitly trained on those, but it performed favorably 
compared to the pLMs ESM-2 and SaProt. Despite retaining high 
accuracy, GEMME evolutionary scores for viral proteins have a lower 
resolution than for organismal proteins (SOM Fig. S2). Many mutations 
are assigned the same score, likely reflecting the comparatively lower 
variability of the associated input MSAs (SOM Table S1). Nevertheless, 

the fact that VespaG trained exclusively on viral proteins exhibits a high 
predictive capability on organismal proteins (Fig. 4) suggests the impact 
of this resolution loss is limited. It further supports the hypothesis that the 
embeddings computed by the pre-trained pLMs for viral proteins are 
intrinsically noisy. Possibly, viral proteins are simply too under-
represented in the training of pLMs, due to a comparatively small number 
and low diversity (Ding and Steinhardt 2024; Elnaggar et al. 2021; Lin et 
al. 2023; The UniProt Consortium et al. 2023). In addition, the pLMs may 
struggle to capture the inherent peculiarities of viral protein evolution 
(Koonin, Dolja, and Krupovic 2022). Structurally and functionally 
relevant evolutionary constraints are expected to manifest through smaller 
differences in viral protein sequences compared to other taxa, warranting 
a special treatment of these sequences for extracting co-variations (Hopf 
et al. 2017). A future improvement of pLMs could be to develop viral-
specific fine-tuning steps. In addition, we showed that VespaG's 
independence from alignments combined with its inherent generalizability 
enables tackling de novo designed proteins. Most established mutation 
effect prediction methods, such as GEMME, largely succeed due to 
evolutionary information derived from MSAs and tend to barely 
outperform random for single sequences (Hecht, Bromberg, and Rost 
2015). Given the absence of reference data for de novo proteins, MSA-
based tools often fail to provide any result. At the same time, pLMs such 
as ESM-2 tend to provide unreliable estimates of their respective 
properties. Although we observed a drop in performance compared to 
natural proteins, we can envision using VespaG for fast screens before 
applying future methods adapted to that problem or as a guide for 
designing more biocompatible de novo proteins. 
Saving resources as criterion.  Although we acknowledge the interest of 
the pairwise comparison-based predictor ranking scheme introduced 
recently (Livesey and Marsh 2023), we decided to keep the analysis 
simpler, tuned to the perspective of the ProteinGym benchmark. Our 
motivation  for this choice is that ranks for individual methods remain 
short lived although trends for the field appear more stable (Livesey and 
Marsh 2023; Notin et al 2023). Beyond providing a proof-of-principle for 
the success of teacher-student strategy in the field of variant effect 
prediction, our work emphasises the possibility to improve speed and 
reduction of energy consumption. VespaG is an extremely fast, cost-
efficient, simple tool that invites saving resources at very little cost in 
terms of accuracy. These properties are highly valuable in a context where 
many researchers are interested in variant effect predictions for proteomes 
for which no data is available. Moreover, VespaG’s simplicity stands out 
in the environment of SOTA predictors. Looking at, e.g., the ablation 
study of AlphaMissense (Cheng et al. 2023), we note how many 
impressively complex aspects of the method make that method reach its 
top-level performance. VespaG reaches a similar level without any of that: 
not using complex machine learning on the side of learning from the 
teacher, no 3D structure, no MSA, no minor allele frequency-based loss 
function, no database distillation, asf. Being orders of magnitudes faster 
than prior methods, VespaG makes it possible, for instance, to explore the 
effect of a mutation arising in many different contexts such as protein 
engineering, opening the way to a systematic assessment of epistasis. 
Additionally, the student-teacher setup of VespaG is easily adaptable to 
novel pLM input and additional features.
Gain of speed at the expense of interpretability?  GEMME reaches its 
SOTA-level performance by optimizing only two simple parameters: the 
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conservation of a position in a family of related proteins and the distance 
of a variant on the tree. Simply put, GEMME predicts effect when variants 
deviate from the observed conservation pattern and neutral when the 
variants have been observed close on the tree. Per se, VespaG has no such 
interpretability. As it learned from GEMME, users can replace "strongly 
predicted effect" to imply variant against conservation even without 
seeing the MSA, and conversely "strongly predicted neutral" as examples 
observed nearby on the tree. In fact, in contrast to GEMME, VespaG 
quantifies the strength of the prediction. This in itself seems an important 
feature relevant for users. For the analysis of particular variants, users 
might want to actually generate MSAs and trees on their own to support 
their rationales. However, neither any of the two, nor - to the best of our 
knowledge - any of the other SOTA methods, directly generate a 
hypothesis for how a variant may disrupt the details of molecular function. 
In conclusion, VespaG closes the gap in performance between the best and 
the fastest missense amino acid variant effect predictors. For an 
unprecedentedly small trade-off in performance, it can predict variants 
several orders of magnitude faster than other state-of-the-art methods.
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Fig. 1. Outline for VespaG’s expert-guided approach. VespaG takes as sole input a d=2560-dimensional 
vector representation of a wild-type residue in a protein computed by the pre-trained protein language 
model (pLM) ESM-2 with 3 billion parameters (Lin et al. 2023), and outputs a 20-dimensional vector of 

predicted mutational outcome estimates. The training loss measures the mean squared error between the 
predicted estimates and the evolutionary scores computed by GEMME (Laine, Karami, and Carbone 2019). 
We generate millions of training samples through the MMseqs2-based ColabFold protocol for searching and 
aligning sequences (Abakarova et al. 2023; Mirdita et al. 2022; Steinegger and Söding 2017). We do not 

use alignments at inference time (dotted rectangle). VespaG’s framework can be adapted to any pre-trained 
pLM. 
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Fig. 2. VespaG accuracy on-par with SOTA. Each panel corresponds to a different test set (with partially 
overlapping proteins between the test sets in C w.r.t A and B) from the ProteinGym substitution benchmark 

(Notin et al. 2023): (A) PGOrganismal189, containing 189 experimental assays for 161 eukaryotic and 
prokaryotic proteins; (B) PGViral28, containing 28 assays for 26 viral proteins; (C) 217 assays in 

ProteinGym divided into subsets named according to assessed phenotype and number of experiments: 
PGActivity43, PGBinding13, PGExpression18, PGFitness77, PGStability66. For A and B, methods are ordered 
from best (left) to worst (right), for C we follow a set order. We did not recompute results for TranceptEVE L 
(Notin, Niekerk, et al. 2022), ESM-2 (Lin et al. 2023), and SaProt (Su et al. 2024), therefore all depicted in 

shades of gray, and directly extracted the predictions from ProteinGym. The error bars show the 95% 
confidence interval. 
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Fig. 3. Details of student VespaG vs teacher GEMME. For the yeast ubiquitin (RL401A_YEAST), we compared 
experimental measurements (left panel, labeled Exp.; Mavor et al. 2016) with predictions by mapping the 

per-residue mutational sensitivities onto the 3D structures predicted by AlphaFold2 (AF-P0CH08-F1-
model_v4, residues 2 to 76, Jumper et al. 2021). We estimated the extent to which a residue is sensitive to 
mutations as the rank of its average predicted or measured effect over the 19 possible substitutions. The 

more reddish the more sensitive. We highlighted six residues (labeled by one-letter amino acid code 
followed by position in the sequence, e.g., G76: glycine at position 76) for which VespaG agreed with the 
experiment (rank difference <5) while GEMME strongly disagreed (rank difference >15). The experimental 

values reflect ubiquitin fitness landscape under normal growth conditions (Mavor et al. 2016). 
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Fig. 4. Per-taxon performance of VespaG independent of taxa included in training. For each training set, 
indicated on the x-axis, we reported the average Spearman correlations computed for each of the five taxa 

represented in ProteinGym benchmark (Notin et al. 2023). The error bars show the 95% confidence interval. 
Regardless of training data (all data sets were redundancy reduced, names reflect training and bars the test 

set; All9k: about 9,000 proteins mixing all taxa shown to the right; Hum5k: ~9,000 human proteins, 
Droso4k: ~4,000 fruit fly proteins (drosophila melanogaster) , Ecoli2k: ~2,000 E.coli proteins (Escherichia 
coli), Virus1k: mix of ~1,500 viral proteins), VespaG generalized equally well for all taxa assessed. For all 

training sets, it performed best for prokaryotes and non-human eukaryotes, followed by human. Even when 
trained explicitly on viral proteins, VespaG performed the worst for viral proteins. 
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