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Extracting Linear Relations from Gröbner Bases
for Formal Verification of And-Inverter Graphs

Daniela Kaufmann1 and Jérémy Berthomieu2

1 TU Wien, Vienna, Austria
2 Sorbonne Université, CNRS, Paris, France

Abstract. Formal verification techniques based on computer algebra
have proven highly effective for circuit verification. The circuit, given as
an and-inverter graph, is encoded as a set of polynomials that automat-
ically generates a Gröbner basis with respect to a lexicographic term
ordering. Correctness of the circuit can be derived by computing the
polynomial remainder of the specification. However, the main obstacle
is the monomial blow-up during the rewriting of the specification, which
leads to the development of dedicated heuristics to overcome this issue.
In this paper, we investigate an orthogonal approach and focus the com-
putational effort on rewriting the Gröbner basis itself. Our goal is to
ensure the basis contains linear polynomials that can be effectively used
to rewrite the linearized specification. We first prove the soundness and
completeness of this technique and then demonstrate its practical appli-
cation. Our implementation of this method shows promising results on
benchmarks related to multiplier verification.

Keywords: Algebraic Reasoning, Gröbner Basis, Hardware Verification

1 Introduction

Formal verification techniques based on algebraic reasoning have emerged as
highly effective tools for verifying hardware, particularly in the context of ver-
ifying arithmetic circuits on the gate-level. As digital systems become more
complex, ensuring the correctness of such circuits is paramount, especially in
safety-critical applications like cryptography and signal processing to prevent a
repetition of infamous failures, such as the Pentium FDIV bug [28]. Established
methods based on satisfiability solving (SAT) [4], or binary decision diagrams
(BDDs) [7] often struggle with the complex non-linear structure of arithmetic
circuits. In contrast, formal verification techniques based on theorem provers [29]
or computer algebra, specifically those leveraging Gröbner bases, offer an effec-
tive alternative and have made significant progress in recent years [16,18,19,26].

In the algebraic method, the circuit is given as an and-inverter graph (AIG) [20].
The graph is encoded as a set of polynomials, which are sorted according to a
lexicographic term ordering, where for each gate in the circuit the output vari-
able is always greater than the input variables of the gate. Hence, the leading
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terms of the polynomial equations consist of single variables that are mutually
disjoint. This property was called unique monic leading term (UMLT) in [16].

If such an ordering is chosen, the polynomials automatically form a Gröbner
basis [5]. Informally said, a Gröbner basis is a mathematical construct that offers
a decision procedure that guarantees soundness and completeness of the verifi-
cation process. The correctness of the circuit is determined by computing the
unique polynomial remainder of the specification polynomial, which represents
the intended functionality of the circuit, modulo the Gröbner basis. The circuit
fulfills the specification if and only if the final remainder is zero [17].

However, a major practical obstacle in using a lexicographic term ordering
is the significant computational effort during the rewriting process, as the de-
gree is not bounded. The size and degree of the intermediate reduction results
typically increases tremendously, which is often deferred to as monomial blow-
up [25]. Without specialized heuristics or preprocessing, the computation of the
remainder often fails due to the rapid growth of the intermediate reduction re-
sults. To address this challenge, various preprocessing and rewriting algorithms
have been developed, which syntactically or semantically analyze the input cir-
cuit to remove redundant information from the polynomial encoding, ultimately
optimizing the reduction process and improving the efficiency of the verification.

Related Work. Advanced reduction engines designed for the automatic alge-
braic verification of multipliers given as AIGs are implemented in tools such as
DynPhaseOrderOpt [18], DyPoSub [26], and AMulet2 [15, 16], including
its variant TeluMA [14]. In [16] and the corresponding tool AMulet2 [15]
the authors employ SAT solving to rewrite certain parts of the multiplier be-
fore applying an incremental column-wise verification algorithm. In a follow-up
work [14] the usage of the external SAT solver could be removed by using a
sophisticated algebraic encoding that also takes the polarity of literals into ac-
count. These techniques have been further enhanced by parallelization [23] and
equivalence checking-based verification [21].

In [26] the authors present a dynamic rewriting approach in their tool DyPo-
Sub. After identifying and rewriting atomic blocks, they decide on the reduction
order on the fly and backtrack if the size of intermediate reduction results ex-
ceeds a predetermined threshold. In upcoming work [18], the authors revisit and
improve upon [26] by developing a dynamic rewriting approach that relies on an
encoding that incorporates mixed signals. This encoding is more general than
that presented in [14]. This approach has also been shown to successfully verify
synthesized circuits.

While all of the discussed approaches employ various preprocessing and
rewriting techniques, they share a common characteristic: they all rely on a
lexicographic term ordering. None of the related works have explored alternative
term orderings, such as those that prioritize degree-based sorting to limit the
degree during the reduction process.

Our contribution. In this paper, we propose an alternative, orthogonal strategy
that shifts the focus of the computational effort from rewriting the specification
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polynomial to rewriting the Gröbner basis itself. The approach is based on the
following observation:

If the specification polynomial is linear, a Gröbner basis with respect to a
degree reverse lexicographic term ordering contains linear polynomials that
suffice to derive correctness of the circuit.

Our first contribution is to derive the theoretical foundations of this tech-
nique, including a technical theorem that proves its soundness and completeness.

However, the computation of a single Gröbner basis for the whole circuit
is practically infeasible due to the double-exponential complexity of computing
a Gröbner basis and more importantly the degree of the underlying ideal. Our
second contribution is a practical algorithm that splits the computation of the
Gröbner basis into multiple smaller more manageable sub-problems. We evaluate
our approach on a set of benchmarks for multiplier verification. The experimental
results are promising and indicate that our approach offers a valuable addition
to existing algebraic verification techniques.

The remainder of the paper is organized as follows. In Section 2 we introduce
the necessary preliminaries. In Section 3 we show the theory of our approach
and prove the soundness and completeness. We present a practical verification
algorithm in Section 4, and discuss its implementation and the experimental
evaluation in Section 5 before we conclude the paper in Section 6.

2 Preliminaries

In the first part of the preliminaries, Section 2.1, we introduce the theory of Gröb-
ner bases following [5,6,8] and discuss key properties that are important for our
approach. In the second part, Section 2.2, we present the necessary background
on AIGs and how we can encode these graphs using polynomial equations.

2.1 Gröbner Basis

Definition 1 (Term, Monomial, Polynomial, see [8, Chap. 2, Sec. 2,
Def. 7]). Let X = (x1, . . . , xn) be a set of variables and K be a field. A monomial
is a product of the form xe1

1 · · ·xen
n , with exponents e1, . . . , en ∈ N0. The set of all

monomials is represented by [X]. A term is a monomial multiplied by a constant,
written as αxe1

1 · · ·xen
n with α ∈ K. A polynomial p is a finite sum of such terms.

We denote the number of terms in p by size(p).

Throughout this section let K[X] = K[x1, . . . , xn] denote the ring of polyno-
mials in variables x1, . . . , xn with coefficients in the field K. We write polynomials
in their canonical form. That is, monomials with equal monomials are merged by
adding their coefficients; and terms with coefficients equal to zero are removed.

Definition 2 (Degree). The degree of a monomial σ = xe1
1 · · ·xen

n is the sum
of its exponents, i.e., deg(σ) = |σ| =

∑n
i=1 ei. The degree of a polynomial is the

maximum degree of its terms.
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The terms within a polynomial are sorted according to a total order to ensure
a consistency for algebraic operations.

Definition 3 (Total Order). A monomial order is a total order ≺ such that
for all distinct monomials σ1, σ2 we have (i) σ1 ≺ σ2 or σ2 ≺ σ1, (ii) every non-
empty set of monomials has a smallest element and (iii) σ1 ≺ σ2 ⇒ τσ1 ≺ τσ2

for any term τ .

Definition 4 (Lexicographic Order, see [8, Chap. 2, Sec. 2, Def. 3]). Let
σ1 = xu1

1 · · ·xun
n and σ2 = xv1

1 · · ·xvn
n be two monomials. We say that σ1 ≺lex σ2,

if there exists an index i such that with uj = vj for all 1 ≤ j < i, and ui < vi.

Definition 5 (Degree Reverse Lexicographic Order, see [8, Chap. 2,
Sec. 2, Def. 6]). Let σ1 = xu1

1 · · ·xun
n and σ2 = xv1

1 · · ·xvn
n be two monomials.

We say that σ1 ≺drl σ2, if |σ1| < |σ2| or if |σ1| = |σ2| and there exists an index i
such that uj = vj for all i < j ≤ n, and ui > vi.

Since every polynomial p ∈ K[X] contains only a finite number of monomials,
and these terms are sorted according to a fixed total order, we can identify the
largest monomial in p. This is referred to as the leading monomial of p and
denoted as lm(p). If p = cτ + · · · and lm(p) = τ , then lc(p) = c is called the
leading coefficient and lt(p) = lc(p) lm(p) = cτ is called the leading term of p.
The tail of p is defined by tail(p) = p− lt(p).

Definition 6 (Ideal). A nonempty subset I ⊆ K[X] is called an ideal if

∀u, v ∈ I : u+ v ∈ I and ∀w ∈ K[X] ∀u ∈ I : wu ∈ I.

If I ⊆ K[X] is an ideal, then a set G = {g1, . . . , gm} ⊆ K[X] is called a basis
of I if I = {h1g1 + · · ·+ hmgm | h1, . . . , hm ∈ K[X]}, i.e., if I consists of all the
linear combinations of gi with polynomial coefficients. We denote this by I = ⟨G⟩
and say I is generated by G.

An ideal I = ⟨G⟩ ⊆ K[X] can be interpreted as an equational theory, where
the basis G = {g1, . . . , gm} serves as the set of axioms. The ideal I = ⟨G⟩ consists
of precisely those polynomials f for which the equation f = 0 can be derived
from the axioms g1 = · · · = gm = 0 through repeated application of the rules
u = 0 ∧ v = 0 ⇒ u+ v = 0 and u = 0 ⇒ wu = 0.

To check whether a polynomial f ∈ K[X] is contained in an ideal I, we want
to solve the so-called ideal membership problem: Given a polynomial f ∈ K[X]
and an ideal I = ⟨G⟩ ⊆ K[X], determine if f ∈ I.

Definition 7 (Remainder). The process of finding a remainder with respect
to a set of polynomials G is equal to computing the remainder of a polynomial
division, but extended to multiple divisors, until no further division is possible.
The result is a polynomial that represents the equivalent class modulo the ideal
generated by G. We write p →G g to denote that g is the polynomial remainder
of p modulo G and we also say “p is reduced by G”.
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In general, an ideal I has many bases that generate I. We are particularly
interested in bases with certain structural properties that allow to uniquely an-
swer the ideal membership problem. Such bases are called Gröbner bases [5].

Lemma 1 (see [8, Chap. 2, Sec. 5, Cor. 6]). Every ideal I ⊆ K[X] has a
Gröbner basis w.r.t. a fixed total order.

Given an arbitrary basis of an ideal, a Gröbner basis can be computed us-
ing Buchberger’s algorithm that repeatedly computes so-called S-Polynomials.
These S-Polynomials are reduced by the polynomials that are already in the cur-
rent basis, i.e., calculating the remainder of polynomial division, and non-zero
remainders are added to the ideal basis. These steps are repeated until the basis
is saturated. If all S-Polynomials reduce to zero the set of ideal generators is a
Gröbner basis [5]. While it is known that Buchberger-like algorithms for comput-
ing Gröbner bases, such as Buchberger’s seminal algorithm [5] or Faugère’s F4 [9]
algorithm, have a worst-case time complexity double exponential in the number
of variables. Still, in practice, these algorithms behave in general way better for
≺drl than for other monomial orders, such as ≺lex.

We will not introduce this process more formally, as we will treat the compu-
tation of a Gröbner basis as a black-box technique in our approach. The following
properties are more important for us.

Lemma 2 (see [8, Chap. 2, Sec. 6, Prop. 1]). If G = {g1, . . . , gm} is a
Gröbner basis, then every f ∈ K[X] has a unique polynomial remainder r with
respect to G. Furthermore it holds that f − r ∈ ⟨G⟩, which implies that f is
contained in the ideal I = ⟨G⟩ if, and only if, f →G 0.

Depending on the information one seeks, some Gröbner bases are more useful
than others. Gröbner bases w.r.t. ≺lex are the tool of choice for solving polyno-
mial systems but are, in general, more expensive to compute than degree-based
Gröbner bases. Yet, change of order algorithms, such as the seminal FGLM
one [11] can convert a Gröbner basis into another one for different order. In our
setting of verifying AIG the complexity would be in O(n23n), where n is the
number of input variables of the AIG. Hence, for large n, this is impractical.
Variants of FGLM exploiting the structure of the input and output Gröbner
bases under some genericity assumptions exist, we can mention [2,10,12,27], but
they are mostly designed for solving polynomial systems. As a consequence, they
consider the input Gröbner basis to be for a degree-based order, such as ≺drl,
and the output Gröbner basis to be for ≺lex.

2.2 And-Inverter Graphs

An and-inverter graph (AIG) [20] is a special case of a directed acyclic graph
(DAG). They are useful tools to represent Boolean functions and logic circuits
and provide a compact and efficient way to describe logical expressions.
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Definition 8 (AIG). An AIG operates over Boolean variables. Every node ex-
presses a logical conjunction between its two input variables, which are depicted
by incoming edges in the lower part of the node. We distinguish two types of in-
puts, primary inputs (of the graph) and intermediate nodes. Outputs of the node
are represented by an edge in the upper half. If an edge is marked, it indicates
that the variable is negated.

Definition 9 (Specification). The specification of an AIG is a polynomial
equation S ∈ K[X] that relates the outputs of an AIG to its primary inputs.

Together with the specification polynomial, we fix the polynomial ring K[X]
of the encoding. Although, the nodes in an AIG compute logical conjunction
over Boolean variables, the specification can encode richer relations. Hence, the
encoding is not restricted to the Boolean ring B[X], but may include different
coefficient domains, such as integers or rationals.

Definition 10 (Gate Polynomials). Each node in an AIG can be encoded by
a corresponding polynomial equation that models the logical conjunction. Nodes
in an AIG, raise four types of equations, depending if either none, the first, the
second, or both inputs are negated. Let g be an AIG node with inputs a, b:

Gate constraint Gate polynomial
g = a ∧ b ⇒ g − ab = 0
g = ¬a ∧ b ⇒ g − (1− a)b = g + ab− b = 0
g = a ∧ ¬b ⇒ g − a(1− b) = g + ab− a = 0
g = ¬a ∧ ¬b ⇒ g − (1− a)(1− b) = g − ab+ b+ a− 1 = 0

The correctness of the encoding can easily be checked by truth tables. Fur-
thermore, observe that the degree of the gate polynomials is always two.

Definition 11 (Boolean Input Polynomial). For every primary input ai
of the AIG we define a corresponding Boolean input polynomial ai(ai − 1) =
a2i − ai = 0 that encodes that the variable can only take the values 0 and 1.

As we will only consider polynomial equations with right hand side zero, we
will from now on shorten our notation and write “f ” instead of “f = 0”.

Example 1. Figure 1 shows an AIG representing a 2-bit multiplier. We denote the
primary inputs by a0, a1, b0, b1 and outputs by s0, s1, s2, s3. The internal nodes
are denoted by ℓi. The right hand side of Figure 1 lists the gate constraints
as well as the corresponding gate polynomials. We furthermore list the Boolean
input polynomials and the specification polynomial S ∈ Q[X], which relates that
S = A ·B, for S =

∑3
i=0 2

isi, A =
∑1

i=0 2
iai, and B =

∑1
i=0 2

ibi.

3 Verification using Degree Reverse Lexicographic Order

In this section we will lay out the theoretical foundation of our proposed approach
for extracting linear relations from the Gröbner basis that is used for reduction.
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Index Gate Polynomial Gate constraint
g0 s3 − ℓ24 s3 = ℓ24
g1 s2 − ℓ28 s2 = ℓ28
g2 ℓ28 − ℓ26ℓ24 + ℓ26 + ℓ24 − 1 ℓ28 = ¬ℓ26 ∧ ¬ℓ24
g3 ℓ26 − ℓ22ℓ16 + ℓ22 + ℓ16 − 1 ℓ26 = ¬ℓ22 ∧ ¬ℓ16
g4 ℓ24 − ℓ22ℓ16 ℓ24 = ℓ22 ∧ ℓ16
g5 ℓ22 − b1a1 ℓ22 = b1 ∧ a1

g6 s1 − ℓ20 s1 = ℓ20
g7 ℓ20 − ℓ18ℓ16 + ℓ18 + ℓ16 − 1 ℓ20 = ¬ℓ18 ∧ ¬ℓ16
g8 ℓ18 − ℓ14ℓ12 + ℓ14 + ℓ12 − 1 ℓ18 = ¬ℓ14 ∧ ¬ℓ12
g9 ℓ16 − ℓ14ℓ12 ℓ16 = ℓ14 ∧ ℓ12
g10 ℓ14 − b1a0 ℓ14 = b1 ∧ a0

g11 ℓ12 − b0a1 ℓ12 = b0 ∧ a1

g12 s0 − ℓ10 s0 = ℓ10
g13 ℓ10 − b0a0 ℓ10 = b0 ∧ a0

Boolean Input Polynomials: a2
1 − a1, a

2
0 − a0, b

2
1 − b1, b

2
0 − b0

Specification S: 8s3 + 4s2 + 2s1 + s0 − 4a1b1 − 2a1b0 − 2a0b1 − a0b0

Fig. 1. AIG and polynomial encoding of a 2-bit multiplier in the ring Q[X].

Existing algebraic verification techniques for acyclic graphs encode the circuit
as a polynomial using a lexicographic term ordering where the variables are
sorted according to a reverse topological term ordering (RTTO) [24]. This has the
benefit that due to repeated application of Buchberger’s product criterion, see [8,
Chap. 2, Sec. 10, Prop. 1], the set of gate polynomials together with the Boolean
input polynomials automatically form a Gröbner basis [17]. Since the leading
terms of the gate polynomials consist of one single variable, polynomial division
comes down to substitution. The variables in the specification are substituted
by the corresponding tails of the gate polynomials until no further rewriting is
possible. The graph fulfills its specification if, and only if, the final result is zero.
If the result is non-zero, the remainder polynomial consists of primary inputs
only and can be used to derive a counter example.

Generally, this implies that the degree of the intermediate reduction results
increases, since the tails of the gate polynomials have a higher degree than their
linear leading terms. Substituting those variables in non-linear monomials has
the potential to lead to a monomial blow-up during the reduction. A study in [25]
showed that the intermediate reduction results for 16-bit multipliers can have
more than 106 monomials.

Example 2. Consider again the polynomials of Example 1. Initially size(S) = 8
and deg(S) = 2. After four rewriting steps we have the following intermediate
reduction result: S →{g1,g2,g3,g4} 4ℓ24ℓ22ℓ16−4ℓ24ℓ22−4ℓ24ℓ16+8ℓ24−4ℓ22ℓ16+
4ℓ22 + 2s1 + 4ℓ16 + s0 − 4a1b1 − 2a1b0 − 2a0b1 − a0b0 which has degree 3 and
consists of 13 monomials.

In this paper, we will now apply an orthogonal approach. We impose a dif-
ferent ordering on the set of gate polynomials that takes the degree of the poly-
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nomials into account. That is, we compute a Gröbner basis based on the degree
reverse lexicographic monomial ordering, where the monomials in a polynomial
are first sorted according to their degree.

Our approach is based on the following result that we prove in Theorem 1:
If the specification polynomial is linear, then the ideal membership of the speci-
fication can be decided using only the linear polynomials of the Gröbner basis.

We linearize the specification by replacing all non-linear monomials σi in S
with new extension variables ti. For each replacement we generate a new polyno-
mial constraint ti−σi and add it to the set of gate polynomials. This idea is not
novel and was, for instance, used in [22], where the variables ti are called tableau
variables. The following lemma proves that if the non-linear specification S is
contained in the ideal generated by the gate polynomials, then the linearized
specification Slin is contained in the ideal generated by the gate polynomials
and extension polynomials.

Lemma 3. Let p ∈ K[X], I ⊆ K[X]. Let Σ = {ti − σi | ti /∈ X ∧ σi ∈ p ∧
deg(σi) > 1}. Let plin be the polynomial where every non-linear monomial of p
is replaced by a corresponding extension variable ti. Then we have p ∈ I if and
only if plin ∈ I + ⟨Σ⟩.

Proof. Let p =
∑

σi∈p ciσi, where the ci’s are in K. By definition, we can write
plin =

∑
σi∈p citi. Thus, plin =

∑
σi∈p ci(ti−σi)+

∑
σi∈p ciσi. By hypothesis, the

first sum is in ⟨Σ⟩ and the second one, which is p, only depends in variables X.
Therefore, if p ∈ I, then plin ∈ I + ⟨Σ⟩. Conversely, if plin ∈ I + ⟨Σ⟩, then
p ∈ (I + ⟨Σ⟩) ∩K[X] = I by construction of I + ⟨Σ⟩.

The following theorem proves soundness and completeness of our observation.
That is, if we want to show ideal membership of a linear polynomial, the Gröbner
basis of the ideal contains a set of linear polynomials G1 that suffice for the
deriving the ideal membership, all non-linear polynomials of the Gröbner basis
can be neglected. This will shift the computational difficulties from the reduction
to the Gröbner basis generation.

Theorem 1. Let p ∈ K[X] with deg(p) = 1, I ⊆ K[X] be an ideal. Let G be a
Gröbner basis of I with respect to ≺drl and let G1 = {g ∈ G | deg(g) ≤ 1}. We
have p ∈ I if and only if p →G1

0. In particular, p = α1g1 + · · · + αmgm with
gi ∈ G1, αi ∈ K.

Proof. First, let us observe that if G1 contains a non-zero constant polynomial,
then I = K[X] and p necessarily reduces to 0 by G1.

We now assume that G1 only contains polynomials of degree 1. For g ∈ G1,
we write g = lt(g) + tail(g), with deg(lm(g)) = 1 and deg(tail(g)) ≤ 1. Since
deg(lm(p)) = 1 the division algorithm for computing the reduction of p by G,
see [8, Chap. 2, Sec. 3], will only select polynomials in G whose leading monomials
also have degree 1, i.e. those in G1. The reduction step will replace p by p−cg =
tail(p)− c tail(g), for c ∈ K, which has degree less or equal to 1.

Since p ∈ I if, and only if, p →G 0, we have p ∈ I if, and only if, p →G1 0.
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Algorithm 1: Linear Gröbner basis reduction
Input : Circuit C in AIG format, Specification polynomial S
Output: Determine whether C fulfills the specification

1 Ginit ← Gate-Polynomials(C) ∪ Boolean-Input-Polynomials(C);
2 Slin, Gext ← Linearize(S);
3 Gdrl ← Compute-≺drl-Gröbner-Basis(Ginit ∪Gext);
4 G1 ← {g | g ∈ Gdrl ∧ deg(g) ≤ 1};
5 while lm(Slin) ∈ {lm(g)|g ∈ G1} do
6 plin ← g ∈ G1 such that lm(g) = lm(Slin);
7 if ∄plin then return ⊥;
8 Slin ← Linear-Reduce(Slin, plin);
9 end

10 return Slin = 0

We focus our discussion on the use case of formally verifying an AIG. How-
ever, it is important to emphasize that the theory, and in particular the result of
Theorem 1, is not restricted to AIGs and can be applied to general DAGs. The
key property of the graph for deriving a total degree reverse lexicographic order
is that it must be acyclic.

The conclusion of Theorem 1 moreover shows that we can significantly sim-
plify the algorithm for checking the ideal membership of S. Instead of repeated
polynomial substitution, with potential non-linear intermediate reduction re-
sults, we pick gi ∈ G1, such that lm(gi) = lm(S), multiply gi by a constant αi

such that lc(S) = −αi lc(gi) and add those two polynomials. Hence, we have
replaced polynomial division by linear polynomial operations.

Therefore, we can apply the following approach to verify that an AIG fulfills
its specification, see Alg. 1. We first encode the graph as a set of polynomials
Ginit (line 1), and linearize the specification (line 2) as described in Lemma 3.
The set Gext contains the extension polynomials. In the next step we compute a
Gröbner basis w.r.t. ≺drl (line 3) and extract the linear polynomials G1 (line 4).
We calculate the remainder of the specification modulo the linear elements of
the Gröbner basis (lines 5-8) until no further reduction is possible and return
whether the final result is zero. The correctness of Alg. 1 follows from Theorem 1.

Example 3. Consider again the AIG of Example 1. First of all we define four
extension variables tij to encode the non-linear terms aibj for i, j ∈ {0, 1} and
rewrite the specification to 8s3 + 4s2 + 2s1 + s0 − 4t11 − 2t10 − 2t01 − t00. The
four polynomial equations tij − aibj are added to the set of gate polynomials
and we compute a Gröbner basis w.r.t. ≺drl. The full Gröbner basis consisting
of 52 polynomials is listed in Appendix A.

Important for us are the first thirteen elements of the Gröbner basis, as those
are the linear polynomials G1:
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g1= ℓ10 − t00 g8 = ℓ22 − t11
g2= s0 − ℓ10 g9 = ℓ24 − ℓ16
g3= ℓ12 − t10 g10= ℓ26 − ℓ24 + ℓ16 + t11 − 1
g4= ℓ14 − t01 g11= ℓ28 + 2ℓ24 − ℓ16 − t11
g5= ℓ18 − ℓ16 + t01 + t10 − 1 g12= s2 − ℓ28
g6= ℓ20 + 2ℓ16 − t01 − t10 g13= s3 − ℓ24
g7= s1 − ℓ20
We derive that S ∈ ⟨G1⟩ as S = 8g13 + 4g12 + 4g11 + 2g7 + 2g6 + g2 + g1.

In practice, however line 3 of Alg. 1 turns out to be a bottleneck, computing
a single ≺drl-Gröbner basis does not scale for larger AIGs. We have also seen in
Example 1 that 39 out of 52 polynomials in the computed Gröbner basis are non-
linear. While these polynomials are needed to compute the full Gröbner basis
of the ideal, they are not required for solving the ideal membership problem of
the linear specification. Furthermore, from the 13 linear polynomials, only 7 are
used to generate the specification. Hence, our generated Gröbner basis contains
redundant and/or useless information. We will discuss a method to reduce the
overhead by computing local Gröbner bases in the following section.

4 Locally extracting Linear Polynomials

The core idea of the optimized approach is to start from a ≺lex-Gröbner basis
and incrementally extract linear polynomials from a smaller set of gate polyno-
mials instead of computing a single full ≺drl-Gröbner basis for the whole input
AIG. The algorithm is outlined in Alg. 2 and will be explained in more detail
throughout the remainder of this section.

In a nutshell, we first encode the circuit using a lexicographic term order-
ing (line 1) and linearize the specification polynomial (line 2) with respect to the
given circuit. After some preprocessing where we extract easily derivable linear
polynomials (line 3), we rewrite the specification by generating linear polynomi-
als on the fly (lines 4–9). We pick the gate polynomial p that has the same leading
term as the intermediate reduction result (line 5) and compute a ≺drl-Gröbner
basis for a sub-circuit of C that includes p (line 6) to receive the linearized poly-
nomial plin that we use for reducing the specification (line 7). Let us now go into
more detail of every step.

Encoding. The AIG is encoded using gate polynomials and Boolean input poly-
nomials as described in Def. 10 and 11 using a lexicographic term ordering. We
choose a row-wise variable ordering that sorts variables based on their distance
to the inputs. If nodes have an equal distance, we sort according to the value
of the AIG node. For example, we would sort the variables in Example 1 as
a0 ≺lex b0 ≺lex a1 ≺lex b1 ≺lex ℓ10 ≺lex ℓ12 ≺lex ℓ14 ≺lex ℓ22 ≺lex s0 ≺lex ℓ16 ≺lex

ℓ18 ≺lex ℓ20 ≺lex ℓ24 ≺lex ℓ26 ≺lex ℓ28 ≺lex s1 ≺lex s3 ≺lex s2. In this order
the output variable of a gate is always greater than its input variables, which
automatically generates a ≺lex-Gröbner basis.
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Algorithm 2: Verification-via-Locally-extracting-Linear-Polynomials
Input : Circuit C in AIG format, Specification polynomial S
Output: Determine whether C fulfills the specification

1 Ginit ← Row-Wise-RTTO-Polynomial-Encoding(C);
2 Slin, Gext ← Linearize-Spec-wrt-AIG(S, Ginit);
3 G← Preprocessing(Gext) ▷See Section 4.1
4 while lm(Slin) ∈ {lm(g)|g ∈ G} do
5 p← g ∈ G such that lm(g) = lm(Slin);
6 plin ← Linearize-Single-Polynomial(p,G) ▷See Section 4.2
7 if plin = 0 then return ⊥;
8 Slin ← Linear-Reduce(Slin, plin);
9 end

10 return Slin = 0

Theorem 4 in [17] has shown that we can locally rewrite elements of the ≺lex-
Gröbner basis without jeopardizing the Gröbner basis property as long as the
leading monomials remain the same. We apply the same technique and locally
rewrite gate polynomials from quadratic to linear polynomials that will be used
in the reduction.

Linearization of the Specification. Lemma 3 provides us with a methodology on
how to linearize the specification S by introducing extension variables to repre-
sent non-linear terms. However, some of the terms might already be contained
in the polynomial encoding of the circuit. For those terms we can simply use the
corresponding leading term in the specification. We first swipe through the set
of gate polynomials and check whether the non-linear tail of a gate polynomial is
contained in the specification. If this is the case, we replace the non-linear term
by the corresponding leading term.

For instance, in Example 3 we have the gate polynomial ℓ22−a1b1. Hence, we
do not require the extension variable t11 to linearize S. This equality ℓ22 = t11
is also contained as polynomial g8 in the computed ≺drl-Gröbner basis.

All non-linear terms of S that cannot be linearized using gate polynomials
we introduce extension variables as described in Section 3.

At this point, our encoding consists of a linear specification polynomial and a
set of quadratic gate polynomials and Boolean input polynomials that generate
a Gröbner basis w.r.t. a lexicographic term ordering. The following subsections
present how we linearize elements of the Gröbner basis.

4.1 Preprocessing

The goal of preprocessing is to eliminate variables and derive linear polynomials
in the ≺lex-Gröbner basis that can be identified using simple heuristics. We
employ three steps of rewriting, depicted in Alg. 3.
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Algorithm 3: Preprocessing
Input : Set of poynomial encodings of gate constraints G
Output: Rewritten Set of Polynomial encodings G

1 G← Merge-Nodes-with-Equal-Inputs(G);
2 G← Eliminate-Positive-Nodes(G);
3 G← Propagating-Equivalent-Nodes(G);
4 return G;

Merge Nodes with Equal Inputs. If multiple AIG nodes ℓi, ℓj have the same
inputs a, b, we can express one gate polynomial using the other. For instance, in
our running Example 1 the nodes ℓ24 = ℓ22ℓ16 and ℓ26 = (1− ℓ22)(1− ℓ16) would
be such a set of AIG nodes.

Every gate polynomial of an AIG node has degree two, and the quadratic
term is the product of the input nodes. Hence, the non-linear term in those gate
polynomials that have the same inputs is the same. We remove the non-linear
term of the topologically larger polynomial by adding or subtracting the smaller
polynomial. For instance, we derive ℓ26 − ℓ24 + ℓ22 + ℓ16 − 1.

Furthermore, if at least one input a, b has a different polarity in ℓi and ℓj , we
immediately can derive that the product ℓiℓj is equal to zero. Let ℓi− āb̄, ℓj − âb̂
be the corresponding gate polynomials, where ā and â represent the polarity
of a. We have ℓiℓj = āb̄âb̂ = 0, since (ā = 1 − â) ∨ (b̄ = 1 − b̂) holds. Thus,
we can always remove the term ℓiℓj in a possible parent node, for instance the
monomial ℓ26ℓ24 in ℓ28 in Example 1 can be removed.

Eliminate Positive Nodes. In this step we eliminate nodes which are only non-
negated inputs to other nodes in the graph. This heuristic was already considered
in [14]. Since we restrict this heuristic to positive inputs, we can simply replace
every occurrence of the node by the corresponding tail in the gate polynomial
of the parent node. This, will increase the degree of the parent polynomial.
However, we can check whether parts of the new tail term of the parent are
equal to the tail term of another gate polynomial. If yes, we can reduce the
tail term and include the leading term. This will decrease the temporal increase
of the polynomial degree and furthermore will impose a node sharing which
will be useful in later Gröbner basis computations. For instance, consider the
polynomials f − da, e− ca, d− cb. We can derive f − cba = f − eb.

Propagating Equivalent Nodes. If at any point in the rewriting we derive a linear
polynomial of the form ℓi − ℓj or ℓi + ℓj − 1 we know that ℓi is equal to either ℓj
or to its negation 1− ℓj . We propagate this information by eliminating the topo-
logically larger node ℓi from the polynomial encoding. We choose to eliminate ℓi
and not ℓj in order to not mess up the reverse topological term ordering for
parent nodes of ℓj . Propagation of equivalent nodes may not directly lead to
linear gate polynomials, but helps to reduce the overall number of variables.
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Algorithm 4: Linearize-Single-Polynomial
Input : Polynomial p, Polynomial system G
Output: Linear polynomial plin or 0

1 v ← lm(p); d← 3 ;
2 while d ≤ dist(v) do
3 Cv ← {v} ∪ {Children-up-to-Distance(v, d)} ∪ {Siblings(v)};
4 Cv ← Cv ∪ {Parents(Cv)};
5 Gv ← Gate-Polynomials(Cv, G) ∪ Boolean-Input-Polynomials(Cv);
6 Gdrl ← Compute-≺drl-Gröbner-Basis (Gv);
7 if ∃plin ∈ Gdrl such that deg(plin) = 1 ∧ lm(plin) = v then return plin;
8 d← d+ 1;
9 end

10 return 0;

4.2 Linear Reduction

After preprocessing we repeatedly rewrite the linearized specification by the
polynomial p in the Gröbner basis that has the same leading monomial as the
specification (line 5 in Alg. 2). For doing so, we need to linearize p. The pseudo-
code is listed in Alg. 4. By Theorem 1, we know that a ≺drl-Gröbner basis of
a circuit must contain a linear polynomial plin with the same leading monomial
as p. If this condition is not met, then the circuit does not satisfy the specification,
as we cannot further reduce S.

Let v = lm(p). We aim to compute a Gröbner basis w.r.t. a ≺drl-ordering
for a sub-circuit Cv of C. The sub-circuit Cv is constructed by including v and
all children nodes of v up to a maximum distance d. Initially, we set d = 2.
If, during this process, we encounter a child node that already has a linear
polynomial representation, we do not further add its children. This allows us
to avoid unnecessary computations by excluding parts of the circuit that have
already been simplified. Additionally, we include all smaller sibling nodes of v.
Siblings are nodes that share at least one child with v. Moreover, we collect all
parent nodes whose children are already included in the current set of nodes.
This ensures that all relevant dependencies in the sub-circuit are captured.

This set of nodes represents the part of the circuit on which we will compute
a local ≺drl-Gröbner basis. The goal is to make the Gröbner basis just big enough
such that it contains a linear polynomial with leading term v.

If this local Gröbner basis does not contain the expected linear polynomial,
it suggests that the sub-circuit Cv is insufficient to capture the desired behavior.
In such cases, we repeat the process with an increased distance d of the sub-
circuit by adding more nodes. This iterative process continues until either a
linear polynomial is found, or, in the worst case we have computed a full ≺drl-
Gröbner basis for all gate polynomials that are topologically smaller than v.

While this approach guarantees the completeness of the verification process,
it comes with a practical limitation: computational complexity. If the sub-circuit
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grows too large (i.e., if too many nodes need to be added to Cv), the computation
of the ≺drl-Gröbner basis becomes infeasible in practice.

5 Experimental Evaluation

We evaluate our proposed approach on a set of multiplier benchmarks for differ-
ent input bit-widths n. For all the circuits we have S =

∑2n
i=0 2

isi− (
∑n

i=0 2
iai) ·

(
∑n

i=0 2
ibi), hence choose K = Q. Since all the leading coefficients of the gate

polynomials are 1, the computation will actually stay in the ring Z[X] ⊆ Q[X] [16].

5.1 Implementation

We implement Alg. 2 in our tool MultiLinG, written in C++. We employ the
following features:

– MultiLinG uses the polynomial arithmetic module from AMulet2 [15],
which is targeted towards polynomial arithmetic where the variables repre-
sent Boolean values and the coefficients are integer values. In particular, the
arithmetic engine automatically includes reasoning over the Boolean input
polynomials, by reducing exponents, i.e., it calculates x · x = x internally.

– We sort the variables based on their minimum distance to the primary inputs
to sort all extension variables next to the primary inputs, which gave us
better practical results than the column-wise variable order from AMulet2.

– As a consequence of the row-wise order, we do not apply an incremental
column-wise reduction algorithm [17], but rewrite the complete specification.

– For computing the ≺drl-Gröbner basis, we use the msolve [3] library. Since
msolve is designed for general purposes, we have to explicitly provide the
Boolean input polynomials.

– If the linearization of individual polynomials fails and the distance of the
node to the primary inputs is below six, we switch to non-linear rewriting
as a fall-back option.

– In contrast to AMulet2, we do not support proof logging at the moment,
as have not yet annotated msolve with corresponding proof logging steps.
This is part of future work.

In case of acceptance, we will prepare an artifact that will be submitted to
the voluntary artifact evaluation of TACAS.

5.2 Setup

We run our experiments on a Intel i7-1260P CPU. The time is listed in rounded
seconds (wall-clock time). The time limit for the aoki-benchmarks is 300 s, for
the ABC-benchmarks it is set to 1200 s. We set the memory limit to 1000MB.
We compare MultiLinG against the algebraic approaches of AMulet2 [15],
TeluMA [14], and DynPhaseOrderOpt [18]. The tools of related works [23]
and [21] are not publicly available.
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ABC-benchmarks Related work MultiLinG
n Synthesis Nodes [14] [15] [18] Time MergedNodes PosNodes LocalGB

32 resyn 7840 0.1 TO 0.2 0.3 1948 1 10
32 resyn2 7840 0.1 TO 0.3 0.3 1948 1 9
32 resyn3 7840 0.1 0.1 0.3 0.2 1952 0 0
32 dc2 7840 0.1 0.1 0.2 0.3 1952 0 0
32 complex 7839 TO TO 0.2 0.4 1948 0 9
64 resyn 32064 0.3 TO 1.0 5.6 7996 1 10
64 resyn2 32064 0.2 TO 1.0 5.9 7996 1 9
64 resyn3 32064 0.3 0.2 1.0 5.6 8000 0 0
64 dc2 32064 0.2 0.3 1.0 5.8 8000 0 0
64 complex 32063 TO TO 1.0 6.3 7996 0 9

128 resyn 129664 1.3 TO 5.7 200.6 32380 1 10
128 resyn2 129664 1.2 TO 6.4 214.1 32380 1 9
128 resyn3 129664 1.2 TO 7.7 209.3 32384 0 0
128 dc2 129664 1.1 TO 6.6 214.6 32384 0 0
128 complex 129663 TO TO 5.8 214.1 32380 0 9

Table 1. Results on ABC benchmarks with bit-width n.

Benchmarks. We evaluate our approach on integer multiplier circuits. Multipli-
ers consist of three main components: partial product generation (PPG), partial
product accumulation (PPA), and a final-stage adder (FSA). Each component
has optimized architectures to reduce space and delay.

Two encodings are frequently used for PPG: simple AND-gate-based gener-
ation or Booth encoding. In the former case, every partial product aibj is ex-
plicitly computed, hence we do not require extension variables in our approach.
For Booth encoding, we require extension variables as the partial products are
internally combined. During PPA, partial products are accumulated, with the
final two layers summed in the FSA.

In structured circuits, PPG, PPA, and FSA are clearly defined, benefiting
tools like AMulet2 and TeluMA that require a clear cut between PPA and
FSA to simplify the FSA. In synthesized circuits, gates are merged and rewritten
to optimize the circuit, which blurs these component boundaries, and complicates
direct verification. We consider two sets of benchmarks:

– aoki-multipliers [13]: This set of benchmarks contains 192 different non-
synthesized multiplier architectures with an input bit-width 64.

– synthesized ABC multipliers [1]: These multipliers are generated using dif-
ferent types of standard synthesis scripts within ABC: resyn, resyn2, resyn3,
dc2. We include a complex script that combines several synthesis techniques1.

5.3 Results

The results for the synthesized ABC multipliers are shown in Table 1. The
heuristics of AMulet2 and TeluMA are not robust for these benchmarks and
1

-c "logic; mfs2 -W 20; ps; mfs; st; ps; dc2 -l; ps; resub -l -K 16 -N 3 -w 100; ps; logic; mfs2 -W 20; ps; mfs; st; ps; iresyn
-l; ps; resyn; ps; resyn2; ps; resyn3; ps; dc2 -l; ps;"
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produce time outs. DynPhaseOrderOpt and our tool MultiLinG are both
able to solve all benchmarks within the time limit of 300 seconds. We provide
statistics on MultiLinG and show how often nodes with equal inputs are merged
(“MergedNodes”), the number of eliminated positive nodes (“PosNodes”), and
how often a local ≺drl-Gröbner basis is computed (“LocalGB”). In none of the
benchmarks we detected equivalent nodes. Interestingly for “resyn3” and “dc2”
everything could be linearized via merging nodes with equal inputs.

Figure 2 shows the results on the aoki-benchmarks. Both, TeluMA and
AMulet2, are able to solve the complete benchmark set. DynPhaseOrderOpt
solves 163 out of 192 benchmarks, whereas our approach is only able to solve 30
benchmarks. Although the number of solved instances is low for MultiLinG, we
are able to solve 14 out of the 29 benchmarks that DynPhaseOrderOpt does
not cover, which is shown in Figure 3. As an example, among those 14 instances
is a circuit consisting of a simple PPG, a grid-like PPA, and a carry-lookahead
adder as FSA. The circuit has 53861 nodes and it was solved in MultiLinG by
merging nodes with equal inputs 8002 times, removing positive nodes 7811 times
and finally computing a local ≺drl-Gröbner basis 3999 times. All instances that
MultiLinG could not solve timed out during the Gröbner bases computations.

Summarizing the evaluation, AMulet2 and TeluMA are highly efficient
on the structured circuits but are not robust on synthesized benchmarks. Dyn-
PhaseOrderOpt and MultiLinG are both robust and complement each other
on complex multiplier designs. Hence we believe that our proposed approach is
a valuable addition to the algebraic verification landscape and will be even more
powerful when it is combined with existing methods.

6 Conclusion

In this paper we have presented a novel technique to verify directed acyclic
graphs using computer algebra. Our first contribution is a theoretical theorem
that shows how we can perform the ideal membership test of a specification
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polynomial using only linear polynomial operations. Secondly, we discuss how
we can apply this theorem in practice to overcome the double-exponential com-
plexity of computing a Gröbner basis. We present a technique that incrementally
computes Gröbner bases for small sub-graphs to extract the linear information
of the polynomials. We have demonstrated the potential of our approach on a
set of multiplier circuits that have been challenging to verify so far.

In the future we aim to turn the black-box Gröbner basis approach into a
white-box and explore how we can derive the linear polynomials without the
computation of a full Gröbner basis. We also envision equivalence checking as a
potential application, as this restricts the computation to Boolean polynomials.
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20 D. Kaufmann and J. Berthomieu

A Complete Gröbner basis for two-bit multiplier

gb [1 ]= l10−t00 gb [27]= l16 ∗a1−l16
gb [2 ]= s0−l10 gb [28]=b0^2−b0
gb [3 ]= l12−t10 gb [29]= t10 ∗b0−t10
gb [4 ]= l14−t01 gb [30]= t00 ∗b0−t00
gb [5 ]= l18−l16+t01+t10−1 gb [31]= l16 ∗b0−l16
gb [6 ]= l20+2∗l16−t01−t10 gb [32]=b1^2−b1
gb [7 ]= s1−l20 gb [33]= t11 ∗b1−t11
gb [8 ]= l22−t11 gb [34]= t10 ∗b1−t11 ∗b0
gb [9 ]= l24−l16 gb [35]= t01 ∗b1−t01
gb [10]= l26−l24+l16+t11−1 gb [36]= t00 ∗b1−t01 ∗b0
gb [11]= l28+2∗l24−l16−t11 gb [37]= l16 ∗b1−l16
gb [12]= s2−l28 gb [38]= t11^2−t11
gb [13]= s3−l24 gb [39]= t10 ∗t11−t11 ∗b0
gb [14]= a0^2−a0 gb [40]= t01 ∗t11−t11 ∗a0
gb [15]=b0∗a0−l10 gb [41]= t00 ∗t11−l16
gb [16]=b1∗a0−t01 gb [42]= l16 ∗ t11−l24
gb [17]= t01 ∗a0−t01 gb [43]= t10^2−t10
gb [18]= t00 ∗a0−t00 gb [44]= t01 ∗t10−l16
gb [19]= l16 ∗a0−l16 gb [45]= t00 ∗t10−t10 ∗a0
gb [20]= a1^2−a1 gb [46]= l16 ∗ t10−l16
gb [21]=b0∗a1−t10 gb [47]= t01^2−t01
gb [22]=b1∗a1−t11 gb [48]= t00 ∗t01−t01 ∗b0
gb [23]= t11 ∗a1−t11 gb [49]= l16 ∗ t01+l16 ∗ t10+l20−t01−t10
gb [24]= t10 ∗a1−t10 gb [50]= t00^2−t00
gb [25]= t01 ∗a1−t11 ∗a0 gb [51]= l16 ∗ t00−l16
gb [26]= t00 ∗a1−t10 ∗a0 gb [52]= l16^2−l16
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