
HAL Id: hal-04846612
https://hal.sorbonne-universite.fr/hal-04846612v1

Preprint submitted on 18 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A functional framework for nonsmooth autodiff with
maxpooling functions

Bruno Després

To cite this version:
Bruno Després. A functional framework for nonsmooth autodiff with maxpooling functions. 2024.
�hal-04846612�

https://hal.sorbonne-universite.fr/hal-04846612v1
https://hal.archives-ouvertes.fr

A functional framework for nonsmooth autodiff with max-
pooling functions

Bruno Després bruno.despres@sorbonne-universite.fr
LJLL, Sorbonne Universite, Paris, France

Abstract

We make a comment on the recent work Boustany (2024), by showing that the Murat &
Trombetti (2003) Theorem is a simple and efficient mathematical framework for nonsmooth
automatic differentiation of maxpooling functions. In particular it gives a the chain rule
formula which correctly defines the composition of Lipschitz-continuous functions which are
piecewise C1 . The formalism is applied to four basic examples, with some tests in PyTorch.
A self contained proof of an important Stampacchia formula is in the appendix.

1 Introduction

In this work we make a comment on the recent work by Boustany (2024). We will show that the Murat &
Trombetti (2003) Theorem gives a natural framework for nonsmooth automatic differentiation (nonsmooth
autodiff). More generally we believe that the methods developed hereafter offer a comprehensive mathemat-
ical functional framework for the description of nonsmooth autodiff. Recent contributions on mathematical
issues for nonsmooth autodiff are developed in Bolte & Pauwels (2021); Bertoin et al. (2021; 2023); Boustany
(2024) and references therein, based on the Clarke derivative Clarke (1990). The historical remark in Bolte
& Pauwels (2021) provides insights on related topics.

Notations and developments in this self contained article are kept to the minimum.

The first part introduces the notation and provides two examples which illustrate the apparent paradox
discussed in this work. In a second part let us note that similar problems have been identified in the partial
differential community between 1966 Stampacchia (1963) and 1990 Kinderlehrer & Stampacchia (2000),
Ambrosio & Dal Maso (1990), and that the Murat & Trombetti (2003) Theorem very conveniently describes
the mathematics of nonsmooth autodiff. A preliminary work Berner et al. (2019) has already highlighted
the potential interest of the Murat-Trombetti Theorem for nonsmooth autodiff. However the discussion was
restricted to activation functions only, so to the best of our understanding, the scope in Berner et al. (2019)
was limited to fully-connected feed-forward neural network function where the main difficulty can be ruled
out by means of a trivial simplification using R′(0) = 0 where R is the ReLU activation function. Quite
surprisingly the main illustrative example in the Murat-Trombettti contribution has exactly the structure of a
modern basic convolutional neural network function (CNN) Bengio et al. (2017) with a maxpooling function.
That is why we provide a detailed and self contained proof of the Murat-Trombetti Theorem. We hope
that the discussion below will contribute to popularize this approach among the Machine Learning scientific
community and to show its potential for the description of many problems that intervene in nonsmooth
automatic differentiation. In the third part, we will show how to describe the solution of basic problems in
the context of the Murat-Trombetti Theorem. The general conclusion will be that the gradient constructed
through nonsmooth autodiff in PyTorch is systematically equal to an associated gradient in the sense of
Murat-Trombetti.

The author warmly thanks his colleague François Murat for his deep explanations on mathematical methods
for the differentiation of nonsmooth functions. What follows is a direct application of the ideas in Murat &
Trombetti (2003), with a minor adaptation of the notation.

1

2 Notation and examples

A fully-connected feed-forward neural network function f : Rm → Rn can be written as

f = f` ◦ S` ◦ f`−1 ◦ S`−1 ◦ · · · ◦ f1 ◦ S1 ◦ f0 (1)

where the parameter ` is identified with the number of hidden layers. The functions fi for i = 1, . . . , `
are affine functions with varying input and output dimensions (a0, a1, . . . , a`+1) ∈ N`+2 with ai > 0, for
i = 1, . . . , `. More precisely, fi(xi) = Wixi + bi ∈ Rai+1 for all xi ∈ Rai . The intermediate functions Si for
i = 1, . . . , ` are the nonlinear activation functions Sharma et al. (2017). We adopt the normalization that
0 ≤ S′i(x) ≤ 1 for almost all x ∈ R. The ReLU function Si = R with

R(x) = max(0, x)

is an extremely popular activation function used in production codes Bengio et al. (2017). The mathematical
issues discussed in this work come from the fact that the ReLU function is not differentiable at x = 0.
The point-wise non differentiability is shared with other basic functions in Neural Networks. For example
maxpooling used in convolutional neural networks Bengio et al. (2017) is based on the maximum function

(a, b) 7→ max(a, b)

which is also not uniquely differentiable for a = b. In practice maxpooling is activated on blocks or windows
of numbers on tensors of arbitrary dimensions. With adapted natural notations Pintore & Després (2024),
the representation (1) holds for CNN as well by taking f` to be the identity and S` to be a softmax function
Bengio et al. (2017). We note that all these the activation functions Si, and by extensionmaxpooling functions
and all similar functions, are Lipschitz-continuous by assumption.

Since linear functions fi are clearly Lipschitz, then the feed-forward function (1) is Lipschitz by composition
of Lipschitz functions. One has f ∈ Lip(Ra0)a`+1 . Any "intermediate" step is also Lipschitz, that is

fr ◦ Sr ◦ · · · ◦ f1 ◦ S1 ◦ f0 ∈ Lip(Ra0)ar+1 for 0 ≤ r ≤ `

as well as Sr◦· · ·◦f1◦S1◦f0 ∈ Lip(Ra0)ar for 0 ≤ r ≤ `. The Rademacher (1919) Theorem, see also Morrey Jr
(2009), states that the functions f , fr and Sr for 0 ≤ r ≤ ` are differentiable almost everywhere (that is up to
sets of zero measure). So the gradient of f , written as a matrice, is bounded ∇f ∈ L∞(Ra0 :Ma`+1,a0(R)).
Similarly one has

Ar = ∇fr ◦ Sr ◦ · · · ◦ S1 ◦ f0 ∈ L∞(Ra0 :Mar+1,a0(R))
and

Br = ∇Sr ◦ · · · ◦ S1 ◦ f0 ∈ L∞(Ra0 :Mar,a0(R)).
Then a natural mathematical question is to give a meaning to the chain rule formula

∇f(x) = A`(x)B`(x)A`−1(x)B`−1(x) . . . A1(x)B1(x)A0(x). (2)

For feed-forward functions, our notations imply that Ar(x) = Wr is constant with respect to x, so there is no
difficulty. The main difficulty is here concentrated in the matrices Br(x). Nonsmooth autodiff with respect
to the weights and biases leads to similar difficulties. To illustrate the issue and the apparent paradox, we
consider two examples.

2.1 First example

The first example is degenerate in a sense. We take f0(x) = w0x where the weight is w0 ∈ R and S0(x) =
R(x). Then f(x) = R(w0x) and (2) becomes

f ′(x) = R′(w0x)w0, (3)

where R′(y) = 0 for y < 0, R′(y) = 1 for y > 0, but R′(0) is not defined. A problem shows up if w0 = 0
because the function x 7→ R′(w0x) is not defined in this case. Of course, one can argue that the multiplication
by w0 = 0 is enough to obtain the correct solution f ′ = 0. However this operation is not correct on solid
mathematical grounds because the function x 7→ R′(w0x) is not mathematically defined for w0 = 0.

2

2.2 Second example

The second example is more problematic. It comes from Murat & Trombetti (2003) but is rewritten here
with Neural Networks notation. Consider two functions f0 and S0. The function f0 : R→ R2 is linear

f0(x) = (x, x) = W0x with W0 = (1, 1)

while the second function S0 is a maxpooling function over two values

S0(y) = max(y1, y2), where y = (y1, y2) ∈ R2. (4)

Then f = S0 ◦ f0 is the identity f(x) = x for all x ∈ R, so that f ′ ≡ 1 is of course bounded. The gradient of
f0 is ∇f0 = W0. The gradient of S0 is defined almost everywhere. There are three cases: the two first cases
are

if y1 > y2 then ∇S0(y) =
(

1
0

)
, if y1 < y2 then ∇S0(y) =

(
0
1

)
.

The third case is for y1 = y2, then ∇S0(y) is not defined.

Since f(x) = x, the chain rule formula (2) writes

1 = ∇S0(f0(x))W0. (5)

Since f0(x) = (x, x) then ∇S0(f0(x)) is nowhere defined. Since W0 6= 0, one can not argue as in the first
example that the product with W0 is enough to recover the correct solution. One obtains a paradox since
the left hand side equal to 1 is perfectly known while the right hand side is not even a correctly defined
function.

2.3 General case

The general case is that the chain rule formula (2) has no clear interpretation. In our opinion, it is related
to some seemingly erratic behavior of nonsmooth autodiff related to the example Boustany (2024) detailed
in Section 4.3.

3 The Murat-Trombetti Theorem

The Murat & Trombetti (2003) Theorem offers a natural solution to the apparent paradox explained in the
previous examples. It is adapted in the sequel for the context of Neural Networks. We slightly adapt the
notations from Murat & Trombetti (2003) and use two different notations for the gradient ∇f and for the
associated gradient ∇̃f . The examples will show that associated gradients correspond to gradients calculated
with autodiff.

We will need the notion of Lipschitz and piecewise C1 functions Ra → Rb which is defined as follows. We
consider a finite decomposition of Ra in Lipschitz pieces Pα for finite number of values 1 ≤ α <∞

Ra =
⋃
α

Pα, Pα ∩ P β = ∅ for α 6= β.

For the simplicity, the pieces Pα are piecewise affine. It means that they correspond to polygons, polyhedrons,
lines, half lines, points and all finite unions and intersections of such objects in any dimension. This intuitive
condition will be evident in our examples so we do not detail it and refer to Murat & Trombetti (2003).
More general pieces are possible.

We assume that there exists functions fα : Ra → Rb with the regularity fα ∈ Lip(Ra : Rb)∩C1(Ra : Rb) for
all α such that

f(x) =
∑
α

1Pα(x)fα(x) ∀x ∈ Ra (6)

where the notation 1ω denotes the indicatrix function of a set ω, that is 1ω(x) = 1 for x ∈ ω and 1ω(x) = 0
for x 6∈ ω.

3

Definition 1. The main idea in Murat & Trombetti (2003) is a gradient defined everywhere associated to
the representation (6). We note it

∇̃f(x) =
∑
α

1Pα(x)∇fα(x) ∈Mb,a(R) ∀x ∈ Ra. (7)

In brief we refer to it as an associated gradient.

The associated gradient is a real b × a matrix defined for all x ∈ Ra. It is not unique since it depends on
the representation (6) which is not unique. Corollary 1 will show that it is equal to the gradient almost
everywhere.
Theorem 1 (Murat-Trombetti). Consider two functions u ∈ Lip(Ra : Rb) and v ∈ Lip(Rb : Rc). Assume v
is piecewise C1 so that it admits the representation (6) and has an associated gradient (7). Then the chain
rule identity holds in L∞(Ra :Mc,a(R))

∇(v ◦ u) = ∇̃v ◦ u ∇u.

Hint of the proof. The key part of the proof is the third step in (Murat & Trombetti, 2003, page 590) that
we reproduce mutatis mutandi within the convenient functional setting. The two first steps in Murat &
Trombetti (2003) are evident for u and v Lipschitz. The fourth and fifth steps concern additional properties.

• Since v is piecewise C1, it admits a piecewise smooth approximations denote as vα ∈ C1(Rb) for all α.
Since ∇vα ◦ u ∈ C0(Ra : Rc) is a continuous function, the chain rule is applied without difficulty

∇(vα ◦ u) = ∇vα ◦ u ∇u. (8)

This identity holds almost everywhere (a.e.) with respect to x ∈ Rb. Let Uα be the measurable set

Uα = {x ∈ Ra u(x) ∈ Pα}. (9)

• One notes that
v(u(x)) = vα(u(x)) a.e. x ∈ Uα. (10)

To use this identity one notes w = v◦u−vα◦u. Then one uses an intuitive but non trivial important property
from Stampacchia (1963); Kinderlehrer & Stampacchia (2000) (a self contained proof is in the appendix). It
writes

∇w(x) = 0 a.e. x ∈ {x ∈ Ra : w(x) = 0}. (11)

Since Uα ⊂ {x ∈ Ra : w(x) = 0}, it yields using (8)

∇(v ◦ u)(x) = ∇vα ◦ u(x) ∇u(x) a.e. x ∈ Uα. (12)

One also has
1Uα(x) = 1Pα(u(x)) a.e. x ∈ Ra. (13)

• Consider the difference of the two terms in the claim A(x) = ∇(v ◦ u)(x)− ∇̃v ◦ u ∇u. It writes also

A(x) = ∇(v ◦ u)− (
∑
α 1Pα(u(x))∇vα(u(x)))∇u(x)

= (
∑
α 1Pα(u(x)))∇(v ◦ u)(x)− (

∑
α 1Pα(u(x))∇vα(u(x))∇u(x))

=
∑
α 1Pα(u(x)) (∇(v ◦ u)(x)−∇vα(u(x))∇u(x))

=
∑
α 1Uα(x) (∇(v ◦ u)(x)−∇vα(u(x))∇u(x)) (use (13))

=
∑
α 1Uα(x) (0) (use (12))

where all manipulations holds a.e. with respect to x. Therefore A(x) = 0 a.e. which is the claim.

Corollary 1. The associated gradient of Definition 1 is equal to the gradient ∇f almost everywhere with
respect to x. That is ∇̃f = ∇f in the space L∞(Ra :Ma,a(R)).

4

Proof. Write Theorem 1 with v = f and u(x) = x, so that ∇u = I is the identity matrix.

Corollary 2. Consider a Neural Network function f defined by the composition formula (1) where all
functions fr and Sr are Lipschitz for 1 ≤ r ≤ `. Assume moreover that all fr and Sr are piecewise C1 so
that they admit associated gradients (7)

Ãr = ∇̃fr ◦ Sr ◦ · · · ◦ S1 ◦ f0 ∈ L∞(Ra0 :Mar+1,a0(R))

and
B̃r = ∇̃Sr ◦ · · · ◦ S1 ◦ f0 ∈ L∞(Ra0 :Mar,a0(R)).

Then
∇f = Ã`(x)B̃`(x)Ã`−1(x)B̃`−1(x) . . . Ã1(x)B̃1(x)Ã0(x) a.e. x ∈ Ra (14)

where the right hand side is defined for all x ∈ Ra.

Proof. The proof is based on iterations of Theorem 1.
• The first step is based on f = f` ◦ (S` ◦ f`−1 ◦ . . . f0). It yields

∇f = ∇̃f` ◦ S` ◦ f`−1 ◦ f0 ∇S` ◦ f`−1 ◦ · · · ◦ f0.

The gradient ∇f is expressed as the product of one associated gradient and one gradient.
• The second step is based on S` ◦ f`−1 ◦ . . . f0 = S` ◦ (f`−1 ◦ . . . f0). One obtains

∇S` ◦ f`−1 ◦ · · · ◦ f0 = ∇̃S` ◦ f`−1 ◦ S1 ◦ f0 ∇f`−1 ◦ . . . S1 ◦ f0

One substitutes this expression in the expression for ∇f which is now expressed as the product of two
associated gradients and one gradient.
• Then iterations yields the result. The right hand side of the claim is defined for all x by definition of the
associated gradients.

If the functions fr are linear one can simplify using Ãr(x) = Wr which is a constant matrix. One obtains
the representation

∇f = W`B̃`(x)W`−1B̃`−1(x) . . .W1B̃1(x)W0 a.e. x ∈ Ra

where the right hand side is defined for all x ∈ Ra.

4 Examples

We illustrate the interest of the Murat-Trombetti Theorem on simple examples where the number of layers
is limited for the sake of simplicity.

4.1 Back to the first example

The issue is the value of the derivative of the ReLU function at the origin.

One can simply use three pieces P 1 = (−∞, 0), P 2 = (0,∞) and P 3 = {0} to construct the associated
derivative R̃′. The three smooth functions are f1, f2 and f3. By definition f1(x) = R(x) = 0 for x ∈ P 1,
then (f1)′(x) = 0 for x ∈ P 1. Similarly f2(x) = R(x) = x for x ∈ P 2, then (f2)′(x) = 1 for x ∈ P 2. The
only constraint on f3 is f3(0) = 0, so (f3)′(0) can be any real number. Let us note (f3)′(0) = z ∈ R.

So the associated derivative is

R̃′(x) = 0 for x < 0, R̃′(x) = 1 for x > 0, R̃′(x) = z for x = 0.

Clearly the associated derivative depends on the choice of z, so a better but heavier notation would have
been R̃′z for the associated derivative. Most of the studies about the influence of the derivative of the ReLU

5

at the origin are restricted to z = 0 that is to R̃′(0) = 0, see Boustany (2024); Berner et al. (2019); Bertoin
et al. (2021). The previous detailed analysis shows that z 6= 0 is also possible.

Whatever the value of z, then (3) becomes f ′ = R̃′w0 which is non ambiguous for w0 = 0 since R̃′ is correctly
defined. However, once again, the use of an associated gradient is not mandatory in this case since there is
no real difficulty for w0 = 0.

4.2 Back to the second example

To construct an associated gradient for the maxpooling function S0 (4), one can distinguish three pieces
which are P 1 = {(y1, y2) ∈ R2 : y1 < y2}, P 2 = {(y1, y2) ∈ R2 : y1 > y2} and P 3 = {(y1, y2) ∈
R2 : y1 = y2}. Then the smooth functions are f1, f2 and f3. Clearly f1(y1, y2) = y1 in P 1, so that
∇f1(y1, y2) = (1, 0) in P 1. For similar reasons, ∇f2(y1, y2) = (0, 1) in P 2.

The critical situation concerns P 3. The construction principle (6) yields that f3(y1, y2) = y1 = y2 in P 3.
It can be written f3(y, y) = y for all y ∈ R. The function f3 being continuously differentiable, one has
necessarily ∂y1f

3(y, y) + ∂y2f
3(y, y) = 1 for all y, that is

∂y1f
3(y1, y2) + ∂y2f

3(y1, y2) = 1 on P 3. (15)

Let us now examine what is the meaning of the modified chain rule formula which replaces the initial one
(5). This modified chain rule formula can be taken from Corollary 2

1 = ∇̃S0(f0(x))W0 for all x ∈ R. (16)

The key observations are that W0 = (1, 1) and that ∇̃S0(f0(x)) = ∇f3(f0(x)) since f0(x) ∈ P 3. Then (16)
reduces to the identity (15) which holds by definition. So the paradox does not show up again.
Remark 1. A simple geometrical interpretation emerges from the fact that (16) reduces to (15). Actually
the gradient of f3 can take any value in the direction normal to the line P 3 while it takes the correct value
in the direction tangent to P 3.

4.3 The Boustany example

This example is proposed in Boustany (2024) to exemplify the issues at stake with nonsmooth autodiff with
maxpoooling functions. The example is directly implemented in PyTorch. One defines a first maximum
function max1 for a vector x ∈ Ra of arbitrary size a ≥ 1. The scripts taken from Boustany (2024) are
in Table 1, together with a second maximum function max2 which is a PyTorch function. Then for given
x ∈ Ra, one defines the function

t 7→ f(t) = max1(tx)−max2(tx).

def max1(x):
res = x[0]
for i in range(1, a):
if x[i] > res: res = x[i]
return res

def max2(x):
return torch.max(x)

Table 1: Script of the functions max1 and max2

By construction f is the null function.

However it is reported in (Boustany, 2024, Table 1) that the derivative calculated with autodiff in PyTorch
is not zero. More precisely take x = (1, 2, 3, 4), then f ′(t) is (numerically) zero everywhere except at t = 0
where the derivative is ≈ −1.5. Our own tests reported in Table 2 confirm this observation.

The explanation in the context of the Murat-Trombetti representation formula (7) is as follows. The function
max1 calculated with autodiff is given in Table 1. It yields that the associated gradient of max1 is calculated

6

t -1 -0.5 -0.01 0 0.01 0.5 1
derivative of f 0 0 0 -1.5 0 0 0

Table 2: Values of the derivative of f calculated with autodiff within PyTorch

accordingly to the representation
P 1 = {x ∈ R4| x1 ≥ max(x2, x3, x4)}, f1(x) = x1,
P 2 = {x ∈ R4| x1 < x2 and x2 ≥ max(x3, x4)}, f2(x) = x2,
P 3 = {x ∈ R4| max(x1, x2) < x3 and x3 ≥ x4}, f3(x) = x3,
P 4 = {x ∈ R4| max(x1, x2, x3) < x4}, f4(x) = x4

(17)

where x = (x1, x2, x3, x4). Then the associated gradient is

∇̃max1(x) = (1, 0, 0, 0) in P 1, (0, 1, 0, 0) in P 2, (0, 0, 1, 0) in P 3, (0, 0, 0, 1) in P 4. (18)

The representation that we propose for max2 is different. It is based on
P 1 = {x ∈ R4| x1 > max(x2, x3, x4)}, f1(x) = x1,
P 2 = {x ∈ R4| x2 > max(x1, x3, x4)}, f2(x) = x2,
P 3 = {x ∈ R4| x3 > max(x1, x2, x4)}, f3(x) = x3,
P 4 = {x ∈ R4| x4 > max(x1, x2, x3)}, f4(x) = x4,
P 5 = {x ∈ R4| x1 = x2 > max(x3, x4)}, f5(x) = (x1 + x2)/2,
P 6 = {x ∈ R4| x1 = x3 > max(x2, x4)}, f6(x) = (x1 + x3)/2,
P 7 = {x ∈ R4| x1 = x4 > max(x2, x3)}, f7(x) = (x1 + x4)/2,
P 8 = {x ∈ R4| x2 = x3 > max(x1, x4)}, f8(x) = (x2 + x3)/2,
P 9 = {x ∈ R4| x2 = x4 > max(x1, x3)}, f9(x) = (x2 + x4)/2,
P 10 = {x ∈ R4| x3 = x4 > max(x1, x2)}, f10(x) = (x3 + x4)/2,
P 11 = {x ∈ R4| x1 = x2 = x3 > x4}, f11(x) = (x1 + x2 + x3)/3,
P 12 = {x ∈ R4| x1 = x2 = x4 > x3}, f12(x) = (x1 + x2 + x4)/3,
P 13 = {x ∈ R4| x1 = x3 = x4 > x2}, f13(x) = (x1 + x3 + x4)/3,
P 14 = {x ∈ R4| x2 = x3 = x4 > x1}, f14(x) = (x2 + x3 + x4)/3,
P 15 = {x ∈ R4| x1 = x2 = x3 = x4}, f15(x) = (x1 + x2 + x3 + x4)/4.

(19)

It yields
∇̃max2(x1, x2, x3, x4) = 1

N(x1, x2, x3, x4) (y1, y2, y3, y4) (20)

where

• N(x1, x2, x3, x4) is the number of values xi (1 ≤ i ≤ 4) equal to the maximum value
max(x1, x2, x3, x4),

• yi = 1 if xi = max(x1, x2, x3, x4), and xi = 0 if ai < max(x1, x2, x3, x4).

Remark 2. The examination of (19) shows that ∇̃max2 is symmetrized. One has for example

∇̃max2(0) = 1
4(1, 1, 1, 1), 0 = (0, 0, 0, 0). (21)

More precisely, the associated gradient ∇̃max2 is invariant under the action of permutations among the values
equal to the maximum. This is confirmed by numerical evidence based on elementary tests in PyTorch.

Now let us calculate the associated derivative of f at t = 0 with the rules of automatic differentiation

f̃ ′(0) = d

dt
max1(t, 2t, 3t, 4t)|t=0 −

d

dt
max2(t, 2t, 3t, 4t)|t=0

that is
f̃ ′(0) = ∇̃max1(0) · (1, 2, 3, 4)− ∇̃max2(0) · (1, 2, 3, 4).

One obtains f̃ ′(0) = (1, 0, 0, 0) · (1, 2, 3, 4) − 1
4 (1, 1, 1, 1) · (1, 2, 3, 4) = 1 − 10/4 = −1.5 which is the value

reported in Boustany (2024) and in Table 2.

7

4.4 A simplified Boustany example

Finally we prepare another simple example in the spirit of Boustany (2024), but where the maximum is
calculated with the MaxPool1d function of PyTorch. Maxpooling is an important and popular operation in
modern neural networks.

We assemble the function f(t) = maxpool1d(t, 4t)−maxpool1d(4t, t). Some values implemented in PyTorch
are given in Table 3. The explanation of the value of f ′(0) is as follows. Actually all numerical test show that
the PyTorch function maxpool1d = torch.nn.MaxPool1d(2, stride = 1) with a window of 2 elements has the
same associated gradient as the function max1 presented in Table 1. Therefore ∇̃maxpool1d(0, 0) = (1, 0).
Then f̃ ′(0) = (1, 0) · (1, 4)− (4, 1)(1, 0) · (1, 4) = −3 which is the value in Table 3 observed in the numerical
tests.

t -1 -0.5 -0.01 0 0.01 0.5 1
f ′(t) 0 0 0 -3 0 0 0

Table 3: Values of the derivative calculated with autodiff within PyTorch

5 Conclusion

The Murat-Trombetti Theorem provides a simple functional framework which allows to manipulate compo-
sition of Lipschitz and piecewise C1 functions. It constructs an associated gradient which is defined for all
values of the input variable. An associated gradient is not unique nevertheless. We have observed that the
gradient obtained from nonsmooth autodiff in PyTorch is systematically equal to an associated gradient in
the sense of Murat-Trombetti. This approach also provides a non ambiguous chain rule formula, that was
actually the key in the original paper Murat & Trombetti (2003).

Connections with the method of breakpoints described in Daubechies et al. (2019) is a priori possible. We
mention some problems which could be the subject for future researches. Some of them are already evoked
in Berner et al. (2019).

Evaluation of the Lipschitz constant of a function modeled with Neural Network: The numerical
evaluation and use of the Lipschitz constant of a given Neural Network function where the weights Wr and
the biaises br are given has the subject of recent researches Combettes & Pesquet (2020); Virmaux & Scaman
(2018); Pintore & Després (2024); Béthune (2024). More solid foundations for these works can be obtained
with associated gradients.

More variables and training: The associated gradient has been introduced and studied in this work on
examples with limited number of layers and with limited number of variables. In practice a Neural Network
function is defined with respect to space variables (typically x in (1)) and to parameters (typically Wr and
br in (1)). Then it raises the mathematical question of the definition of an associated gradient with respect
to all variables. There is major practical interest in designing an associated gradient with respect to the
parameters Wr and br only. It can be used to describe a functional setting for training sequences and to
compare with the numerical tests in Boustany (2024).

References
Luigi Ambrosio and Gianni Dal Maso. A general chain rule for distributional derivatives. Proceedings of the
American Mathematical Society, 108(3):691–702, 1990.

Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep learning, volume 1. MIT press Cambridge, MA,
USA, 2017.

Julius Berner, Dennis Elbrächter, Philipp Grohs, and Arnulf Jentzen. Towards a regularity theory for relu
networks–chain rule and global error estimates. In 2019 13th International conference on Sampling Theory
and Applications (SampTA), pp. 1–5. IEEE, 2019.

8

David Bertoin, Jérôme Bolte, Sébastien Gerchinovitz, and Edouard Pauwels. Numerical influence of relu’(0)
on backpropagation. Advances in Neural Information Processing Systems, 34:468–479, 2021.

David Bertoin, Jérôme Bolte, Sébastien Gerchinovitz, and Edouard Pauwels. Erratum: Numerical influence
of relu’(0) on backpropagation. Technical report, 2023. URL https://hal.science/hal-03265059/
file/Impact_of_ReLU_prime.pdf.

Louis Béthune. Deep learning with Lipschitz constraints. PhD thesis, Université de Toulouse, 2024.

Jérôme Bolte and Edouard Pauwels. Conservative set valued fields, automatic differentiation, stochastic
gradient methods and deep learning. Mathematical Programming, 188:19–51, 2021.

Ryan Boustany. On the numerical reliability of nonsmooth autodiff: a maxpool case study. Transactions on
Machine Learning Research, 2024. URL https://arxiv.org/abs/2401.02736.

Frank H Clarke. Optimization and nonsmooth analysis. SIAM, 1990.

Patrick L Combettes and Jean-Christophe Pesquet. Lipschitz certificates for layered network structures
driven by averaged activation operators. SIAM J. on Math. of Data Science, 2(2):529–557, 2020.

Ingrid Daubechies, Ronald A. DeVore, Simon Foucart, Boris Hanin, and Guergana Petrova. Nonlinear
approximation and (deep) relu neural networks. Constructive Approximation, 55:127–172, 2019.

Lawrence Craig Evans. Measure theory and fine properties of functions. Routledge, 2018.

David Kinderlehrer and Guido Stampacchia. An introduction to variational inequalities and their applica-
tions. SIAM, 2000.

Charles Bradfield Morrey Jr. Multiple integrals in the calculus of variations. Springer Science & Business
Media, 2009.

François Murat and Cristina Trombetti. A chain rule formula for the composition of a vector-valued function
by a piecewise smooth function. Bollettino dell’Unione Matematica Italiana, 6(3):581–595, 2003.

Moreno Pintore and Bruno Després. Computable lipschitz bounds for deep neural networks. Technical
report, 2024. URL https://inria.hal.science/hal-04756410.

Hans Rademacher. Über partielle und totale differenzierbarkeit von funktionen mehrerer variabeln und über
die transformation der doppelintegrale. Mathematische Annalen, 79(4):340–359, 1919.

Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions in neural networks. Towards
Data Sci, 6(12):310–316, 2017.

Guido Stampacchia. Equations elliptiques du second ordre à coefficients discontinus. Séminaire Jean Leray,
(3):1–77, 1963.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and efficient
estimation. Advances in Neural Information Processing Systems, 31, 2018.

A A self contained proof of the Stampacchia property

The Stampacchia property Stampacchia (1963); Kinderlehrer & Stampacchia (2000) states that a function
w ∈ Lip(Ra) is such that

∇w(x) = 0 a.e. x ∈ {x ∈ Ra : w(x) = 0}. (22)

A simple proof comes from a regularization technique. See also Evans (2018).
First regularization. Consider x 7→ |x|ε =

√
x2 + ε for ε > 0. The derivative is d

dx |x|ε = x√
x2+ε .

9

https://hal.science/hal-03265059/file/Impact_of_ReLU_prime.pdf
https://hal.science/hal-03265059/file/Impact_of_ReLU_prime.pdf
https://arxiv.org/abs/2401.02736
https://inria.hal.science/hal-04756410

Thanks to the Rademacher Theorem, w admits a gradient ∇w ∈ L∞(Ra)a. Also |w| admits a gradient
∇|w| ∈ L∞(Ra)a as well because |w| is also Lipschitz. Take a vectorial smooth test function with compact
support ϕ ∈ C1

0 (Ra). The integration by part formula holds∫
∇|w|(x) · ϕ(x)dx = −

∫
|w|(x)∇ · ϕ(x)dx = − lim

ε→0+

∫
|w|ε(x)∇ · ϕ(x)dx.

There is no difficulty in passing to the limit because w is continuous. A reverse integration by parts shows
that

−
∫
|w|ε(x)∇ · ϕ(x)dx =

∫
∇|w|ε(x) · ϕ(x)dx =

∫ w(x)√
w(x)2+ε

∇w(x) · ϕ(x)dx

=
∫
w(x)>0

w(x)√
w(x)2+ε

∇w(x) · ϕ(x)dx+
∫
w(x)<0

w(x)√
w(x)2+ε

∇w(x) · ϕ(x)dx+
∫
w(x)=0

w(x)√
w(x)2+ε

∇w(x) · ϕ(x)dx.

In the right hand side, the last integral vanishes of course. In the first integral one has the boundedness∣∣∣∣ w(x)√
w(x)2+ε

∇w(x) · ϕ(x)
∣∣∣∣ ≤ |∇w(x) · ϕ(x)| where on the right hand side the function x 7→ |∇w(x) · ϕ(x)|

defines a function in L1(Ra). One also has pointwise convergence almost everywhere with respect to x
w(x)√
w(x)2+ε

∇w(x) · ϕ(x) → sign(w(x))∇w(x) · ϕ(x) a.e. x. Therefore the Lebesgue dominated convergence
Theorem yields

lim
ε→0+

∫
w(x)>0

w(x)√
w(x)2 + ε

∇w(x) · ϕ(x)dx =
∫
w(x)>0

∇w(x) · ϕ(x)dx.

Similarly limε→0+
∫
w(x)<0

w(x)√
w(x)2+ε

∇w(x) · ϕ(x)dx = −
∫
w(x)<0∇w(x) · ϕ(x)dx. It yields the formula

∫
∇|w|(x) · ϕ(x)dx =

∫
w(x)>0

∇w(x) · ϕ(x)dx−
∫
w(x)<0

∇w(x) · ϕ(x)dx. (23)

Second regularization. Let us now redo the calculation but starting from a different regularization of the
absolute value. We take x 7→ |x|ε =

√
(x+

√
ε)2 + ε for ε > 0, with derivative d

dx |x|
ε = x+

√
ε√

(x+
√
ε)2+ε

.

One has
∫
∇|w|(x) · ϕ(x)dx = −

∫
|w|(x)∇ · ϕ(x)dx = − limε→0+

∫
|w|ε(x)∇ · ϕ(x)dx and

−
∫
|w|ε(x)∇ · ϕ(x)dx =

∫
∇|w|ε(x) · ϕ(x)dx =

∫ w(x)+
√
ε√

(w(x)+
√
ε)2+ε

∇w(x) · ϕ(x)dx

=
∫
w(x)>0

w(x)+
√
ε√

(w(x)+
√
ε)2+ε

∇w(x) · ϕ(x)dx+
∫
w(x)<0

w(x)+
√
ε√

(w(x)+
√
ε)2+ε

∇w(x) · ϕ(x)dx

+
∫
w(x)=0

w(x)+
√
ε√

(w(x)+
√
ε)2+ε

∇w(x) · ϕ(x)dx

=
∫
w(x)>0

w(x)+
√
ε√

(w(x)+
√
ε)2+ε

∇w(x) · ϕ(x)dx+
∫
w(x)<0

w(x)+
√
ε√

(w(x)+
√
ε)2+ε

∇w(x) · ϕ(x)dx
+ 1√

2

∫
w(x)=0∇w(x) · ϕ(x)dx

The Lebesgue dominated convergence Theorem yields the same limit as before for the two first integrals.
However the third integral remains. One obtains∫
∇|w|(x) ·ϕ(x)dx =

∫
w(x)>0

∇w(x) ·ϕ(x)dx−
∫
w(x)<0

∇w(x) ·ϕ(x)dx+ 1√
2

∫
w(x)=0

∇w(x) ·ϕ(x)dx. (24)

Final part of the proof. Comparison of (23) and (24) yields
∫
w(x)=0∇w(x)·ϕ(x)dx = 0 for all ϕ ∈ C1

0 (Ra).
This is equivalent to the Stampacchia property (22) because the test function ϕ is arbitrary.

10

	Introduction
	Notation and examples
	First example
	Second example
	General case

	The Murat-Trombetti Theorem
	Examples
	Back to the first example
	Back to the second example
	The Boustany example
	A simplified Boustany example

	Conclusion
	A self contained proof of the Stampacchia property

