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During its propagation, a shock wave may come across and interact with differ-1

ent perturbations, including acoustical waves. While this issue been the subject of2

many studies, the particular acoustic-acoustic interaction between a weak shock and3

a sound wave has been very scarcely investigated. Here a theory describing the en-4

counter of those two waves is developed, up to second- and third-order. According5

to the incidence angle and shock strength, several regimes of acoustic transmission6

through the shock are identified. Generation of entropy as well as vorticity modes7

are determined, while the perturbation of the shock front by the acoustic wave is8

quantified. The theory predicts strongly different behaviors between air and water,9

and preliminary results are coherent with recent experimental observations in solids.10

It paves the way to both an acoustic monitoring of shock wave as well as a method11

to determine the quadratic and cubic nonlinear parameters of material.12
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Nonlinear sound versus weak shock interaction

I. INTRODUCTION13

Shock wave interaction with ambient flow is an issue studied for long by many authors,14

however mostly for the case of relatively strong shocks in perfect gases. The present paper15

generalizes these studies to any ideal fluid properties, and focuses on the ’acoustic-acoustic’16

interaction between a wave of infinitesimal small amplitude and a shock of small amplitude.17

This allows to obtain several analytical results revealing the dimensionless fluid properties18

that are important for the transmission of acoustic waves through a weak shock.19

In his seminal work, Burgers1,2 investigated theoretically the one-dimensional transmis-20

sion of a sound wave impinging normally a stationary shock wave. He namely pointed out21

there cannot be any reflected wave, as this one would move slower than the flow. Similarly,22

when considering, as in the present paper, a shock moving at a necessarily supersonic speed23

in an undisturbed medium and interacting with a counter-propagating sound wave, a re-24

flected wave propagating at the speed of sound would immediately be overwhelmed by the25

shock. However, Burgers pointed out that, for properly solving the problem, one has to con-26

sider also the existence of an entropy mode behind the shock, and an oscillation of the shock27

front induced by its interaction with the sound wave. This leads to three unknowns (the28

amplitudes of the transmitted sound wave, entropy mode and shock perturbation) that are29

fully determined by the three Rankine-Hugoniot relations for mass, momentum and energy30

conservation through a shock. Though solving mathematically the problem for the case of31

a perfect gas, Burgers did not analyze his results. Note that Blokhintzev in his independent32

study3 also showed the absence of reflection but did not took into account the shock oscilla-33
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tion. A close approach was followed by Kantrowitz4 who investigated mostly the stability of34

shock waves. The two-dimensional case was studied a few years later, first, to our knowledge,35

by Moore5. This author pointed out a vorticity perturbation behind the shock has also to36

be considered (which was ignored by Brillouin6), both vorticity and entropy modes being37

non-propagating modes simply convected by the flow behind the shock7. He also outlined38

that an acoustical wave propagating in the region behind the shock and towards it (at a39

speed necessarily faster than the shock speed) cannot be transmitted to the unperturbed40

fluid ahead of the shock. Therefore, the supersonic region behind the shock appears as a41

”sonic black hole” : any sound wave entering this region cannot escape it. This opened a42

fruitful analogy between sound/shock waves interaction and gravitational black holes8. Ex-43

perimental realization of such a sonic black hole for a Bose-Einstein condensate9 lead to the44

recent first laboratory experimental observation of Hawking radiation10 (thermal black-body45

radiation out of a black hole’s event horizon that causes its evaporation). Another applica-46

tion of sound/shock interaction was proposed by McKenzie and Westphal11 who, apparently47

unaware of the work of Moore, generalized Burgers’ work at 2D. Their theory has been48

verified by direct numerical simulations 12. They also extended it to the interaction between49

Alfvén waves and hydromagnetic shocks, as a model for solar wind interacting with earth50

magnetopause viewed as a magnetic bow shock13. This problem was previously examined51

by Kontorovich14 who also outlined the Doppler frequency shift undergone by the sound52

wave. Such kind of models has also been applied to the problem of cosmic rays accelera-53

tion by shock waves associated with supernova remnants15. McKenzie and Westphal11 also54

pointed out that, irrespective of its nature, either a sound, an entropy or a vorticity mode55
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interacting with a shock, generates all three modes behind it. Associated to the work of56

Kantrowitz, this observation paved the way to an abundant literature investigating shock57

interaction with turbulence (e.g. a vorticity field), shock stability and supersonic boundary58

layer receptivity that finds multiple applications in aerodynamics. A literature review of this59

problem is beyond the scope of this paper, the reader is referred to Andreopoulos’s review et60

al.16 or, regarding receptivity, to the work of Ma and Zhong17. Considering specifically the61

interaction of an acoustical field with a shock, a numerical analysis performed in air over a62

wide range of Mach numbers between 1 and 5 by Mahesh et al.18 recovered the theoretical63

observations of Moore5: below a critical angle of incidence, the transmitted sound wave is64

propagating, while it is exponentially decaying above. In this last case, the incident sound65

energy is transferred to the vorticity field. For weak or moderate shocks (Mach number be-66

low approximately 1.2) and an isotropic field (all directions of incidence) the far field kinetic67

energy of the acoustical field slightly increases, while it decreases for larger values (between68

1.2 and 1.8) and then increases again. The kinetic energy of the vorticity field increases69

monotonously with the Mach number, and exceeds the acoustic one for Mach about 2.2570

(see their Figure 8). Entropy fluctuations become significant only above Mach 1.5 (see their71

Figure 10).72

The case of sound interaction with either weak shocks or in other materials has received73

little attention. In solids, we can mention the theoretical works of Morro19 and Pluchino20.74

A recent experimental interaction21 between a laser-generated shock wave and a counter-75

propagating ultrasonic field put in evidence a strong interaction between the two waves76

in either aluminium, titanium and water, with an amplitude loss for the ultrasound wave77
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up to about 10%, even though the shock amplitude is relatively low. This motivated our78

present study, focused on the almost unexplored case of acoustical weak shocks in any type79

of common fluids. Indeed, weak shocks are substantially different from both strong shocks80

and from linear sound waves. Their entropy variations are not null but remain much smaller81

than those of all other variables, of order ϵ3 versus ϵ if ϵ is a small dimensionless parameter82

measuring the shock amplitude22. Also, their reflection on surfaces neither satisfies the83

linear Snell-Descartes laws nor follows the strongly nonlinear Mach reflection23. We expect84

this ’in-between’ behavior to induce specific features in case of interaction with a linear85

sound wave. Moreover, compression weak shocks in common fluids such as air and water86

(or in hyperelastic solids) can be described mechanically by a single dimensionless thermo-87

mechanical parameter of nonlinearity β, thus allowing to study with a unified formalism88

the behaviors of gases and liquids, and also of solids in the 1D case (otherwise shear elastic89

waves also have to be considered in solids).90

In the present work, the interaction of a weak shock wave with an incident acoustic91

wave is investigated for any common fluid, either liquid or gaseous. The various quantities92

describing the propagation of the weak shock are described in section two. Weak shock limit93

is reexamined by performing asymptotic expansions relative to small amplitude parameter ϵ94

one order higher (order three instead of order two). The acoustic incident and transmitted95

fields, as well as the entropy and vorticity modes and shock perturbation are introduced96

in the following section three. The sound wave refraction and its Doppler frequency shift97

resulting from the interaction are highlighted in section four which investigates in details the98

various regimes of sound transmission. The amplitudes of the various modes are determined99
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in the fifth section. Throughout the entire paper, cases of air and water are compared. For100

those two fluids, results obtained from second- and third-order theories are systematically101

compared to quantify the limits of weak shock approximation.102

II. THE UNPERTURBED WEAK SHOCK103

In a perfect fluid with negligible viscosity and heat conduction, pressure p(x, y, t), density104

ρ(x, y, t), speed of sound c(x, y, t), flow velocity v(x, y, t), specific entropy s(x, y, t), tempera-105

ture T (x, y, t) and specific enthalpy h(x, y, t) satisfy the Euler equations of mass, momentum106

and energy balance in addition to the medium constitutive state equation. Rankine-Hugoniot107

(RH) jump relations describe the mass, momentum and energy balance through a shock108

moving with velocity w109

wn (ρ+ − ρ−) = (ρvn)+ − (ρvn)− (1)

wn ((ρvn)+ − (ρvn)−) = (p+ ρv2n)+ − (p+ ρv2n)− (2)

(vt)+ = (vt)− (3)

h+ +
1

2
((vn)+ − wn)

2 = h− +
1

2
((vn)− − wn)

2 (4)

where index + (resp. index −) denotes the value of any quantity q immediately behind (resp.110

ahead of) the shock. For velocity vectors v and w, indexes n and t are respectfully indicating111

their normal (for instance vn = v.n) and tangential component to the shock front with n112

the wave front normal vector, oriented towards the unperturbed region.113

As illustrated in Fig.(1), a weak step shock at position xs(t) propagates with speed114

ws = (dxs/dt)ex, separating the fluid into two homogeneous but distinct regions. The115

6



Nonlinear sound versus weak shock interaction

ex

ey

Unperturbed medium0Perturbed mediumS

Weak
Acoustic wave

Behind the shock Ahead of the shock

θ

shock wave

FIG. 1. Interaction geometry

frame of reference is chosen so that the fluid ahead of the shock is at rest, implying v0 =116

0. Behind the shock the homogeneous flow is noted vs = vsex. In this case, the RH117

relations (1-4) reduce to118

ws(ρ0 − ρs) = − ρsvs, (5)

−wsρsvs = p0 − (ps + ρsv
2
s), (6)

h0 +
1

2
w2

s = hs +
1

2
(vs − ws)

2 . (7)

The shock wave is assumed to be of weak amplitude, measured by the parameter ϵ ≪ 1119

as a dimensionless density jump ρs − ρ0 = ρ0 ϵ. In this case, it is well-known24 that the120

entropy jump is of very small order ϵ3 and is therefore negligible at leading order121

ss − s0 = ϵ3
c20
6T0

(
1 +

B

2A

)
(8)

This relation22 involves the quadratic nonlinear parameter of the fluid given by122
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B

2A
=

1

2

ρ0
c20

(
∂2p

∂ρ2

)
s

(ρ0, s0). (9)

It is equal to (γ− 1)/2 for a perfect gas of specific heats ratio γ. For diatomic gases such as123

air γ = 1.4 and B/2A = 0.2. Another commonly used quadratic nonlinear parameter is124

β = 1+B/2A, which combines the influence of both convection and equation of state for a125

nonlinear simple wave.126

The equation of state for a common fluid p = p(ρ, s) and the sound speed c = (∂p/∂ρ)s127

can thus be expanded behind the shock up to third order128

ps = p0 + ρ0c
2
0

[
ϵ+

B

2A
ϵ2 +

C

6A
ϵ3+ (

ρ0c
2
0

(
∂p

∂s

)
ρ

(ρ0, s0)

)
(s− s0) +O(ϵ4)

]
(10)

and129

cs = c0

[
1 +

Bϵ

2A
+

1

8

(
2C

A
−
(
B

A

)2
)
ϵ2 +O(ϵ3)

]
. (11)

In the r.h.s. of Eq.(10) the first three terms correspond to the third-order expansion130

of isentropic pressure variation with density. Cubic nonlinear effects involve the nonlinear131

parameter C/6A where132

C

6A
=

1

6

ρ20
c20

(
∂3p

∂ρ3

)
s

(ρ0, s0). (12)

For a perfect gas, one has C/6A = (γ − 1)(γ − 2)/6. Therefore C/6A = −0.04 for any133

diatomic gases such as air. For water at 20◦C, B/A = 4.96 and C/6A = 36.9525. The last134

term in the r.h.s. of Eq.(10) is associated to non-isentropic effects, which involve only the135

first-order, linear entropy variation according to Eq.(8). Therefore Eq.(10) can be rewritten136
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ps = p0 + ρ0c
2
0

[
ϵ+

B

2A
ϵ2 +Kϵ3 +O(ϵ4)

]
(13)

with K = C/6A+D. Coefficient D137

D =
k

ρ0c20

(
∂p

∂s

)
ρ

(ρ0, s0), (14)

where k = (ss − s0)/ϵ
3 measures the influence of the entropy jump on the pressure jump,138

which cannot be neglected at third order.An expression for D is provided in Appendix A.139

According to the usual terminology24, a weak shock is defined as a shock of sufficiently140

small amplitude so that entropy variations can be neglected. Hence it corresponds to the141

second-order expansion of pressure Eq.(13) up to order O(ϵ2). To be consistent, a third-142

order expansion up to order O(ϵ3) includes necessarily entropy effects and is here referred143

to as a shock of moderate amplitude.144

The ratio of mass Eq.(5) and momentum Eq.(6) relations eliminates the shock speed and145

yields after substitution of the pressure Eq.(13) the expansion for the flow velocity behind146

the shock147

vs = ϵc0

[
1 +

ϵ

2

(
B

2A
− 1

)

+
ϵ2

2

(
3

4
− B

4A
− 1

4

(
B

2A

)2

+K

)
+O(ϵ4)

]
. (15)

The shock speed can now be deduced from this expression and the mass RH equation Eq.(5)148

ws = c0

[
1 +

ϵ

2

(
B

2A
+ 1

)

+
ϵ2

2

(
−1

4
+

B

4A
− 1

4

(
B

2A

)2

+K

)
+O(ϵ3)

]
. (16)
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Eq.(16) recovers the classical result for the second order (weak shock) approximation ws =149

(c0 + cs + vs)/2 + O(ϵ2): the shock velocity of a weak shock is the average of the speeds of150

sound ahead of (c0) and behind (cs + vs) the shock, this last one taking into account the151

influence of flow convection. This result is not valid any more when considering higher order152

terms (here cubic ones). The energy RH relation finally leads to Eq.(8) for the entropy153

jump. It is not reproduced here as it can be found in classical textbooks.154

III. THE FIELD OF PERTURBATIONS155

A. The incident acoustic wave156

As sketched in Fig.(1), an acoustic wave propagates ahead of the shock and towards it with157

an incident angle θ relative to the unperturbed shock normal vector. The frame of reference158

is unchanged relative to the unperturbed case. Considering a harmonic decomposition, the159

density perturbation due to this wave is160

ρincA (x > xs, y, t) = A exp
[
j(kinc

x,Ax + kinc
y,Ay − ωt)

]
(17)

with A its amplitude assumed to be much smaller than the entropy jump A ≪ ϵρ0, ω the161

angular frequency and kinc
z,A the component of the wave vector along the ez direction with162

z = (x, y). In the considered geometry we have kinc
A = (kinc

x,A , kinc
y,A) = (ω/c0)(− cos θ , sin θ).163

The acoustical perturbations of the pressure, velocity and entropy field are pincA = c20ρ
inc
A ,164

vinc
A = c0(ρ

inc
A /ρ0)(− cos θ, sin θ) and sincA = 0.165
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B. The modes behind the shock166

As the shock wave is propagating with a velocity ws greater than the speed of sound167

c0 ahead of the shock no reflected wave is possible on this side. Behind the shock, the168

possible modes are obtained by linearizing Euler equations around the ambient uniform flow169

of pressure ps and density ρs moving at velocity vs = vsex. This leads to three types of170

solutions : a transmitted acoustic wave, a vorticity mode and an entropy one - respectively171

indexed by tr
A , V and E. For each one, a dimensionless transmission coefficient in amplitude172

T tr
A , TV or TE is introduced. To satisfy the RH relations on the shock surface, all modes173

should have the same spatial dependence along ey implying kinc
A,y = kE,y = kV,y = ktr

A,y = ky.174

The adiabatic (strA = 0) perturbation due to the acoustic transmitted wave can then be175

expressed176

ρtrA = ATA exp[j(ktr
A,xx + kyy − ωtr

A t)], (18)

ptrA = ATAc
2
s exp[j(k

tr
A,xx + kyy − ωtr

A t)], (19)

vtr
A = ATA

cs
ρs
ntr

A exp[j(ktr
A,xx + kyy − ωtr

A t)]. (20)

Here ωtr
A is the transmitted angular frequency, different from the incident one due to the177

Doppler effect induced by the sound interaction with the moving shock front (frequency is178

not Galilean-invariant). The transmitted acoustic wave vector179

ktr
A = ωtr

Ar
tr
A . (21)

satisfies the acoustical dispersion relation in a fluid of sound speed cs convected by the flow180

at speed vs = (vs, 0)181
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c2s
(
ktr
A

)2
= (ωtr

A − vs.k
tr
A )

2 ⇔ ktr
A =

ωtr
A

cs + vs.ntr
A

(22)

with ntr
A the unit vector directing the transmitted wave and rtr

A the slowness vector of the182

transmitted wave. The perturbations associated to the vorticity and entropy modes are183

similarly expressed184

(ρV , pV , vx,V , vy,V , sV ) = TV
cs
ρs

(
0, 0,−vsky/ωV , 1, 0

)
× A exp[i(kyy − ωV (t− x/vs)] (23)

and185

(ρE, pE, vx,E, vy,E, sE) = TE

(
1, 0, 0, 0,−c2s(∂p/∂s)

−1
)

× A exp[i(kyy − ωE(t− x/vs)] . (24)

The vorticity mode is a pure rotational, velocity field with no associated perturbation of186

pressure, density nor entropy. The ratio cs/ρs in Eq.(23) is chosen to make the coefficient TV187

dimensionless. On the contrary, the entropy mode is a perturbation of density and entropy188

only, leaving pressure and velocity unaffected. Both vorticity and entropy fluctuations are189

simply convected by the ambient flow speed vs but do not propagate. We note qP the total190

perturbation of any quantity q in the post-shock region191

qP = qtrA + qE + qV . (25)

C. The shock front perturbation192

Due to the incident acoustic field, the shock front itself is perturbed and cannot be con-193
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sidered as perfectly plane anymore. Therefore a correction is applied on the shock position194

along time195

xc(y, t) = xs + f(y, t) = wst + f(y, t) (26)

where f(y, t) is proportional to the incident acoustic amplitude A. Thanks to this smallness196

approximation, the vector normal to the shock front is n = (1,−∂f/∂y)/
√

1 + (∂f/∂y)2 ≈197

(1,−∂f/∂y), the vector tangential to the shock front is t = (∂f/∂y, 1)/
√

1 + (∂f/∂y)2 ≈198

(∂f/∂y, 1) and the normal shock velocity is wn = ws + ∂f/∂t. Velocity wA = ∂f/∂t is199

therefore the perturbation of the shock front normal velocity resulting from its interaction200

with the incident sound wave. It must be proportional to the common exponential form201

exp(jkyy) leading to202

wA =
ws

ρ0
TWA exp

(
j
ω

c0
[sin θy − (c0 + ws cos θ)t]

)
. (27)

The time dependence is the one of the incident wave on the shock front position xs = wst203

(see later on) and TW is a dimensionless amplitude coefficient. We deduce204

f(y, t) =
jc0ws

ρ0ω(c0 + ws cos θ)

× TWA exp

(
j
ω

c0
[sin θy − (c0 + ws cos θ)t]

)
. (28)

IV. REFRACTION AND DOPPLER EFFECT205

A. Linearization of jump relations206

Ahead of the shock, any quantity q calculated on the actual shock front is the sum of207

the homogeneous, unperturbed ambient flow q0 and of the incident acoustic field qincA . One208
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deduces the following linearization209

q+(xc(t), t) = (q0 + qincA )+(wst+ f, yc, t)

= q0 + qincA (wst, yc, t).

(29)

Similarly one has behind the shock210

q−(xc(t), t) = (qs + qP )+(wst+ f, yc, t)

= qs + qP (wst, yc, t),

(30)

while we recall that shock velocity wn = ws + wA. Perturbations qP and wA resulting211

from the interaction of the incident sound wave with the unperturbed shock are therefore212

proportional to the incident sound field and of much smaller amplitude than the shock.213

This allows the linearization of the RH relations Eqs.(1-4). Substracting RH relations for214

the unperturbed shock front Eqs.(5-7) yields the linearized RH relations for mass215

ws(ρ
inc
A − ρP ) + wA(ρ0 − ρs) = ρ0v

inc
A,x − ρsvP,x − ρPvs, (31)

momentum in the shock normal direction x216

wsρ0v
inc
A,x − wsρsvP,x − wsρPvs,x − wAρsvs,x

= (pincA − pP ) − 2ρsvs,xvP,x − ρP (vs,x)
2, (32)

momentum in the shock tangential direction y217

vincA,y = vs
∂f

∂y
+ vtrA,y + vE,y + vV,y , (33)

and energy218

14
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(
pincA

ρ0
− pP

ρs

)
− TssP + ws(wA − vincA,x)

= (vs − ws)(vP − wA). (34)

In all these linearized RH relations, one has to substitute the expressions of the various219

fields at the unperturbed shock position xs = wst. In the same way as Snell-Descartes laws220

are usually established for acoustic refraction and reflexion through an interface, equalizing221

phase dependence versus space y provides the axial wavenumber of the various modes.222

Equalizing phase dependence versus time t yields the frequency of these modes behind the223

shock, and in particular the Doppler effect. The equalization of amplitudes leads to a four-224

by-four linear system for the four unknown amplitudes (TA, TE, TV , TW ).225

B. Doppler effect226

Equalization of time dependencies yields227

ω − wsk
inc
A,x = ωtr

A − wsk
tr
A,x

= ωE,V

(
1 − ws

vs

)
.

(35)

pointing out the equality of frequencies of vorticity and entropy modes. The Doppler ratios228

between the frequencies of the modes behind the shock to the frequency of the incident229

sound wave230

DV =
ωE

ω
=

ωV

ω
=

vs(c0 + ws cos θ)

c0(vs − ws)
. (36)

DA =
ωtr
A

ω
=

c0 + ws cos θ

c0(1 − wsrtrA,x)
. (37)

15
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C. Regimes of refraction231

Injecting Eq.(37) into the acoustical dispersion relation Eq.(22) shows that the x-232

component of the transmitted slowness vector is a root of a 2nd degree polynomial233

(
rtrA,x

)2 [
(c0 + ws cos θ)

2(c2s − v2s) + c2sw
2
s sin

2 θ
]

+ 2
[
vs(c0 + ws cos θ)

2 − wsc
2
s sin

2 θ
]
rtrA,x

= (c0 + ws cos θ)
2 − c2s sin

2 θ. (38)

Its solutions are234

rtrA,x =
wsc

2
s sin

2 θ − vs(c0 + ws cos θ)
2 ±

√
∆

(c2s − v2s)(c0 + ws cos θ)2 + (csws sin θ)2
(39)

with the associated discriminant ∆235

∆ = (c0 + ws cos θ)
2c2s

×
[
(c0 + ws cos θ)

2 + sin2 θ((ws − vs)
2 − c2s)

]
.

(40)

In the absence of shock wave (ϵ = 0 implying vs = 0 and ws = cs = c0), the solution of236

Eq.(39) with positive sign reduces to rtrA,x = 1/c0 and the one with negative sign negative one237

to rtrA,x = − cos θ/c0, which is the physical solution (unperturbed incident wave). Therefore,238

only solutions with negative sign in Eq.(39) are considered further. At normal incidence, it239

has the simple solution240

rtrA,x(θ = 0) =
1

vs − cs
(41)

describing a wave counter-propagating at sound speed −cs and convected by the ambient241

flow vs. In this case, the acoustical Doppler frequency shift is242
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DA =
ωtr
A

ω
=

(c0 + ws)(cs − vs)

c0(ws + cs − vs)
. (42)

The transmitted frequency is larger (resp. smaller) than the incident one under the condition243

cs− vs > c0 (resp. cs− vs < c0) that the phase speed of the transmitted wave is larger (resp.244

smaller) than the incident one. Using expansions Eqs.(11,15,16) one gets245

DA = 1 +
ϵ

4

(
B

A
− 2

)
+

ϵ2

32

(
12− 10B

A
+

4C

A
+

(
B

A

)2
)
. (43)

In particular, in the weak shock limit (second-order expansion), the transmitted frequency246

will be larger than the incident one (DA > 1) for fluids with a nonlinear parameter larger247

than one (B/2A > 1), and smaller (DA < 1) otherwise (B/2A < 1). This opposite behavior248

for fluids with a nonlinear parameter smaller (like air) or larger (like water) than one, will249

turn out essential to explain most features here investigated. This difference is due to the250

fact that the acoustical phase speed behind the shock is either larger or smaller than ahead251

of it.252

A tedious asymptotic expansion up to order ϵ only yields253

c0r
tr
A,x = − cos θ + ϵ

[
3B

4A
− cos θ

(
1 +

B

4A

)]
+O(ϵ2). (44)

In particular, at normal incidence one recovers c0r
tr
A,x = −1 + ϵ(β − 2) which is the weak254

shock limit of the slowness 1/(vs − cs). Injecting Eq.(44) in Eq.(37) gives255

DA = 1 +
ϵ

1 + cos θ

[
3B

4A
− cos θ

(
1 +

B

4A

)]
+O(ϵ2), (45)

from which one deduces256

ktr
A,x = ωDAs

tr
A,x

= kx +
ω

c0

ϵ

1 + cos θ

[
3B

4A
− cos θ

(
1 +

B

4A

)]
+O(ϵ2).

(46)
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Eq.(46) brings light on the deviation of the transmitted wave, by introducing the function257

g(θ) = 3B/4A − cos θ(1 + B/4A) and by recalling that the incident wavenumber in the258

x-direction kx = −ω cos θ/c0 is negative. The function g is equal to B/2A − 1 at normal259

incidence, so once again has a different sign for air and for water. At grazing incidence260

it is equal to 3B/4A which is assumed to be always positive. In the case B/2A > 1, the261

correction g(θ) is always positive: the angle of the transmitted wave with respect to the262

shock normal is always larger the incident one. Everything happens similarly to the usual263

linear Snell-Descartes laws with a transmission medium having a sound speed larger than264

than the incident one. This is called the ’normal’ case, as the sound speed behind the shock265

is indeed larger than in the undisturbed medium, see Fig.(2.a). In the second case B/2A < 1,266

we observe the opposite behavior, see Fig.(2.b): the transmitted wave is propagating closer267

to the shock normal direction than the incident wave. This case is similar to the usual linear268

Snell-Descartes laws with a transmission medium having a sound speed smaller than the269

incident one. Such a refraction is observed here because the moderate increase in sound270

speed due to the shock with a moderate value of B/2A < 1, is counterbalanced by the271

convection due to post-shock flow motion in the opposite direction. However, this situation272

cannot be observed for all angles. Indeed function g(θ) can vanish at some neutral angle θ0273

defined by274

cos θ0 =

(
3B

4A

)/(
1 +

B

4A

)
, (47)

which has a solution only if its right hand side is smaller than one, e.g. if B/2A < 1. At275

neutral angle θ0, the wave is not deviated by the shock wave. Above it, function g is again276

positive and we recover a ’normal’ deviation illustrated by Fig.(2.a). So for fluids such that277
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FIG. 2. Scheme illustrating properties of the different regimes of sound transmission. Dark blue :

abnormal transmission - Light blue : normal transmission - Green : inverted transmission - Yellow

: critical transmission. ktrA,x is negative in the first two cases, positive in the last two ones.

B/2A < 1, we have first an ’abnormal’ deviation for angles smaller than the neutral one,278

and then a ’normal’ deviation for higher values. The neutral angle, if it exists, is (at least279

in the weak shock approximation) dependent on the medium, but independent on the shock280

amplitude (provided this one keeps sufficiently small).281

Near grazing incidence, the axial slowness rtrA,x can vanish. This happens for angles larger282

than a so-called inversion angle θI for which rtrA,x = 0, such that283
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cos2 θI(w
2
s + c2s) + 2c0ws cos θI + c20 − c2s = 0. (48)

Solution of this second order polynomial in cos θI is284

cos θI =
cs
√

c2s + w2
s − c20 − c0ws

w2
s + c2s

, (49)

and using weak shock expansion we get285

θI =
π

2
− ϵ

B

2A
. (50)

This expression indicates that the angle of inversion deviates from grazing incidence pro-286

portionally to the weak shock amplitude ϵ and to its nonlinear parameter B/2A. Exactly287

at inversion angle, the transmitted wave propagates parallel to the shock front. For usual288

Snell-Descartes transmission, beyond this angle, one observes total reflexion. This cannot289

be the case here, because there is no reflected wave at all ! On the contrary, a transmitted290

wave still exists, but it now propagates towards the shock front instead of away from it.291

However, its speed in the axial direction x is much smaller than the shock velocity: the292

inverted transmitted wave cannot overtake the shock front and remains behind it. We call293

this regime ’inverted transmission’, see Fig.(2.c).294

At small incidences, discriminant ∆ (Eq.(40)) involved in solution of axial slowness295

(Eq.(39)) is positive and solutions rtrA,x are always real, leading to propagating waves. At296

grazing incidence θ = π/2 = 90◦, one has ∆ = c20c
2
s [c

2
0 + (ws − vs)

2 − c2s]. The coefficient297

between brackets can potentially change of sign. Its asymptotic expansion is298

[
c20 + (ws − vs)

2 − c2s
]
= 1− βϵ− Γϵ2 +O(ϵ3) (51)

with Γ = −1+B/2A+C/3A−D. For not too small shock amplitudes ϵ and large values of Γ299
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such as those observed in water, it is possible that a weak shock leads to imaginary solutions300

for rtrA,x. This is called ’critical transmission’. Under the above quadratic approximation,301

the smallest shock amplitude at which this occurs is302

ϵC =

√
β2 + 4Γ− β

2Γ
(52)

which for water is equal to about 0.088, reasonably small. In air, Γ < 0, preventing crit-303

ical transmission for weak shock waves. This phenomenon is nevertheless observed for304

strong shocks11. For other materials, critical transmission will occur if coefficients of cu-305

bic nonlinearities are large enough compared to those of quadratic nonlinearities, so that306

Γ > (β−β2)/4. However, this result should be taken with caution, as it ignores higher order307

terms in the various asymptotic expansions. In the general case (no weak shock approxima-308

tion) the condition for critical transmission is c20 + (ws − vs)
2 − c2s < 0. The particular angle309

above which this kind of transmission is observed is called the critical angle θC .310

As the critical transmission involves complex wavenumbers and frequencies, it raises the311

issue of stability of the flow in this case. This issue is handled in Appendix D, showing312

numerically that no instability arises.313

To summarize (see Fig.(2), regarding geometry, there are four possible regimes of sound314

transmission through a moving weak shock. For a given medium, only three are possible :315

when B/2A < 1, the most frequent one is abnormal transmission. Normal transmission is316

observed for incidence angles larger than the neutral one, and inverted transmission at graz-317

ing angles and shocks not too weak. When B/2A > 1, the most common regime is normal318

transmission. When increasing incidence angle and shock strength, inverted transmission319

occurs and finally critical transmission.320
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D. Example : air versus water321

These four regimes are illustrated by Fig.(3) for air (top line) and water (bottom line).322

The selected fluid properties are gathered in table I. For each medium, we used exact solution323

Eq.(39) to determine the transmitted wavenumber, but we used either (left column) low324

order (weak shock) quadratic expansions (first two terms in the r.h.s. of Eqs.(11,15,16) for325

the ambient shock parameters cs, ws, vs), or (right column) higher order cubic ones for more326

precise results in the case of moderate shocks. The comparison allows to quantify the limit327

of the weak shock approximation. Shock amplitude ϵ ranges between 10−4 and 1, this last328

value being at the fringe of any asymptotic approximation. In air, explosions can lead to329

strong shocks with ϵ = 1 or even much more. Sonic boom at the ground level produced by330

Concorde was of amplitude 100 Pa or ϵ = 7× 10−4. Future low boom aircraft are expected331

to induce significantly lower levels with ϵ ≈ 10−4. In water, such value of ϵ corresponds332

to an easily reached amplitude of 0.225 MPa. Focused shocks produced by Extracorporeal333

Shock Wave Lithotripsy (ESWL)26 can reach in vitro more than 100 MPa or ϵ ≈ 4.6×10−2.334

Intense laser focused on the surface of a metallic sample can produce observed velocity peaks335

of about 200 m/s in aluminum or titanium27, corresponding to ϵ ≈ 3× 10−2. The Hugoniot336

Elastic Limit (HEL) prevents the observation of much higher amplitudes without inducing337

irreversible plastic deformation28. Therefore, for liquids and solids, values much higher than338

5×10−2 seem unlikely contrarily to air, but are nevertheless inspected here from a theoretical339

point of view.340
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TABLE I. Considered water, air and aluminum properties

ρ (kgm−3) c0 (m s−1) β B/A D C/(6A) K

Water 1000 1481 3.5 4.96 0.05 36.95 37.00

Air 1.2 340 1.2 0.4 0.08 -0.04 0.04

Alum. 2.7 6400 1529 28 0.05 37529 375.05

In air, the most common regime is the abnormal one (dark blue in Fig.(3)), observed for341

all amplitudes and all angles below θ0 (plotted as a white dotted line). This one deviates342

from the constant value of Eq.(47) only when ϵ > 10−1. This quantifies the maximum343

value of low order weak shock approximation. Above, θ0 is no more constant and tends344

to increase with ϵ considering third-order theory. For higher incidence angles, the normal345

regime (light blue) is observed. A tiny region for inverted transmission (green) appears at346

angles significantly different from 90◦ only for ϵ > 0.1. In this case, it is more accurate to347

consider a 3rd-order expansion.348

In water, the most common regime is normal transmission (light blue). Inverted trans-349

mission is observed in a much larger domain than in air, with significant deviation from350

90◦ for ϵ > 0.01. Third order expansion also predicts this regime at lower incidence than351

second order theory, for instance at about 50◦ for ϵ = 0.1. Further increasing the shock352

amplitude soon leads to the regime of critical reflexion (yellow). This one is observed above353

ϵ ≈ 0.2 according to second order theory, but ϵ ≈ 0.08 according to third order theory. This354

last value is not very different from the approximation Eq.(52). When ϵ approaches one,355
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FIG. 3. Regimes of transmission for air (top line) and water (bottom line) depending on incidence

angle θ and shock amplitude ϵ. Left (resp. right) column : results from second-order (resp. third-

order) expansion of weak shock parameters. Dark blue : abnormal transmission - Light blue :

normal transmission - Green : inverted transmission - Yellow : critical transmission

third-order theory also predicts critical transmission at much lower incidence angles than356

second-order one.357
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FIG. 4. Acoustical Doppler effect DA for air (subfigure b)) and its normalized deviation from

unity (DA − 1)/ϵ (main figure a)) versus incidence angle for three shock amplitudes. Solid lines:

2nd-order theory. Dashed lines: 3rd-order one.

E. Doppler effects358

Results for the Doppler ratio DV are detailed in appendix C as they do not differ sig-359

nificantly between air and water and between 2nd and 3rd-order theories. Regarding the360

acoustic Doppler ratio, DA is calculated using Eq.(37) for air (Fig.(4)) and water (Fig.(5)),361

also showing its deviation to unity normalized by shock amplitude (DA − 1)/ϵ. For air,362
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FIG. 5. Same as Fig.(4) for water. In subfigure a) the case ϵ = 10−1 for 3rd order theory is

beyond range.

all curves almost superimpose, again showing weak shock theory is sufficient for prediction363

up to ϵ = 0.1. Also DA reaches the value of one at the neutral angle, for which the wave364

is not deviated nor its frequency changed. Above this angle, the transmitted frequency is365

increased, as we go from abnormal to normal transmission. For water, there is no abnormal366

regime and the acoustic frequency always increases through transmission. The Doppler ef-367

fect is all the more important as the incidence angle is larger. Significant deviation between368

26



Nonlinear sound versus weak shock interaction

second- and third-order theories is visible even for the low strength ϵ = 10−2 due to the369

large value of C/6A. For ϵ = 10−1, the difference between the two orders is dramatic, with370

a much higher Doppler effect according to third order theory. In addition, this one predicts371

critical reflexion for an incidence angle larger than θC = 79.32◦, corresponding to a peak372

value of DA. Beyond this incidence, DA gets complex, but only its real part is plotted here.373

V. AMPLITUDES374

A. Linear system375

Amplitudes (TA, TV , TE, TW ) of each unknown wave are determined by the linearization of376

the four Rankine-Hugoniot shock relations. Introducing a function fs = cs sin θ/(c0 + ws cos θ)377

and the density ratio rs = ρs/ρ0, one gets a four-by-four matrix system378

(ws − vs − csn
tr
A,x)TA + ws(rs − 1)TW + (ws − vs)TE + fs(vs − ws)TV = ws + c0 cos θ

(53a)

cs sin θ

c0DA

(cs + vsn
tr
A,x)TA − rsvswsfs

cs
TW + csTV = rsc0 sin θ (53b)

(c2s + v2s − vsws + csn
tr
A,x(2vs − ws))TA − rsvswsTW +

vs(vs − ws)TE + fs(ws − 2vs)(vs − ws)TV = c0(c0 + ws cos θ)

(53c)

cs

(
cs + (vs − ws)n

tr
A,x

)
TA − rswsvsTW − fs(vs − ws)

2TV − c2srs
Ts

T0

β

6D
TE = c0rs(c0 + ws cos θ)

(53d)

solved numerically to monitor the dependence of the transmission coefficients with incidence379

angle θ, shock strength ϵ and medium parameters.380
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B. Normal incidence381

In the case of normal incidence θ = 0 and second-order theory, the above system simplifies382

into a much simpler two-by-two system as vorticity mode vanishes. As shock entropy jump383

is of order ϵ3 only, the amplitude of the entropy mode induced by the sound wave cannot384

exceed the ambient entropy increase so that TE = O(ϵ3). Therefore, everything happens at385

leading order as if the propagation were adiabatic, and energy RH relation can be omitted.386

This is detailed in Appendix B. The results387

TA = 1 + (1−B/2A)ϵ+O(ϵ2) (54)

TW = (B/2A− 1) +O(ϵ) (55)

once again outline the key effect of parameter B/2A − 1. If negative (resp. positive),388

the amplitude of the transmitted acoustic wave is larger (resp. smaller) than the incident389

one and the shock perturbation is in phase opposition (resp. in phase) to the incident390

wave. Comparison between 2nd- to 3rd-order theories in Fig.(6) shows the transmission391

loss (or gain) normalized by the shock strength ϵ (TA − 1)/ϵ. Results are shown for air,392

water and aluminum. In this last case (see values of parameters in Tab.(I)), we use the393

equivalence between nonlinear compression waves in fluids and solids30. Much higher values394

are found for β in case of solids. However, cubic nonlinear parameters are known for only395

few metals29. A deviation from the weak shock limit Eq.(54) is visible for air, as expected,396

only for relatively large shock amplitudes (ϵ > 0.1). For water or aluminium, deviations are397

significant for much weaker shocks, namely ϵ ≈ 0.01, due to the large values of the high-order398

nonlinear parameters. This indicates that transmission of an acoustic wave through a weak399
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shock can provide quantifiable information on higher-order nonlinear parameters of this400

kind of materials even at relatively small shock amplitudes of order ϵ = 10−2 experimentally401

achievable. Note also that, for aluminum and for a shock strength of ϵ = 10−2 corresponding402

to values reported in27 for laser-generated shocks, Fig.(6) yields a transmitted amplitude403

reduced by about 10% relative to the incident one, in agreement with the experimental404

observations21.405

C. Oblique incidence406

At oblique incidence, Fig.(7) illustrates the normalized transmission coefficients versus407

incidence angle for three shock strengths ϵ = 10−1, 10−2 and 10−3 in air. In water, Fig.(8)408

shows only the cases ϵ = 10−2 and 10−3. The case ϵ = 10−1 with complex coefficients409

associated to critical reflexion examined separately. For both fluids, second- and third-410

order theory are shown. For acoustics, we plot transmission loss or gain normalized by411

shock amplitude (TA − 1)/ϵ. For the entropy mode, the coefficient TE is normalized by the412

shock entropy jump ϵ3 as it cannot be of larger order. The same normalization is chosen413

for the vorticity mode amplitude, while the shock perturbation is directly proportional to414

the sound wave. In air, all curves for acoustical transmission are quite similar : 2nd-order415

weak shock theory remains valid for all explored shock strengths and incidence angle and416

3rd-order expansion provides only minor corrections. The sound amplification is essentially417

proportional to the shock amplitude. Whatever the angle, the wave amplitude is increased418

through transmission (TA > 1). In particular, at the neutral angle θ0 the sound wave is not419

deviated, but it is amplified. This amplification however reduces somewhat when increasing420
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FIG. 6. Normalized transmission (TA − 1)/ϵ coefficient at normal incidence (θ = 0◦) in the case

of a) air, b) water c) and aluminum versus shock strength ϵ - second- (resp. third-) order theory

in blue (resp. in red).
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the incidence angle, reaches a minimum slightly below 60◦, and then quickly increases above.421

As a counterpart, the amplitude of the shock perturbation, in phase opposition (TW < 0)422

with the ambient shock, decreases in absolute value with angle, reaches a zero value at some423

particular angle around 75◦ independent on the shock amplitude, and then gets in phase424

(TW > 1) with the shock at higher incidence. The very different behaviors of TE and TV425

depending on the theory order were to be expected at least for TE : as both are of very426

small amplitude ϵ3, second-order theory is insufficient to predict them accurately. From427

third-order theory, one observes that the amplitude of the vorticity mode varies in a non-428

monotonic way with angle, reaches a maximum in absolute value at around 65◦ and then429

decreases. On the contrary, the amplitude of the entropy mode shows little variations. Both430

modes tend to vanish near grazing incidence.431

In water, see Fig.(8), as in air, the entropy and vorticity modes both remain very small432

and are poorly predicted by second-order theory. However, considering third-order theory,433

they are of opposite sign compared to air, and TV increases significantly with incidence angle.434

Contrarily to air, the acoustic to entropy/vorticity is thus maximum at grazing incidence.435

The shock amplitude TW is always positive (shock perturbation in phase with the incident436

wave) and is increasing with grazing angle, with a significant difference between second- and437

third-order theory visible above ϵ ≈ 10−2. This difference is also visible for the normalized438

transmission coefficient (TA − 1)/ϵ which is also increasing with angle. Thus, it changes439

of sign for angles around 77.24◦ (at ϵ = 10−2): we observe an amplitude decrease of the440

transmitted sound wave for small and moderate angles, and an increase for large ones. Note441

this amplitude change occurs at smaller values that the inverted transmission.442

31



Nonlinear sound versus weak shock interaction

FIG. 7. Normalized angular variations of the transmission coefficients in the case of air for three

different shock strengths ϵ = 10−3 (black), ϵ = 10−2 (red) and ϵ = 10−1 (blue). Second-order

theory (solid lines) is compared to third-order one (dashed lines).

As noticed in Fig.(3) for water and ϵ = 0.1, critical reflexion beyond angle θC is predicted443

(by third-order theory), leading to complex values above this angle. This case is shown on444

Fig.(9). The critical angle is here θC = 79.32◦. Below it, all transmission coefficients show445

the same behavior observed in water for smaller shock strengths, and increase (in absolute446

value - note that only TE is negative) with incidence angle. This increase accelerates when447
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FIG. 8. Same as Fig.(7) for water. The case ϵ = 0.1 is shown separately.

approaching the critical angle. Beyond the critical angle, all real parts sharply fall down,448

except the one of the vorticity mode that suddenly changes of magnitude, getting of order ϵ449

instead of order ϵ3 for smaller angles. Above θC , all imaginary parts also brutally increase450

in absolute value before reaching a smoother variation. Such sharp variations were also451

observed for imaginary parts of frequency and wavenumber, see Fig.(11).452

For the value ϵ = 10−0.5 closer to unity, the critical regime appears at a much smaller453

angle θC = θ = 34.88◦. Below this value, compared to the case ϵ = 0.1, real transmission454
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FIG. 9. Angular variation of the real and imaginary parts of transmission coefficients in the case of

water for ϵ = 10−1 (blue solid line) and ϵ = 10−0.5 (red dashed line) for a 3rd-order expansion.

coefficients tend to be of smaller amplitude, except TE which is no longer negligible and455

changes of sign. Beyond the critical angle, compared to ϵ = 0.1, the variations of real and456

imaginary parts are not as sharp, values for TA and TW are smaller while those of TV and457

TE are larger. In this case at the fringe of asymptotic approximation, the energy of the458

incident wave tends to be more equally distributed among the four induced modes. This459

case approaches the configurations with stronger shocks studied in the literature (for air460

only).461
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VI. CONCLUSION462

This study investigates the interaction between an acoustic wave and a counter-propagating463

weak shock wave. In contrast to previous studies, attention is focused to the case of weak464

shocks in the nonlinear acoustical limit. Second- and third- order expansions for the shock465

parameters are compared to quantify the limits of the weak shock approximation. The466

case of an ideal gas is extended to any common fluid, allowing the comparison of water467

versus and air. Several regimes of sound transmission have been highlighted, depending on468

the incidence angle, the shock strength and the nonlinear parameter(s) of the fluid. For469

most cases, air shows an ’abnormal’ refraction with an angle of refraction smaller than the470

incident one because of the dominant effect of convection compared to the non-linearity471

of the state equation. On the contrary, water shows a normal behavior with a refraction472

angle larger than the incident one. When increasing the shock strength, normal refraction473

is recovered for air. For both fluids, an ’inverted’ transmission regime is observed at high474

incidences for the highest considered shock strengths (in the case of a ’not too weak’ shock),475

with a transmitted wave propagating towards the shock, while remaining slower. For water476

only, an evanescent wave is observed for highest amplitudes and largest incidence angle, but477

no shock instability is observed in the weak shock limit. Because third-order nonlinear pa-478

rameters of their respective state equation are much higher for water than for air, significant479

differences are observed for water between second- and third-order theories, while differences480

are much tinier for air. Deviations of sound transmission coefficient from unity show sig-481

nificant differences between second- and third-order theories, even at relatively small shock482
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strengths for water. Amplitudes of entropy and vorticity modes generally remain negligible,483

of order ϵ3. This was expected for entropy due to the smallness of the shock entropy jump.484

However, for water, induced vorticity cannot be neglected anymore for the critical regime485

when transmitted sound wave gets evanescent. In all cases, the perturbation of the shock486

wave resulting from its interaction with the sound wave cannot be neglected. The present487

theory has to be extended in the future to the case of hyperelastic solids. For metals such488

as aluminum or titanium, we expect even stronger interactions due to the higher coefficients489

of non-linearity of their constitutive laws, in qualitative agreement with the recent exper-490

imental observations. This paves the way to a new measurement method of third-order491

elastic constants, in particular in solids, and to an in situ monitoring of shock propagation492

by ultrasound in opaque materials.493

APPENDIX A: EXPRESSION OF COEFFICIENT D494

Coefficient D can be determined by recalling the formula (see for instance appendix 2 of495

Ref.31)496 (
∂p

∂s

)
ρ

= c20T0

(
1

cv
− 1

cp

)(
∂ρ

∂T

)
s

(A1)

where cv = T0(∂s/∂T )ρ (resp. cp = T0(∂s/∂T )p) is the specific heat capacity at constant497

volume (resp. at constant pressure), γ = cp/cv being their ratio. We also have T0 =

(
∂e

∂s

)
ρ

498

and p0 = ρ20

(
∂e

∂ρ

)
s

with e the specific internal energy. Maxwell relation gives

(
∂p

∂s

)
ρ

=499

ρ20

(
∂2e

∂ρ∂s

)
= ρ20

(
∂T

∂ρ

)
s

. Multiplying the two expressions of (∂p/∂s)ρ gives500

(
∂p

∂s

)
ρ

= ρ0c0

√
T0

cv

√
γ − 1

γ
(A2)
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and therefore501

D =
β

6

√
c20
T0cv

√
γ − 1

γ
. (A3)

For a perfect gas of molar mass M0 with d degrees of freedom (3 for monoatomic gases,502

5 for diatomic ones) cv = dr/2, γ = (d+2)/d and c0 =
√
γrT0 with r = R/M0 (R being the503

universal gas constant). One gets

(
∂p

∂s

)
ρ

= (γ−1)ρ0T0/d and deduces D = (γ2−1)/12 and504

K = (γ − 1)2/4, equal to respectively 0.08 and 0.04 for a diatomic gas. For water at 20◦C505

with c0 =1481m/s, cv =4203 J/K/kg, γ =1.004 and β =3.5, one obtains D =0.05, much506

smaller than C/6A. For water, the effects of entropy jump are negligibly small compared to507

those of cubic, isentropic non-linearity , while they are comparable and of opposite signs for508

air.509

APPENDIX B: TRANSMISSION COEFFICIENTS AT NORMAL INCIDENCE510

At normal incidence, θ = 0, fs = 0, there cannot be any vorticity mode so that TV = 0511

and the wave direction is unchanged ntr
A,x = −1. By introducing the new unknowns XA =512

(cs − vs + ws)TA, XW = wsTW , XE = (ws − vs)TE and the notation C = c0 + ws, the 1D513

system Eqs.(53a-53d) can be rewritten514

XA + (rs − 1)XW +XE = C (B1a)

(cs − vs)XA − rsvsXW − vsXE = c0C (B1b)

cs
rs
XA − vsXW − c2s

ws−vs
Ts

T0

β
6D

XE = c0C (B1c)
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Inserting the expressions Eq.(11) for cs , Eq.(16) for ws and Eq.(15) for vs but limited at515

second-order expansions yields516

XA + ϵXW +XE = C (B2a)

(1 + ϵ(β − 2))XA − ϵXW − ϵXE = C +O(ϵ2) (B2b)

(1 + ϵ(β − 2))XA − ϵXW − αXE = C +O(ϵ2), (B2c)

with α = β/6D + O(ϵ). The last two equations are identical except for the coefficient in517

front of XE. Substracting them, on gets that XE = O(ϵ2) at most, showing that the entropy518

mode has a much smaller amplitude than the other ones. Indeed, entropy induced by the519

incident sound wave cannot be bigger than the entropy jump through the unperturbed shock,520

and therefore one has necessarily XE = O(ϵ3). It can thus be ignored, and the system for521

(XA, XW ) reduces to Eqs.(B2a-B2b). Solving it leads to XA = C(1−ϵ(B/2A−1)/2+O(ϵ2))522

and XW = (B/2A− 1)/2 +O(ϵ). Returning to physical variable yields Eqs.(54-55).523

APPENDIX C: FREQUENCY OF VORTICITY AND ENTROPY MODES524

The Doppler ratio DV for vorticity and entropy modes, given by Eq. (36), is now consid-525

ered for the same parameters and media. As DV is proportional to the ambient flow velocity526

vs, it is proportional to the dimensionless amplitude ϵ. This is a high to low frequency527

conversion from acoustics to vorticity/entropy. A first order expansion of Eq. (36) yields528

DV = −ϵ(1 + cos θ) + O(ϵ2) independent of the medium parameters. Therefore Fig.(10)529

shows the ratio DV /ϵ. As expected, results are quite insensitive to both shock strength and530

medium: the ratio increases with incidence angle from −2 at normal incidence to −1 at531
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FIG. 10. Angular variation of the normalized Doppler ratio DV /ϵ versus incidence angle for three

shock amplitudes for a) air and b) water. Only 2nd-order theory is shown, differences with 3rd-

order one are negligible.

grazing angles. Only the values for strongest shocks (ϵ = 10−1) in water (the medium with532

the highest nonlinear parameters) slightly vary by about 10%. Comparison between second-533

and third-order theories show negligible differences of order ϵ3 for DV .534
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FIG. 11. Angular variation of (Iω) and (wsIk) in the case of water for four values of ϵ between 0.1

and 1, considering a third-order expansion.

APPENDIX D: FLOW STABILITY535

As the critical transmission involves complex wavenumbers and frequencies, it raises the536

issue of stability of the flow in this case. In terms of density, the transmitted acoustic wave537

may be rewritten538
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ρtrA(x, y, t) = ATA exp (j [Rkx + kyy − Rωt])

× exp (Iωt − Ikx) .

(D1)

where Rk and Ik (resp. Rω and Iω) are the real and imaginary part of ktr
A,x (resp. of ωtr

A ).539

Spatial stability at large distances from the shock front x → −∞ is ensured by choosing the540

imaginary part of the complex wavenumber negative Ik < 0. However the shock is moving541

towards positive values of x at speed ws, which could potentially induce an exponential542

growth of the solution. The most sensitive point is the shock front at position wst. At this543

point, the stability is determined by the term exp [(Iω − Ikws) t], which will be stable only544

if Iω − Ikws ≤ 0. We found no simple way to evaluate analytically this quantity, so it545

was computed numerically using either second- or third-order expansions for water and for546

shock strengths ϵ large enough so that the critical transmission exists. Results are displayed547

in Fig.(11). Only results for third-order theory are shown as this one is better adapted to548

moderate (not too small) values of ϵ for which the critical regime is observed. Below θC ,549

both Ik and Iω are null and are not displayed due to the chosen logarithmic scale. Above550

θC , both Ik and wsIω quickly increase (by one or two orders of magnitude) over the first551

couple of degrees, and then increase at a much slower pace. But the main result is that, for552

each tested value of ϵ, we find numerically that Ik = wsIω. When computing the difference553

between the two, we obtain equality close to the machine precision (roughly 10−11), whatever554

the theory order we rely on. We can therefore conclude that the critical transmission does555

not induce a flow instability. The transmitted wave keeps bounded on the shock front where556

it reaches its maximum amplitude, while decaying exponentially with distance away from557

the shock. It is nevertheless associated to a real component of the axial wavenumber, and558
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thus appears as an acoustical surface wave localized behind the shock front. This last regime559

is illustrated by Fig.(2.d).560
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