
HAL Id: hal-04851841
https://hal.sorbonne-universite.fr/hal-04851841v1

Submitted on 20 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

CALock : Multi-Granularity Locking in Directed Graphs
Ayush Pandey, Swan Dubois, Marc Shapiro, Julien Sopena

To cite this version:
Ayush Pandey, Swan Dubois, Marc Shapiro, Julien Sopena. CALock : Multi-Granularity Locking in
Directed Graphs. ComPas, Jul 2023, Annecy (France), France. �hal-04851841�

https://hal.sorbonne-universite.fr/hal-04851841v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Compas’2023 : Parallélisme / Architecture/ Système
LISTIC/USMB - Annecy France, 4-7 juillet 2023

CALock : Multi-Granularity Locking in Directed Graphs
Ayush Pandey1, Swan Dubois1, Marc Shapiro1,2, Julien Sopena1

1 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France 2 Inria

Résumé
With the increasing demand for parallel processing and shared data structures in modern com-
puter systems, the need for effective synchronization mechanisms has become increasingly
important. Concurrent accesses to shared data require synchronization, and locking is a wi-
dely used strategy in this context. Multi-granularity locking approaches have been proposed
to allow threads to lock the whole sub-graph concerning a query in a single lock acquisition,
particularly when the data structure is hierarchical. However, existing strategies often suffer
from performance limitations.
To address this challenge, this paper proposes CALock, a new labelling strategy for multi-
granularity locking that exploits the topology of a rooted directed graph to identify the finest
lock grain. The CALock approach is evaluated experimentally, and the results demonstrate
that it offers higher concurrency and throughput than similar approaches when the underlying
graph is dynamic. In particular, CALock exhibits a 200% increase in throughput compared to
similar locking approaches for workloads with contended access requests.

Mots-clés : Parallel Algorithms, Locking, Dynamic Hierarchies, Graphs

1. Introduction

Context Hierarchical data structures, such as lists, trees, and graphs , etc. are characterized by
directed edges between vertices of the structure. These edges define relationships between the
vertices and help navigate the hierarchy based on query parameters.
In the presence of concurrent reads and writes, an application needs to ensure that the data
remains consistent. Although weaker synchronization methods exist for specific classes of data
structures [2, 10, 12, 9, 6, 13] locking is the predominant technique for synchronization[8]. The
performance of any locking approach is a measure of the concurrency allowed by the lock
while ensuring data consistency. For example, locking the entire data structure ensures data
consistency but does not allow parallel access. In practice, locking approaches need to balance
the cost of locking, maintaining data consistency, and allowing concurrency.
State-of-the-Art multi-granularity locking (MGL) [4] is one such approach that aims to strike
a balance between maintaining data consistency and allowing efficient parallel access to sha-
red data. By allowing threads to lock only the necessary portions of the data structure, multi-
granularity locking can reduce contention and improve performance. In MGL, acquiring a lock
on a vertex v (called the lock target) also locks several other vertices implicitly based on the lo-
cking algorithm used. The portion of a graph that is considered locked when locking a single
vertex is called the grain of the lock. Locks with small granularity are called fine-grained whe-
reas locks with large granularity are called coarse-grain. Coarse grain locks have a low cost of

Compas’2023 : Parallélisme / Architecture/ Système
LISTIC/USMB - Annecy France, 4-7 juillet 2023

acquisition but restrict concurrency. Fine-grain locks have a high cost of acquisition but allow
high concurrency.
With granular locking, two lock requests conflict with each other if their lock grains contain at-
least one common vertex and the intended operations, for which the lock is required, conflict.
A measure of the size of these grains is called the granularity of the lock [11].
Several MGL techniques have been proposed in the literature and they fall into two broad
categories based on the number of locks acquired per query.
Multi-lock MGL approaches take several locks for one query, For example, intention locks [4].
These approaches suffer from deadlocks. Applications need thus to implement effective dead-
lock avoidance or detection and resolution mechanisms.
Single-lock MGL approaches take a single lock for each query by exploiting the topology of the
graph and acquiring a single lock at the root of the lock grain, thereby locking the subgraph at
this root. These approaches can be more efficient than multi-lock approaches because they do
not suffer from deadlocks. However, they may restrict concurrency depending on the topology
of the graph. Some MGL techniques used in practice are explained below. Intention lock [4] is
a multi-lock MGL technique in which, the vertices along the paths of the graph leading to the
lock target are marked with intention locks. Intention locks "tag" the vertices with a shared
or exclusive mode which indicates that an actual lock is being acquired at a finer granularity
along this path. Other threads use intention tags to check for conflicts. While placing tags along
a path, if a thread encounters a tagged vertex with a conflicting mode, then it waits until the tag
is cleared or is not in conflict anymore. Commercial databases like SQLServer [1] use intention
locks to optimize synchronized access to data and indices.
DomLock [7] is a single-lock MGL technique suitable for rooted directed graphs that labels
the vertices with intervals of the form [min,max] assigned by a post-order traversal over the
graph. Figure 1 provides an example of such labelling. A leaf has a unit interval, e.g. vertex E
has the label [2, 2]. The interval for an internal vertex is the minimum of the min values and
the maximum of the max values from the intervals of its children. For example, vertex C has
four children D, E, F, and G so, its interval is [1, 4]. In this situation, C subsumes the intervals
of the vertices D through J. Based on the traversal order, a vertex can sometimes subsume its
siblings even though they do not belong to the same grain. For example, vertex F is not a des-
cendant of vertex G but G still subsumes F because their intervals overlap. This is called a false
subsumption.

FIGURE 1 – DomLock labelling. If a
lock is placed on G, all the vertices in
orange are also implicitly locked.

In DomLock, the grain for a lock request is rooted at
the deepest vertex with the smallest interval that sub-
sumes the intervals of vertices in the lock request. For
example, to lock H and J, the grain has the range [3, 4].
G is the deepest vertex that subsumes [3, 4] so a lock is
requested on G, see Figure 1.
Limitations MGL techniques have some limitations,
With intention locks, the first limitation is the fact that
deadlocks may occur so additional mechanisms are re-
quired to avoid or detect and resolve them. Second, in-
tention locks may have a high latency for a lock request
because of the traversals required to place intention
tags along the paths. These traversals are especially ex-
pensive for graphs with a large number of edges. With
DomLock, the first limitation is the fact that false sub-

Compas’2023 : Parallélisme / Architecture/ Système
LISTIC/USMB - Annecy France, 4-7 juillet 2023

sumptions restrict concurrency. For example, in Figure 1 a lock on I and J prevents another
thread from locking F even when these queries can run concurrently. Second, the cost of mainte-
nance of the labels in the presence of structural modifications is high. Indeed, the re-computing
of the intervals may be expensive since a traversal of the complete graph might be necessary.
Contribution In this paper, our contribution is a new single-lock MGL strategy that signifi-
cantly improves the state of the art. This strategy, called Common-Ancestor lock or CALock for
short, is based on a labelling scheme that efficiently computes the “closest” common ancestor
of a set of vertices. Performance improvement w.r.t. DomLock comes from (i) a reduction of
false subsumptions and (ii) a top-down relabelling in case of structural modifications.
Roadmap The remainder of this paper is structured as follows. Section 2 presents our labelling
algorithm. Section 3 describes our locking algorithm. Section 4 summarizes our experimental
evaluation of CALock using STMBench7. Finally, Section 5 concludes the paper.

2. CALock Labelling Strategy

To make understanding easier, consider a rooted DAG. Then, the main idea of CALock is the
following ; to protect a set of vertices, lock their lowest common single ancestor, or LCSA, which
is the deepest vertex that lies on every path from the root to the vertices in the set [3]. For
example, in Figure 2, lock A for a request over E and I. We can generalize this scheme to any
rooted directed graph by reducing any strongly connected component to a single vertex. We
explain now, a labelling function for graphs such that the labels of a set of vertices are sufficient
to compute their LCSA without having to traverse the graph.
Labelling Let G = (V, E) be a directed graph. V is the set of vertices of the graph connected by
directed edges in the set E such that E ⊆ V × V . A vertex r ∈ V is the root of G. We label each
vertex v using the following recursive function Lv :

Lv = {v} ∪ {∩u∈parents(v)Lu} (1)

FIGURE 2 – CALock labelling. If a lock
is placed on G, only the vertices in
orange are also implicitly locked.

We prove in Appendix A that the fix-point LG for the
label of a vertex in G satisfies the following properties :
(i) For a vertex v, the label only contains the single an-
cestors of v in G. (ii) The deepest element in the label of
a vertex v is the LSA of v in G. (iii) For a set of vertices
S, the labels of vertices in S guarantee that the LCSA of
vertices of S is the deepest vertex in ∩v∈SLv.
We compute LG using algorithm 1. Processing starts at
the root of the graph. The label for the root contains
only its own identifier. Then, the function BFLabel()
is called for every inner vertex of the graph. The label
of an inner vertex is a set union of its own identifier
and the set intersection of the labels of its parents (line
16). This recursion terminates when the label of a vertex reaches a fix-point (line 18) indicating
that all paths to the vertex have been explored, even in the presence of strongly connected
components.

3. CALock Locking Strategy

General idea In CALock, a request that manipulates a set S of vertices, issues a lock request for
the LSCA of the vertices in S. This LSCA x is computed by taking a set intersection of the labels

Compas’2023 : Parallélisme / Architecture/ Système
LISTIC/USMB - Annecy France, 4-7 juillet 2023

Algorithm 1 Procedure for assigning labelling the graph

1: procedure ASSIGNLABELS(v)
2: queue.PUSH(v)
3: while queue.HASNEXT() do
4: v← queue.NEXT()
5: BFLABELA(v, queue)
6: end while
7: end procedure

8: procedure BFLABELA(v, queue)
9: C←CHILDREN(v)

10: if parents(v) = ∅ then
11: v.label← {v}

12: queue.PUSH(C)
13: return
14: end if
15: P ←PARENTS(v)
16: tempLabel←INTERSECTION(P.labels)
17: tempLabel.APPEND(v)
18: if v.label ̸= tempLabel then
19: v.label← tempLabel
20: queue.PUSH(C)
21: end if
22: end procedure

of vertices in S. The LSCA is the deepest element in this set intersection. A lock is requested on
x, the root of the lock grain. The lock request is checked for conflicts with currently held locks
and blocked if a conflict is detected otherwise, the thread proceeds to its critical section. The
lock requests, pending or granted, are added to a lock pool.
Lock pool The lock pool is an array containing one entry per thread. Initially and when the
thread is not holding a lock, its entry is NULL. Whenever a thread requests a lock, it atomically
inserts its request into the lock pool at the corresponding index. This request contains the Thread
ID, Grain LSCA, Sequence number, Waiting condition, Lock mode, Grain LSCA label. Algorithm 2
shows the flow of lock acquisition in the lock pool.
The sequence number is assigned to the thread before the request is added to the pool. It is used
to order the requests by their arrival order. The waiting condition, which is an atomic boolean
variable, is set to true after the sequence number is assigned indicating that the thread is
holding the lock. Another thread with conflicting request blocks and waits for this boolean
value to change to false.
Assignment of a sequence number, setting the wait condition, and addition of the lock request
to the pool is done under a mutex to prevent the race where a new lock request with a conflic-
ting operation and grain is granted before the conflict could be detected.

rli(x) wli(x) rli(y) wli(y)

rlj(x) ✓ ✗ ✓ ✤

wlj(x) ✗ ✗ ✤ ✤

rlj(y) ✓ ✤ ✓ ✗

wlj(y) ✤ ✤ ✗ ✗

TABLE 1 – Lock compatibilities between
shared (rl) and exclusive (wl) locks re-
quested by threads i and j on vertices x

and y.✓(compatible) ; ✗(incompatible) ; ✤

(compatible iff the grains do not overlap)

After the lock request is added to the pool, the
thread checks for conflicts with other locks cur-
rently held or requested. If the following condi-
tions simultaneously hold, the thread is blocked :
(i) the lock request has a mode conflict with ano-
ther lock request ; (ii) the lock grains of the re-
quests overlap (that is, either the lock request is
for a vertex that is part of a locked grain or the
lock request is for a lock grain, a part of which is
already locked) ; and (iii) the sequence number of
the request is greater than the conflicting request.
Table 1 sums up the lock compatibility.
Structural modifications CALock can be utilized for static graphs whose structure does not
change and for dynamic graphs that change at runtime. A structural modification request leads
to a partial relabelling of the graph for the vertices whose ancestors change as a consequence
of the structural modification.
To add a new vertex v, no lock is required and Lv = {v}. To delete a vertex v (resp. to add or
remove an edge between vertices u and v) a lock is acquired on the LSCA of the parents of

Compas’2023 : Parallélisme / Architecture/ Système
LISTIC/USMB - Annecy France, 4-7 juillet 2023

Algorithm 2 Lock acquisition request in the lock pool

1: GSeq : Global sequence number
2: Mutex : Mutex guarding the pool
3: procedure LOCK(lockObject, threadID)
4: LOCK(Mutex)
5: lockObject.Seq← Gseq + +
6: lockObject.condition.TESTANDSET(true)
7: Pool[threadId]← lockObject
8: UNLOCK(Mutex)
9: for all lock ∈ Pool do

10: if lock ̸= NULL
∧(lockObject.HASRWCONFLICT(lock))
∧(lock.grainRoot ∈ lockObject.ancestors
∨lockObject.grainRoot ∈ lock.ancestors)

∧(lockObject.Seq > lock.Seq) then
11: thread.WAIT(lock.condition)
12: end if
13: end for
14: return true
15: end procedure

16: procedure UNLOCK(lock)
17: lockPool.REMOVE(lock)
18: lock.condition.CLEAR()
19: lock.condition.NOTIFY_ALL()
20: end procedure

v (resp. the LSCA of u and v). Upon structural modifications, a relabelling may be necessary.
Note that, by the very definition of our labels, this relabelling affects only vertices in the grain
lock of the chosen LCSA.

4. Experimental evaluation

Experimental setup Our evaluation uses the same benchmark as DomLock [7]. We implemen-
ted CALock in STMBench7 [5] and ran our experiments on a machine with an AMD EPYC
7642 CPU with 48 Cores and a base clock of 2.3 GHz and 512 GB of RAM. The benchmark was
deployed on a docker container with Ubuntu 20.04. To build the benchmark, GCC 12.1 and
Cmake 3.22 is used. The compilation was done at the C++ 20 standard without any compiler
optimization flags.

(a) R :90%,W :10% (b) R :90%,W :10%

(c) R :90%,W :9.9%,SM :0.1% (d) R :90%,W :9.9,SM :0.1%

FIGURE 3 – (a, c) Throughput ; (b, d) Response time

STMBench7 provides coarse-grain
and medium-grain lock implemen-
tations. The coarse lock in STM-
Bench7 is a reader-writer lock over
the entire graph. Structural modifi-
cation operations with coarse and
medium locks take a write lock on
the entire graph.
The provided implementation of
DomLock uses busy-waiting. For a
more fair comparison, we modified
DomLock to use a condition va-
riable, like CALock does.
Overall performance Figure 3
shows the throughput with a read-
dominated load. The charts in Fi-
gure 3 plot the number of concur-
rent threads on the x-axis and the
throughput (op/s) or latency(µs) on
the y-axis. Figure 3a shows reads and writes without structural modifications. Coarse and
medium-grained locks perform better than both DomLock and CALock for up to 4 concur-
rent threads due to the overhead of computing lock grain in DomLock and CALock. Beyond
8 threads, both CALock and DomLock are better than coarse and medium-grained locks. CA-

Compas’2023 : Parallélisme / Architecture/ Système
LISTIC/USMB - Annecy France, 4-7 juillet 2023

Lock is 2x faster than DomLock for 32 threads and 4.5x faster than DomLock for 64 threads
because with DomLock, due to false subsumptions, threads are blocked even when lock grains
are disjoint.
Figures 3c show reads and writes that interleave with structural modifications. With as low as
0.1% of the operations being structural modifications, the performance of all locking strategies
suffers. This is because structural modifications with coarse-grained, medium-grained locks
and DomLock happen under mutexes. CALock is able to parallelize structural modifications
and is 2x faster than coarse and medium-grained locks and about 8x faster than DomLock.

FIGURE 4 – Relabelling time per op.
with 0.1% SM

Response Time We measure the time spent by a thread
waiting for locks. This is the time taken from when the
thread issues a lock request until the lock is granted. Fi-
gure 3b shows the wait time per thread between Dom-
Lock ad CALock for static graphs. DomLock on ave-
rage waits longer for a lock to be granted than CALock.
The wait time increases with the number of concur-
rent threads because of an increase in the number of
conflicts and overlapping grains. For 64 threads, CA-
Lock is 6x faster than DomLock. In dynamic graphs,
DomLock waits longer as shown in figure 3d. This is
because DomLock has to relabel the entire graph after
every structural modification. Response times for CA-
Lock also increase but CALock still remains 4x faster than DomLock.
Relabelling time for graphs We measure the cost of the graph following a structural modifi-
cation. Figure 4 shows the average time spent relabelling the graph per structural modification
for the same workload as Figure 3c. In DomLock a structural modification causes global rela-
belling via a post-order traversal of the graph which is expensive and blocks every other ope-
ration. With CALock however, a structural modification is followed by a relabelling of locked
grain only. This allows disjoint lock grains to be processed in parallel.

5. Conclusion and Future work

In this paper, we present CALock, an improved single-lock multi-granularity locking strategy
that exploits the single ancestors of vertices of a graph to identify the lock grain for a lock
request. The claims are supported by the benchmarks done using STMBench7. While DomLock
performs better when the graph is static and regular, CALock is better overall when the graph
is irregular or dynamic. We also reduce the problem of false subsumptions that can happen
with DomLock.
We plan to extend CALock in multiple dimensions. (i) To make CALock suitable for generic
graphs, we need to get rid of the constraint the graph has a single root. (ii) In CALock, a thread
can hold a single lock at a time ; we need to loosen this constraint and allow a single thread to
hold multiple locks. (iii) In the current implementation, the work set of a transaction needs to
be known before taking a lock to identify the lock grain. We plan to implement a strategy that
allows resizing the lock grains as the transaction progresses.

Bibliographie

1. Transaction locking and row versioning guide - sql server, Dec 2022.

Compas’2023 : Parallélisme / Architecture/ Système
LISTIC/USMB - Annecy France, 4-7 juillet 2023

2. Chatterjee (B.), Dang (N. N.) et Tsigas (P.). – Efficient lock-free binary search trees. CoRR,
vol. abs/1404.3272, 2014.

3. Fischer (J.) et Huson (D. H.). – New common ancestor problems in trees and directed acyclic
graphs. Information Processing Letters, vol. 110, n8-9, 2010, pp. 331–335.

4. Gray (J.), Lorie (R. A.), Putzolu (G. R.) et Traiger (I. L.). – Granularity of locks and degrees
of consistency in a shared data base. – In Nijssen (G. M.) (édité par), Modelling in Data
Base Management Systems, Proceeding of the IFIP Working Conference on Modelling in Data Base
Management Systems, Freudenstadt, Germany, January 5-8, 1976, pp. 365–394. North-Holland,
1976.

5. Guerraoui (R.), Kapalka (M.) et Vitek (J.). – Stmbench7 : a benchmark for software transac-
tional memory. – In Ferreira (P.), Gross (T. R.) et Veiga (L.) (édité par), Proceedings of the 2007
EuroSys Conference, Lisbon, Portugal, March 21-23, 2007, pp. 315–324. ACM, 2007.

6. Kaki (G.), Priya (S.), Sivaramakrishnan (K. C.) et Jagannathan (S.). – Mergeable replicated
data types. Proc. ACM Program. Lang., vol. 3, nOOPSLA, 2019, pp. 154 :1–154 :29.

7. Kalikar (S.) et Nasre (R.). – Domlock : A new multi-granularity locking technique for hie-
rarchies. ACM Transactions on Parallel Computing, vol. 4, n2, 2017, pp. 7 :1–7 :29.

8. Kimura (H.), Graefe (G.) et Kuno (H. A.). – Efficient locking techniques for databases on
modern hardware. – In Bordawekar (R.) et Lang (C. A.) (édité par), International Workshop
on Accelerating Data Management Systems Using Modern Processor and Storage Architectures -
ADMS 2012, Istanbul, Turkey, August 27, 2012, pp. 1–12, 2012.

9. Letia (M.), Preguiça (N. M.) et Shapiro (M.). – Crdts : Consistency without concurrency
control. CoRR, vol. abs/0907.0929, 2009.

10. Natarajan (A.), Savoie (L.) et Mittal (N.). – Concurrent wait-free red black trees. – In Hi-
gashino (T.), Katayama (Y.), Masuzawa (T.), Potop-Butucaru (M.) et Yamashita (M.) (édité
par), Stabilization, Safety, and Security of Distributed Systems - 15th International Symposium,
SSS 2013, Osaka, Japan, November 13-16, 2013. Proceedings, Lecture Notes in Computer Science,
volume 8255, pp. 45–60. Springer, 2013.

11. Ries (D. R.) et Stonebraker (M.). – Effects of locking granularity in a database management
system. ACM Transactions on Database Systems, vol. 2, n3, 1977, pp. 233–246.

12. Sundell (H.) et Tsigas (P.). – Fast and lock-free concurrent priority queues for multi-thread
systems. J. Parallel Distributed Comput., vol. 65, n5, 2005, pp. 609–627.

13. Valois (J. D.). – Lock-free linked lists using compare-and-swap. – In Anderson (J. H.)
(édité par), Proceedings of the Fourteenth Annual ACM Symposium on Principles of Distributed
Computing, Ottawa, Ontario, Canada, August 20-23, 1995, pp. 214–222. ACM, 1995.

Compas’2023 : Parallélisme / Architecture/ Système
LISTIC/USMB - Annecy France, 4-7 juillet 2023

A. Definitions and Proof

Let G = (V, E) be a directed graph. V is the set of vertices of the graph connected by directed
edges in the set E such that E ⊆ V × V . A vertex r ∈ V is the root of G.
A pair of vertices (u, v) is connected by a sequence of edges. This sequence p is called a path
from u to v. The set of vertices on a path p is denoted by V(p). The length lp of this path is the
size of V(p) i.e. lp = |V(p)|.
Since G is a graph, multiple such paths are possible between a pair of vertices. The set of all
the paths between (u, v) is denoted by P(u,v). The depth δ(v) of a vertex v is the length of the
shortest path in the set P(r,v).

A.1. Ancestors and Descendants
Definition 1 (Ancestor and Descendent). An ancestor of a vertex u is a vertex v in G that lies on a
path from r to u. The vertex u is then called the descendant of vertex v.

A.2. Single Ancestors
Definition 2 (Single Ancestor). A single ancestor of a vertex u is a vertex v in G that lies on all paths
from r to u.

Definition 3 (Lowest Single Ancestor). The lowest single ancestor (LSA) of vertex u is the single
ancestor v with the maximum depth.

Definition 4 (LSA-Tree). The LSA-tree TG of G is a tree structure that has vertices V, and its edges are
defined such that the parent vertex of v ̸= r is LSA(v).

A.3. Common Ancestors
When referring to a set of vertices, we define their common ancestor.

Definition 5 (Common Ancestor). A common ancestor (CA) of two vertices u and v is a vertex c in
G that is an ancestor of both u and v.

Definition 6 (Lowest Common Ancestor). The lowest common ancestor (LCA) of two vertices u and
v is a vertex l in G that is a common ancestor of u and v with maximum depth.

A.4. Lowest Single Common Ancestor
The Lowest single common ancestor (LSCA) is defined using the single ancestor and common
ancestor definitions. Fisher and Huson [3] derive the following relationships for the LSA and
the LSCA of vertices in a DAG.

Lemma 1. Let G be a DAG, rooted at r, and TG its corresponding LSA-tree. Further, let v, w ∈ V be two
arbitrary vertices in G. Then LSCAG(v,w) = LCATG(v,w)

Lemma 2. For a vertex v ̸= r , LSAG(v) = LSCAG(parentsG(v))

Definition 7. LSCAG(w1, ..., wk) = LSCAG(w1, LSCAG(w2, ..., wk)).

Definition 8. LCATG(u1, u2, ..., un) = LCATG(u1, LCATG(u2, ..., un)).

A.5. Computing labels of a graph
Since the LSA-tree TG is well defined for a DAG G ; The label for a vertex u, denoted by Lu, is
an ordered set of vertices that lie on the path from the root of TG to u. Since TG is a tree, the
path from the root to u in TG is unique and so is the label Lu. In order to compute the labels of
a vertex u in G we take the set intersection of the labels of u’s ancestors in G. To this end, we
have the following theorem :

Compas’2023 : Parallélisme / Architecture/ Système
LISTIC/USMB - Annecy France, 4-7 juillet 2023

Theorem 1. LSCA(v,w) is the vertex of the maximum depth in Lv ∩ Lw

Démonstration. Let l = LCATG(v,w) be the Lowest common ancestor of v, w in the LSA tree TG.
By lemma 1, we can say that l = LSCAG(v,w).
We need to show that l is the deepest vertex in Lv ∩ Lw.
Let’s assume that there is a vertex l ′ ̸= l that lies on the paths from l to both v and w in G. Since
l ′ lies on the paths l → v and l → w, the depth of l ′ must be greater than the depth of l.
The labels on v and w, which are Lv and Lw respectively, contain the single ancestors of v and
w. Since l ′ lies on the paths l → v and l → w, inductively, l ′ also lies on all the paths from the
root of the graph r to the vertices v and w.
If l ′ lies on these paths then l ′ ∈ Lv and l ′ ∈ Lw. This in turn implies that l ′ ∈ Lv ∩ Lw.
Since l ′ is deeper than l, it should be the deepest member of Lv ∩ Lw. But l ′ cannot be the
deepest element in Lv∩Lw because then, l would not be the LCATG(v,w) which means that our
assumptions on l ′ contradict the definition l = LCATG(v,w) and l is the deepest element in the
set Lv ∩ Lw.

A.6. Labelling scheme for graphs without strongly connected components
We now use Theorem 1 and use the definitions and lemmas from Section A.4 to derive a recur-
sive function that can be used to label a graph. Lemma 2 can be rewritten, using definition 7,
as follows :

LSAG(v) = LSCAG(p1, LSCAG(p2, ..., pk)) where p1, p2, ...pk are the parents of v (2)

Definition 8 can be rewritten using Theorem 1 as follows :

LCATG(u1,, un) = LSCAG(u1, ..., un) is the deepest element in Lu1
∩ ... ∩ Lun (3)

Combining equations 2 and 3, we can say that LSAG(v) is the deepest element in Lp1 ∩Lp2 ∩ ...∩
Lpk where p1, p2, ...pk are the parents of v. Therefore, the set of single ancestors of v is enough
to compute the lowest single common ancestor of a set of nodes. The recursive function that
we use on the vertices of the graph is :

Lv = {v} ∪ {∩u∈parents(v)Lu} (4)

Compas’2023 : Parallélisme / Architecture/ Système
LISTIC/USMB - Annecy France, 4-7 juillet 2023

B. Detailed Benchmarks

B.1. Throughput

(a) R :90%,W :10% (b) R :60%,W :40% (c) R :10%,W :90%

(d) R :90%,W :9.9%,SM :0.1% (e) R :60%,W :39.6%,SM :0.4% (f) R :10%,W :89.1%,SM :0.9%

FIGURE 5 – Performance with different workload types (higher is better)

B.2. Latency

(a) R :90%,W :10% (b) R :60%,W :40% (c) R :10%,W :90%,SM :0%

(d) R :90%,W :9.9,SM :0.1% (e) R :60%,W :39.6%,SM :0.4% (f) R :10%,W :89.1%,SM :0.9%

FIGURE 6 – Wait time for locks (lower is better)

Compas’2023 : Parallélisme / Architecture/ Système
LISTIC/USMB - Annecy France, 4-7 juillet 2023

B.3. Labelling and Granularity

(a) Granularity (b) Time to compute labels

C. STMBench Hierarchy structure

FIGURE 8 – Structure of a module in STMBench with lock boundaries

