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The binding mean spherical approximation (BiMSA) theory is used to describe the thermodynamic properties of dicar-
boxylic acid salts by adding a chain term in the free energy. The dianions in these solutions are modeled as flexible
charged chains composed of two, three, or four spheres. Five aqueous solutions of such salts are studied in different
concentration ranges: dipotassium oxalate, disodium malonate, disodium succinate, potassium tartrate and sodium tar-
trate. A description of the experimental deviations from ideality (osmotic and activity coefficients) for these salts is
obtained. The model is compared with a previous one that does not include a chain contribution. It is found that the
model with a chain contribution provides a more physically sound framework.

I. INTRODUCTION

Electrostatic interactions have a major influence on the ther-
modynamic properties of electrolytes and polyelectrolytes.
For simple electrolytes consisting of monatomic ions in aque-
ous solution the variation of the activity coefficients with the
concentration are fairly well described at least up to 1 M. At
high dilution, the theory of Debye and Hückel (DH) describes
well the behavior of this thermodynamic quantity as a func-
tion of the charge and size of the ions, assumed these to be
spherical1,2. In this model the solvent is seen as a continuum
characterized only by its dielectric constant. For higher con-
centrations, the DH electrostatic model becomes insufficient.
Two types of corrections must be made: (i) First, because
ions have a finite size, an additional contribution from ex-
cluded volume effects must be added in the Helmholtz energy
of the system. When the ions can be represented as charged
hard spheres, a hard sphere contribution must be added to the
various contributions thermodynamic quantities3–5. (ii) More-
over, the electrostatic contribution is poorly described by the
DH expressions, so a more efficient theory must be used. To
this end, the mean spherical approximation theory (MSA),
which better accounts for finite size effects between charged
species in concentrated solutions has been used6–9.

In contrast, analytic descriptions of the properties of poly-
electrolyte solutions are much less advanced. Polyelectrolyte
solutions are macromolecular systems made up of charged
polymer chains dissolved in a solvent. They are at the cross-
roads of research in the fields of chemistry, physics and bi-
ology. Polyelectrolyte solutions exhibit pecularities result-
ing from their high total charge and their complex geome-
try. In particular, when the distance between charges along
a polyion is small, counterions seem to associate with the
charged groups present on the polymer chain. This phe-
nomenon of condensation of counterions tends to reduce the
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effective charge and the mobility of the polyions10,11. De-
scribing the transport and thermodynamic properties of these
highly charged solutes is beyond the scope of this study.

However, low charged molecules exist in which the total
charge is distributed along the chain, some of them, called bo-
laform ions, have two identical charges located symmetrically
at the two ends of the molecule. When the charges are sep-
arated by a great number of atoms, the counterions seem to
associate less with these charged molecules. This change in
association, related to the distance between the charges, has
similarities with the specific association called condensation
of counterions in theories of polyelectrolyte solutions. In the
past, the properties of these particular electrolytes have been
considered within Mayer’s theory or with extensions to DH
where bolaform ions have been represented as ellipsoids or
rods with a uniform surface charge distribution.12–15 However,
these linear molecules carry charges only on the two atoms at
the ends. In such cases, a uniform charge distribution along
the length of the molecule is unrealistic. Moreover, when as-
sociation occurs on some of the charged groups it is necessary
to represent these groups explicitly within the molecule. Fur-
thermore, because of the charges carried by identical groups,
association on one group can strongly influence association
on another group when they are sufficiently close to each
other. This type of interaction can lead to the condensation
of counterions on polyelectrolytes. Then, in the case of small
weakly-charged molecules, considering that the total charge is
distributed over several atoms may allow us to describe such
electrolytes more realistically. Ions with only two identical
charged groups, separated by a few neutral atoms, are among
the simplest examples of such a charge distribution. In this
respect, salts of dicarboxylic acids seem to be systems with
interesting chemical characteristics. The negative charges of
these salts are located on the two carboxylic end groups sep-
arated by uncharged atoms. In this article, we have modeled
the thermodynamic properties of oxalate, malonate, succinate
and tartrate of alkali cations (sodium or potassium).

Then, to go further, such molecules can be modeled as a
linear chain of hard spheres. It is advisable to use a suitable
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theoretical model to describe the excluded volume effects spe-
cific to this type of structure. New theoretical tools have been
introduced in the literature to describe the thermodynamic and
structural properties of molecules represented as assemblies
of hard spheres bound together16,17. Thermodynamic pertur-
bation theory (TPT) led to the statistical associative fluid the-
ory (SAFT), which describes association of hard spheres that
build chain molecules18–22.

In addition, interactions between chains were also ad-
dressed using integral equations. In order to allow a finite
number of bonds between hard spheres, highly directional
attractive potentials at short distances have been added. A
bond between two particles is induced by these potentials only
when they are properly oriented towards each other. As a re-
sult, pair distribution functions are split into several contri-
butions depending on whether or not each of the particles is
bonded to another. Therefore, new integral equations have
been established to describe the interactions connecting all of
these contributions16,23,24. As usual, these equations relate the
various contributions of the total correlation functions to those
of additional functions called direct correlation functions. In
order to solve these integral equations, closure relations are re-
quired between the total and direct correlation functions. The
closure relations used are very similar to those used with the
standard integral equations. However, as the integral equa-
tions are not the same, the correlation functions are differ-
ent. The Percus-Yevick relation has been used in the case
of uncharged hard spheres chains. Thermodynamic proper-
ties of these constituents were derived from these correlation
functions16,25–27.

For charged hard spheres, the binding mean spherical ap-
proximation (BiMSA), also called associative MSA or poly-
mer MSA, closure relation has been introduced28–31. It
assumes that the direct correlation function between two
charged species i and j is equal to −Vi j(r)/kBT for distances
greater than the distance of least approach for hard spheres
(with Vi j(r) the Coulomb potential, kB the Boltzmann constant
and T the temperature). Within the BiMSA, integral equa-
tions were solved for ion pairs in a continuum solvent28–30,32,
and analytical expressions for the electrostatic contribution
to the thermodynamic properties were obtained33,34. Subse-
quently, the BiMSA was solved for a general charged hard-
sphere chain fluid31,35–38 and the thermodynamic behavior has
been obtained within this framework39–42.

In this work the BiMSA theory for some flexible linear
chain molecules is used to describe the thermodynamic prop-
erties of aqueous solutions of dicarboxylate salts, such as
potassium oxalate, sodium malonate, sodium succinate and
potassium or sodium tartrate. These salts are of 2:1 type, with
two identical cations, K+ or Na+, for one molecular dianion
of valency -2: C2O2−

4 , C3H2O2−
4 , C4H4O2−

4 and C4H4O2−
6 (A

graphical representation of theses dianions can be seen in Fig.
1). The tartrate ion has a structure similar to that of the suc-
cinate one because it possesses the same number of carbon
atoms. Like the succinate, it contains two carbon groups sep-
arating the carboxylic heads. However, in each of these two
intermediate groups a hydrogen atom is replaced by an OH
group.

This article is organized as follows. Section II provides
the main theoretical ingredients of the BiMSA theory, includ-
ing proposed expressions for the variation of cation size and
permittivity with concentration, and association contributions
(pair and trimers formation) to the thermodynamics of the sys-
tem. It is also detailed how the dianion can be modeled as a
chain consisting of two, three or four spheres. In section III,
the main results are presented and discussed. Finally, in sec-
tion IV some conclusions about this study are presented. The
complete equations used in this work are given separately in
the appendices.

II. THEORY

The model proposed in this research considers molecules
made up of charged hard spheres (cation C) and charged
chains (dianion A). The chains include two, three or four
spheres that will be used to represent the oxalate, malonate
and succinate molecules, respectively (see Fig. 2). Cations
have a diameter σ+ and a positive valence z+. The oxalate ion
is represented by a chain built up of two spheres of diameter
σ− and valence z− each; the malonate and the succinate ions
are modeled as the previous chain to which one and two neu-
tral spheres of diameter σm, respectively, are added between
the two end spheres of diameter σ−. The latter two nega-
tively charged spheres represent the carboxylic groups. Sub-
sequently they will be referred to as the charged heads of these
anions. Cations and dianions interact through a Coulomb po-
tential and they can form pairs (cation-dianion) and trimers
(cation-dianion-cation). The solvent is regarded as a contin-
uum with a relative permittivity ε . Within the framework of
this theory, the excess Helmholtz free energy, A, per volume
unit is given by

β∆A = β∆AHS +β∆Ach +β∆ABiMSA (1)

where ∆AHS is the contribution from hard sphere exclusion,
∆Ach is the contribution from the chains and ∆ABiMSA is the
BiMSA contribution that includes effects arising from elec-
trostatic interactions ∆Ael and those coming from association
∆AMAL40 (in which MAL stands for mass action law)

β∆ABiMSA = β∆Ael +β∆AMAL (2)

In what follows, a two component electrolyte is considered in
which the anion (A) can form either a pair (AC)) or a trimer
(AC2) with the cations (C). A pair is defined as a cation being
in contact with one of the two charged heads of a dianion. A
trimer is defined as two cations being in contact with each of
the two charged heads of the same anion. Then the following
two chemical equilibria occur between the ions C and A

C+A ⇌ AC K0
P

C+AC ⇌ AC2 K0
T

where K0
P

and K0
T

are the thermodynamic association constants
for the formation of pairs and trimers. As usual, the mean ac-
tivity coefficient of the salt (on molar scale), lny±, the osmotic
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pressure P and the osmotic coefficient φ can be deduced by
differentiation of the excess Helmholtz free energy ∆A with
respect to the number densities of the constituents.

In addition, the degree of hydration of the cation and the
solution permittivity are allowed to vary with the solute con-
centration.

This is done as follows. As in previous work43,44, a lin-
ear variation with respect to concentration for σ+ and 1/ε is
assumed as

σ+ = σ
(0)
+ +σ

(1)C, ε
−1 = εw

−1 (1+α C) (3)

where C is the solute concentration, σ
(0)
+ is the size of cation

at infinite dilution, σ (1) is a parameter that accounts for the
rate of variation of the cation size with concentration; εw is
the dielectric constant of pure water, and α is a parameter
accounting for the variation of the relative permittivity with
concentration43–45.

A linear dependency for 1/ε was chosen because experi-
mental data have been observed to approximately vary this
way46. From the free energy, contributions to the activity and
osmotic coefficients can be determined by differentiation with
respect to the number densities, on the one hand by consid-
ering the parameters σ+ and ε as being constant, and on the
other hand by taking into account the variations of these pa-
rameters with the densities. To distinguish the quantities de-
termined by assuming the parameters σ+ and ε constant the
subscript 0 is added to the symbol.

Additional contributions are denoted with the subscripts σ+

and ε . Then one has for the activity and osmotic coeffcients,

lny = lny0 + lny
σ+

+ lnyε (4)

φ = φ0 +φ
σ+

+φ
ε

(5)

Explicit expressions for these quantities will be provided be-
low.

This type of model in which the solvent is modeled as a con-
tinuum falls within the framework of McMillan-Meyer (MM)
solution theory. To describe the experimental data (which are
at the Lewis-Randall (LR) level), it is necessary to perform
a conversion of the corresponding theoretical quantities ob-
tained at the MM level. To distinguish the experimental ther-
modynamic quantities (activity and osmotic coefficients) from
those determined with this theoretical model, the superscripts
LR and MM will be added to the experimental and theoretical
quantities respectively. This conversion was done using the
following expressions44,47

φ
LR = φ

MM(1−CtV±), (6)

lnyLR
i = lnyMM

i −CtViφ
MM, (7)

and

yLR
i = γ

LR
i V dw, (8)

TABLE I. Parameter values used in Eq. 10 for the salts considered in
this work.

Salt d1 d2 mmax Reference
mol m−3 mol

3
2 kg−

1
2 m−3 mol kg−1

K2Oxalate 0.128977 −0.0208227 1.5 49
Na2Malonate 0.118184 −0.0210164 4.0 49
Na2Succinate 0.115644 −0.0207051 2.0 49
Na2Tartrate 0.142653 −0.0247199 1.3 50
K2Tartrate 0.160447 −0.0333483 5.7 51

where Ct is the total solute concentration (Ct = νC, with ν

the total stoichiometric number of the salt), V± is the mean
solute partial molar volume, V is the specific volume (volume
of solution per kg of solvent), Vi is the partial molar volume
of species i, γLR

i is the LR activity coefficient of species i, and
dw is the density of pure water at 25◦C. The concentration is
calculated using the simple conversion for a given molality m

C =
m
V

=
m d(m)

1+mM
, (9)

where d(m) is the solution density and M is the molar mass
of the salt. The densities were parameterized using an expres-
sion similar to the one proposed elsewhere48 in terms of molar
salt concentration. Here, for convenience, the densities were
expressed as a function of the salt molality as

d(m) = dw +d1 m+d2 m3/2, (10)

where dw is the density of pure water and d1 and d2 are re-
ported in Table I.
In the following subsection, the various thermodynamic con-

tributions (HS, chain, BiMSA) are described more precisely
for the case of a model salt containing dumbbell-shaped ox-
alate ions at the MM level. The main differences of the model
when the anion includes additional spheres (to represent the
malonate, succinate and tartrate ions) are presented in the next
subsection. Complementary formulas and contributions com-
ing from the variation of σ+ and ε with concentration are pre-
sented in the appendices.

A. Molecular dianion comprised of two bonded spheres

In this section, the model is detailed for the case of a salt
comprised of two spherical cations and an anion composed
of two spheres linked together, as shown in Fig. 2(a). This
assembly of two spheres for the anion was used to represent
the oxalate ion. The two negatively charged spheres which
constitute the anion represent each of the carboxylic groups
carried by the oxalate ion.

1. Contributions from hard sphere exclusion and chain
formation

To build this system, we can start with a collection of free
spheres of diameter σ+ and σ−, with number densities ρ−, for
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(a) Oxalate (b) Malonate (c) Succinate

FIG. 1. Dicarboxylic molecules

σ+

σ−

(a) Oxalate salt

σ+

σ− σm

(b) Malonate salt

σ+

σ− σm

(c) Succinate salt

FIG. 2. Representation of the molecules studied in this work. In the present model, the chains of malonate and succinate are not rigid (see
text). The diameters of a counterion (blue sphere), end carboxylate group (red) and carbon group (black) are σ+, σ−, and σm, respectively.

anion concentration (oxalate in Figure 2(a)) and ρ+ for cation
one. The hard sphere part of the Helmholtz free energy for
this system is5.

π

6
β∆AHS =

[
ζ 3

2

ζ 2
3
− π

6
(ρ++2ρ−)

]
ln(1−ζ3)+

3ζ1ζ2

1−ζ3

+
ζ 3

2
ζ3(1−ζ3)2

(11)

with

ζk =
π

6

(
ρ+σ+

k +2 ρ−σ−
k
)

(12)

for k = 1,2,3. The contribution of hard spheres relates on the
one hand to the spheres representing the cations and on the
other hand to those which constitute the anions when they
are linked together. A factor of 2 before ρ− in equation (11)
comes from the fact that oxalate ions contain two monomers.

To allow for the formation of ‘chains’ of two neutral hard
spheres of diameter σ−, it is necessary to add a contribution to
the Helmholtz free energy related to these species. It is given
by20

β∆Ach =−ρ− lngHS
−−(σ−) (13)

where gHS
−−(σ−) is the contact value of the radial distribution

function (RDF) expressed as4

gHS
−−(σ−) =

1
1−ζ3

+
3ζ2

2(1−ζ3)2 σ−+
ζ 2

2
2(1−ζ3)3 σ

2
− (14)

When the chain constituents are charged, the contact value
of the RDF contains in addition an electrostatic contribu-
tion. This is defined using the exponential approximation in
BiMSA theory as the product of a hard sphere term and an
electrostatic interaction term33,40. The contribution to the for-
mation of chains coming from the charges of the two spheres
of diameter σ− is included in β∆Ael presented below.

The system to be described requires that all spheres with di-
ameter σ− be involved in chains comprising two such spheres.
If the spheres constituting the anions were not linked together
then the ideal pressure would have been, βPIdeal = ρ++2ρ−.
However, because of the bond connecting them the ideal pres-
sure reduces to: βPIdeal = ρ++ρ−. The total number density
for this new system is ρt = ρ++ρ−. The total pressure is the
sum of ideal and excess contributions.

If we neglect at this stage the electrostatic and associative
contributions, it can be written as

β∆P =(ρ++ρ−)+β∆PHS +β∆Pch

=ρt

[
1+∆φ

HS
0 +∆φ

ch
0

]
(15)

where the HS pressure is

β∆PHS =
(ρ++2ρ−)ζ3

1−ζ3
+

18ζ1ζ2

π (1−ζ3)
2 +

6(3−ζ3)ζ 3
2

π (1−ζ3)
3 ;

(16)
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and the chain contribution is given by

β∆Pch =−ρ−

{
ζ3

1−ζ3
+

1
gHS
−−(σ−)

[
3ζ2 σ−

2(1−ζ3)
3

+
ζ 2

2 σ2
−

(1−ζ3)
4

]}
.

(17)

Then one obtains

∆φ
HS
0 =

(
1+

ρ−
ρt

)
ζ3

1−ζ3
+

3ζ1ζ2

ζ0 (1−ζ3)
2 +

(3−ζ3)ζ 3
2

ζ0 (1−ζ3)
3

(18)
in which ζ0 = π

6 (ρ+ + ρ−) is different than the usual case
where the negative spheres are not bonded. The chain con-
tribution is

∆φ
ch
0 = β∆Pch/ρt (19)

where β∆Pch is given by Eq. (17). By summing the two
contributions, we observe that the term (ρ−/ρt)ζ3/(1− ζ3),
added in ∆φ HS

0 is subtracted in ∆φ ch
0 . The activity coefficient

for hard sphere can be written as

∆ lnyHS
0 =

β∆AHS
0

ρt
+∆φ

HS
0 (20)

where

β∆AHS
0

ρt
=

(
ζ 3

2

ζ0ζ 2
3
−1 − ρ−

ρt

)
ln(1−ζ3)+

3ζ1ζ2

ζ0(1−ζ3)

+
ζ 3

2
ζ0ζ3(1−ζ3)2

(21)

In the same way, the chain contribution to the activity coeffi-
cient can be written as

∆ lnych
0 =−ρ−

ρt

[
lngHS

−−(σ−) +
ζ3

1−ζ3

+
1

gHS
−−(σ−)

(
3ζ2σ−

2(1−ζ3)
3 +

(ζ2σ−)
2

(1−ζ3)
4

)] (22)

The purpose of this theoretical section is to illustrate chain
formation in our model, so in order not to bore the reader with
tedious equations, the contributions due to varying cation size
and permittivity to the osmotic and activity coefficients are
given in Appendix A.

2. Contributions from electrostatic interactions and
association

The electrostatic and associative contributions to the
Helmholtz energy have been derived from previous studies
on polyelectrolyte thermodynamics within the framework of
BiMSA40,42. In these works, the polyion was represented as
a sequence of n charged hard spheres. Within each polyion,
association equilibria between two consecutive charged hard

spheres were considered. By taking the limit where the as-
sociation constants tend to infinity, a chain of n charged hard
spheres is formed. In order to adapt this polyion model to the
molecules studied in this article we first considered symmet-
rical chains in which only the two hard spheres at the ends
carry a charge. Lastly, between these charged spheres, neu-
tral spheres all of the same size can be added, in order to
describe dianions of greater length. In addition, an associa-
tion between each of the charged ends and a counterion was
considered. Then, to describe each of the systems consid-
ered we started from the expressions describing chains that
can have n+2 constituents (including two counterions possi-
bly attached to each end). When the molecular dianion con-
tains only two bonded spheres, one has n = 2. The formulas
presented are therefore special cases of the expressions estab-
lished previously. Furthermore, for longer chains in particular,
more details are given in Appendix B. Initially, the Helmholtz
energy was determined by integrating the electrostatic internal
energy ∆E obtained in the BiMSA framework. Then β∆Ael

has been separated into two parts, namely the average activity
coefficient lnyel

± and the osmotic coefficient ∆φ el , deduced by
differentiation. Finally, the electrostatic contribution to the
Helmholtz energy β∆Ael obtained from the BiMSA theory
can be written in terms of these two thermodynamic quanti-
ties according to40

β∆Ael = ρt lnyel
±−ρt∆φ

el (23)

which greatly simplifies its expression. The electrostatic con-
tribution to the activity coefficient, lnyel

±, has been split in a
first contribution ∆ lnyel

0 , obtained by assuming that σ+ and ε

are independent of densities, and other terms ∆ lnyel
σ+,ε , com-

ing from the variation of these parameters with densities. It
has been found

∆lnyel
0 =

λ

ρt

[
ρ+z+M0

++2ρ−z−M0
−−ηρ+σ+

(
X 0

+ +
η

3
σ

2
+

)
−2ηρ−σ−

(
X 0

− +
η

3
σ

2
−

)
+

ρ−
σ−

(
X 0

−X 0
− − z2

−
ε

εw

)]
(24)

where the Bjerrum length λ is given by

λ =
βe2

4πε0ε
(25)

and the following quantities are defined:

M0
k =−Γzk +ησk

1+Γσk
,

X 0
k =

zk −ησ2
k

1+Γσk
.

(26)

The last term in Eq. (24) represents the charge contribution to
chain formation within the dianion. The preceding terms are
similar to those found in a dissociated electrolyte41,43,44. The
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parameters Γ and η are given by the implicit equations

Γ2

π
= λ

[
ρ+

(
X 0

+

)2
+2ρ−

(
X 0

−
)2

+2ρ−

(
X 0

−
)2

1+Γσ−

+2(ρP +2ρT )
σ∗
++σ∗

−
σ++σ−

X 0
+X 0

−

+2
(ρP +2ρT )

1+Γσ−

σ∗
++2σ∗

−
σ++2σ−

X 0
+X 0

−

+2
ρT

(1+Γσ−)2
σ∗
++σ∗

−
σ++σ−

(
X 0

+

)2
]
,

(27)

and

η =
π

2△

[
ρ+σ+X 0

+ +2ρ−σ−X 0
− +ρ−σ

∗
−X 0

−

+
ρP +2ρT

σ++σ−

(
X 0

+σ
2∗
− +X 0

−σ
2∗
+

)
+

ρP +2ρT

(σ++2σ−)(1+Γσ−)

(
X 0

+σ
2∗
− +X 0

−σ
2∗
+

)
+

ρT

(σ++σ−)(1+Γσ−)2 X 0
+σ

2∗
+

]
.

(28)

where △ = 1 − ζ3, and the following notations have been
used:

σ
∗
k =

σk

1+Γσk
,

σ
2∗
k =

σ2
k

1+Γσk
.

(29)

In the same way, the electrostatic contribution to the osmotic
coefficient, ∆φ el may be split in a first contribution, ∆φ el

0 , ob-
tained by assuming that σ+ and ε are independent of densities,
and a second one, ∆φ el

σ+,ε , coming from the variation of these
parameters with densities. The thermodynamic relation9,45,
∆φ el

0 = ρt
∂

∂ρt

[
β∆Ael/ρt

]
Γ,σ+,ε

, was used to calculate the os-
motic coefficient

∆φ
el
0 =− 2λ

πρt
η

2 − Γ3

3πρt
. (30)

Furthermore, association equilibria between the cations and
the negative spheres were taken into account. Chemical equi-
libria relating the concentrations of pairs ρP and trimers ρT to
the fraction α+ of free cations (C) and to the fraction α− of
free anions (A) can be expressed as follows40

KP =
ρP

ρ+α+ ρ−α−
= K0

P
GP , (31a)

KT =
ρT

ρ+α+ ρP

= K0
T

GT , (31b)

with the fractions of unbound ions

α+ = 1− ρP

ρ+
−2

ρT

ρ+
, (32a)

α− = 1− ρP

ρ−
− ρT

ρ−
. (32b)

The terms GP and GT express the departures of the apparent
constants KP and KT from the corresponding thermodynamic
association constants K0

P
and K0

T
. They are given by the fol-

lowing exponential approximations33,40,52

GP = gHS
+−(σ+−)exp

{
−λ

[
2

(
X 0

+X 0
− − z+z−b0

)
σ++σ−

+
2

σ++2σ−

(
X 0

+X 0
−

1+Γσ−
− z+z−b1

)]}
,

(33)

and

GT = GP exp
[
− λ

(σ++σ−)

(
X 0

+X 0
+

1+Γσ−
− z2

+b0

)]
(34)

where

b0 =
(σ++σ−)

(σ
(0)
+ +σ−)

ε

εw
,

b1 =
(σ++2σ−)

(σ
(0)
+ +2σ−)

ε

εw
.

(35)

In Eq. (33), the two terms in the exponential are contribu-
tions from the charges of the anion and the cation. The first
contribution comes from the contact electrostatic interaction
energy, at the distance (σ++σ−)/2, between two ions bound
together. The second one represents the interaction energy
between the bound cation and the other charged end of the di-
anion. In Eq. (34), the term in the exponential represents the
interaction energy between the two cations and the chain. The
contribution from association to the Helmholtz energy is40

β∆AMAL = ρ+ lnα−+ρ− lnα−+ρP +2ρT . (36)

Then the association contribution to the activity coefficient,
deduced from the free energy ∆AMAL, is

∆lnyMAL
0 =

1
ρt

[
ρ+ lnα++ρ− lnα−

−(ρP +2ρT ) ∑
k=+,−

ρk
∂ lngHS

+−(σ+−)

∂ρk

] (37)

and that of the osmotic coefficient is

∆φ
MAL
0 =−ρP +2ρT

ρt

[
1+ ∑

k=+,−
ρk

∂ lngHS
+−(σ+−)

∂ρk

]
, (38)

where the contact value of the radial distribution function used
to evaluate ∆ lnyMAL

0 and ∆φ MAL
0 is expressed as4

gHS
+−(σ+−) =

1
1−ζ3

+
3ζ2

(1−ζ3)2 σP +
2ζ 2

2
(1−ζ3)3 σ

2
P
, (39)

with

σP =
σ+σ−

σ++σ−
. (40)
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which allows one to determine the derivatives of gHS
+−(σ+−)

with respect to the ρk’s appearing in the formula for ∆ lnyMAL
0

and ∆φ MAL
0 . This leads to

∑
k=+,−

ρk
∂ lngHS

+−(σ+−)

∂ρk
=

ζ3

1−ζ3
+

1
gHS
+−(σ+−)

[
3ζ2σP

(1−ζ3)
3

+
4ζ 2

2 σ2
P

(1−ζ3)
4

]
(41)

The main starting equations for molecular dianions com-
posed of three or four spheres are presented in the next sub-
section.

B. Molecular dianion composed of three or four spheres

Here, the molecular dianion is modeled as a chain made up
of two negative spheres at the ends and one or two neutral
spheres in between as sketched in Figs. 2(b) and 2(c). The
number of neutral spheres is denoted by n. As previously, it
is allowed that the dianion can form pairs and trimers with the
cations. The HS contribution to the Helmholtz energy is5

π

6
β∆AHS =

[
ζ 3

2

ζ 2
3
− π

6
(ρ++2ρ−+nρ−)

]
ln(1−ζ3)

+
3ζ1ζ2

1−ζ3
+

ζ 3
2

ζ3(1−ζ3)2

(42)

where

ζk =
π

6

(
ρ+σ

k
++2ρ−σ

k
−+nρ−σ

k
m

)
(43)

for k = 1,2,3 and ζ0 = π

6 (ρ+ + ρ−) as previously. The ex-
pression for the osmotic contribution ∆φ HS

0 is

∆φ
HS
0 =

[
1+(n+1)

ρ−
ρt

]
ζ3

1−ζ3
+

3ζ1ζ2

ζ0 (1−ζ3)
2

+
(3−ζ3)ζ 3

2

ζ0 (1−ζ3)
3

(44)

The activity coefficient for hard spheres can be written as40

∆ lnyHS
0 =

β∆AHS
0

ρt
+β∆φ

HS
0 (45)

where

β∆AHS
0

ρt
=

(
ζ 3

2

ζ0ζ 2
3
−1 − (n+1)

ρ−
ρt

)
ln(1−ζ3)

+
3ζ1ζ2

ζ0(1−ζ3)
+

ζ 3
2

ζ0ζ3(1−ζ3)2

(46)

The contribution from chain formation is different here be-
cause the charged heads are no longer directly linked to each

other, they are bonded to intermediate neutral spheres. Con-
sequently, the corresponding free energy β∆Ach no longer de-
pends on gHS

−−(σ−) but rather on gHS
−m(σ−m) and gHS

mm(σm)
20

β∆Ach =−2ρ− lngHS
−m(σ−m)− (n−1)ρ− lngHS

mm(σm) (47)

where gHS
−m(σ−m) and gHS

mm(σm) are the contact values of the
RDF between negative and neutral spheres, and between two
neutral spheres, respectively. The expression given in Ref. 4
is used here. The resulting expressions for ∆φ ch

0 and ∆ lnych
0

are given in Appendix B.

The electrostatic contribution to the osmotic coefficient
∆φ el

0 is given by

∆φ
el
0 =− 2λ

πρt
η

2 − Γ3

3πρt
(48)

which is formally similar to Eq. (30), but with different Γ and
η because now neutral spheres are present in the chain. The
electrostatic contributions to the activity coefficient ∆ lnyel

0
also contain similar additional contributions. The explicit for-
mulas for Γ, η and ∆ lnyel

0 are given in Appendix B.

In the same way the associative contributions ∆ lnyMAL
0 and

∆φ MAL
0 are given by expressions formally similar to (37) and

(38), respectively. However, the fractions of unbound cations
α+ and anions α−, as well as the concentrations ρP and ρT , are
different. In order to determine these quantities, the relation-
ships for the chemical equilibria (31) and mass conservation
(32) must be solved. However, the terms GP and GT are again
different. The equations allowing one to evaluate GP and GT
are provided in Appendix B.

III. RESULTS AND DISCUSSION

A. Results from the present model

The theoretical predictions obtained from the above theo-
retical development were compared with experimental data
for activity and osmotic coefficients for disodium succinate53

(C4H4Na2O4), disodium malonate54 (C3H2Na2O4) and
dipotassium oxalate solutions55 (C2K2O4). For this latter salt,
only values for the activity coefficient are reported. However,
by using a procedure described by Hamer and Wu56, osmotic
coefficient values could be computed from the activity coef-
ficient data. They are presented in Table II. Additionally,
two more salts, potassium tartrate (K2C4H4O6) and sodium
tartrate (Na2C4H4O6), were considered although their chain
is not flexible. The tartrate-related dianion (C4H4O2−

6 ) was
modeled as a succinate-like chain, with two spheres at the
ends representing the CO2 group and two intermediate spheres
for the CH2O group.

The comparison between theoretical and experimental data
was performed using a least squares fit implemented in a
FORTRAN routine of the Marquardt type with the following
four free parameters: σ (1), α , K0

P
, and K0

T
. The cation diam-

eter at infinite dilution was taken from previous works where
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TABLE II. Osmotic coefficient for dipotassium oxalate calculated
using the procedure proposed by Hamer and Wu56.

m φ

mol kg−1

0.0005864 0.9696
0.003 0.9373

0.006994 0.9119
0.05098 0.8301
0.09136 0.8029
0.188 0.7691
0.402 0.7360

0.8074 0.7349
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FIG. 3. Activity coefficient of dipotassium oxalate (⃝), disodium
malonate (□) and disodium succinate (♢). Symbols: experimental
data; Lines: results from BiMSA theory for each salt.
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FIG. 4. Osmotic coefficient for dipotassium oxalate (⃝), disodium
malonate (□) and disodium succinate (♢). Symbols: experimental
data; Lines: results from BiMSA theory for each salt.
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FIG. 5. Osmotic coefficient for disodium tartrate (□) and dipotas-
sium tartrate (⃝). Symbols: experimental data; Lines: results from
BiMSA theory for each salt.

the MSA theory was used43,44, namely σ
(0)
+ = 3.45 Å for the

potassium cation and σ
(0)
+ = 3.87 Å for the sodium. The diam-

eters of the spheres that form the chain were calculated using
the known geometry of the molecules, which suggested the
values: σ− = 4.5 Å and σm = 1.6 Å57.

In Figure 3, experimental data and theoretical results for
the activity coefficients of the salts considered in this work
are presented. As can be seen, our model is able to reproduce
the experimental data on the whole concentration range with
a good accuracy, and with plausible values for the parame-
ters (see Table III). The osmotic coefficients are displayed in
Figures 4 and 5. As expected in view of the very good agree-
ment obtained for the activity coefficients, those for the os-
motic coefficients are also well described within the BiMSA
framework.

In order to see with more clarity the different contributions
in the model, two salts were selected. The different terms in
the osmotic coefficient for potassium oxalate (shorter chain)
and sodium succinate (longer chain) are plotted in Figures 6
and 7, respectively. For both salts, the larger contributions
are those from the HS and electrostatic interactions. It can be
seen that the chain term is more relevant for sodium succinate
(longer chain) and high concentrations. On the other hand, the
association term clearly depends on the salt being analyzed; it
is significant for potassium oxalate and negligible for sodium
succinate.

An interesting outcome of the model is that it allows one
to assess the speciation in the solution. In Figures 8 and 9,
the fractions of pairs and trimers are shown as a function of
concentration for the five salts considered in this work. In par-
ticular, the fraction of complex formed in the case of disodium
succinate is practically zero on the whole concentration range.
For the other four salts, pairs and/or trimers are formed in ap-
preciable amounts.

In Table III a summary of the adjusted parameter values for
each salt is presented. As can be seen from the σ (1) values
displayed in the table, the variation of the cation size is more
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TABLE III. Fitted parameter values obtained using the model presented in this work. For all salts, the values σ− = 4.5 Å and σm = 1.6 Å were
used.

Salt σ (1)×102 α ×10 α ×10a K0
P

K0
T

mmax AARD%b

Å mol−1 L mol−1 L mol−1 L mol−1 L mol−1 L mol kg−1 φ y
K2Oxalate −2.063 1.140 - 3.028 2.297 0.80 0.09 0.30
Na2Malonate −9.137 1.972 2.014 2.755 1.014 1.00 0.07 0.10
Na2Succinate −19.80 2.359 2.667 1×10−6 1×10−10 1.40 0.32 0.35
K2Tartrate −19.037 1.992 - 11.091 1×10−3 4.84 0.61 -
Na2Tartrate −19.892 2.976 - 4.722 1×10−5 2.72 0.75 -

a These α´s values were obtained by fitting the experimental data of the permittivity using the relation for the permittivity in Eq. 3.
b AARD% for a quantity X (= φ or γ) is the average absolute relative deviation for the calculated value of X against the experimental: AARD (%) =
(100/N)∑

N
i=1 |Xcal

i (C)−Xexp
i (C)|/Xexp

i (C), with N the number of (C) points.

0 0.2 0.4 0.6 0.8

C (mol/L)

-0.4
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0
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φ

(a)

0 0.2 0.4 0.6 0.8

C (mol/L)

0.8

1

1.2

1.4

φ

(b)

FIG. 6. a) Contributions to the osmotic coefficient for potassium
oxalate: HS (black solid line); chain (red dashed line); electrostatic
(green dotted line) and association (blue dotdash line). b) Cumulative
contributions to total osmotic coefficient. HS alone (black solid line);
HS + chain (red dashed line); HS + chain + electrostatic (green dotted
line); HS + chain + electrostatic + association (blue dotdash line).
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FIG. 7. Same as Figure 6 for the case of disodium succinate.

pronounced for succinate and tartrate, less for malonate, and
still less for oxalate. This behavior is quite satisfactory be-
cause it is in keeping with the size of these molecules. More
precisely, a bigger molecule must yield a larger cation diam-
eter variation because the amount of available water is lower
for a given salt concentration, which must result in a lower
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FIG. 8. Fraction of pairs as a function of concentration. From top
to bottom: Solutions of dipotassium oxalate, disodium malonate and
disodium succinate.
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FIG. 9. Fraction of trimers as a function of concentration. From top
to bottom: Solutions of dipotassium oxalate, disodium malonate and
disodium succinate.

hydration of the cation. Concerning the α values, the value
of the permittivity for a given concentration decreases in the
order: ε(oxalate) > ε(malonate) > ε(succinate) > ε(sodium
tartrate). Moreover, it is seen in Table III that the association
constants, K0

P
and K0

T
, decrease from oxalate, to malonate, and

to succinate. For tartrates, apparently, only pair association
constants are relevant.

The results for the permittivity in Table III deserve a special
mention. In the present BiMSA model, variation of permittiv-
ity with concentration is considered through relation in Eq.
3. By fitting the activity and osmotic coefficients, an opti-
mum value for α is obtained. Besides, experimental data for
the permittivity as a function of concentration are available
for disodium malonate and succinate salt solutions58. A fit
of these data using Eq. 3 gives the values presented in Table
III. Surprisingly enough, a very good agreement is observed
between the two sets of values. The results for the relative per-
mittivity are shown in Figure 10, together with the result from

0 0.3 0.6 0.9 1.2
60
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80

ε

a)

0 0.3 0.6 0.9

70

80

ε

b)

0 0.3 0.6 0.9

c (mol/L)

60
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FIG. 10. Relative solution permittivity: (a) from top to bottom:
dipotassium oxalate, disodium malonate and disodium succinate,
(b) disodium malonate, and (c) disodium succinate. Symbols (dia-
monds): experimental data58; Solid line: fit of experimental data;
Dashed line: BiMSA theory prediction.

σ+

σ−

FIG. 11. Sketch of the type of molecule described within the previous
BiMSA model. The diameters of the counterion (in blue) and the
dianion (in red) are σ+ and σ−, respectively.

BiMSA theory for dipotassium oxalate (for which no experi-
mental data are available).

B. Comparison with a previous model

In a previous work52, we addressed the problem of the for-
mation of pairs and trimers of a trivalent cation like Eu3+ with
an anion like Cl− within the BiMSA framework. By inter-
changing cations and anions, this model can be applied in the
present context by reducing the anionic chains into equivalent
spheres (see Fig. 11). The equations describing the thermo-
dynamic properties in this model are detailed in Appendix C.

It is then worth comparing results from the latter rough ap-
proximation of chains by spheres with those from the present
more involved theory in order to assess the relevance of the
latter. To carry out this comparison, two cases were consid-
ered. In the first case the parameters σ− (dianion’s diameter),
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σ (1), α , KP and KT were left free in the fits; in the second,
the α parameter was fixed taking into account the values ob-
tained for the chain model except for sodium malonate and
sodium succinate, where the α value was determined by fit-
ting experimental data for the solution permittivity. The latter
methodology was employed because it is observed that the use
of the chain model gives values for the permittivity that are in
agreement with experiment in the case of solutions of sodium
malonate and succinate.

Table IV shows the parameter values obtained in the
first case described above. It can be seen that σ− in-
creases in the following order of the dianions: σ−(oxalate)<
σ−(malonate) < σ−(succinate). However, the value of this
parameter for tartrate is lower than for oxalate which does not
make physical sense since the size of the tartrate and/or succi-
nate must be larger than that of the oxalate. On the other hand,
the value of α obtained for succinate differs appreciably from
that obtained using the chain model or that fitted directly from
the experimental data. It should be noted that for all salts the
trimer constant obtained is zero. Finally, for all salts, it is
possible to reproduce the experimental data very well (AARD
less than 1%).

For the second case, the parameter values obtained are pre-
sented in Table V. The value of σ− is now reduced for ox-
alate, malonate and succinate as compared to the first case.
However, the trend of increasing values is maintained. In the
case of the two tartrates, a σ− value closer to that of succinate
is obtained which makes more physical sense. It is important
to note that for the latter salts the deviations from the experi-
mental data are larger (3.3% for potassium tartrate and 2.2%
for sodium tartrate).

IV. CONCLUSION

In this work a thermodynamic model that takes into account
electrostatic, association and chain contributions to the free
energy of charged solutions, is proposed. This model was
successfully applied to describe the osmotic and activity co-
efficients for solutions of some carboxylic salts at high con-
centrations (up to almost 5 M). A good agreement with the
experimental values of the osmotic and activity coefficients
could be obtained by regressing a few parameters having a di-
rect physical meaning.
For comparison, a previous model with no chain contribution
was also studied. Good fits of the experimental values for
the osmotic and activity coefficients could also be obtained,
but the values regressed for the adjustable parameters of the
model are not as satisfactory as those found using the chain
model. In particular, a remarkable result is the prediction for
the variation of the permittivity with concentration. The chain
model predicts very well this variation, while the model with
no chain term does not. In general, the fitted parameters ob-
tained from the chain model have more physically satisfying
values than those obtained from the ‘single sphere’ model (no
chain) for this kind of charged solutions.
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Appendix A: Contributions due to variation of cation size and
permittivity for a dianion comprised of two spheres

The contribution to the HS osmotic coefficient arising from
the variation of cation size is given by

∆φ
HS
σ+

=
ρ+

ρt

[
f1 +2σ+ f2 +3σ

2
+ f3
]

D(σ+) (A1)

where D is the operator, D = ∑k ρk
∂

∂ρk
. Specifically, D(σ+) =

σ+−σ (0).

f1 =
3ζ2

1−ζ3

f2 =
3ζ1

1−ζ3
+

3ζ 2
2

ζ3(1−ζ3)2 +
3ζ 2

2 ln(1−ζ3)

ζ 2
3

f3 =
ζ0 −ζ 3

2 /ζ 2
3

1−ζ3
+

3ζ1ζ2 −ζ 3
2 /ζ 2

3
(1−ζ3)2 +

2ζ 3
2

ζ3(1−ζ3)3

−2
(

ζ2

ζ3

)3

ln(1−ζ3)

(A2)

and the chain contribution is

∆φ
ch
σ+

=−D(σ+)

ρt

(
ρ−

gHS
−−(σ−)

)[
πρ+σ+

2

(
σ−

(1−ζ3)2

+
2ζ2σ2

−
3(1−ζ3)3

)
+

πρ+σ2
+

2

(
gHS
−−(σ−)

1−ζ3
+

1
(1−ζ3)2

+
3ζ2σ−

(1−ζ3)3 +
3(ζ2σ−)

2

2(1−ζ3)4

)]
.

(A3)

It is found that

∆ lnγ
HS+ch
σ+

= β∆φ
HS+ch
σ+

(A4)

where

β∆φ
HS+ch
σ+

= β∆φ
HS
σ+

+β∆φ
ch
σ+

(A5)

The contributions to the BiMSA part of the osmotic coeffi-
cient coming from the variation of permittivity and cation size
are respectively given by

∆φ
BiMSA
ε =

1
ρt

[
∂β∆ABiMSA

∂ε−1

]
εD(ε−1) =

β∆E
ρt

εD(ε−1)

(A6)
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TABLE IV. Fitted parameter values obtained using the model in which the dianion is regarded as a single sphere.

Salt σ− σ (1)×102 α ×10 K0
P

K0
T

mmax AARD%a

Å Å mol−1 L mol−1 L mol−1 L mol−1 L mol kg−1 φ y
K2Oxalate 7.115 −1.72 2.61 4.746 0.0 0.80 0.02 0.24
Na2Malonate 7.517 −43.81 2.32 4.505 0.0 1.00 0.09 0.12
Na2Succinate 8.174 −90.59 1.10 2.553 0.0 1.40 0.20 0.24
K2Tartrate 6.582 −32.68 1.41 12.89 0.0 4.84 0.61 -
Na2Tartrate 6.144 −20.75 1.63 3.768 0.0 2.72 0.73 -

a AARD% is calculated in the same way as the values reported in Table III.

TABLE V. Fitted parameter values obtained using the model in which the dianion is regarded as a single sphere with α fixed.

Salt σ− σ (1)×102 α ×10 K0
P

K0
T

mmax AARD%a

Å Å mol−1 L mol−1 L mol−1 L mol−1 L mol kg−1 φ y
K2Oxalate 6.775 −8.08 1.140 4.256 1.489 0.80 0.04 0.24
Na2Malonate 6.980 −26.52 2.014 3.626 0.0519 1.00 0.10 0.13
Na2Succinate 7.247 −28.40 2.667 0.005 0.00 1.40 0.78 1.40
K2Tartrate 7.077 −41.28 1.992 8.597 0.00 4.84 3.31 -
Na2Tartrate 7.294 −33.66 2.976 3.476 0.00 2.72 2.18 -

a AARD% is calculated in the same way as the values reported in Table III.

and

∆φ
BiMSA
σ+

=
1
ρt

[
∂β∆ABiMSA

∂σ+

]
D(σ+), (A7)

the latter quantity was computed numerically because the
derivative w.r.t. σ+ cannot be obtained explicitly. Addition-
ally, we have that εD(ε−1) = 1− ε/εW .

For the activity coefficient, we have that ∆ lnyBiMSA
σ+,ε =

∆φ BiMSA
ε +∆φ BiMSA

σ+
.

Appendix B: Molecular dianion made up of three or four
spheres

The equations in this case are as follows. In order to evalu-
ate the chain terms ∆ lnych

0 and ∆φ ch
0 we used

gHS
−m(σ−m) =

1
1−ζ3

+
3ζ2

(1−ζ3)2 σam +
2ζ 2

2
(1−ζ3)3 σ

2
am (B1)

where we used the notation

σam =
σ− σm

σ−+σm
(B2)

to distinguish σam from σ−m, and

gHS
mm(σm) =

1
1−ζ3

+
3ζ2

2(1−ζ3)2 σm +
ζ 2

2
2(1−ζ3)3 σ

2
m. (B3)

The chain contribution to the osmotic coefficient is given by

∆φ
ch
0 =−ρ−

ρt

[
(n+1)

ζ3

1−ζ3

+
2

gHS
−m(σ−m)

(
3ζ2σam

(1−ζ3)3 +
4(ζ2σam)

2

(1−ζ3)4

)
+

(n−1)
gHS

mm(σm)

(
3ζ2σm

2(1−ζ3)3 +
(ζ2σm)

2

(1−ζ3)4

)] (B4)

and the chain part of the activity coefficient can be written as

∆ lnych
0 =− ρ−

ρt

[
2lngHS

−m(σ−m)+(n−1) lngHS
mm(σm)

+(n+1)
ζ3

1−ζ3

+
2

gHS
−m(σ−m)

(
3ζ2σam

(1−ζ3)3 +
4(ζ2σam)

2

(1−ζ3)4

)
+

(n−1)
gHS

mm(σm)

(
3ζ2σm

2(1−ζ3)3 +
(ζ2σm)

2

(1−ζ3)4

)]
.

(B5)

The osmotic contribution ∆φ HS
σ+

is the same as in the previ-
ous case, and the contribution for the variation of cation size
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∆ych
σ+

= ∆φ ch
σ+

is given by

∆φ
ch
σ+

=− 2πρ−ρ+

gHS
−m(σ−m)

[
σ+

3

(
3σam

(1−ζ3)2 +
4ζ2σ2

am

(1−ζ3)3

)
+

σ2
+

2

(
−

gHS
−m(σ−m)

1−ζ3
+

1
(1−ζ3)2

+
6ζ2σam

(1−ζ3)3 +
6(ζ2σam)

2

(1−ζ3)4

)]
D(σ+)

ρt

− (n−1)πρ−ρ+

gHS
mm(σm)

[
σ+

3

(
3σm

2(1−ζ3)2 +
ζ2σ2

m

(1−ζ3)3

)
+

σ2
+

2

(
−gHS

mm(σm)

1−ζ3
+

1
1−ζ3

+
3ζ2σm

(1−ζ3)3

+
3(ζ2σm)

2

2(1−ζ3)4

)]
D(σ+)

ρt
.

(B6)

The BiMSA expressions used here have been obtained from
a previous work on polyelectrolytes40. Previously, it was ob-
served that the electrostatic Helmholtz free energy obtained
in the framework of the BiMSA theory, can be split into two
parts, namely an excess term related to the interaction between
the ions and a term coming from the interaction energy be-
tween the charged subunits within each of the chains. At in-
finite dilution, this term provides an electrostatic contribution
to the standard chemical potential of the polyions. Now in
this study, only the excess free energy has been considered.
Then, the electrostatic contribution to the Helmholtz energy
for these systems is given by40

β∆Ael = β∆E +
[Γ]3

3π
− ∑

K=P,T

ρK

[
β∂∆E
∂ρK

]
Γ

−λ0
2 ρ−

2σ−+nσm
z2
−

, (B7)

The last term in Eq. (B7) is the contribution which has been
subtracted in order to consider only the excess free energy.
Then as usual, the expressions for lnyel

± and ∆φ el were de-
termined by differentiation. It was found that ∆φ el is given
by Eq. (48). Then using Eqs. (23) and (B7), ∆ lnyel

0 can be
deduced, which gave

∆ lnyel
0 = β∆E − 2λ

π
η

2 − ∑
K=P,T

ρK

[
β∂∆E
∂ρK

]
Γ

−λ0
2 ρ−

2σ−+nσm
z2
−

, (B8)

A significant cancellation was noted between some parts of
∆E and of its derivatives in particular, which simplifies the fi-
nal result (given below). Subsequently, at this stage in order
to evaluate ∆Ael , it is not necessary to give the explicit expres-
sions of ∆E and its derivatives relative to the concentrations
ρP and ρT of pairs and trimers. It seems simpler to represent
β∆Ael as in Eq. (23) from the coefficients lnyel

± and ∆φ el .
The electrostatic contribution to the activity coefficient is

given by

∆ lnyel
0 =

λ

ρt

[
ρ+z+M0

++2ρ−z−M0
−

−η

(
ρ+σ+

(
X 0

+ +
η

3
σ

2
+

)
+2ρ−σ−

(
X 0

− +
η

3
σ

2
−

)
+nρ−σm

(
X 0

m +
η

3
σ

2
m

))
+2

ρ−
σm

n

∑
k=1

(n− k)(X 0
m )2

(k+1)(1+Γσm)k−1

+4ρ−
n

∑
k=1

X 0
−X 0

m

(σ−+ kσm)(1+Γσm)k−1

+
2ρ−

2σ−+nσm

(
(X 0

−)
2

(1+Γσm)n − z2
−

ε

εw

)]
(B9)

where

X 0
m =

−ησ2
m

1+Γσm
.

The last three terms in Eq. (B9) represent the contributions
due to interactions within the chains. The preceding terms are
similar to those for dissociated electrolytes. To evaluate the
above quantities, the parameters Γ and η are expressed as40

Γ2

π
= λ

[
ρ+

(
X 0

+

)2
+2ρ−

(
X 0

−
)2

+nρ−
(
X 0

m
)2

+2 ρ−
n

∑
k=1

(n− k)
σ∗

m

σm

(
X 0

m
)2

(1+Γσm)
k−1

+4 ρ−
n

∑
k=1

σ∗
−+ kσ∗

m

σ−+ kσm

X 0
−X 0

m

(1+Γσm)k−1

+
2ρ−

(1+Γσm)n
2σ∗

−+nσ∗
m

2σ−+nσm

(
X 0

−
)2

+2(ρP +2ρT )

(
σ∗
++σ∗

−
σ++σ−

X 0
+X 0

−

+
σ∗
++2σ∗

−+nσ∗
m

σ++2σ−+nσm

X 0
+X 0

−
(1+Γσ−)(1+Γσm)

n

+
n

∑
k=1

σ∗
++σ∗

−+ kσ∗
m

σ++σ−+ kσm

X 0
+X 0

m

(1+Γσ−)(1+Γσm)k−1

)

+2ρT

2σ∗
++2σ∗

−+nσ∗
m

2σ++2σ−+nσm

(
X 0

+

)2

(1+Γσ−)2(1+Γσm)n

]
(B10)
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η =
π

2△

[
ρ+σ+X 0

+ +2ρ−σ−X 0
− +nρ−σmX 0

m

+2
ρ−
σm

n

∑
k=1

(n− k)X 0
m σ2∗

m

(k+1)(1+Γσm)k−1

+
2ρ−

2σ−+nσm

σ2∗
− X 0

−
(1+Γσm)n

+2ρ−
n

∑
k=1

X 0
m σ2∗

− +X 0
−σ2∗

m

(σ−+ kσm)(1+Γσm)k−1

+(ρP +2ρT )

(
X 0

+σ2∗
− +X 0

−σ2∗
+

σ++σ−

+
X 0

+σ2∗
− +X 0

−σ2∗
+

(σ++2σ−+nσm)(1+Γσ−)(1+Γσm)n

+
n

∑
k=1

X 0
+σ2∗

m +X 0
m σ2∗

+

(σ++σ−+ kσm)(1+Γσ−)(1+Γσm)k−1

)

+
2ρT

2σ++2σ−+nσm

X 0
+σ2∗

+

(1+Γσ−)2(1+Γσm)n

]

(B11)

To solve the equations describing the equilibrium and take
into account the presence of n spheres m between the charged
heads of the dianion, GP and GT must be modified as follows

GP = gHS
+−(σ+−) exp

{
−2λ

[(
X 0

+X 0
− − z+z−c0

)
σ++σ−

+
1

(σ++2σ−+nσm)

(
X 0

+X 0
−

(1+Γσ−)(1+Γσm)
n − z+z−c1

)
+

n

∑
k=1

X 0
+X 0

m

(σ++σ−+ kσm)(1+Γσ−)(1+Γσm)
k−1

]}
(B12)

and

GT = GP exp
[
− 2λ

(2σ++2σ−+nσm)
×(

X 0
+X 0

+

(1+Γσ−)
2 (1+Γσm)

n − z+z+c2

)] (B13)

where

c0 =
(σ++σ−)ε

(σ
(0)
+ +σ−)εw

c1 =
(σ++2σ−+nσm)ε

(σ
(0)
+ +2σ−+nσm)εw

c2 =
(2σ++2σ−+nσm)ε

(2σ
(0)
+ +2σ−+nσm)εw

.

(B14)

The contribution ∆φ BiMSA
ε is calculated using Eq. (A6) but

with the internal energy given by

β∆E = λ

[
ρ+z+M0

++2ρ−z−M0
−

+
2ρ−

2σ−+nσm

(
z∗−X 0

−
(1+Γσm)n

)
+

n

∑
k=1

2ρ−
σ−+ kσm

(
z∗−X 0

m

(1+Γσm)k−1

)
+

(ρP +2ρT )

(σ++σ−)

(
z∗+X 0

− + z∗−X 0
+

)
+

(ρP +2ρT )
(
z∗+X 0

− + z∗−X 0
+

)
(σ++2σ−+nσm)(1+Γσ−)(1+Γσm)n

+
n

∑
k=1

ρP +2ρT

σ++σ−+ kσm

(
z∗+X 0

m

(1+Γσ−)(1+Γσm)k−1

)

+
2ρT

(
z∗+X 0

+

)
(2σ++2σ−+nσm)(1+Γσ−)2(1+Γσm)n

]
.

(B15)

Finally, ∆φ BiMSA
σ+

is also computed numerically as in the pre-
vious case.

Appendix C: Molecular dianion made up of a single sphere

The equations presented bellow are related to a model that
describes salts with a dianion made up of a single sphere with
diameter σ− and valence z− and two cations with diameter σ+

and valence z+ (see Fig. 11) with the possibility of forming
pairs and trimers. In addition, the cation size and permittivity
are allowed to vary with concentration. Using the equations
reported in a previous work52, the osmotic and activity coeffi-
cients can be assessed. Note that to preserve electroneutrality,
z− must be equal to the valence of the full dianion. That is,
the valence z− used in this model is twice the valence z− used
in dianion models containing multiple subunits, in order to
conserve its total charge.

The Helmholtz free energy will be given by

β∆A = β∆AHS +β∆ABiMSA (C1)

where the hard sphere contribution is

π

6
β∆AHS =

[
ζ 3

2

ζ 2
3
−ζ0

]
ln(1−ζ3)+

3ζ1ζ2

1−ζ3

+
ζ 3

2
ζ3(1−ζ3)2 .

(C2)

Clearly, the chain contribution for the Helmholtz free energy(
β∆Ach

)
is not needed for this model.

When the dianion is represented as a single sphere, ζk is
given by

ζk =
π

6

(
ρ+σ+

k + ρ−σ−
k
)
. (C3)
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The HS part of the osmotic coefficient is

β∆φ
HS
0 =

ζ3

1−ζ3
+

3ζ1ζ2

ζ0 (1−ζ3)
2 +

(3−ζ3)ζ 2
2

ζ0 (1−ζ3)
3 (C4)

and ∆ lnyHS
0 can be deduced from

∆ lnyHS
0 =

β∆AHS

ρt
+∆φ

HS
0 (C5)

The contribution of BiMSA can be divided into two parts as
in Eq. (2), where the association parts have the same forms as
given in Eqs. (36), (37) and (38). The electrostatic part for the
Helmholtz energy β∆Ael can be split into two parts according
to Eq. (23). The mean activity coefficient contribution ∆ lnyel

0
is now given by

∆lnyel
0 =

λ

ρt

[
ρ+z+M0

++ρ−z−M0
−−ηρ+σ+

(
X 0

+ +
η

3
σ

2
+

)
−ηρ−σ−

(
X 0

− +
η

3
σ

2
−

)]
(C6)

The osmotic part ∆φ el
0 can be determined by using eq. (30)

but with different Γ and η parameters. For this model, the
quantities Γ and η are given by

Γ2

πλ
= ∑

k=+,−
ρk
(
X 0

k
)2

+2(ρP +2ρT )
σ∗
++σ∗

−
σ++σ−

X 0
+X 0

−

+2
ρT

(1+Γσ−)

2σ∗
++σ∗

−
2σ++σ−

(
X 0

+

)2

(C7)

and

η =
π

2△Ω

[
∑

k=+,−
ρkσkz∗k +

ρP +2ρT

σ++σ−

(
z∗+σ

2∗
− + z∗−σ

2∗
+

)
+

2ρT

(2σ++σ−)(1+Γσ−)
z∗+σ

2∗
+

]
(C8)

with z∗k =
zk

1+Γσk
, △= 1−ζ3 and

Ω = 1+
π

2△

[
∑

k=+,−
ρk

σ3
k

1+Γσk
+2

ρP +2ρT

σ++σ−
σ

2∗
+ σ

2∗
−

+2
ρT

(2σ++σ−)

(
σ2∗
+

)2

1+Γσ−

]
.

(C9)

The contribution ∆φ BiMSA
ε is calculated using Eq. (A6) but

with the electrostatic contribution to internal energy given by

β∆E = λ

[
∑

k=+,−
ρkzkM0

k +
(ρP +2ρT )

(
z∗+X 0

− + z∗−X 0
+

)
(σ++σ−)

+
2ρT

(
z∗+X 0

+

)
(2σ++σ−)(1+Γσ−)

]
(C10)

As in the previous cases, ∆φ BiMSA
σ+

is computed numerically.
The terms GP and GT related to the equilibria (31) also need
to be modified, the expressions for this system are given by

GP = gHS
+−(σ+−)exp

{
−2λ

(
X 0

+X 0
−−
)

σ+σ−

+2λ0
z+z−

σ
(0)
+ +σ−

}
,

(C11)

and

GT = GP exp

[
−2λ

X 0
+X 0

+

(2σ++σ−)(1+Γσ−)

+2λ0
z2
+

2σ
(0)
+ +σ−

] (C12)

where gHS
+−(σ+−) is the same as in Eq. (39) but with ζk defined

by Eq. (C3).
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