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Abstract 
The mRNA splicing machinery has been estimated to generate 100,000 known protein-
coding transcripts for 20,000 human genes (Ensembl, Sept. 2024). However, this set is 
expanding with the massive and rapidly growing data coming from high-throughput 
technologies, particularly single-cell and long-read sequencing. Yet, the implications of 
splicing complexity at the protein level remain largely uncharted. In this review, we describe 
the current advances toward systematically assessing the contribution of alternative splicing 
to proteome function diversification. We discuss the potential and challenges of using 
artificial intelligence-based techniques in identifying alternative splicing proteoforms and 
characterising their structures, interactions, and functions. 

Alternative splicing and proteome diversity 
The recent advances in high-throughput sequencing, imaging, and proteomics have 
revealed an incredible complexity behind the classical protein sequence-structure-function 
paradigm [1]. In particular, in multicellular organisms, alternative splicing (AS), together with 
alternative promoter usage and alternative polyadenylation, can produce multiple mature 
messenger RNAs, or transcripts, from a single gene [2] (Figure 1A). Some of these 
transcripts will lead to different protein isoforms, or proteoforms [3], that may adopt 3D 
structures with different shapes [4], interact with distinct cellular partners [5], and perform 
divergent or specialised functions [6,7]. For example, a 10-amino acid (aa) substitution 
between two proteoforms of the protein kinase JNK1 changes its binding partner 
preferences, thus triggering different stress responses [8]. Similarly, while a shorter clathrin 
proteoform self-assembles into spherical coats in neurons, a 7-aa longer one forms flat 
plaques in muscle cells [9] (Figure 1B). The plethora of scenarios in which AS modulates 
protein functions and interactions [10] play essential roles in muscle fibre diversification [11], 
nervous system development [12], and innate immunity [13]. Moreover, the combinatorial 
expression of various proteoforms can influence disease susceptibility [14] and signalling 
outcomes in response to drugs [15], and AS misregulation is often linked to various 
diseases, including cancer [16,17].  

Experimentally determining how much of the splicing complexity uncovered by RNA-seq 
[18] contributes to protein diversity remains a long-standing challenge [19]. Higher AS rates 
are typically observed for species with lower effective population sizes, suggesting that they 
result from genetic drift of the splicing machinery [20]. Along this line, analysing mass 
spectrometry data on a large scale initially suggested that most highly expressed human 
genes have only one dominant proteoform [21]. However, improved analysis protocols using 
custom peptide databases or integrating long-read transcriptomics reported many more 
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proteoforms [22–23]. Furthermore, a major fraction of alternative transcripts are engaged by 
ribosomes [24] and a recent deep-coverage mass spectrometry study revealed evidence 
that most frame-preserving alternative transcripts are translated [25]. 

Emerging high-throughput computational methods efficiently leveraging large amounts of 
protein-related data represent an opportunity for complementing experimental evidence, 
toward refining the definition of gene structures, quantifying the alternative usage of exons, 
and improving our understanding of AS impact on protein 3D structures, interactions, and 
functions (Figure 2).  

 

Figure 1. Basics of alternative splicing and an illustrative example. (A) Schematic representation 
of a eukaryotic gene, focusing on the protein-coding region. The high boxes are the exons, separated 
by thin boxes depicting the introns. The donor and acceptor splice sites are at the exon-intron and 
intron-exon boundaries. Three mRNA transcripts corresponding to different combinations of exons are 
shown. They may be translated into proteoforms adopting different shapes (arrows: β-sheet, 
rectangle: ɑ-helix). (B) The human gene CLTC encodes the 1675-residue long clathrin heavy chain 1 
whose 3D model (https://alphafold.ebi.ac.uk/search/text/Q00610 [26]) is displayed as cartoons. The 
evolutionary splicing graph at the bottom recapitulates the alternative proteoforms observed over 
eleven species from human to zebrafish (http://www.lcqb.upmc.fr/Ases http://www.lcqb.upmc.fr/Ases/
results?jobid=KXFyXXbHm3 [27]), focusing on the C-terminal protein region. The nodes or s-exons 
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are coloured according to their conservation level (species fraction) on the graph and delineated in 
black and yellow on the 3D structure. The most conserved event, present in human, gorilla, macaque, 
rat, cow, opossum, platypus, and frog, is a 7-aa insertion in the protein C-terminal trimerization 
domain. This insertion, supported by transcriptomic and proteomic data, triggers a switch from 
spherical clathrin-coated pits to flat clathrin lattices during muscle cell differentiation [9]. 

Deciphering the splicing code  
Computationally recognising the genomic signals determining which protein-coding 
segments will be spliced together by the spliceosome is a fundamental step for describing 
proteoform diversity. Donor (or 5’) splice sites, at the exon–intron junctions, typically feature 
a GT dinucleotide, and acceptor (or 3’) splice sites, at the intron–exon junctions, an AG 
dinucleotide (Figure 1A). Nevertheless, not all GT-AG pairs signify splicing, some splice 
sites may feature non-canonical patterns, and other environmental factors and regulatory 
signals come into play, making the task challenging [28]. While early splicing code models 
relied on putative regulatory features [29], the most recent predictors recognize splice sites 
directly from raw genomic or pre-mRNA nucleotide sequences [30–37] (Figure 2). They 
borrow deep learning architectures from image classification like convolutional neural 
networks (CNN) or from natural language processing like transformers.  

Among these next-generation splicing predictors, the ultra-deep residual CNN-based 
model SpliceAI [30] analyses pre-mRNA genomic sequences to compute the probability of 
each residue being a splice donor, splice acceptor, or neither. It has proven effective in 
predicting splicing alterations, exon skipping, and splicing rescue through cryptic site 
activation [38]. SpliceAI performance is matched by large language models (LLMs) pre-
trained to reconstruct masked or corrupted genomic sequences at scale [35]. SpliceAI and 
LLMs evaluate thousands of nucleotides around the position of interest, up to 32 kb with 
HyenaDNA [39]. However, accounting for wider contexts does not necessarily translate into 
improved accuracy [35] and may not reflect what the spliceosome can recognize in the cell 
[31-32]. Several predictors reach state-of-the-art accuracy by focusing on shorter 
sequences, and a few further constrain their architectures to more closely mimic the splicing 
process and improve interpretability [32,37]. For instance, the SAM splice site predictor is 
explicitly informed with knowledge about sparse RNA-binding protein motifs [37]. 

Models trained on one species typically exhibit low generalisation capability to other 
species [32]. Scalzitti and co-authors explicitly addressed this issue by training the 
Spliceator model [31] on a carefully curated benchmark set encompassing a hundred 
phylogenetically diverse organisms. In addition, using the predictors to assess the impact of 
alterations in the input sequence on the splicing outcome requires choosing appropriate 
thresholds that may depend on factors not explicitly modelled, such as splice site strength or 
exons’ baseline inclusion rates [40]. Pangolin [33] and TrASPr [36] make a step forward by 
quantifying AS splice site usage and events under specific conditions (e.g., tissue), opening 
the way to design genomic sequences tuned to desired splicing outcomes (Figure 2). 
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Figure 2. Overview of methods and applications for shedding light on alternative splicing 
contribution to proteome diversification. We mostly focus on approaches developed in recent 
years, which often integrate one or more of the mentioned algorithms and techniques. The latter are 
classified into heuristic (plain text), classical machine learning (bold) and deep learning (starred bold). 
The bullet points in italics and purple indicate strategies for coping with lack of ground-truth data. 

Leveraging evolutionary conservation  
Evolutionary conservation often serves as a reliable indicator of function, suggesting that 
natural variations induced by AS, and selected through evolution, likely fulfil important 



functional roles under physical and environmental constraints. For instance, mutually 
exclusive tandem duplicated exons (MXE) are an example of ancient AS events that have 
critical functional significance [41,42]. Substitutions in these exons have likely contributed to 
tissue and organ evolution in metazoans and have clinical implications in humans [41]. More 
broadly, cross-species conservation is the most discriminating feature for state-of-the-art 
prediction of transcript biological relevance at the protein level [43]. Reciprocally, AS 
variations disrupting conserved active sites and functional domains are unlikely to result in 
functional translated products. 

To accurately assess the evolutionary conservation of AS events, it is necessary to match 
exons, splice junctions, or transcripts/proteoforms across species. Early methods have relied 
on genomic sequence alignments to identify orthologous exons [44]. However, difficulties 
arise from large indels, ambiguities between highly similar or short sequences, or lack of 
plausible matches for highly divergent sequences. A few recent methods address these 
challenges by adopting an end-product perspective, working with the amino acid sequences 
of the putative proteoforms enriched with knowledge about the gene structure [45,46].  

In particular, evolutionary splicing graphs provide a compact representation summarising 
the full proteoform diversity observed for a set of orthologous genes [45] (Figure 1B). By 
extending the concept of splicing graphs [47] to several species, they allow for identifying 
(sub-)exon orthogroups (nodes), quantifying splice junction usage (edges), and investigating 
exon co-occurrence (paths). Building such graphs from annotations and RNA-seq data 
across a dozen species spanning 800 million years of evolution showed a clear link between 
conservation, tissue regulation, and functional relevance of alternative transcripts [45]. 
Furthermore, disentangling orthologous from paralogous relationships between entire 
transcripts/proteoforms [48,49] and simulating or reconstructing transcript phylogenies [8,50] 
can help to infer evolutionary scenarios explaining AS-induced protein function 
diversification. 

Modelling proteoform 3D structures  
While only a few tens of alternative splicing proteoforms have experimentally resolved 3D 
structures, the advent of high-throughput deep learning-based protein structure prediction 
methods, which achieve near-experimental accuracy, has enabled systematic probing of AS 
impact on protein folds and structural stability [51,52]. Sommer and colleagues [52] 
proposed using AlphaFold2 [26] average predicted local distance difference test (pLDDT) 
score as a measure of "biological functionality" for genome annotation (Figure 2). One 
should be cautious with such an approach because short, well-folded fragments from larger 
proteins often display higher pLDDT scores than the full-length protein, potentially 
misleading functional interpretations. Reciprocally, a proteoform with a longer inter-domain 
disordered linker would be penalised in terms of pLDDT while it may acquire the ability to 
translocate to another cellular compartment or bind to new partners. The authors partially 
addressed these issues by applying a series of filtering criteria based on proteoform length, 
pLDDT distribution and RNA-seq expression data [52]. 

They identified 940 alternative human proteoforms with pLDDT scores suggesting they 
might be more functionally active than those annotated as primary in the MANE (Matched 
Annotation from NCBI and EMBL-EBI) database [53]. Evolutionary wise, these alternative 
proteoforms span a wide range of conservation levels (Figure 3A). Some of them, like the 
mu opioid receptor OPRM1 proteoform lacking the N-terminus and first helix, are much less 
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conserved than their MANE counterpart (Figure 3A-B). These observations suggest that 
cross-species conservation could be useful to refine the approach.   

In addition, the suitability of AlphaFold2 for predicting some alternative proteoform 
structures is questionable. For instance, AlphaFold2 tends to model AS-induced large 
deletions in well-folded domains through cut-and-stitch with low confidence scores assigned 
to the stitched region (Figure 3C). A recent study highlighted how this comparative 
modelling-like behaviour produces physically unrealistic 3D models for alternative 
proteoforms where patches of hydrophobic residues are exposed to the solvent [54]. This 
limitation, also shared by protein Language Model(pLM)-based protein structure predictors, 
emphasises the need for methods tailored to extract signals from AS-induced sequence 
variations. 

Variations on the same theme  
AS of duplicated protein regions enables fine-tuning of protein function without altering the 
protein fold [42,55]. Systematically mapping the MXEs identified in 5 high-quality Metazoan 
genomes to the CATH-derived protein domain functional families (FunFams) revealed that 
MXE-specific residues are mostly located on the protein surface and cluster at or near 
protein functional sites [42]. A parallel study focusing on human and relaxing the criterion of 
mutual exclusivity confirmed these findings on AlphaFold-predicted 3D models and further 
showed that MXE amino acid substitutions tend to affect disordered residues or residues 
that do not directly bind ligands [55]. 

Beyond MXE pairs, the combinatorics of AS-induced topological rearrangements of 
similar exonic sequences can be more complex [56]. For instance, AS produces four 
different combinations of calmodulin-binding motifs in myosin 1b's lever arm [45], thereby 
modulating the protein’s ability to sense mechanical forces and hence to pull membranes 
[57]. The giant skeletal muscle protein nebulin gives a more extreme example where over 
100 protein regions, each corresponding to one or more ~35 aa-long nebulin-like motifs, are 
subject to 47 inclusion/exclusion events across a dozen species, including two primates, six 
other mammals, zebrafish and frog [56]. In the leucine-rich-repeat containing G-protein 
coupled receptor 5, the number of repeats is modulated by three inclusion/exclusion AS 
events, among which two are conserved from human to frog. When the repeats have well-
defined structures, the exon-intron gene structure and the AS-induced variations tend to 
preserve their integrity and can help refine their boundaries [58]. 

 Jointly analysing the proteoforms of tandem repeat-containing proteins observed in 
several species can help to gain insights into how these protein regions have evolved 
essential functions [59] and more broadly, into the relationship between AS and gene 
duplication [60]. 
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Figure 3. Structural modelling and evolutionary conservation of alternative splicing events. (A) 
The alternative proteoforms identified in [52] as having more stable structures (higher pLDDT, x-axis) 
than MANE-annotated primary proteoforms are not necessarily more conserved in evolution (y-axis). 
ThorAxe estimated evolutionary conservation as the average splice junction usage across a dozen 
species, from human to nematode (averaged transcript fraction mean in [45]). (B-C) AlphaFold2-
predicted 3D models (from isoform.io v3.1 [52]), coloured according to the pLDDT, from red (low) to 
blue (high), for OPRM1 and CDC45 proteoforms. (B) The mu opioid receptor OPRM1 MANE 
proteoform (in cartoon) represents a full-length canonical G protein-coupled receptor (GPCR) 
structure with an extracellular N-terminus followed by seven transmembrane alpha-helices. The 
candidate alternative proteoform (in surface) lacking the N-terminus and the first transmembrane helix 
has a higher pLDDT but much lower conservation. This truncated form does not retain the function of 
the full-length receptor, while it could modulate the function of other GPCRs [61]. (C) AlphaFold2 
modelled exon 4 skipping in CDC45 as cut-and-stitch. The exon seems essential for function since it 
encodes a part of the RecJ nuclease-orthologue’s DHH domain. Yet, exon 3-5 junction is expressed in 
low levels in several tissues based on GTEx mRNA data [62], and ThorAxe detected it in several 
species, from human to frog, based on Ensembl annotations (https://www.ensembl.org/). 
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Unveiling AS impact on interactions and functions 
AS events can rewire protein-protein interaction (PPI) networks by altering functional motifs 
in intrinsically disordered regions, gaining or losing entire structured domains, or inducing 
small changes in their interacting surfaces [5,6,10,44,63-64]. To move forward in assessing 
the functional role of AS on a system biology level, researchers have systematically mapped 
known human protein interactions and functional annotations on genomic exons [65–67]. 
The Domain Interaction Graph Guided ExploreR (DIGGER) database even enables an 
exon-centric exploration of human PPIs by exploiting information about physical contacts 
between residues from experimental 3D complexes [65]. Nevertheless, experimental data 
about exon-exon interactions cover only about 5% of all known human PPIs, stressing the 
need for producing and analysing high-quality 3D models [68]. 

Machine learning approaches have emerged to predict proteoform-specific interactions 
and functions, but they face challenges such as the scarcity of ground-truth data and the 
heterogeneity of proteoform-related data [69] (Figure 2). Multiple instance learning (MIL) 
algorithms address the first issue by integrating genomic and protein-level information. In 
these frameworks, a gene is conceptualised as a bag containing its proteoforms, which are 
treated as instances within the bag. Functional annotations are initially assigned at the gene 
level (the bag) and then propagated to its proteoforms (the instances), with refinements 
made to ensure proteoform-specific accuracy [70–72]. The attention mechanism can be 
used to increase the difference between isoform pairs from the same gene bag in the 
context of interaction prediction [71] or to account for the fact that two or more proteoforms 
from the same gene can work together to accomplish the same function [73]. Semi-
supervised learning offers an alternative approach to MIL in which high-confidence 
predictions generated from unlabeled samples are iteratively added to the training set to 
refine the model [74].  

In recent years, modular deep learning architectures have been proposed to deal with the 
second issue, the heterogeneity of the input data [69,75]. They typically consider nucleotide 
and/or aa sequences, RNA-seq data and optionally domain composition or domain-domain 
interactions. For instance, the proteoform function predictor DIFFUSE combines features 
extracted with convolutions from proteoform aa sequences, transcript co-expression RNA-
seq data aggregated with probabilistic graphical models, and information about evolutionary 
conserved domains treated with LSTM [69]. Further developments aim at a more unified 
integration, either through end-to-end deep learning architectures [73] or by projecting the 
input data into a common latent space with partial least squares [76].  

Beyond protein-protein complexes, AS events affecting protein interactions with nucleic 
acids, lipids, carbohydrates and small molecules have also been documented [10]. Protein-
ligand interactions established through binding interfaces found in specific proteoforms 
expressed in specific tissues provide new opportunities for drug design and targeting 
strategies, as exemplified by the GPCR superfamily [15].  

Concluding remarks and future outlook 
Emerging deep learning paradigms show promise in clarifying how AS contributes to protein 
functional diversification. Unlike traditional methods, and provided sufficient compute and 
data, deep learning techniques excel at automatically extracting meaningful features directly 
from raw data, eliminating the need for labour-intensive feature engineering. However, a lack 
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of high-quality ground-truth data poses significant challenges for training and evaluating 
machine learning, especially deep learning approaches. Gene predictions frequently contain 
errors [77], and alternative splicing proteoform-specific functional annotations and 
interactions are scarce, partial, and likely noisy [74]. Defining reliable negative training sets 
is extremely difficult because it is almost impossible to demonstrate that splice variants do 
not have any function or cannot interact with one another [43]. Traditional train/test splitting 
may lead to training sets that are not representative enough. Data augmentation is often 
impractical because we do not know or control the impact of small changes on protein 
interactions and functions. 

Self-supervised representation learning could allow for overcoming some of these 
limitations. Large foundation models, in particular,  enable the transfer of knowledge across 
genes, proteins, and species by leveraging universal representation spaces. This approach 
enhances robustness and reduces sensitivity to errors and ambiguities in input data 
preprocessing, such as those arising from multiple sequence alignments. However, not all 
learned representations may achieve high quality due to uneven coverage and biases in the 
training data. Looking ahead, multimodal generative models like ESM-3 (https://github.com/
evolutionaryscale/esm), which build upon the breakthroughs in protein structure prediction, 
are starting to jointly reason over protein sequences, structures, and functions. These 
models open exciting possibilities for finely capturing proteoform differences and even 
designing or tweaking specific proteoforms. 

Exciting progress is also being made in top-down proteomics [78] and nanopore protein 
sequencing [79] aided by machine learning for signal processing and recognition. They let 
us envision the possibility of comprehensively identifying proteoforms generated by AS and 
post-translational modifications. Beyond identification, emerging RNA-targeting strategies for 
programmable manipulation of AS – such as synthetic splicing factors or recruitment of the 
endogenous splicing machinery – open the way to systematic functional exon screening 
[80]. Although challenges remain before achieving high resolution and throughput, these 
experimental techniques are starting to peel back the layers of complexities of protein states 
and functioning in the cell. 
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