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Simple Summary: In chronic lymphocytic leukemia (CLL), abnormal B lymphocytes ac-
cumulate in the bone marrow (BM) and secondary lymphoid tissues. The BM and lymph
nodes support angiogenesis and increased vascularization. Although certain drugs ap-
proved by the US Food and Drug Administration improve clinical outcomes, some patients
do not respond and others relapse. Interactions between CLL cells and the tissue microen-
vironment favor leukemic cell trafficking, survival, and proliferation via the production
of soluble factors. Some of these factors exhibit pro-angiogenic properties. This review
summarizes the biology of these molecules with survival/pro-angiogenic value, and pro-
vides a summary of new, selective inhibitors targeting these molecules (and their receptors)
currently under evaluation in preclinical and clinical studies.

Abstract: Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neo-
plastic CD5+/CD19+ B lymphocytes in the blood. These cells migrate to and proliferate in
the bone marrow and lymphoid tissues. Despite the development of new therapies for CLL,
drug resistance and disease relapse still occur; novel treatment approaches are therefore
still needed. Inhibition of the angiogenesis involved in the progression of CLL might be a
relevant therapeutic strategy. The literature data indicate that vascular endothelial growth
factor, angiopoietin-2, and matrix metalloproteinase-9 are pro-angiogenic factors in CLL. A
number of other CLL factors might have pro-angiogenic activity: fibroblast growth factor-2,
certain chemokines (such as CXCL-12 and CXCL-2), tumor necrosis factor-α, insulin-like
growth factor-1, neutrophil gelatinase-associated lipocalin, and progranulin. All these
molecules contribute to the survival, proliferation, and migration of CLL cells. Here, we
review the literature on these factors’ respective expression profiles and roles in CLL. We
also summarize the main results of preclinical and clinical trials of novel agents targeting
most of these molecules in a CLL setting. Through the eradication of leukemic cells and the
inhibition of angiogenesis, these therapeutic approaches might alter the course of CLL.

Keywords: angiogenesis; angiopoietin-2; chemokine; drug resistance; leukemia; migration;
matrix metalloproteinase-9; signaling; survival; vascular endothelial growth factor

1. Introduction
Angiogenesis (i.e., the formation of new blood vessels from existing ones) is a complex

process that encompasses extracellular matrix remodeling, the activation, migration and
proliferation of endothelial cells (ECs), capillary differentiation, and anastomosis [1–3].
This process requires a number of interactions between a variety of cells and is controlled
by soluble pro- and anti-angiogenic factors [1–3]. Dysregulation of angiogenesis is one
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of the hallmarks of cancer [1–3]. Tumor angiogenesis can be triggered by pro-angiogenic
factors expressed by tumor cells, immune cells (including mast cells, natural killer cells, and
dendritic cells) or stromal cells (including ECs, fibroblasts, macrophages and mesenchy-
mental stem/stromal cells (MSCs)) in the tumor microenvironment [1–5]. The cytokines,
chemokines, and growth factors that promote angiogenesis include vascular endothe-
lial growth factor (VEGF), fibroblast growth factor-2 (FGF-2, also known as basic FGF),
angiopoietin-2 (Ang-2), chemokines (CXC chemokine ligand (CXCL)-12 and CXCL-2),
matrix metalloproteinase-9 (MMP-9), tumor necrosis factor-α (TNF-α), insulin-like growth
factor-1 (IGF-1), neutrophil gelatinase associated lipocalin (NGAL), progranulin, and an-
giogenin [6–22]. Anti-angiogenic factors have also been identified and include endostatin,
adiponectin, angiostatin, and thrombospondin (TSP-1) [11,23].

Pro-angiogenic factors can stimulate angiogenesis directly or indirectly. Firstly, they
may act directly by binding to the cognate receptor on ECs and thus induce cell proliferation
and/or migration (as is the case for VEGF, FGF-2, CXCL-12, angiogenin, IGF-1, progranulin,
MMP-9, and Ang-2, in concert with VEGF) or may act on local stromal, immune or tumor
cells to influence angiogenic processes indirectly (as is the case for MMP-9, TNF-α, CXCL-12,
NGAL, and IGF-1) [1,6,7,9,11,14,15,24–28]. For example, angiogenesis induced by TNF-α
can be modulated by VEGF and FGF-2 secreted through a paracrine mechanism [9,14].
Moreover, certain factors (such as NGAL and MMP-9) can exhibit either pro- or anti-
angiogenic effects, depending on the type of cancer [17]; thus, NGAL reduced angiogenesis
by blocking VEGF production in a model of advanced pancreatic cancer [29,30] while
it increased VEGF levels and promoted angiogenesis in breast cancer [31,32]. MMP-9
enhances EC growth in vitro [26] but can also inhibit EC migration, proliferation, and
tube formation through its ability to convert plasminogen into the anti-angiogenic factor
angiostatin [33,34]. In solid tumors, MMP-9 can release VEGF and FGF-2 sequestered in
the extracellular matrix, which in turn activate tumor-associated ECs [35,36].

Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in the Western
world, where it accounts for ~30% of cases [37]. The disease is caused by the accumulation
of CD5+CD19+ B lymphocytes in the peripheral blood, bone marrow (BM), and lymphatic
tissues [38]. CLL develops slowly, and only a small subpopulation of malignant cells prolif-
erate in the BM, lymph nodes (LNs), and spleen [38]. CLL is clinically heterogenous [38]:
some patients have an indolent course and are not treated, while others have a more
aggressive disease that requires early treatment and have shortened survival [38]. Cytoge-
netic abnormalities and molecular defects underpin CLL cell survival, proliferation and
migration through the vascular endothelium and into the tissue/extravascular compart-
ments [38,39]. At present, CLL is treated with a fludarabine-cyclophosphamide-rituximab
(FCR) combination and signaling inhibitors that target B-cell receptor (BCR)-associated
kinases (i.e., Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib and acalabrutinib) or
the antagonist of the B-cell lymphoma-2 (Bcl-2) anti-apoptotic protein (venetoclax) [40]. The
combination of conventional cancer drugs with CD20 monoclonal antibodies (mAbs) (i.e.,
rituximab and obituzumab) is also proposed [40]. These therapies are often accompanied
by non-genomic resistance or favored mutations associated with drug resistance [5,41–45].
Thus, novel therapeutic strategies are needed, and the identification of new drug targets in
CLL is of great interest. Angiogenesis participates to the disease mechanism in CLL and can
provide a rationale for novel therapeutic approaches in this context [2,46–48]. VEGF, Ang-2
and MMP-9 are involved in CLL angiogenesis. These factors do not act solely through
angiogenic pathways by contributing to the progression of CLL because they also influence
the survival, proliferation and migration of CLL cells themselves [2,48–51]. Here, we re-
view (i) the expression profiles of VEGF, Ang-2, MMP-9, and other factors with potential
pro-angiogenic activity in CLL (e.g., FGF-2, TNF-α, CXCL-12, CXCL-2, NGAL, IGF-1, pro-
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granulin, and angiogenin), (ii) recent advances in understanding these factors’ respective
roles in CLL and their relationship with CLL angiogenesis, and (iii) current strategies for
treating CLL, with a focus on the ongoing (pre)clinical development of effective, selective
agents intended to target these molecules and block CLL progression.

2. Angiogenesis in CLL: Involvement of VEGF, Ang-2, and MMP-9
Under physiological conditions, the vasculature in the BM orchestrates hematopoiesis

and angiogenesis [52,53]. Similarly, LNs promote angiogenesis and increased vascular-
ization [54]. Abnormally prominent angiogenesis has been documented in biopsies of
BM and LNs from patients with CLL [2,46,47,55–64]. The microvessel density (MVD) was
assessed as a marker of angiogenesis. Several studies showed that relative to healthy
individuals, the MVD is significantly higher in the BM of patients, with CLL indicating
the development of new blood vessels [47,55–61]. Enhanced angiogenesis in the BM ap-
pears to be related to the disease stage and is predictive of a poor clinical outcome in
CLL [49,56,57,60,64–67]. Moreover, vascularization of the BM is accompanied by the ad-
hesion of CLL cells to the stroma (including ECs, fibroblasts, and macrophages) [68–71]:
both activated stromal cells and activated CLL cells are able to produce VEGF, Ang-2,
and MMP-9 [56,57,70,72,73], which in turn can modulate neovascularization in different
ways [3,69,70,74–76] (Table 1). For instance, the interaction between CLL cells and BM
fibroblasts induces VEGF upregulation and TSP-1 downregulation in CLL cells [68,69];
both CLL-derived VEGF and Ang-2 increase EC tube formation in vitro [74]; and MMP-9
produced by CLL cells and stromal macrophages increases VEGF production by CLL cells,
which enhances EC proliferation [70]. Furthermore, advanced CLL is associated with ele-
vated plasma/serum concentrations of VEGF, Ang-2, and MMP-9 (expressed by circulating
blood CLL cells) [57,64,65,77–81] (Table 1), and so these factors can be used as markers of
MVD in the BM [57,74,77,79,82–86]. In contrast, circulating levels of FGF-2 and angiogenin
do not appear to reflect the MVD in the BM [57,87]. Increased vascular density is also
observed in the LNs of CLL patients [2,62,63] and is associated with high levels of VEGF
and interleukin (IL)-6 [63].

CLL cells and tumor-associated stromal cells also produce and secrete FGF-2, TNF-α,
CXCL-12, CXCL-2, NGAL, IGF-1, progranulin, and angiogenin [88–95] (Table 1). These
molecules are prognostic markers of the progression of CLL and are known (apart from
angiogenin) to be involved in the functional deregulation of CLL cells (i.e., with regard
to survival, proliferation, and migration) [2,51,92–94,96,97] (Table 1). Outside the field of
CLL, these factors have been validated as pro-angiogenic factors in various inflammatory
and neoplastic diseases [3,75,76,98]. Nonetheless, it is still not clear whether FGF-2, TNF-α,
CXCL-12, CXCL-2, NGAL, IGF-1, progranulin, and angiogenin can contribute (directly or
indirectly) to angiogenesis in CLL.

Additionally, CLL cells produce anti-angiogenic factors such as endostatin [99],
adiponectin [100–103] and TSP-1 [68,90,104,105]. The level of endostatin is lower in the
serum of CLL patients in advanced stages or with progressive disease while the level of
FGF-2 is significantly higher in these groups of patients [99]. Adiponectin gene expres-
sion was invariably low and inversely correlated to percentages of ZAP-70+ and CD38+

cells [101–103], suggesting a limited (if any) role of leukemic cells in the production of
circulating adiponectin levels. TSP-1 levels (mRNA, protein) were higher in low-risk CLL
patients than in high-risk patients [90]. Co-culture of BM stroma with CLL cells results in
an increased release of VEGF and a decreased release of TSP-1 [69]. Clinically, VEGF/TSP-1
ratio might be a predictor for the response to chemo-immunotherapy in CLL patients [106].
These examples show that the production of pro- and anti-angiogenic molecules by CLL
cells is an active process in CLL, with a clear pro-angiogenic switch which, in turn, could
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promote BM neovascularization, CLL cell survival, and disease progression. These anti-
angiogenic molecules in CLL have not been studied in this review.

Table 1. Soluble CLL factors: expression profiles and involvement in CLL cell functions and angiogenesis.

CLL Factor Location Prognostic
Significance CLL Cell Receptor CLL Cell Processes and Angiogenesis

VEGF

- Plasma/serum
[2,55,57,62,64,65,74,77,80,84,107–110]

- CLL cells (mRNA, protein)
[62,80,90,111,112]

- BM stroma (protein) [57,68,113–115]
- BM MSCs (protein) [68,71,114]
- LN stroma (protein) [63]

Associated with a
poor prognosis
[57,77]

VEGF-R2
[2,64,113,116]

- EC tube formation [74]
- Survival (STAT3/Mcl-1) [80,117–121]
- Inhibition of MMP-9-mediated

migration (STAT1) [122]
- Survival upon association with

VLA-4 (FAK/AKT) [123]

Ang-2

- Plasma/serum [57,65,74,84]
- CLL cells (mRNA, protein)

[83,90,124,125]
- BM stroma (protein) [57,124]

Associated with a
poor prognosis
[57,74,83–85]

Tie-2 [126] - EC tube formation [74]
- Survival [74,126]

MMP-9

- Plasma/serum [78,81,127]
- CLL cells (mRNA, protein)

[79,86,92,127,128]
- BM macrophages (protein) [70]

Higher levels in
stage C disease
[79,86]

CD44/VLA-4 [50]
- EC proliferation [70]
- Survival (Lyn/STAT3/Mcl-1) [50]
- Migration inhibition [129,130]

FGF-2

- Plasma/serum
[2,55,57,65,77,85,88,89,99,109]

- CLL cells (mRNA, protein) [88–90]
- BM stroma (protein) [68]

Associated with a
poor prognosis [2,55,
57,65,77,80,85,88,89,
96,99,102,109,131]

FGF-R3 [132] - Survival (ERK1/2, STAT3, c-Src,
Mcl-1) (Bcl-2) [2,68,96]

TNF-α

- Plasma, serum [91,97,133–136]
- CLL cells (mRNA, protein)

[91,133,137,138]
- BM stroma (mRNA, protein)

[133,137,138]

Associated with a
poor prognosis
[91,97,133–136]

TNF-R1 [97] - Survival [137–140], (NF-κB) [97],
(Bcl-2, Mcl-1) [97,141,142]

CXCL-12 - Serum [143]
- BM stroma (mRNA, protein) [71,144]

Advanced Rai stage
[143] CXCR4 [145–147]

- Survival (ERK1/2, STAT3) [148,149],
(SYK) [150], (ZAP70/MEK/ERK1/2)
[151]

- Migration (Ca2+ flux) [145], (PI3K)
[152,153], (SYK) [150], (ERK1/2)
[148,149], (ZAP70/MEK/ERK1/2)
[151]

- Survival [154], and migration (ZAP70)
[155] upon binding to CD38

- Adhesion and migration dependent
on VLA-4 and VEGF [156]

- Migration upon VLA-4 activation
(JAK2/BTK/RhoA) [157]

- Secretion of CLL cell MMP-9 upon
adhesion (ERK1/2/c-Fos) [128]

CXCL-2 - Plasma [73,158]
- CLL cells (protein) [73,158] CXCR2 [159] - Survival [73,158]

NGAL - Serum [92]
- CLL cells (mRNA, protein) [79,92]

Associated with a
poor prognosis [92]

SLC22A17/
NGAL-R [92] - Survival (Src/Stat3/Mcl-1) [92]

IGF-1 - Serum/plasma [93,160,161]
- CLL cells (protein) [93]

IGF1-R [93,162] - Survival (Bcl-2) [93], (PI3K/AKT,
MAPK) [162]

Progranulin
- Serum [94,148,163–165]
- CLL cells (mRNA, protein) [84,165]
- BM MSCs & LN macrophages

(mRNA, protein) [94,165]

Associated with a
poor prognosis
[84,94,165]

TLR-9 [94] - Survival [94]

Angiogenin - Plasma, serum [87,95]
- CLL cells (mRNA, protein) [95,103]

A prognostic marker
[87] Unknown - Unknown

Ang-2, angiopoietin-2; BM, bone marrow; BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; CXCL,
CXC chemokine ligand; CXCR4, CXC chemokine receptor-4 specific for CXCL-12; EC, endothelial cell; FAK, focal
adhesion kinase; IGF-1, insulin-like growth factor-1; LN, lymph node; MMP-9, matrix metalloproteinase-9; MSC,
mesenchymal stem/stromal cell; NGAL-R, neutrophil gelatinase-associated lipocalin receptor; PI3K, phosphatidyl
inositol-3 kinase; TLR-9, Toll-like receptor-9; TNF, tumor necrosis factor; VEGF-R2, vascular endothelial growth
factor receptor-2; VLA-4, very late antigen-4. Concentrations of soluble factors in plasma/serum were determined
using various commercial ELISA kits according to the manufacturer’s instructions.
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3. Expression Profiles and Functions of VEGF, Ang-2, MMP-9, FGF-2,
TNF-α, CXCL-12, CXCL-2, NGAL, IGF-1, Progranulin, and Angiogenin
in CLL

The interactions between CLL cells and the surrounding stromal cells in the BM
and LN microenvironments favor CLL cell survival, proliferation, and migration via the
production of endocrine or paracrine factors [63,69–72,76]. In this section, we review
current knowledge about the expression profiles and roles of VEGF, Ang-2, MMP-9, FGF-2,
TNF-α, CXCL-12, CXCL-2, NGAL, IGF-1, progranulin, and angiogenin in CLL (Table 1).

3.1. VEGF

High serum or plasma concentrations of VEGF were reportedly higher in CLL pa-
tients than in healthy controls and defined a subset of CLL patients with a poor clinical
outcome [64,65,74,77,80,84,109] (Table 1). The plasma VEGF concentration decreased after
fludarabine-based treatment [110]. In CLL, VEGF is expressed by primary CLL tumor
cells and BM MSCs [57,64,68,112,114] (Table 1). Hypoxia is a crucial parameter in angio-
genesis and tumor development [166]. Under hypoxic conditions, mRNA and protein
levels of VEGF are elevated in CLL cells [62]. In particular, CLL cells synthesize and
release VEGF165 [80,111]. The main receptor for VEGF165 is VEGF-R2, which is usually
overexpressed in CLL cells [116]. CLL patients with high VEGF-R2 levels have marked
lymphocytosis, severe anemia, and a shorter survival time [116]. Accordingly, autocrine
VEGF drives CLL cell survival and prevents drug-induced apoptosis [117,118] by inter-
acting with VEGF-R2 and by upregulating STAT3 and the pro-survival protein Mcl-1 (a
member of the BCL-2 family) [117,119–121] (Table 1). Relative to CD38- CLL cells, CD38+

CLL cells from patients with a poor prognosis overexpress VEGF, VEGF-R2 and Mcl-1, and
this overexpression is associated with apoptosis resistance [80,120] (Table 1). Gehrke et al.
reported that BM stromal VEGF (rather than CLL cell VEGF) is involved in the survival
of CLL cells [114]. VEGF/VEGF-R2 interaction downregulates MMP-9 expression (via
STAT1 activation) and consequently inhibits CLL cell migration [122] (Table 1). Surface
VEGF-R2 physically associates with the integrin very late antigen-4 (VLA-4/α4β1) [51], and
engagement of the VEGF-R2/VLA-4 complex by VEGF activates a survival pathway that
involves the phosphorylation and activation of focal adhesion kinase (FAK) and AKT [123]
(Table 1).

3.2. Ang-2

CLL patients with a poor clinical outcome have elevated levels of serum/plasma Ang-
2 [57,65,74,84] (Table 1). Binet stage B and C cases have higher plasma Ang-2 concentrations
than Binet stage A cases, which suggests a link between Ang-2 and CLL progression [84]. In
particular, an elevated plasma Ang-2 concentration was reported in patients with an unmu-
tated sequence for the variable region of the immunoglobulin heavy chain (IGVH) and high
expression of ZAP-70 and CD38 and in patients with an intermediate or high cytogenetic
risk [57,65,74,84]. Accordingly, elevated mRNA expression of Ang-2 in blood CLL cells is as-
sociated with unmutated IGVH genes and shorter progression-free survival [83,90,124,125].
BM stromal cells are also able to produce Ang-2 [57] (Table 1). By binding to its recep-
tor Tie-2 [126], Ang-2 favors CLL cell survival [74,126] (Table 1). However, the signaling
transduction pathways have not been characterized.

3.3. MMP-9

Plasma/serum MMP-9 concentrations are significantly higher in untreated early-CLL
patients (stage A) than in healthy controls [78,81,127] but fall to near-control levels in
patients in remission [81,92] (Table 1). In contrast to resting B lymphocytes, CLL cells (stage
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A, according to the Binet classification) synthesize and secrete the inactive zymogen form
of MMP-9 (proMMP-9) [79,127,128] (Table 1). Moreover, the highest levels of intracellu-
lar MMP-9 are associated with advanced (Binet stage C) disease and with poor overall
survival [79]. (Pro)MMP-9 binds to its docking receptors VLA-4 and CD44, which are over-
expressed on CLL cells [50] (Table 1). By binding to VLA-4 in concert with CD44, MMP-9
induces an intracellular signaling pathway that favors the survival of CLL blood cells [50]
(Table 1). This pathway consists of LYN kinase activation, STAT3 phosphorylation, and
Mcl-1 activation [50] (Table 1). As a consequence, MMP-9 bound to both VLA-4 and CD44
impairs CLL cell migration [129,130] (Table 1). As mentioned in Section 2, MMP-9’s interac-
tion with CLL cells increased the expression and secretion of VEGF and decreased TSP-1
expression [70]; thus, MMP-9-primed CLL cells significantly enhanced VEGF-mediated EC
proliferation [70] (Table 1).

3.4. FGF-2

Circulating (plasma/serum) levels of FGF-2 are higher in CLL patients than in healthy
controls [2,55,57,65,77,80,85,88,89,96,99,102,109] (Table 1). Elevated plasma levels of FGF-2
in CLL patients decrease after fludarabine-based treatment [110]. CLL blood cells and BM
stromal cells synthesize and release FGF-2 [68,88–90] (Table 1). Protein and mRNA levels
of FGF-2 inside CLL cells are correlated with the clinical CLL stage [57,88,131]. An in vitro
interaction between CLL cells and BM stroma markedly increased FGF-2 secretion and
decreased TSP-1 secretion, leading to CLL cell escape from spontaneous and drug-induced
cell death [68]. By binding to its receptor FGF-R3 [132], FGF-2 increases CLL cell survival
through the activation of ERK1/2 and c-Src kinases, STAT3 phosphorylation, and activation
of Mcl-1 and Bcl-2 (another major member of the pro-survival BCL-2 family) [2,68,96]
(Table 1).

3.5. TNF-α

Elevated levels of soluble TNF-α and its receptor (TNF-R1) are detected in the sera of
patients with CLL and are associated with a poor clinical outcome [91,97,133–136] (Table 1).
In particular, high serum concentrations of TNF-α are more likely to harbor high-risk
chromosome abnormalities and advanced disease [134]. Accordingly, a simultaneous
increase in serum TNF-α and IL-10 levels was observed in a high-risk CLL subgroup with
a shorter 3-year treatment-free survival time and a higher leukocyte count [167]. TNF-α
is expressed constitutively by CLL cells and BM stromal cells [91,133,137,138] (Table 1).
Aberrant high expression of TNF-R1 has been observed in the LNs of CLL patients [97].

TNF-α activates the transcription factor NF-κB, which in turn regulates TNF-α pro-
duction [10]. In CLL, NF-κB is activated to a variable degree, regardless of the disease
stage or treatment status [97]. For instance, NF-κB is activated in CLL cells with unmutated
IGHV genes upon exposure to TNF-α [168]. TNF-α has been shown to act as an autocrine
and paracrine growth factor that induces CLL cell proliferation in vitro [137–139] (Table 1).
TNF-α favors cell survival and proliferation of CLL cells by upregulating Bcl-2 and Mcl-
1 [97,141,142]. Accordingly, stimulation of TNF-R1 with TNF-α enhanced NF-κB activity
and CLL cell survival [97] (Table 1). More recently, NF-κB signaling has been characterized
as comprising two independent but interlinked signaling pathways [10]: the canonical or
classical pathway mediated by the action of the RelA/p50 subunits, and the non-canonical
or alternative pathway that is dependent on activation of the RelB subunit associated with
p50 or p52 [10]. RelA binding complexes are constitutively active in blood CLL cells, and
their activation is STAT3-dependent [169]. Activities of both RelA and RelB were detected
in CLL cells isolated from BM aspirates and were shown to confer survival advantages on
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CLL BM cells [140] (Table 1). RelB activity enhances cell sensitivity to proteasome inhibitors
but not to fludarabine [140].

3.6. CXCL-12 and CXCL-2

CXCL-12 (also known as stromal-derived factor-1) is expressed by BM stromal cells in
CLL patients [71,144] (Table 1). A significant correlation was observed between the serum
CXCL-12 level and an advanced Rai stage [143]. CXCL-12’s receptor (CXCR4) is expressed
on many cell types [170] and is a key chemokine receptor on CLL cells [146,147]. Relative to
normal B cells, CLL cells display higher levels of total and surface CXCR4 [145]. Elevated
CXCR4 expression is associated with a poor prognosis, resistance to FCR therapy [171], and
a greater risk of lymphoid organ infiltration [172]. Overexpression of CXCR4 on CLL cells
is associated with greater functional responses to CXCL-12 [39,147]. The CXCL-12/CXCR4
axis exerts at least two major effects on CLL cells: the induction of survival signals and cell
migration toward the stroma (Table 1). CXCL-12/CXCR4-mediated signaling involves Ca2+

flux [145,151] and the activation of PI3K [152,153], SYK [150], ERK1/2 [148,149], ZAP70,
MEK, ERK1/2 [151], and STAT3 [149] (Table 1). The surface expression of CXCR4 is strongly
associated with that of CD38, VLA4, MMP-9, and BCR [51]. Accordingly, CXCL-12/CXCR4
signaling in CLL cells can be modulated by the BCR, CD38, VLA-4, and VEGF [51,154–156].
BCR activation upregulates the expression of CXCR4 in CLL cells [173], and treatment of
CLL cells with ibrutinib (a BTK inhibitor) is followed by downregulation of surface CXCR4
expression and inhibition of CXCL-12/CXCR4 downstream signaling [174]. The physical
interaction between CXCR4 and CD38 increases the intensity of the CXCL-12-mediated sig-
nals involved in the survival [154] and migration of ZAP70high CLL cells [155]. Both VEGF
(through binding to VEGF-R) and VLA-4 are involved in the CXCL-12-dependent motil-
ity of CLL cells towards and through the endothelium [156] (Table 1). CXCL-12 induces
an active VLA-4 conformation on CLL cells; this results in the involvement of VLA-4 in
CXCR4-dependent CLL cell migration and adhesion to the stroma via the JAK2/BTK/RhoA
signaling cascade [157] (Table 1). Consequently, MMP-9 expression and release are upregu-
lated via an ERK1/2/c-Fos signaling pathway and are involved in CLL cell migration [128]
(Table 1).

A significant elevation in the plasma CXCL-2 (also known as monocyte inhibitory
protein-2α) concentration is observed in patients with CLL versus healthy controls [73,158]
(Table 1). CXCL-2 is produced by various cell types, including stromal cells, ECs, and
tumor cells [73]. CXCL-2 is strongly expressed by CLL cells when co-cultured with BM
stromal cells [73,158] (Table 1), and its expression appears to be correlated with sustained
CLL cell survival in vitro [73,158] (Table 1).

3.7. NGAL

NGAL is a glycosylated protein from the lipocalin family. It exists as a monomer,
a homodimer, and a disulfide-linked heterodimer bound to proMMP-9 [17,175]. NGAL
concentrations (whether free or complexed to MMP-9) are elevated in the serum of CLL
patients at diagnosis [92] (Table 1). After treatment (and regardless of the therapeutic
regimen), serum NGAL levels normalized in CLL patients in remission but not in relapsed
patients [92]. Cultured CLL cells express and release NGAL and the NGAL/MMP-9
dimer [79,92] (Table 1). The NGAL receptor (NGAL-R) belongs to the SLC22 family of
organic ion transporters [51,176]. The NGAL-R is absent or weakly expressed in nor-
mal peripheral blood cells but is strongly expressed by CLL cells from treatment-naive
patients, and its expression is associated with the clinical prognosis [92] (Table 1). Sur-
face NGAL-R physically associates with CD38 [177], and patients with progressing CLL
showed a time-dependent increase in NGAL-R/CD38 levels [177]. In treated CLL pa-
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tients who achieved clinical remission, NGAL-R/CD38 levels were decreased and fell to
baseline levels [92,177]. Upon binding to NGAL, NGAL-R provides CLL cells with an
SRC/STAT3/Mcl-1-dependent survival signal [92] (Table 1).

3.8. IGF-1

There are conflicting reports on circulating IGF-1 levels in CLL. Two studies have
found that plasma and serum levels of IGF-1 are higher in CLL patients than in age-matched,
healthy controls [93,160] (Table 1). However, another study found the opposite: lower
serum levels of IGF-1 in patients with CLL (Binet stage A) than in a control group, and no
significant correlation between serum IGF-1 levels and clinical and hematological variables
(including the Rai stage) [161] (Table 1). In general, the relationship between circulating
IGF-1 concentrations and various factors (including genetic factors and age) is multifaceted
and may influence the interpretations of research results [178]; this might explain the
contradictory findings on circulating IGF-1 levels in CLL. The IGF-1 receptor (IGF-1-R,
also known as CD221) is a receptor tyrosine kinase primarily activated by IGF-1/-2 [179].
Most CLL cells secrete IGF-1 and express IGF-1-R [93,162] (Table 1). IGF-1 expression
is lower in CLL cells from patients with del 13q than in cells of patients with high-risk
genetic features [162]. IGF-1-R overexpression was found in all CLL subsets (13q, Tri12,
11q, 17p) [162]. Upon IGF-1 stimulation, CLL cells activate the PI3/AKT, MAPK, and Bcl-2
pathways [93,162] (Table 1).

3.9. Progranulin

The serum progranulin concentration is elevated in CLL patients with an advanced
stage of disease [94,148,163–165] and is an independent predictor of disease progression
and overall survival in CLL [84,94,165] (Table 1). Progranulin is expressed by CLL cells
and found upregulated in ZAP70+CD38+ CLL cells (associated with a poor prognosis),
relative to ZAP70- CD38- CLL cells [84,165]. This factor is also expressed by BM MSCs and
LN macrophages in CLL [94,165] (Table 1). Progranulin co-activates Toll-like receptor-9
(TLR-9) which is strongly expressed by CLL cells and can convey proliferative and survival
signals [94] (Table 1).

3.10. Angiogenin

Serum angiogenin levels in CLL patients are similar to those measured in healthy
controls [87,95] (Table 1). However, prolonged progression-free survival appears correlated
with a high angiogenin level (≥330 ng/mL), which might therefore be predictive of the
clinical outcome in patients with early-stage CLL [87] (Table 1). In general, angiogenin is
expressed by most ECs, fibroblasts, and hematopoietic cells [11,180]. Cultured blood CLL
cells (stage A) express endogenous angiogenin (both mRNA and protein are detected) and
release it into the circulation [95]. Accordingly, angiogenin was found to be significantly
higher in CLL patients than in controls and its level increased with the clinical stage [103]. In
various experimental tumor cell models, angiogenin regulates cell proliferation, migration,
and adhesion by activating the SAPK/JNK, ERK1/2, and PI3K/AKT pathways in various
cells and under different conditions [11,180]. The angiogenin receptor plexin-B2 [181] and
angiogenin’s functions have not been identified in primary CLL cells; preclinical studies of
angiogenin’s role(s) in this setting are therefore needed.

4. Preclinical and Clinical Trials of Drugs That Target Cell Survival
Factors and Their Receptors in CLL

A number of preclinical and clinical trials in CLL have targeted VEGF/VEGF-R,
MMP-9/CD44/VLA-4, CXCL-12/CXCR4, TNF-α/TNF-R, and IGF-1/IGF-1-R (Table 2). In
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contrast, Ang-2, FGF-2, NGAL, progranulin, and angiogenin have not been investigated as
targets in the context of CLL.

Table 2. Examples of (pre)clinical studies of drugs targeting VEGF, CD44, VLA-4, TNF-α/TNF-R,
CXCL-12/CXCR4, and IGF-1-R, evaluated alone or in combination as first- or second-line therapies
for CLL.

Agent Class Preclinical Study Clinical Study

Bevacizumab Anti-VEGF mAb Induces CLL cell death [90,182]

- Phase II NCT00290810, R/R CLL [183]
- Phase II NCT00448019, relapsed CLL,

combined with FCR [184]
- Phase II NCT00816595, previously

untreated CLL, combined with
PCR [185]

A6 (Angstrom 6, NSC750394) CD44 peptide inhibitor
([acetyl]-KPSSPPEE-[NH2]) Induces CLL cell death [186]

P6 CD44 peptide inhibitor
(FDAIAEIGNQLYLFKDGKYW)

Inhibits CLL cell adhesion and
migration [187]

RG7356 Anti-CD44v6 mAb Inhibits CLL cell survival and
migration [188–190]

Natalizumab Anti-CD49d mAb (VLA-4 subunit) Inhibits CLL cell migration [191]

Lenalidomide Inhibits TNF-α expression Inhibits CLL cell survival [192,193]
- Phase I NCT01446133, previously

untreated CLL, combined with
rituximab [194,195]

Etanercept Soluble TNF-R neutralizes soluble
TNF-α Inhibits CLL cell proliferation [196]

- Phase II, relapsed CLL, combined with
rituximab [197]

- Phase I/II NCT002182, refractory CLL,
combined with rituximab [198]

NOX-A12 (olaptesed pegol) An RNA oligonucleotide that binds
and neutralizes CXCL-12 Inhibits CLL cell migration [199]

- Phase II NCT01486797, refractory CLL,
combined with bendamustine and
rituximab [200,201]

Plerixafor (AMD3100) CXCR4 small molecule inhibitor Inhibits CLL cell survival and
migration [149,202,203]

- Phase I NCT01373229, R/R CLL,
combined with lenalidomide [204]

- Phase I NCT00694590, R/R CLL,
combined with rituximab [205,206]

BKT140 (BL-8040,
4F-benzoyl-TN14003,
motixafortide, TF 14016)

CXCR4 peptide inhibitor Inhibits CLL cell survival and
migration [149,202]

Ulocuplumab (BMS-936564,
MDX-1338) Anti-CXCR4 mAb Induces CLL cell death (via ROS) [207]

- Phase I NCT01120457, previously
untreated CLL, alone or combined with
ibrutinib

Sorafenib (Nexavar, BAY43-9006)
Broad multikinase inhibitor, inhibits
IGF-1-R expression and kinase
activity

Induces CLL cell death [162]

BKT140,N2-(4-fluorobenzoyl)-L-arginyl-L-arginyl-3-(2-naphthalenyl)-L-alanyl-L-cysteinyl-L-tyrosyl-N5-
(aminocarbonyl)-L-ornithyl-L-lysyl-D-lysyl-L-prolyl-L-tyrosyl-L-arginyl-N5-(aminocarbonyl)-L-ornithyl-L-
cysteinyl-L-argininamide, cyclic (4→13)-disulfide. FCR, fludarabine, cyclophosphamide, and rituximab;
PCR, pentostatine, cyclophosphamide, and rituximab; R/R, refractory/relapsed. Plerixafor, l,1′-[1,4-
phenylene bis (methylene)]-bis-1,4,8,11-tetraazacyclotetradecane; ROS, reactive oxygen species; Sorafenib,
4-[4-[[4-chloro-3-(trifluoromethyl) phenyl] carbamoylamino] phenoxy]-N-methyl-pyridine-2-carboxamide.

4.1. VEGF/VEGF-R2 Inhibitors

Several agents targeting the VEGF/VEGF-R axis are currently in clinical development
for the treatment of cancers. These agents include VEGF-R mAbs and inhibitors that block
signaling through VEGF-R, and anti-VEGF-R2 chimeric antigen receptor (CAR)-T cell con-
structs [21,40,51,208–210]. Two human anti-VEGF Abs (bevacizumab and ramucizumab)
have been approved by the US Food and Drug Administration (FDA) for the treatment
(alone or combined with other drugs) of certain cancers [211,212]. In vitro, bevacizumab ex-
hibits pro-apoptotic effects on CLL cells [182]: it triggers leukemia cell death, with activation
of caspases 3/9, overexpression of the proapoptotic factors Bak and Bad, and downregula-
tion of Mcl-2 and AKT [182] (Table 2). The combination of bevacizumab with rituximab,
alemtuzumab, or rapamycin significantly increased in vitro CLL cell death, relative to each
drug alone [90,182] (Table 2). Bevacizumab monotherapy did not have significant clinical
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efficacy in patients with refractory/relapsed (R/R) CLL [183] (Table 2). Moreover, a combi-
nation of bevacizumab with FCR did not improve outcomes in patients with relapsed CLL,
when compared with patients treated with FCR [184] (Table 2). Moreover, the response to
bevacizumab appeared to be weak, and resistance soon appeared [212,213]. However, the
results of a recent Phase II randomized trial showed that the addition of bevacizumab to
chemoimmunotherapy (pentostatin, cyclophosphamide, and rituximab) in CLL was well
tolerated and appeared to prolong progression-free and treatment-free survival of patients
with progressive but previously untreated CLL [185] (Table 2).

4.2. MMP-9/CD44/VLA4 Inhibitors

The initially developed anti-enzyme therapies targeted MMP-9s’ catalytic activity and
thus sought to inhibit tumor progression [214–216]. The treatment failures observed with
MMP-9 inhibitors in Phase III clinical trials in patients with solid tumors might be due
to their lack of selectivity and specificity for MMP-9, which leads to undesired off-target
effects [214–217]. More recent therapeutic strategies include DNA/RNA aptamers and
peptides that block MMP-9’s interactions with its cell surface receptors CD44 and VLA-4
and function-blocking mAbs that bind to CD44 and VLA-4 [189,216,218–221]. The peptide
A6’s binding to CD44 results in the inhibition of migration and metastasis of solid tumor
cells and the modulation of CD44-mediated cell signaling [186]. A6 has shown efficacy
and an excellent safety profile in Phase Ia, Ib, and II clinical trials in patients with solid
tumors [186]. In vitro, A6 induces the death of ZAP-70+ CLL cells [186] (Table 2). Similarly,
the CD44-binding peptide P6 (which binds to the hemopexin domain of MMP-9) impairs
the adhesion and migration of CLL cells [187] (Table 2). These peptides have not yet been
tested in Phase I trials on patients with CLL. When considering the anti-CD44 mAbs in
preclinical or clinical development as cancer therapies [189,218,219], the humanized anti-
CD44v6 mAb RG7356 has been shown to induce the in vitro caspase-dependent death of
ZAP-70+ CLL cells from patients with a poor prognosis [188] (Table 2). Administration of
RG7356 to immunodeficient mice engrafted with human CLL cells resulted in complete
clearance of the latter [189,190]. The FDA-approved anti-CD49d mAb natalizumab has
emerged as a potential treatment for cancer [222–224]. In vitro, natalizumab inhibits the
VLA-4-dependent migration of CLL cells [191] (Table 2). These approaches warrant further
investigation as possible treatments for CLL.

4.3. TNF-α/TNF-R Inhibitors

Several classes of TNF-α inhibitors are available, including anti-TNF Abs, inhibitors
of TNF expression (such as thalidomide and its analog lenalidomide), soluble TNF-Rs
(such as etanercept), and inhibitors of TNF-α-induced signaling pathways (such as NF-κB
blockers) [8,10,12]. To date, attempts to treat hematologic malignancies (including CLL)
with anti-TNF-α Abs have not produced objective therapeutic anti-cancer responses. In fact,
TNF-α Abs bind both soluble (s) TNF-α and transmembrane TNF-α, and so the targeted
binding of Abs to leukemia cells is largely neutralized by sTNF-α [15,225]. Thalidomide
and lenalidomide combine immunomodulatory and anti-angiogenic effects by inhibiting
NF-κB activity, TNF-α expression, and (to a lesser extent) FGF-2 and VEGF expression in
various tumor cell types [64,226]. A large number of clinical trials have studied the use of
thalidomide or lenalidomide in treatment-naïve patients and patients with R/R CLL, either
as single agents or in combination with chemotherapy (rituximab, ibrutinib, obinutuzumab,
etc.) [194,195,227–233]. The onset of efficacy was slow, and toxicity limited the use of thalido-
mide or lenalidomide as a single agent or combined with chemotherapy [195,234–236]. A
lenalidomide rituximab combination is currently being evaluated in a Phase I trial for the
treatment of CLL [194,195] (Table 2). Etanercept inhibits the biological activity of soluble



Cancers 2025, 17, 72 11 of 28

TNF-α [138,237]. In patients with refractory hematological diseases (including CLL), etan-
ercept was found to be well tolerated and not associated with an overt increase in infectious
episodes [225,238]. While rituximab is ineffective in relapsed CLL with del 17p [239], the
combination of rituximab and etanercept was well tolerated and demonstrated clinical
activity in relapsed CLL patients without del 17p [197,198] (Table 2). However, the addition
of etanercept did not improve the clinical response rate beyond that expected with thrice
weekly single-agent rituximab [197,198,232] (Table 2).

4.4. CXCL-12/CXCR4 Inhibitors

With a view to blocking the CXCL-12/CXCR4 axis, small chemical inhibitors (such as
plerixafor and BKT140), RNA oligonucleotides, and blocking mAbs have been investigated
in various cancer settings [149,240,241]. In CLL, several clinical trials combined a CXCR4
antagonist with conventional cytotoxic agents (i.e., bendamustine, fludarabine, cyclophos-
phamide, and lenalidomide) or mAbs (i.e., rituximab and alemtuzumab) [233,240–242].
CXCL-12 targeting was achieved through the use of RNA oligonucleotides; for exam-
ple, NOX-A12 inhibits CLL-cell migration in vitro and sensitizes CLL cells to cytotoxic
agents [199] (Table 2). A combination of bendamustine, rituximab, and NOX-A12 has
been tested in a Phase II trial in relapsed CLL patients [200]; the treatment was well tol-
erated and did not result in more toxicity than the two-drug bendamustine–rituximab
combination [201] (Table 2). In a Phase I trial of plerixafor plus lenalidomide in previously
treated CLL patients, the most common grade 3/4 toxicities were anemia, neutropenia,
and thrombocytopenia [204] (Table 2). Another multicenter Phase I study of plerixafor
and rituximab in patients with R/R CLL showed that the combination was well toler-
ated, with CLL cell mobilization in the blood: maximum responses could be still detected
several months after completion of the course of treatment [205,206] (Table 2). Thus, the
combination of a CXCR4 antagonist with conventional agents might help to mobilize and
eliminate residual CLL cells. Although the action of therapeutic mAbs against leukocyte
CXCR4 is complicated by the protein’s conformational heterogeneity, Abs that inhibit the
CXCL-12/CXCR4 axis are advancing well through the clinical development process [243].
For example, the fully human IgG4 anti-CXCR4 mAb ulocuplumab induces the death of
primary CLL cells in vitro through a reactive oxygen-species-dependent pathway [207]
(Table 2). Ulocuplumab’s safety and tolerability in patients with CLL have been assessed in
a Phase I trial (Table 2), the results of which have not yet been published.

4.5. IGF-1/IGF-1-R Inhibitors

A variety of IGF-1/IGF-1R inhibitors have entered clinical development in the cancer
field [244–248], including IGF-1-R tyrosine kinase inhibitors (including sorafenib) and
mAbs against IGF-1-R and IGF-1. Most of these clinical trials failed to evidence clinical
benefits in the trial population as a whole [248]. Sorafenib is a broad-spectrum kinase
inhibitor that targets the RAF/MEK/ERK pathway and receptor tyrosine kinases (RTKs)
such as IGF-1-R and VEGF-R [249,250]. It is an effective first-line therapy in advanced
hepatocellular carcinoma [250]. In CLL, sorafenib inhibits in vitro leukemic cell survival by
downregulating IGF-1-R expression and phosphorylation and thus counteracting IGF-1’s
binding to its receptor [162] (Table 1).

4.6. Inhibitors Targeting Ang-2, FGF-2, CXCL-2, Angiogenin, and NGAL in Other Tumors

A number of drugs targeting Ang-2/Tie-2 are in various stages of (pre)clinical develop-
ment or are currently being used to treat cancer [180,251–253]. These drugs include CVX060
(two peptides that bind Ang-2 with high affinity and specificity, covalently fused to a
scaffold antibody) and the anti-Tie-2 nesvacumab (REGN910) alone or in combination with
VEGF inhibitors, and dual inhibitors of Ang-2 and VEGF (namely the mAbs vanucizumab
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and RG7716/faricimab) [180,251–253]. Tie-2-blocking Abs are currently being trialed on
patients with acute myeloid leukemia [253,254]. Many clinical trials in an indication of
solid tumors are underway for FGF ligand traps, FGF-R kinase domain inhibitors, and
mAbs against FGF-R [21,255–257]. The recent RADICAL Phase IIa trial (NCT01791985) of
AZD4547 (a potent, selective chemical inhibitor of FGF-R1/-2/-3) in endocrine-resistant
breast cancer gave encouraging results [258]. Preclinical studies have identified inhibition
of CXCL-2/CXCR2 as promising therapeutic strategy for inhibiting tumor progression and
metastasis: developed drugs include small inhibitors targeting CXCR2 (such as AZD5069
and reparixin), CXCL-2 expression (such as miRNA MIR-532-5p) and function (such as
inhibitors of signaling pathway), and anti-CXCL-2 mAbs [259]. Angiogenin exhibits ri-
bonucleolytic activity [260]. Various angiogenin inhibitors (including enzyme inhibitors,
mAbs, siRNAs, and soluble binding proteins) inhibit tumor growth in various animal
models [11,180,261]; further clinical trials of angiogenin are needed. In preclinical stud-
ies, NGAL inhibitors (which interfere with NGAL activity in neoplastic and/or tumor
stromal cells) include mAbs against NGAL/NGAL-R and small, selective siderophore in-
hibitors [262]. All these drugs might be effective in the treatment of CLL and thus warrant
investigation. There are currently no (pre)clinical trials targeting progranulin in the field
of cancer.

5. Conclusions and Perspectives
Here, we reviewed published data on how interactions with the tumor microen-

vironment influence the angiogenic process and the survival and growth of CLL cells
(Figure 1). In particular, knowledge of the functional significance of circulating factors in
the relationship between angiogenesis and CLL cells might drive the development of novel
therapeutics in this field.

Cancers 2025, 17, x FOR PEER REVIEW 13 of 30 
 

 

CXCR2 (such as AZD5069 and reparixin), CXCL-2 expression (such as miRNA MIR-532-
5p) and function (such as inhibitors of signaling pathway), and anti-CXCL-2 mAbs [259]. 
Angiogenin exhibits ribonucleolytic activity [260]. Various angiogenin inhibitors (includ-
ing enzyme inhibitors, mAbs, siRNAs, and soluble binding proteins) inhibit tumor growth 
in various animal models [11,180,261]; further clinical trials of angiogenin are needed. In 
preclinical studies, NGAL inhibitors (which interfere with NGAL activity in neoplastic 
and/or tumor stromal cells) include mAbs against NGAL/NGAL-R and small, selective 
siderophore inhibitors [262]. All these drugs might be effective in the treatment of CLL 
and thus warrant investigation. There are currently no (pre)clinical trials targeting 
progranulin in the field of cancer. 

5. Conclusions and Perspectives 
Here, we reviewed published data on how interactions with the tumor microenvi-

ronment influence the angiogenic process and the survival and growth of CLL cells (Fig-
ure 1). In particular, knowledge of the functional significance of circulating factors in the 
relationship between angiogenesis and CLL cells might drive the development of novel 
therapeutics in this field. 

 

Figure 1. A schematic view of autocrine and paracrine loops between CLL cells, the stroma (fibro-
blasts, macrophages, and other MSCs), and the endothelium. Activated leukemia cells and stromal 
cells produce VEGF, Ang-2, and MMP-9, which induce the angiogenic process (i.e., EC migration 
and proliferation). Furthermore, VEGF, Ang-2, MMP-9, FGF-2, TNF-α, CXCL-2, CXCL-12, NGAL, 
and progranulin act as autocrine and/or paracrine inducers of CLL cell survival and migration. The 
functions of the angiogenin produced by CLL cells have not been characterized. In turn, activated 
endothelium may produce growth factors or chemokines (such as Ang-2, progranulin, angiogenin, 
IGF-1, MMP-9, VEGF, TNF-α, and CXCL-12) [28,73,216,263–268] that can affect leukemic and stro-
mal cells. 

As shown in Figure 1, the dynamic crosstalk between leukemic cells, ECs, and stro-
mal cells (including fibroblasts, macrophages, and other MSCs) in the BM and LNs of CLL 
patients stimulates angiogenesis and thus promotes the survival, proliferation, and mi-
gration of leukemic cells. It remains to be seen whether this is also true for secondary 
lymphoid tissues (such as the spleen and other extranodal sites) in CLL. Moreover, addi-
tional research is needed to determine whether BM MSCs (such as dendritic cells, adipo-
cytes, osteoclasts, and osteoblasts) can provide signals and thus contribute to the 

Figure 1. A schematic view of autocrine and paracrine loops between CLL cells, the stroma (fibrob-
lasts, macrophages, and other MSCs), and the endothelium. Activated leukemia cells and stromal
cells produce VEGF, Ang-2, and MMP-9, which induce the angiogenic process (i.e., EC migration and
proliferation). Furthermore, VEGF, Ang-2, MMP-9, FGF-2, TNF-α, CXCL-2, CXCL-12, NGAL, and pro-
granulin act as autocrine and/or paracrine inducers of CLL cell survival and migration. The functions
of the angiogenin produced by CLL cells have not been characterized. In turn, activated endothelium
may produce growth factors or chemokines (such as Ang-2, progranulin, angiogenin, IGF-1, MMP-9,
VEGF, TNF-α, and CXCL-12) [28,73,216,263–268] that can affect leukemic and stromal cells.

As shown in Figure 1, the dynamic crosstalk between leukemic cells, ECs, and stromal
cells (including fibroblasts, macrophages, and other MSCs) in the BM and LNs of CLL pa-
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tients stimulates angiogenesis and thus promotes the survival, proliferation, and migration
of leukemic cells. It remains to be seen whether this is also true for secondary lymphoid
tissues (such as the spleen and other extranodal sites) in CLL. Moreover, additional research
is needed to determine whether BM MSCs (such as dendritic cells, adipocytes, osteoclasts,
and osteoblasts) can provide signals and thus contribute to the angiogenic response and the
functional deregulation of CLL cells [4,269]. For instance, BM adipocytes release TNF-α,
which contributes to the growth and migration of multiple myeloma cells [270], modifies
the pharmacokinetics of chemotherapy, and drives the proliferation of acute lymphocytic
leukemia T cells [271].

In the CLL BM, interactions between all cell types result in the secretion of (and re-
sponses to) soluble factors [4,5,52,272,273]. VEGF, Ang-2, and MMP-9 released by leukemic
cells and stromal cells induce the angiogenic process by stimulating the migration and pro-
liferation of ECs (Figure 1). In turn, new vessels are likely to contribute to the initiation and
maintenance of a favorable microenvironment for leukemic and stromal cells by providing
nutrients and oxygen. Moreover, VEGF, Ang-2, and MMP-9 can elicit survival, adhesive,
and/or migratory states in CLL cells (Figure 1), as do other circulating factors discussed in
this review (FGF-2, TNF-α, CXCL-12, CXCL-2, NGAL, IGF-1, and progranulin; Figure 1). It
remains to be determined whether FGF-2, TNF-α, CXCL-12, CXCL-2, NGAL, IGF-1, and
progranulin are, directly and/or indirectly, involved in the induction of angiogenesis and
should therefore be considered as pro-angiogenic factors. Under physiological conditions,
ECs produce various growth factors and chemokines, including Ang-2, progranulin, an-
giogenin, IGF-1, MMP-9, VEGF, TNF-α, CXCL-12, and CXCL-2 [28,73,216,263–268]; it is
likely that activated CLL ECs produce these molecules, which could in turn affect leukemic
and stromal cells. In summary, the ability of these factors to stimulate CLL angiogenesis
and/or favor CLL cell motility and survival suggests that these proteins might be excellent
therapeutic targets in CLL.

In addition to the circulating factors reviewed here, other components in the CLL
microenvironment might have a crucial role in CLL pathogenesis by interfering with
angiogenesis and CLL cell functions. The growing list of pro-angiogenic/survival
factors includes IL-6, IL-8, leptin, placental growth factor, TGF-β, platelet-derived
growth factor B, and other chemokines (such as CXCL-13, CXCL-9/-10/-11, CCL-
19, CCL-21) [21,63,71,73,76,147,274,275]. The elevated expression of these factors in blood,
BM, and other lymphoid tissues adds additional complexity to CLL disease.

Patients with high-risk CLL disease (~25% of the total) are either refractory to today’s
front-line therapies or relapse after treatment and become chemoresistant [38]. To improve
clinical outcomes and immune function in CLL patients, more selective BTK and BCL-2
inhibitors are in clinical development [40,276,277]. Furthermore, a broad variety of mAbs
(including mono-/bispecific Abs, CAR-T cells, and bi-CAR-T cells) constitutes an attractive
therapeutic option for CLL [40,51,276–279]. In 2007, the mAb alemtuzumab (also known
as Campath-1H, approved by the FDA for the treatment of CLL) was shown to interfere
with the CLL angiogenic process [82,280]. Alemtuzumab targets the CLL cell surface
antigen CD52 and its soluble form (sCD52) [281]. High sCD52 levels are associated with a
significantly shorter time to first treatment, and the sCD52 level falls (along with decreases
in LN size) following ibrutinib therapy [280]. A marked decrease in BM vascularity was
observed in CLL patients who received alemtuzumab consolidation therapy after a clinical
response to fludarabine induction therapy [82]. Despite alemtuzumab’s proven efficacy in
the treatment of R/R CLL [282–285], the mAb led to serious infusion-related, hematologic,
and infection-related adverse events and was replaced in 2020 by rituximab [236].

The soluble factors (and their receptors) discussed in this review have been validated as
therapeutic targets in CLL. So far, various drugs have been developed against some of these
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factors (and/or their receptors) and include mAbs and small inhibitors; they have already
been evaluated, alone or in combination with conventional agents (FCR, PCR, ibrutinib,
bendamustine, rituximab) in clinical studies in untreated and R/R CLL: they include
bevacizumab (anti-VEGF), ulocuplumab (anti-CXCR4), plerixafor (CXCR4 inhibitor), Nox-
A12 (CXCL-12 inhibitor), and etanercept (soluble TNF-R) (Table 2). These phase I/II
trial results are promising and should support a move into phase III. Besides its clinical
efficacy, primary and acquired resistances to ibrutinib have been described in CLL [286].
Of the new selective BTK inhibitors developed in the last 10 years (including acalabrutinib,
zanubrutinib, and pirtobrutinib), acalabrutinib is authorized for untreated and R/R CLL
and CLL with 17p deletion [40]. In a phase III trial, zanubrutinib significantly improved
response rates and delayed disease progression in patients with R/R CLL (relative to
ibrutinib) and did so with less toxicity [40]. The efficacy and safety of zanubrutinib are
being evaluated in treatment-naive CLL patients with and without a 17p deletion [40].
When combined with rituximab, venetoclax is now an approved standard of care for
treatment- and relapsed CLL disease [40]. Three ongoing phase II trials are evaluating
the venetoclax + ibrutinib combination in treatment-naive CLL patients and patients with
R/R CLL, and the venetoclax + ibrutinib + obinutuzumab (anti-CD20) combination in
treatment-naive CLL patients with a p53 deletion (17p-) and/or mutation (reviewed in [40]).
Pirtobrutinib is undergoing clinical development as monotherapy or combination (with
venetoclax and rituximab) therapy in untreated or previously treated CLL [40]. Thus, given
their potential complementary activity, the combinations of angiogenic inhibitors with
these new BTK inhibitors and/or venetoclax are of interest.

Angiogenesis is increased in a number of other hematological malignancies, in-
cluding B cell-non-Hodgkin lymphoma (B-NHL) (including diffuse large B cell lym-
phoma/DLBCL, follicular lymphoma/FL, mantle cell lymphoma/MCL, marginal zone
B-cell lymphoma/MZL), multiple myeloma (MM), myelodysplastic syndrome (MDS), acute
myeloid leukemia (AML), acute lymphoid leukemia (ALL), and chronic myeloid leukemia
(CML) [81,253,287–291]. Other than VEGF, Ang-2, and FGF-2, a few other molecules have
so far been implicated in this process and include VEGFR-1/2, TNF-α, IL-6, IL-8, and MMP-
9 [81,253,287–291]. Clinical studies with various anti-angiogenic agents are underway in
these malignancies [21,40,288,289,291–293]. Several drugs targeting angiogenesis-related
pathways such as VEGF mAbs (such as bevacizumab), VEGF RTK inhibitors (such as
sorafenib and sunitinib), and immunomodulatory drugs (such as thalidomide and lenalido-
mide) have been entered in clinical trials or are already approved for the treatment of
these hematological diseases [40,289,291,293–296]. For instance, phase I/II clinical trials
monitoring the susceptibility of bevacizumab or sorafenib (alone or in combination with
conventional chemotherapy) showed promising results in R/R AML patients, leading to
current phase III trials [295–297]. Lenalidomide, combined with rituximab or tafasitamab
(anti-CD19), is already considered an established treatment modality for patients with
DLBCL, MCL, MZL, and R/R MM (for review in [40]). Likewise, the anti-angiogenic
strategy, hopefully, will achieve clinical benefits for CLL patients by stopping or slowing
CLL progression, counter therapeutic resistance, and thus improve clinical outcomes and
quality of life for patients with CLL.
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