
HAL Id: hal-04916970
https://hal.sorbonne-universite.fr/hal-04916970v1

Submitted on 28 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

NEMO version 5 computing performance (CPU)
Éric Maisonnave

To cite this version:
Éric Maisonnave. NEMO version 5 computing performance (CPU). Sorbonne Université; CNRS. 2025.
�hal-04916970�

https://hal.sorbonne-universite.fr/hal-04916970v1
https://hal.archives-ouvertes.fr

NEMO version 5 computing performance (CPU)

E. Maisonnave
LOCEAN, CNRS, Sorbonne Université, Paris

January 2025

Abstract

We take benefit of an important milestone in NEMO development (the version 5 release) to
update our model performance measurements on two of our current CPU based
supercomputers. With BENCH testing configurations and internal timing tools, we verify the
highly positive trend of recent developments. In particular, the tiling instrumentation confirms
its capacity to speed up computations at memory bound pace of the model (large MPI sub-
domains). Even if we cannot find any evidence that OpenMP parallelisation of the tiling loop
would have a favourable effect on future similar platform, we strongly advocate for the
maintenance as is of the tiling instrumentation

2

Table of Contents
1- Introduction... 4

1.1- The NEMO scalability paces...4
1.2- BENCH configurations... 5
1.3- Target machines.. 6
1.4- Timing tools.. 6
1.5- Protocol.. 7

2- Model performance.. 8
2.1- Survey... 8
2.2- Can we evaluate a “communication time” ?...10

3- Tiling... 15
4- Discussion.. 17

4.1- Theory of hybrid MPI/OpenMP performance...17
4.2- Experimental setup... 19
4.3- Other solutions... 20

References... 22

3

1- Introduction

We take benefit of an important milestone in NEMO development (the version 5 release) to
update our model performance measurements on current CPU based supercomputers. Since
2018, important remodelling of numerics and algorithms have substantially modified the code
and improved its performance. Even if the impact of such modifications is constantly checked
by the developers themselves, a broader and more detailed picture of this impact is proposed
here, in such a way that new enhancements could be proposed on the top or in complement
of the existing developments.

1.1- The NEMO scalability paces
We start from the diagnostic that performance of complex model such as NEMO is hard to
summarize with only one single number. First because NEMO is proposed and maintained on
several configurations which computing needs subtly vary. Second because of the hardware
variable capacities on which the model is used. And third because NEMO is a parallel model,
which performance changes with decomposition.

Decomposed into local subdomains spread over distributed memory systems, what we
propose to call “paces” can robustly be observed side by side on a performance vs resources
plot, like on the simplified scalability plot shown on Figure 1 below.

Figure 1: Canvas of NEMO scalability

4

Modulated by hardware characteristics and model parameters, and independently of any
additional IO constraints, a scalability plot of the NEMO model usually shows three distinct
paces, following an increasing level of MPI parallelism (i.e. computing resources):

1- Distributed on few resources, scalar computations of large subdomain arrays are mostly
waiting data uploads and downloads on a limited amount of memory (memory bound pace, in
red on Fig 1.) Computation speed per grid point increases with resources, which leads to
hyper-scaling : a model decomposition on two times more resources goes more than two
time faster.

2- The next pace is reached when the subdomains array size is small enough to adequately
feed the memory caches, and speed up is then only limited by the amount of resources
available (cpu bound pace, in green). In these conditions, the scalable (also called “ideal”)
pace is reached.

3- When too many subdomains wait their boundary conditions concurrently, imbalanced
communications then limit the speedup and the sub-scalable model enters the network
bound zone (in orange). At the end, most of the time is spent to wait and exchange boundary
conditions, and to perform computations on halos larger than their inner subdomain.

A lot of recent research were focused on the network pace limits, by reducing the so called
North Folding communication bottleneck, by grouping or removing all unnecessary boundary
conditions or collective communications. In addition, the time scheme change (MLF to RK3),
allowing larger time step, has greatly limited the needed resources on the scalable pace. And
reduction of array size and number, combined with the implementation of a tiling loop, has
improved the performance on the memory bound zone. It is clear for us that a comprehensive
measurement of the last year performance gain should be done on each pace of the MPI
decomposition range, which motivated this larger than usual exercise of measurement.

1.2- BENCH configurations
Such time consuming task could not be done efficiently without a simplification of the
measurement protocol. Even limited on global configurations, a full exploration of the model
paces requires the use of at least three resolutions (1, ¼ and 1/12 degrees, resp. BENCH-1,
BENCH-025 and BENCH-12). The handling of input files, and the time spent to load them,
prevent the use of the real (and even not officially supported) configurations for
benchmarking. That’s why the realistic BENCH configurations were developed [Irrmann et al.
2023] and why they are used in this work.

Some limitations to their realism are well noticed : assuming that the communication pattern
has an impact on performance (e.g. by changing the number and ordering of communications
thus the communication balancing), the absence of land-only subdomains could become a
problem for finer studies. A realistic distribution of land-only sub-domains in BENCH would
require to read a land map from a file, incompatible with the portability constraint, or the inline

5

definition of a simplified land map. The abrupt bathymetry created could also have a negative
impact on numerical stability. Such refinement of our tool could be done in a future step if
(unanimously) required. Notice that the absence of land-only sub-domain leads to an
overestimation of the model speed: for a given number of resources, a real global
configuration covers a three times smaller area and is decomposed on three times smaller
subdomains.

The same communication pattern realism is questioned by the simplified ice zone originally
proposed for SI3 representation. Work presented here scarcely deals with sea-ice model so
that the issue could be described (and addressed) in a separated report dedicated to the
ESIWACE3 dwarfs project [Maisonnave 2025]. TOP-PISCES biogeochemistry is excluded
from our present work, but its structure is not fundamentally different from the rest of the code
and would not significantly change the ocean-ice results presented here.

1.3- Target machines
We rely on two supercomputers to quantify our model performance:

• the same that previously used to get the performance of the reference NEMO 3.6
version in 2018 [Maisonnave & Masson 2019]. The extended longevity of french
supercomputer has the nice side effect to allow comparison on the same hardware
during larger (and larger) periods

• and a more recent machine, with Non Uniform Memory Access (NUMA), allowing
groups of eight cores to preferentially access a 32MB memory cache at high speed.
This should speed up configurations able to keep data in this quickly accessible
memory cache.

A brief is given below on Table 1:

TGCC ‘irene’, France DKRZ ‘levante’, Germany
CPU, compiler Intel Skylake, Intel-2020.0.0 AMD Milan, Intel-2022.0.1

MPI library OpenMPI 4.1.4.5 OpenMPI 4.5.3
Nodes available on prod 1653 2670
Cores&Memory/node 48 - 180GB 128 - 256GB

Cache L3 38.5MB shared 32MB per 8 cores
Network Mellanox Infiniband EDR100 Mellanox Infiniband HDR100

Table1: Hardware-middleware characteristics of the two Eviden machines of our study

1.4- Timing tools
First, it is important to define what performance really means for geophysical models, e.g. from
the quasi-exhaustive list given by [Balaji et al. 2017]. In the present document, we focus on
the model speed, defined as the time spent in the inner time loop restitution time, excluding
initialisation and termination time. Actual performance, including IO, workflow and machine

6

scheduling strategy, is not included in our study. Quantification of memory requirements will
be made indirectly.

Timings are performed with the NEMO internal tool [Irrmann et al. 2023]. Its main advantages
are:

• simplicity of use : no instrumentation, no post-processing,
• portability : no need of additional libraries, even for visualisation which is perform with

our usual netCDF based tools,
• standardisation : everybody can speak the same language because measurements are

identically and non ambiguously defined,
• and results compactness: capacity to deals with the model parallelism without burying

users under tons of useful but sometimes weighty information

In this document, we call model speed one single information provided by the NEMO internal
timer: the time spent by the slowest process performing time loop computations between
time step kt000+3*sbc_frequency and ktend-2*sbc_frequency (hereafter “inner

time loop”). But sometimes, e.g. to estimate the minimum time spent on dedicated sub-
routines (like lbc_lnk for the lateral boundary communications) timing of the fastest process

will also be considered.

Some options could be particularly well suited for our kind of measures, such as the possibility
to disconnect communications (and deduce their impact by comparison)1. In this case, the
communication impact will be estimated by the difference between the slowest and the
fastest process to perform the n-5*sbc_freq steps of the (inner) time loop.

We did not find necessary to go further by checking more carefully the behaviour of each of
our parallel processes, with more accurate analyser such as paraver [Pillet 1995]. However, it

is still impossible with such synthetic analysis to finely understand the whole communication
pattern execution at time step level, as can be done for example with the OASIS internal
measurement tool [Piacentini & Maisonnave 2020]. And it is impossible to statistically but
unambiguously determine a “communication time” that could characterise the way our
implementation is taking benefit of the MPI library and underlying network capacities.

1.5- Protocol
It is widely known that performance measurement reproducibility is practically impossible to
obtain in normal conditions. With its high level of parallelism, performance is particularly
sensible to middleware (OS preemption, disk access ...) and hardware behaviour (node
heterogeneity, memory access heterogeneity, failures …) Since our tests were done on a
production machine, even adjacent jobs can add perturbations to our measurements.

This is how we tried to reduce the spread of our measures resulting from this variability:

1 Unlike the ocean part, the SI3 still requires collective communications, that have to be manually removed (in
ice_dyn_adv_pra, for BENCH) if we want to fully free our model from MPI communications

7

- limit the chance of significant disturbance by reducing the simulation length to 50 (BENCH-
12) or 100 time steps (BENCH-025, BENCH-1),
- remove outlier simulations affected by significant disturbance, by checking the time step
execution spread2,
- measurements are performed with magic number decompositions, predefined to minimise
perimeter/area ratio (thus the amount of lateral boundary communications), that also
minimises the number of unoccupied cores per node.

2- Model performance

2.1- Survey
Model performance is regularly checked during development process, particularly when
speed improvements are expected. It was the case this year, as shown below on Figure 2.

Figure 2: performance of NEMO versions, 2024, courtesy Daley Calvert

Several versions are simultaneously installed on an available machine so that code impact can
be directly evaluated, thanks to the git based versioning tool adopted by the NEMO-ST. The
working ORCA025 configuration chosen by Daley Calvert requires the maintenance of the
successive input files, but actual model results are directly applicable for users real cases.
Figure 2 results show a large impact of recent time scheme change and various other

2 timing_step variable from the corresponding netCDF timing output file timing_step.nc

8

improvements (x2 from 4.0.7 version to 5.0 beta). The ORCA025 resolution/low resources
association suggests that NEMO is operated here on its hyper-scaling pace.

For the reasons explained above, the BENCH test configuration was better chosen to lead our
study. We directly compare our results with a measurement set taken during a performance
improvement exercise, on the same target machine [Maisonnave & Masson 2019]. The code
evolution encompassed here is larger (from 3.6 modified leap frog to 5.0 Runge-Kutta 3rd

order) and model resolution is smaller.

Figure 3: BENCH1 scalability on the same Intel Skylake irene supercomputer, with NEMO3.6 (left) and NEMO5

(right). Ocean-Ice simulations can be directly compared with coupling time step period = 2 (cyan curbs)

But, as we see comparing Figure 3 left and right, if we focus on the memory bound pace (low
resources) speed up can be also estimated to x2, for both ocean-only and ocean-ice
configurations. At scale, the maximum speed is also close to be doubled. As shown on Figure
4, with different units3 and on the DKRZ machine, this maximum is reached for a 8x8 size of
MPI-decomposed subdomains.

3 Subdomain size, inversely proportional to the root mean square of the resource # and time to solution,
inversely proportional to speed

9

Figure 4: same BENCH-1 scalability than Fig.3 (NEMO5,
right), but different axis. Root mean square of sub-
domain size (instead of resources) and time to solution
(instead of speed). Scalability of lateral boundary
condition routine (max from all processes) is in dashed
line

2.2- Can we evaluate a “communication time” ?
After a quick look at the routine timing ranking, it seems easy to consider lbc_lnk (lateral

boundary communication routine) as the major bottleneck, particularly at network bound
pace but not only. On the same Fig. 4, we superpose to the total time the time spent in this
lateral boundary condition routine (including all MPI communications of our BENCH
configuration). The maximum values (between processes) of this quantity gathers half of the
total time on memory and CPU bound paces, and even more at scalability limit. This number
deserves a detailed analysis, assuming that intra- or inter-node communications cannot be
per se that time consuming, particularly at parallel scales which are not supposed to use that
intensively the communication network.

Figure 5 (left) represents the total lbc_lnk timing for each sub-domain in a 2D global array

(Northernmost processes on the top, Easternmost on the right). The slowest processes,
responsible of the high ranking of the routine, are clearly located in the North, which is
coherent with the automatic decomposition of the grid: 45x16 grid points are allocated to
these processes, instead of 45x21, to compensate the slowest communications executed on
the region of the North Pole Folding (NPF). From this, we deduce that the maximum values of
lbc_lnk timing are reached when the least loaded processes (on NPF) are waiting for the

others.

10

Figure 5: lbc_lnk timing per MPI process, in reference run (left) and balanced configuration, with same

communication pattern, same 128 resources but balanced number of grid point per process (right). Time in
second is measured in the inner time loop

However, timings on the other processes are not equal. This can be confirmed with an easy
modification of the BENCH parameters4, by changing MPI decomposition thus total grid point
setting equally loaded sub-domains (with 45x21 grid points, in the present case). We call
“balanced” this testing configuration. On Fig. 5 (right), the largest values are indeed
disappearing from the North raw: the largest values observed in the reference run were
mainly due to load imbalance and not to extra communications in these areas. We put in
evidence, with this simple test, that lbc_lnk timings include both communication and waiting

times. Depending on the relative contributions to these two, the problem on how to speed up
lbc_lnk will be addressed differently.

Our balanced configuration still exhibits a maximum lbc_lnk timing of 5.6s on some

processes and a spread of 3.1 seconds. The highest values are now located on the Southern
part of the grid, where only five lateral boundary conditions are exchanged (instead of eight).
Once again, we suppose that waiting times are at the origin of these Southernmost maximum
values.

To confirm this hypothesis, we switch off any lateral boundary condition communication5. On
Figure 6, the same restitution time per subdomain is shown, but this time for the total time loop
(inner part). Obviously, without actual MPI boundary condition exchanges, the lbc_lnk
timing is now close to zero6, the computation load imbalance accumulates at each time step
and can finally be measured at the end of the time loop by comparing the total time spent on
the loop for each (computationally independent) subdomain.

4 With negative value of nn_isize & nn_jsize namelist parameters, we set subdomain length and width

instead of total dimension of the global grid
5 With namelist parameter nn_comm=0. Notice that with the sea-ice model (not involved in this study), an

additional neutralisation of a delayed global communication is necessary to deduce the computational load
imbalance with this method

6 Due to the implementation of the nn_comm=0 special configuration, even though LBC MPI communications

are neutralised, lbc_lnk is still called, communication arrays still copied and only MPI API subroutine calls

avoided. This let measuring array copies in lbc_lnk (0.4 seconds in our case)

11

Figure 6: time spent on inner stp time loop, LBC switched off, on reference (left) and balanced (right)

configurations

In the reference run with real unequal subdomain sizes (Fig 6. left), faster subdomains are
located in the northern part of the grid. This can be again explained by the automatic
decomposition strategy followed by the model algorithm in case of no LBC communication 7.
Computations on the smallest subdomains end first. On largest subdomains, they end with a
delay of 1.8 seconds. However, it looks obvious that all the largest subdomains do not end at
the same time. This can be confirmed by using the balanced configuration on the same
communication-less mode (Fig 6, right). Although all subdomains are now independent and
performing exactly the same amount of communications, the spread on total computation
times still reaches 1.1 seconds. Interestingly, the same picture obtained on another computing
node during a second experiment shows a move of the slowest subdomain (Figure 7a). A third
experiment shows the slowest subdomains on a new location again (Figure 7b). But during a
fourth experiment, performed just after the first model execution on the same node and the
same job (Figure 7c), slowest domains stay at the same location. This illustrates that the spread
in computation times has its origin on hardware or middleware heterogeneity.

Figure 7: time spent on stp time inner loop, LBC switched off, on balanced configuration, different execution of

the same experiment. The middle and right plots display two experiments launched sequentially on the same
node during the same job

7 All subdomains must have the same dimensions and the division rest of the total domain size by the X and Y
decomposition must be subtracted one by one from the Easternmost/Northernmost subdomain dimensions

12

To summarise, we could separate the total NEMO simulation time on one node of our machine
into five pieces (plotted with different colors on Figure 8):

• what can be called a “computation time”, defined as the minimum time spent by the
fastest subdomain in a balanced and communication-less configuration,

• a “machine load imbalance” provoked by hardware and middleware heterogeneity
and measured as the computation time spread in a balanced and communication-less
simulation,

• a “static boundary communication time”, defined as the time spent locally copying
arrays in lbc_lnk routines,

• a “communication and load imbalance effects”, defined as the minimum time spent in
lbc_lnk during a balanced simulation, minus the last two timings,

• a “load imbalance cross effect”, defined as the remaining time when the four
previously defined timing are subtracted from the total reference time.

None of these five contributions can be purely called “communication time”. In a lack of more
detailed analysis of each send/receive event (as it could be done with a tool like paraver
and a comprehensive statistical analysis), we can only deduced an upper boundary of this MPI
library effect on our performance from the addition of the last two numbers.

Figure 8: Total reference simulation time split into different contributions (%)
on one and eight nodes of our supercomputer

13

The same exercise (reference, balanced and communication-less simulations) is performed on
eight nodes of our machine. We show on Figure 8 the increase of the machine (in green) load
imbalance but more significantly of the communication load imbalance (in orange). The
picture of load imbalance per sub-domain (Figure 9) lets appearing the mapping
configuration of MPI processes8, and reveals machine or middleware slowing down on most
of the running cores.

Figure 9: on eight nodes, lbc_lnk timings with a balanced configuration with LBC on (left) and stp timings

with the same balanced configuration but without LBC (right)

This set of experiment helps to show that, despite alarming timing values of the
communication routine lbc_lnk when profiling a reference simulation of NEMO, at any

model pace, the real part of MPI communications is generally small. It can be estimated at its
maximum to only less than 40% of the total time, on eight nodes of our machine, when
subdomain size reaches the value 12x11. More importantly, we show that a set of specially
configured simulations must be launched to be able to decompose load imbalance into
separated contributions (hardware+middleware, computing, communications) that affects
simultaneously the real computations.

Such (costly) experiment would have to be repeated with several other configurations
(resolution, ice and BGC modules) and on different platforms to fully characterise the NEMO
version 5 performance. However, we consider that we can now rely on a reference to keep
exploring and quantify the effect of other model HPC past or new related developments, such
as tiling.

8 Slurm option of srun: --distribution=block:cyclic

14

3- Tiling

At NEMO memory bound pace, any algorithm modification that would reduce the size of the
working arrays would necessarily speed up the model by lowering the amount of data
continuously transferred from memory to registers. In that perspective, Calvert 2024 has
organised at the highest possible level the splitting of local subdomain arrays into tiles treated
sequentially.

Figure 10: BENCH-1 ocean-only scalability plot with (green) or without (red) tiling, represented by speed (left) or
parallel efficiency (right)

We decide to activate tiling in our setup9, and explore the range of tiling parameters (X and Y
splitting directions10). It quickly appears that X direction could not efficiently be used
(probably conflicts with vectorisation). On the measurements shown below, only the best value
of Y tile length has been displayed11. In extreme cases, the lenght value 1 gives the best
performance, which means that tiles with four grid lines halos et only one computationally
effective line outperform the non tiled reference algorithm.

Unsurprisingly, with BENCH-1 ocean-only, on the memory bound pace of the MPI
decomposition range (low resources, larger subdomains), the tiling has a comprehensive
effect and helps to reduce hyper-scaling by about a factor 2 (see Figure 10). These good
results are not surprising on such platform where quick cache buffers are attached to subsets
of computing cores (see Table 1). Tiling enhance performances of most of the model
routines12. A closer look to some accelerated routine like zdf_phy shows better performance

on every sub-domain, with a better load balancing. However, hyper-scaling cannot be totally

9 ln_tile = .true.
10 nn_ltile_i and nn_ltile_j
11 Interestingly, the best value is always at the maximum of a parabolic curb
12 except eos_pot, bn2, rab_3d, eos_insitu and tra_adv_trp

15

removed, which suggests that tiling does not reduce the memory footprint so that all working
arrays could fit in the quickest buffers of the processor.

Figure 11: speedup gain (%) of tiling compared to
reference algorithm (default values namelist) at 1, ¼ and

1/12 global resolution (BENCH configuration)

Extra tests are performed with BENCH-025 and BENCH-12 resolution, confirming the
beneficial effect of tiling with even more memory bound configurations. On Figure 11, the
benefit of tiling is plotted for three BENCH horizontal resolutions, as a function of the root
mean square of the subdomain area (in grid point #). A maximum of 30% is reached for 60x60
subdomain size. Tiling is efficient on large parts of the resources range, and this is more and
more true with increasing resolution. As an additional information, the actual Y size of the
subdomain is displayed on Fig. 11 beside each measurement point, to add a crucial
information for tiling: the maximum number of lines that can be split to create tiles. As
expected, subdomains presenting a Y side larger than X side exhibit better ability to benefit
from tiling, which suggests that an extra constraint should be added in the decomposition
choice to take into account tiling potentiality.

A cross validation from MetOffice on AMD Milan and Genoa processors is planned to confirm
or invalidate these encouraging results.

For the moment, these results advocate for keeping the tiling instrumentation in the code, at
least for users who usually lead NEMO simulations on limited amount of resources and with
high load per process unit (at memory bound pace, which seems to be dominant in our set of
survey experiments). If we believe that the future of CPU computing will come with more CPU
per node, tiling deserves to be maintained and continuously validated. This arises a set of
limitations/difficulties:

16

1. the tiled domain overlap (halos) is error prone for developers. None of the arrays
modified in the loop cannot be reused for spatial derivative computations before the
end of the loop (which is rightly done until now)

2. tiling does not cover the entire code. Particularly, we are missing XIOS calls, and even
more significantly, ice & BGC models

3. the working arrays size reduction is known to be counter productive for GPU (&
vectorisation, see X-direction inefficiency for tiling)

4. since this tiling feature is totally inefficient at high resources, it rather addresses Low
Carbon Computing (LCC) issues than HPC.

4- Discussion

This special focus on model tiling capability was guided by the idea of summarising NEMO
version 5 performance but also to explore new ideas of performance improvements. This work
check the current ability of our code to perform well on the current CPU platform but also
makes the assumption that additional performance on this kind of machine is desirable in a
near future. This does not suppose that coding must ignore GPU compatibility but we
propose here not to definitely act the removal of any computing oriented coding, as soon as
automatic instrumentation of a supposed computer agnostic code would not have shown its
superiority.

4.1- Theory of hybrid MPI/OpenMP performance
Following this philosophy, we examine the idea to rely on the existing and non intrusive
implementation of tiling to add one level of parallelism in NEMO with OpenMP. The idea has
already been explored at MetOffice (Ganderton, 2023). Tiles are grouped in OpenMP threads
and computations performed in parallel rather than sequentially.

The idea has numerous advantages (existing coding, parallelism that also partially keeps tiling
benefits) but has two main limits :

- Mutually exclusive MPI/OpenMP parallelisation for a given number of resources. To
be efficient, the OpenMP implementation supposes a better efficiency than the
corresponding MPI one. Said differently, if we name restitution time “T”, the % of time

spent on OpenMP section “x” , and the # of OpenMP threads “N”, Amdahl’s law for

both MPI and OpenMP sections gives this formula for OpenMP efficiency :

T > (1-x) . T . N + x. T/N , equivalent to

x > N / (N+1)

17

Which means that more than N/(N+1) part of the code (as measured in flat MPI

mode) must be spent within OpenMP sections, if we want to hope a positive speedup
with a mixed MPI-OpenMP parallelisation (on N threads) compared to a flat MPI13.

From this we can deduce that OpenMP parallelisation on top of tiling loops would
benefit from additional code instrumentation. In addition, as already emphasised by
Ganderton, any break between the OpenMP/tiling loops implies synchronisation and
loss of performance. Unfortunately, stops are unavoidable at least for MPI
communication14

- Mutually exclusive tiles/OpenMP parallelisation. If tiling loop were instrumented,
more OpenMP threads (N) would mean less tiles (M). In addition, OpenMP+tiling loop

are limited to Y axis so that N.M < a few dozens, depending on resolution and total

resources. It means that on memory bound paces (most of the time, on our machine),
OpenMP would not only have to be more efficient than flat MPI but to be also more
efficient than flat MPI + tiling.

Practically speaking, an OpenMP parallelisation on top of the tiling loop could differ
depending on the model pace:

- Hyperscaling and scaling paces : OpenMP on top of the existing tiling loop should
be combined with tiling, still efficient at this pace. Shared arrays would have to be
copied on local private arrays, to avoid race conditions and no “false sharing”. But
additional memory and synchronisation would be required, jeopardising the good
bufferisation effect of tiling. We can already suspect that a better scalability than the
flat MPI configuration would be hard to achieve, because of load imbalance and
synchronisations added by OpenMP. In practice, as suggested on Figures 10 and 11,
these paces are dominant (until 15x15, at least on our machine)

- Network bound pace : only reached for a large number of resources and high
resolutions. In this case, tiling would not be needed anymore, and could entirely be
replaced by OpenMP (simpler shared arrays synchronisation procedure, no need of
overlapped regions). The hybrid MPI/OpenMP model could be more efficient than
the existing MPI parallelisation … but the question remains on how to practically
decompose our grids on below 10x10 subdomains, to say nothing of side effects on
other unexplored constraint of real computations (I/O, scheduling constraints)

From these assumptions, we suppose that in most of the cases, the existing tiling would be
more efficient that hybrid parallelisation. However, considering the high relevance of high
resolution / highly computing resource demanding configuration popularity among NEMO

13 This assumption can be too strong on communication bound paces of the model, but these paces does not
appear to be dominant in our current performance survey

14 Unless multi-threaded MPI communications would be tested, with a strong warning for portability and
performance

18

community, or at least a distinguished part of it, we propose to further explore the few cases
were hybrid parallelism could be beneficial.

4.2- Experimental setup
To give a better idea of the challenge, three different experiments are performed on our AMD
Milan computer and the timings are combined to try to guess the best MPI/OpenMP
performance that we could expect on the present machine. The BENCH-025 configuration
(with balanced domains as defined in § 2.2) is launched on 32 nodes of our 128 core per node
machine. In a reference run, the subdomain size reaches 22x16 and performance comes close
to the so-called communication bound pace, supposed to be the most favourable to hybrid
parallelisation. Two measurements are displayed on Table 2: the total time spent in the inner
time loop (as defined previously, in balanced mode) and the “communication and load
imbalance effects” (supposed to include most of the MPI communication timing, see also
measurement protocol at § 2.2).

Experiment Reference Depletion
(block:cyclic)

Double depletion Best Theoretical
OpenMP

Processes 4020 1024 1024 1024+4OMP
Nodes 32 32 32 32

Sb-domain size 22x16 45x38 22x16 22x16x4
Total restitution time 2.10 14.8 2.10 3.05*
lbc_lnk min (best

LI+comm)

0.50 1.45 0.49 1.45

Table 2: Theoretical hybrid performance of BENCH-025 on AMD-Milan based supercomputer,
given timing of total balanced simulation and proxy to MPI communication timings, on a set of 3

different experiments

This first reference simulation gives the performance we are reaching with an MPI flat
parallelisation. We deduce from total and “communication” times that pure computing takes
approximately 1.6 seconds at this decomposition. These numbers are confirmed by a
verification simulation called “double depletion” on Table 2, in which subdomains of the same
size (22x16) are allocated on ¼ of the processors, but using the same number of nodes (32).
This configuration requires a reduced number of LBC communications, but of the same size
and using the same network bandwidth than in reference simulation. Communications are
performed at the same speed and computations are also done as quickly. We can deduce
from these two experiments that ¼ of the MPI processes would compute at the same speed
on 22x16 sized domains. What now if four additional OpenMP threads would perform these
computations in parallel ? With a perfect OpenMP scaling, computations would again happen
in 1.6 seconds. However, MPI exchanges would now involve four times bigger LBC
communications. In a third simulation, called “depletion” in Table 2, we estimate the time
needed to exchange such LBC by performing computations of four times bigger subdomains
on the same 32 nodes. “Communication” timings are here evaluated to 1.45 seconds. In theory,
the total cost of an hybrid MPI/OpenMP on 32 nodes using four OpenMP threads can be

19

evaluated to 1.6+1.45 = 3.05 seconds, which is bigger than the flat MPI performance on 32
nodes (2.1 seconds), this without taking into account an additional positive effect of tiling in
flat MPI mode.

This result is explained by the relatively good scaling of MPI related timings. In these
conditions, it is more interesting to reduce the subdomain size by adding more MPI processes
than keeping the same subdomain size for communication and reduce its size by spreading
computations on several OpenMP threads: computations are at best performed as quickly but
communications are necessarily done at lower speed. A case study where MPI
communications would not scale anymore (or anti-scale) is out of reach on our machine. In
conclusion, as far as we can know after this study, it is not possible to recommend an OpenMP
parallelisation on top of the tiling loop.

4.3- Other solutions
A workaround of the mutual exclusion of MPI and OpenMP parallelisation in our model could
be proposed by selecting only parts of the code for OpenMP parallelisation and keeping the
other parts in flat MPI mode. Given the difficulty to instrument our code with both MPI and
OpenMP, a solution could be to split tasks on separate executables, differently parallelised,
and add a macro-task parallelism level for even better performance in concurrent execution.

MPI computations OpenMP computations

Synchro

Figure 12: Macro-task parallelism involving several parallel libraries

In the framework described on Figure 12, part of the code taking better benefit of one or the
other parallel library would be computed on separated executables and dedicated resources.
Of course, OpenMP parallelisation would be limited on one shared memory node, but one
can imagine that communication intense routines such as 2D time stepping or ice advection
would massively benefit of the disappearing of any LBC routines, that could compensate the
lack of parallelism on one single node. This strategy would necessary rely on a fast
synchronisation mechanism. For performance, the cost of one input/output gather/scatter
communications would necessarily be comparable (if not lower) with the cost of n LBC

exchanges (and sequential computations). Notice that this strategy would also have a
promising GPU declination, particularly on recent unified memory APU infrastructures.

20

As a side study regarding OpenMP parallelisation, we propose the modularisation and
OpenMP parallelisation of one of our network bound routine on whole global domains. For
example, the existing TSUNAMI test case, including the 2D time stepping, could be OpenMP
instrumented from a starting version excluding MPI. In a second step, this module could be
coupled to the complementary NEMO model, to better evaluate the cost of realistic
communications (gather/scatter), taking also into account the benefit of the organised
asynchronism of our computations.

To summarise, the definition and deployment of a NEMO version 5 benchmarking on the
NUMA DKRZ supercomputer has put in evidence the good potentiality for performance of
the existing tiling optimisation. However, and independently of the model performance paces
at which it would be operated, it looks difficult to overcome the flat MPI and even more
MPI+tiling performance with any hybrid MPI-OpenMP parallelisation built on the top of the
existing tiling decomposition. The only optional path that we could recommend in the
perspective of OpenMP instrumentation is the modularisation of communication intense parts
of the code such as 2D dynamics.

Our study has also put in evidence the necessity to check model performance at any pace
(memory, compute or network bound), as it is obvious that beneficial optimisations on one
part of the parallel spectrum could be totally counterproductive on other paces. This could
perfectly lead to the necessity to maintain several codes fitting different needs and different
architectures. Code processing tool such as PSyclone could be at this stage a valid option to
simplify this maintenance.

ESiWACE3 is funded by the European Union. It has received funding
from the European High Performance Computing Joint Undertaking
(JU) under grant agreement No 101093054. “This work used resources
of the Deutsches Klimarechenzentrum (DKRZ) granted by its Scientific
Steering Committee (WLA) under project IDs ka1436 and bk1472 -
HANAMI". It also accessed HPC resources of TGCC under the
allocation 2025-gen13051 made by GENCI. The author wish to
acknowledge Thomas Williams and Colin Kelley for the development of
the Gnuplot program, which analysis and graphics are displayed in
this report, in addition to graphics from Matplotlib, a Sponsored
Project of NumFOCUS, a 501(c)(3) non profit charity in the United
States. We acknowledge the use of the Ferret program for analysis and
graphics in this report (Ferret is a product of NOAA's Pacific Marine
Environmental Laboratory).

21

References

Balaji, V., Maisonnave, E., Zadeh, N., Lawrence, B. N., Biercamp, J., Fladrich, U.,
Aloisio, G., Benson, R., Caubel, A., Durachta, J., Foujols, M.-A., Lister, G., Mocavero,
S., Underwood, S. & Wright, G., 2017: CPMIP: Measurements of Real
Computational Performance of Earth System Models in CMIP6 , Geosci. Model
Dev., 46, 19-34, doi:10.5194/gmd-10-19-2017

Calvert, D., 2024 : Tiling in NEMO 5 and beyond, NEMO Party, May 17th 2024,
Southampton, UK,
https://drive.google.com/file/d/1CNPc86nmZh5LtTVrxQnSKqXrKL9vBKy_/
view

Ganderton, J., 2023 : Exploratory implementation of OpenMP into tiled regions of
NEMO, Student Report, MetOffice, UK

Irrmann, G., Masson, S., Maisonnave, E., Guibert, D., & Raffin, E., 2022: Improving
ocean modeling software NEMO 4.0 benchmarking and communication
efficiency , Geosci. Model Dev. , 15, 1567–1582, doi:10.5194/gmd-15-1567-2022

Maisonnave, E., & Piacentini, A., 2019: Performance evaluation of the hybrid
interactive placement with HIPPPO of SCRIP interpolation tasks , Working
note, WN/CMGC/19/94, CECI, UMR CERFACS/CNRS No5318, France

Maisonnave, E., & Masson, S., 2019: NEMO 4.0 performance: how to identify and
reduce unnecessary communications , Technical Report, TR/CMGC/19/19, CECI,
UMR CERFACS/CNRS No5318, France

Maisonnave, E., 2025: NEMO dwarfs for parallel optimisation, to be published

Piacentini, A., & Maisonnave, E., 2020: Interactive visualisation of OASIS coupled
models load imbalance , Technical Report, TR/CMGC/20/177, CECI, UMR
CERFACS/CNRS No5318, France

Pillet, V., Labarta, J., Cortes, T. and Girona, S., 1995: Paraver, A tool to visualize and
analyze parallel code, Proceedings of WoTUG-18: transputer and occam
developments, Vol. 44, No. 1, pp. 17-31

22

https://cerfacs.fr/wp-content/uploads/2020/12/GLOBC-TR-Piacentini-20-177.pdf
https://cerfacs.fr/wp-content/uploads/2020/12/GLOBC-TR-Piacentini-20-177.pdf
https://cerfacs.fr/wp-content/uploads/2019/01/GLOBC-TR_Maisonnave-Nemo-2019.pdf
https://cerfacs.fr/wp-content/uploads/2019/01/GLOBC-TR_Maisonnave-Nemo-2019.pdf
https://cerfacs.fr/wp-content/uploads/2019/06/Globc-WN-Maisonnave-oasis_hippo-2019.pdf
https://cerfacs.fr/wp-content/uploads/2019/06/Globc-WN-Maisonnave-oasis_hippo-2019.pdf
https://doi.org/10.5194/gmd-15-1567-2022
https://doi.org/10.5194/gmd-15-1567-2022
https://doi.org/10.5194/gmd-15-1567-2022
http://www.geosci-model-dev.net/10/19/2017
http://www.geosci-model-dev.net/10/19/2017

23

	1- Introduction
	1.1- The NEMO scalability paces
	1.2- BENCH configurations
	1.3- Target machines
	1.4- Timing tools
	1.5- Protocol

	2- Model performance
	2.1- Survey
	2.2- Can we evaluate a “communication time” ?

	3- Tiling
	4- Discussion
	4.1- Theory of hybrid MPI/OpenMP performance
	4.2- Experimental setup
	4.3- Other solutions

	References

