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Abstract

We take benefit of an important milestone in NEMO development (the version 5 release) to
update  our  model  performance  measurements  on  two  of  our  current  CPU  based
supercomputers. With BENCH testing configurations and internal timing tools, we verify the
highly positive trend of recent developments. In particular, the tiling instrumentation confirms
its capacity to speed up computations at memory bound pace of the model (large MPI sub-
domains).  Even if we cannot find any evidence that OpenMP parallelisation of the tiling loop
would  have  a  favourable  effect  on  future  similar  platform, we  strongly  advocate  for  the
maintenance as is of the tiling instrumentation
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1- Introduction

We take benefit of an important milestone in NEMO development (the version 5 release) to
update our model performance measurements on current CPU based supercomputers. Since
2018, important remodelling of numerics and algorithms have substantially modified the code
and improved its performance. Even if the impact of such modifications is constantly checked
by the developers themselves, a broader and more detailed picture of this impact is proposed
here, in such a way that new enhancements could be proposed on the top or in complement
of the existing developments.

1.1- The NEMO scalability paces
We start from the diagnostic that performance of complex model such as NEMO is hard to
summarize with only one single number. First because NEMO is proposed and maintained on
several configurations which computing needs subtly vary. Second because of the hardware
variable capacities on which the model is used. And third because NEMO is a parallel model,
which performance changes with decomposition.

Decomposed  into  local  subdomains  spread  over  distributed  memory  systems,  what  we
propose to call “paces” can robustly be observed side by side on a performance vs resources
plot, like on the simplified scalability plot shown on Figure 1 below.

Figure 1: Canvas of NEMO scalability
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Modulated by  hardware characteristics  and model  parameters, and independently  of  any
additional IO constraints, a scalability plot of the NEMO model usually shows three distinct
paces, following an increasing level of MPI parallelism (i.e. computing resources):

1- Distributed on few resources, scalar computations of large subdomain arrays are mostly
waiting data uploads and downloads on a limited amount of memory (memory bound pace, in
red on Fig 1.)  Computation speed per grid point  increases with resources, which leads to
hyper-scaling : a model decomposition on two times more resources goes more than two
time faster.

2- The next pace is reached when the subdomains array size is small enough to adequately
feed the memory caches, and speed up is  then only  limited by  the amount  of  resources
available (cpu bound pace, in green). In these conditions, the  scalable (also called “ideal”)
pace is reached.

3-  When  too  many  subdomains  wait  their  boundary  conditions  concurrently, imbalanced
communications  then  limit  the  speedup  and  the  sub-scalable model  enters  the  network
bound zone (in orange). At the end, most of the time is spent to wait and exchange boundary
conditions, and to perform computations on halos larger than their inner subdomain.

A lot of recent research were focused on the network pace limits, by reducing the so called
North Folding communication bottleneck, by grouping or removing all unnecessary boundary
conditions or collective communications. In addition, the time scheme change (MLF to RK3),
allowing larger time step, has greatly limited the needed resources on the scalable pace. And
reduction of array size and number, combined with the implementation of a tiling loop, has
improved the performance on the memory bound zone. It is clear for us that a comprehensive
measurement of the last year performance gain should be done on each pace of the MPI
decomposition range, which motivated this larger than usual exercise of measurement.

1.2- BENCH configurations
Such  time  consuming  task  could  not  be  done  efficiently  without  a  simplification  of  the
measurement protocol. Even limited on global configurations, a full exploration of the model
paces requires the use of at least three resolutions (1, ¼ and 1/12 degrees, resp. BENCH-1,
BENCH-025 and BENCH-12). The handling of input files, and the time spent to load them,
prevent  the  use  of  the  real  (and  even  not  officially  supported)  configurations  for
benchmarking. That’s why the realistic BENCH configurations were developed [Irrmann et al.
2023] and why they are used in this work.

Some limitations to their realism are well noticed : assuming that the communication pattern
has an impact on performance (e.g. by changing the number and ordering of communications
thus the communication balancing), the absence of land-only subdomains could become a
problem for finer studies. A realistic distribution of land-only sub-domains in BENCH would
require to read a land map from a file, incompatible with the portability constraint, or the inline
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definition of a simplified land map. The abrupt bathymetry created could also have a negative
impact on numerical stability. Such refinement of our tool could be done in a future step if
(unanimously)  required.  Notice  that  the  absence  of  land-only  sub-domain  leads  to  an
overestimation  of  the  model  speed:  for  a  given  number  of  resources,  a  real  global
configuration covers a three times smaller area and is decomposed on three times smaller
subdomains.

The same communication pattern realism is questioned by the simplified ice zone originally
proposed for SI3 representation. Work presented here scarcely deals with sea-ice model so
that the issue could be described (and addressed) in a separated report dedicated to the
ESIWACE3  dwarfs  project  [Maisonnave  2025].  TOP-PISCES  biogeochemistry  is  excluded
from our present work, but its structure is not fundamentally different from the rest of the code
and would not significantly change the ocean-ice results presented here.

1.3- Target machines
We rely on two supercomputers to quantify our model performance: 

• the same that  previously used to get the performance of the reference NEMO 3.6
version  in  2018  [Maisonnave  &  Masson  2019].  The  extended  longevity  of  french
supercomputer has the nice side effect to allow comparison on the same hardware
during larger (and larger) periods

• and a  more recent  machine, with  Non Uniform Memory  Access  (NUMA), allowing
groups of eight cores to preferentially access a 32MB memory cache at high speed.
This  should  speed  up  configurations  able  to  keep  data  in  this  quickly  accessible
memory cache.

A brief is given below on Table 1:

TGCC ‘irene’, France DKRZ ‘levante’, Germany
CPU, compiler Intel Skylake, Intel-2020.0.0 AMD Milan, Intel-2022.0.1

MPI library OpenMPI 4.1.4.5 OpenMPI 4.5.3
Nodes available on prod 1653 2670
Cores&Memory/node 48 - 180GB 128 - 256GB

Cache L3 38.5MB shared 32MB per 8 cores
Network Mellanox Infiniband EDR100 Mellanox Infiniband HDR100

Table1: Hardware-middleware characteristics of the two Eviden machines of our study

1.4- Timing tools
First, it is important to define what performance really means for geophysical models, e.g. from
the quasi-exhaustive list given by [ Balaji et al. 2017 ]. In the present document, we focus on
the model speed, defined as the time spent in the inner time loop restitution time, excluding
initialisation and termination time. Actual performance, including IO, workflow and machine
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scheduling strategy, is not included in our study. Quantification of memory requirements will
be made indirectly. 

Timings are performed with the NEMO internal tool [Irrmann et al. 2023]. Its main advantages
are:

• simplicity of use : no instrumentation, no post-processing,
• portability : no need of additional libraries, even for visualisation which is perform with

our usual netCDF based tools,
• standardisation : everybody can speak the same language because measurements are

identically and non ambiguously defined,
• and results compactness: capacity to deals with the model parallelism without burying

users under tons of useful but sometimes weighty information

In this document, we call model speed one single information provided by the NEMO internal
timer: the time spent by the slowest process performing time loop computations between
time step  kt000+3*sbc_frequency and  ktend-2*sbc_frequency (hereafter  “inner

time loop”). But  sometimes, e.g. to  estimate  the  minimum time  spent  on  dedicated  sub-
routines (like lbc_lnk for the lateral boundary communications) timing of the fastest process

will also be considered.

Some options could be particularly well suited for our kind of measures, such as the possibility
to disconnect communications (and deduce their  impact by comparison)1. In this  case, the
communication  impact  will  be  estimated by  the  difference  between the  slowest  and  the
fastest process to perform the n-5*sbc_freq steps of the (inner) time loop.

We did not find necessary to go further by checking more carefully the behaviour of each of
our parallel processes, with more accurate analyser such as paraver [Pillet 1995]. However, it

is still impossible with such synthetic analysis to finely understand the whole communication
pattern execution at  time step level, as can be done for  example with the OASIS internal
measurement tool  [Piacentini  & Maisonnave 2020]. And it  is  impossible to statistically  but
unambiguously  determine  a  “communication  time”  that  could  characterise  the  way  our
implementation is taking benefit of the MPI library and underlying network capacities.

1.5- Protocol
It is widely known that performance measurement reproducibility is practically impossible to
obtain  in  normal  conditions. With  its  high level  of  parallelism, performance is  particularly
sensible  to  middleware  (OS  preemption,  disk  access  ...)  and  hardware  behaviour  (node
heterogeneity, memory  access  heterogeneity, failures  …)  Since our  tests  were done on  a
production machine, even adjacent jobs can add perturbations to our measurements.

This is how we tried to reduce the spread of our measures resulting from this variability:

1 Unlike the ocean part, the SI3 still requires collective communications, that have to be manually removed (in 
ice_dyn_adv_pra, for BENCH) if we want to fully free our model from MPI communications 
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- limit the chance of significant disturbance by reducing the simulation length to 50 (BENCH-
12) or 100 time steps (BENCH-025, BENCH-1),
- remove outlier simulations affected by significant disturbance, by checking the time step
execution spread2,
- measurements are performed with magic number decompositions, predefined to minimise
perimeter/area  ratio  (thus  the  amount  of  lateral  boundary  communications),  that  also
minimises the number of unoccupied cores per node.

2- Model performance

2.1- Survey
Model  performance  is  regularly  checked  during  development  process, particularly  when
speed improvements are expected. It was the case this year, as shown below on Figure 2.

Figure 2: performance of NEMO versions, 2024, courtesy Daley Calvert

Several versions are simultaneously installed on an available machine so that code impact can
be directly evaluated, thanks to the git based versioning tool adopted by the NEMO-ST. The
working ORCA025 configuration chosen by Daley Calvert requires the maintenance of the
successive input files, but actual model results  are directly applicable for users real cases.
Figure  2  results  show  a  large  impact  of  recent  time  scheme  change  and  various  other

2 timing_step variable from the corresponding netCDF timing output file timing_step.nc
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improvements  (x2 from 4.0.7  version to 5.0  beta). The ORCA025 resolution/low resources
association suggests that NEMO is operated here on its hyper-scaling pace.

For the reasons explained above, the BENCH test configuration was better chosen to lead our
study. We directly compare our results with a measurement set taken during a performance
improvement exercise, on the same target machine [Maisonnave & Masson 2019]. The code
evolution encompassed here is larger (from 3.6 modified leap frog to 5.0 Runge-Kutta 3rd

order) and model resolution is smaller.

Figure 3: BENCH1 scalability on the same Intel Skylake irene supercomputer, with NEMO3.6 (left) and NEMO5

(right). Ocean-Ice simulations can be directly compared with coupling time step period = 2 (cyan curbs)

But, as we see comparing Figure 3 left and right, if we focus on the memory bound pace (low
resources)  speed  up  can  be  also  estimated  to  x2,  for  both  ocean-only  and  ocean-ice
configurations. At scale, the maximum speed is also close to be doubled. As shown on Figure
4, with different units3 and on the DKRZ machine, this maximum is reached for a 8x8 size of
MPI-decomposed subdomains.

3 Subdomain size, inversely proportional to the root mean square of the resource # and time to solution, 
inversely proportional to speed
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Figure 4: same BENCH-1 scalability than Fig.3 (NEMO5,
right),  but  different  axis.  Root  mean  square  of  sub-
domain size (instead of resources) and time to solution
(instead  of  speed).  Scalability  of  lateral  boundary
condition routine (max from all processes) is in dashed
line

2.2- Can we evaluate a “communication time” ?
After a quick look at the routine timing ranking, it seems easy to  consider lbc_lnk (lateral

boundary  communication  routine)  as  the major  bottleneck, particularly  at  network  bound
pace but not only. On the same Fig. 4, we superpose to the total time the time spent in this
lateral  boundary  condition  routine  (including  all  MPI  communications  of  our  BENCH
configuration). The maximum values (between processes) of this quantity gathers half of the
total time on memory and CPU bound paces, and even more at scalability limit. This number
deserves a detailed analysis, assuming that intra- or inter-node communications cannot be
per se that time consuming, particularly at parallel scales which are not supposed to use that
intensively the communication network.

Figure 5 (left) represents the total lbc_lnk timing for each sub-domain in a 2D global array

(Northernmost  processes  on  the  top,  Easternmost  on  the  right).  The  slowest  processes,
responsible  of  the  high ranking  of  the routine, are  clearly  located  in  the  North, which  is
coherent with the automatic decomposition of the grid: 45x16 grid points are allocated to
these processes, instead of 45x21, to compensate the slowest communications executed on
the region of the North Pole Folding (NPF). From this, we deduce that the maximum values of
lbc_lnk timing are reached when the least loaded processes (on NPF) are waiting for the

others.
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Figure 5: lbc_lnk timing per MPI process, in reference run (left) and balanced configuration, with same

communication pattern, same 128 resources but balanced number of grid point per process (right). Time in
second is measured in the inner time loop

However, timings on the other processes are not equal. This can be confirmed with an easy
modification of the BENCH parameters4, by changing MPI decomposition thus total grid point
# setting equally loaded sub-domains (with 45x21 grid points, in the present case). We call
“balanced”  this  testing  configuration.  On  Fig.  5  (right),  the  largest  values  are  indeed
disappearing from the North  raw: the largest  values  observed in  the reference run were
mainly due to load imbalance and not to extra communications in these areas.  We put in
evidence, with this simple test, that lbc_lnk timings include both communication and waiting

times. Depending on the relative contributions to these two, the problem on how to speed up
lbc_lnk will be addressed differently.

Our  balanced  configuration  still  exhibits  a  maximum lbc_lnk timing  of  5.6s  on  some

processes and a spread of 3.1 seconds. The highest values are now located on the Southern
part of the grid, where only five lateral boundary conditions are exchanged (instead of eight).
Once again, we suppose that waiting times are at the origin of these Southernmost maximum
values.

To confirm this hypothesis, we switch off any lateral boundary condition communication5. On
Figure 6, the same restitution time per subdomain is shown, but this time for the total time loop
(inner  part).  Obviously, without  actual  MPI  boundary  condition  exchanges, the  lbc_lnk
timing is now close to zero6, the computation load imbalance accumulates at each time step
and can finally be measured at the end of the time loop by comparing the total time spent on
the loop for each (computationally independent) subdomain.

4 With negative value of nn_isize & nn_jsize namelist parameters, we set subdomain length and width 

instead of total dimension of the global grid
5 With namelist parameter nn_comm=0. Notice that with the sea-ice model (not involved in this study), an 

additional neutralisation of a delayed global communication is necessary to deduce the computational load 
imbalance with this method

6 Due to the implementation of the  nn_comm=0 special configuration, even though LBC MPI communications

are neutralised, lbc_lnk is still called, communication arrays still copied and only MPI API subroutine calls 

avoided. This let measuring array copies in lbc_lnk (0.4 seconds in our case)
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Figure 6: time spent on inner stp time loop, LBC switched off, on reference (left) and balanced (right)

configurations

In the reference run with real unequal subdomain sizes (Fig 6. left), faster subdomains are
located  in  the  northern  part  of  the  grid. This  can  be  again  explained  by  the  automatic
decomposition strategy followed by the model algorithm in case of no LBC communication 7.
Computations on the smallest subdomains end first. On largest subdomains, they end with a
delay of 1.8 seconds. However, it looks obvious that all the largest subdomains do not end at
the  same time. This  can  be  confirmed by  using  the  balanced configuration  on  the  same
communication-less mode (Fig 6, right). Although all subdomains are now independent and
performing exactly the same amount of  communications, the spread on total  computation
times still reaches 1.1 seconds. Interestingly, the same picture obtained on another computing
node during a second experiment shows a move of the slowest subdomain (Figure  7a). A third
experiment shows the slowest subdomains on a new location again (Figure 7b). But during a
fourth experiment, performed just after the first model execution on the same node and the
same job (Figure 7c), slowest domains stay at the same location. This illustrates that the spread
in computation times has its origin on hardware or middleware heterogeneity.

Figure 7: time spent on stp time inner loop, LBC switched off, on balanced configuration, different execution of

the same experiment. The middle and right plots display two experiments launched sequentially on the same
node during the same job 

7 All subdomains must have the same dimensions and the division rest of the total domain size by the X and Y 
decomposition must be subtracted one by one from the Easternmost/Northernmost subdomain dimensions
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To summarise, we could separate the total NEMO simulation time on one node of our machine
into five pieces (plotted with different colors on Figure 8):

• what can be called a “computation time”, defined as the minimum time spent by the
fastest subdomain in a balanced and communication-less configuration,

• a “machine load imbalance” provoked by hardware and middleware heterogeneity
and measured as the computation time spread in a balanced and communication-less
simulation,

• a “static boundary communication time”, defined as the time spent locally  copying
arrays in lbc_lnk routines,

• a “communication and load imbalance effects”, defined as the minimum time spent in
lbc_lnk during a balanced simulation, minus the last two timings,

• a  “load  imbalance  cross  effect”,  defined  as  the  remaining  time  when  the  four
previously defined timing are subtracted from the total reference time.

None of these five contributions can be purely called “communication time”. In a lack of more
detailed analysis of each send/receive event (as it could be done with a tool like paraver
and a comprehensive statistical analysis), we can only deduced an upper boundary of this MPI
library effect on our performance from the addition of the last two numbers.

Figure 8: Total reference simulation time split into different contributions (%)
on one and eight nodes of our supercomputer
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The same exercise (reference, balanced and communication-less simulations) is performed on
eight nodes of our machine. We show on Figure 8 the increase of the machine (in green) load
imbalance  but  more  significantly  of  the  communication  load  imbalance  (in  orange).  The
picture  of  load  imbalance  per  sub-domain  (Figure  9)  lets  appearing  the  mapping
configuration of MPI processes8, and reveals machine or middleware slowing down on most
of the running cores. 

Figure 9: on eight nodes, lbc_lnk timings with a balanced configuration with LBC on (left) and stp timings

with the same balanced configuration but without LBC (right)

This  set  of  experiment  helps  to  show  that,  despite  alarming  timing  values  of  the
communication  routine  lbc_lnk when  profiling a  reference simulation  of  NEMO, at  any

model pace, the real part of MPI communications is generally small. It can be estimated at its
maximum to  only  less  than  40% of  the  total  time, on  eight  nodes  of  our  machine, when
subdomain size reaches the value 12x11. More importantly, we show that a set of specially
configured simulations  must  be  launched to  be  able  to  decompose load  imbalance  into
separated  contributions  (hardware+middleware,  computing,  communications)  that  affects
simultaneously the real computations.

Such  (costly)  experiment  would  have  to  be  repeated  with  several  other  configurations
(resolution, ice and BGC modules) and on different platforms to fully characterise the NEMO
version 5 performance. However, we consider that we can now rely on a reference to keep
exploring and quantify the effect of other model HPC past or new related developments, such
as tiling.

8 Slurm option of srun: --distribution=block:cyclic 
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3- Tiling

At NEMO memory bound pace, any algorithm modification that would reduce the size of the
working  arrays  would  necessarily  speed  up  the  model  by  lowering  the  amount  of  data
continuously  transferred  from  memory  to  registers.  In  that  perspective, Calvert  2024  has
organised at the highest possible level the splitting of local subdomain arrays into tiles treated
sequentially. 

Figure 10: BENCH-1 ocean-only scalability plot with (green) or without (red) tiling, represented by speed (left) or
parallel efficiency (right)

We decide to activate tiling in our setup9, and explore the range of tiling parameters (X and Y
splitting  directions10).  It  quickly  appears  that  X  direction  could  not  efficiently  be  used
(probably conflicts with vectorisation). On the measurements shown below, only the best value
of Y tile  length has been displayed11. In  extreme cases, the lenght  value 1  gives  the best
performance, which means that tiles with four grid lines halos et only one computationally
effective line outperform the non tiled reference algorithm.

Unsurprisingly,  with  BENCH-1  ocean-only,  on  the  memory  bound  pace  of  the  MPI
decomposition  range  (low  resources, larger  subdomains), the  tiling  has  a  comprehensive
effect and helps to reduce hyper-scaling by about a factor 2 (see Figure 10). These good
results are not surprising on such platform where quick cache buffers are attached to subsets
of  computing  cores  (see  Table  1).  Tiling  enhance  performances  of  most  of  the  model
routines12. A closer look to some accelerated routine like zdf_phy shows better performance

on every sub-domain, with a better load balancing. However, hyper-scaling cannot be totally

9 ln_tile = .true.
10 nn_ltile_i and nn_ltile_j
11 Interestingly, the best value is always at the maximum of a parabolic curb
12 except eos_pot, bn2, rab_3d, eos_insitu and tra_adv_trp
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removed, which suggests that tiling does not reduce the memory footprint so that all working
arrays could fit in the quickest buffers of the processor.  

Figure 11: speedup gain (%) of tiling compared to
reference algorithm (default values namelist) at 1, ¼ and

1/12 global resolution (BENCH configuration)

Extra  tests  are  performed  with  BENCH-025  and  BENCH-12  resolution,  confirming  the
beneficial  effect of tiling with even more memory bound configurations. On Figure 11, the
benefit of tiling is plotted for three BENCH horizontal resolutions, as a function of the root
mean square of the subdomain area (in grid point #). A maximum of 30% is reached for 60x60
subdomain size. Tiling is efficient on large parts of the resources range, and this is more and
more true with increasing resolution. As an additional  information, the actual Y size of the
subdomain  is  displayed  on  Fig.  11  beside  each  measurement  point,  to  add  a  crucial
information  for  tiling:  the  maximum  number  of  lines  that  can  be  split  to  create  tiles. As
expected, subdomains presenting a Y side larger than X side exhibit better ability to benefit
from tiling, which suggests that an extra constraint should be added in the decomposition
choice to take into account tiling potentiality.

A cross validation from MetOffice on AMD Milan and Genoa processors is planned to confirm
or invalidate these encouraging results.

For the moment, these results advocate for keeping the tiling instrumentation in the code, at
least for users who usually lead NEMO simulations on limited amount of resources and with
high load per process unit (at memory bound pace, which seems to be dominant in our set of
survey experiments).  If we believe that the future of CPU computing will come with more CPU
per node, tiling deserves to be maintained and continuously validated. This arises a set of
limitations/difficulties:

16



1. the tiled domain  overlap (halos)  is  error  prone for  developers. None of  the  arrays
modified in the loop cannot be reused for spatial derivative computations before the
end of the loop (which is rightly done until now)

2. tiling does not cover the entire code. Particularly, we are missing XIOS calls, and even
more significantly, ice & BGC models

3. the  working  arrays  size  reduction  is  known  to  be  counter  productive  for  GPU  (&
vectorisation, see X-direction inefficiency for tiling)

4. since this tiling feature is totally inefficient at high resources, it rather addresses Low
Carbon Computing (LCC) issues than HPC. 

4- Discussion

This special focus on model tiling capability was guided by the idea of summarising NEMO
version 5 performance but also to explore new ideas of performance improvements. This work
check the current ability of our code to perform well on the current CPU platform but also
makes the assumption that additional performance on this kind of machine is desirable in a
near  future.  This  does  not  suppose  that  coding  must  ignore  GPU  compatibility  but  we
propose here not to definitely act the removal of any computing oriented coding, as soon as
automatic instrumentation of a supposed computer agnostic code would not have shown its
superiority.

4.1- Theory of hybrid MPI/OpenMP performance
Following this  philosophy, we examine  the idea to  rely  on the existing and non intrusive
implementation of tiling to add one level of parallelism in NEMO with OpenMP. The idea has
already been explored at MetOffice (Ganderton, 2023). Tiles are grouped in OpenMP threads
and computations performed in parallel rather than sequentially. 

The idea has numerous advantages (existing coding, parallelism that also partially keeps tiling
benefits) but has two main limits :

- Mutually exclusive MPI/OpenMP parallelisation for a given number of resources. To
be  efficient,  the  OpenMP  implementation  supposes  a  better  efficiency  than  the
corresponding MPI one. Said differently, if we name restitution time “T”, the % of time

spent on OpenMP section “x” , and the # of OpenMP threads “N”, Amdahl’s law for

both MPI and OpenMP sections gives this formula for OpenMP efficiency :

T > (1-x) . T . N + x. T/N              , equivalent to

x > N / (N+1) 
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Which means  that  more than  N/(N+1) part  of  the code (as  measured in  flat  MPI

mode) must be spent within OpenMP sections, if we want to hope a positive speedup
with a mixed MPI-OpenMP parallelisation (on  N threads) compared to a flat  MPI13.

From this we can deduce that OpenMP parallelisation on top of tiling loops would
benefit from additional code instrumentation. In addition, as already emphasised by
Ganderton, any break between the OpenMP/tiling loops implies synchronisation and
loss  of  performance.  Unfortunately,  stops  are  unavoidable  at  least  for  MPI
communication14

- Mutually  exclusive tiles/OpenMP parallelisation. If  tiling loop were instrumented,
more OpenMP threads (N) would mean less tiles (M). In addition, OpenMP+tiling loop

are limited to Y axis so that  N.M < a few dozens, depending on resolution and total

resources. It means that on memory bound paces (most of the time, on our machine),
OpenMP would not only have to be more efficient than flat MPI but to be also more
efficient than flat MPI + tiling.

Practically  speaking,  an  OpenMP  parallelisation  on  top  of  the  tiling  loop  could  differ
depending on the model pace:

- Hyperscaling and scaling paces : OpenMP on top of the existing tiling loop should
be combined with tiling, still  efficient at  this  pace. Shared arrays would have to be
copied on local  private arrays, to avoid race conditions and no “false sharing”. But
additional  memory  and  synchronisation  would  be  required, jeopardising  the  good
bufferisation effect of tiling. We can already suspect that a better scalability than the
flat  MPI  configuration  would  be  hard  to  achieve, because  of  load  imbalance  and
synchronisations added by OpenMP. In practice, as suggested on Figures 10 and 11,
these paces are dominant (until 15x15, at least on our machine)

-  Network  bound  pace :  only  reached  for  a  large  number  of  resources  and  high
resolutions. In this case, tiling would not be needed anymore, and could entirely be
replaced by OpenMP (simpler shared arrays synchronisation procedure, no need of
overlapped regions). The hybrid MPI/OpenMP model could be more efficient than
the  existing  MPI  parallelisation  … but  the  question  remains  on  how  to  practically
decompose our grids on below 10x10 subdomains, to say nothing of side effects on
other unexplored constraint of real computations (I/O, scheduling constraints)

From these assumptions, we suppose that in most of the cases, the existing tiling would be
more efficient that  hybrid parallelisation. However, considering the high relevance of high
resolution / highly computing resource demanding configuration popularity among NEMO

13 This assumption can be too strong on communication bound paces of the model, but these paces does not 
appear to be dominant in our current performance survey

14 Unless multi-threaded MPI communications would be tested, with a strong warning for portability and 
performance
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community, or at least a distinguished part of it, we propose to further explore the few cases
were hybrid parallelism could be beneficial.

4.2- Experimental setup
To give a better idea of the challenge, three different experiments are performed on our AMD
Milan  computer  and  the  timings  are  combined  to  try  to  guess  the  best  MPI/OpenMP
performance that we could expect on the present machine. The BENCH-025 configuration
(with balanced domains as defined in § 2.2) is launched on 32 nodes of our 128 core per node
machine. In a reference run, the subdomain size reaches 22x16 and performance comes close
to the so-called communication bound pace, supposed to be the most favourable to hybrid
parallelisation. Two measurements are displayed on Table 2: the total time spent in the inner
time  loop  (as  defined  previously,  in  balanced  mode)  and  the  “communication  and  load
imbalance effects” (supposed to include most of the MPI communication timing, see also
measurement protocol at § 2.2).

Experiment Reference Depletion
(block:cyclic)

Double depletion Best Theoretical 
OpenMP

Processes 4020 1024 1024 1024+4OMP
Nodes 32 32 32 32

Sb-domain size 22x16 45x38 22x16 22x16x4
Total restitution time 2.10 14.8 2.10 3.05*
lbc_lnk min (best

LI+comm)

0.50 1.45 0.49 1.45

Table 2: Theoretical hybrid performance of BENCH-025 on AMD-Milan based supercomputer,
given timing of total balanced simulation and proxy to MPI communication timings, on a set of 3

different experiments

This  first  reference  simulation  gives  the  performance  we  are  reaching  with  an  MPI  flat
parallelisation. We deduce from total and “communication” times that pure computing takes
approximately  1.6  seconds  at  this  decomposition.  These  numbers  are  confirmed  by  a
verification simulation called “double depletion” on Table 2, in which subdomains of the same
size (22x16) are allocated on ¼ of the processors, but using the same number of nodes (32).
This configuration requires a reduced number of LBC communications, but of the same size
and using the same network bandwidth than in reference simulation. Communications are
performed at the same speed and computations are also done as quickly. We can deduce
from these two experiments that ¼ of the MPI processes would compute at the same speed
on 22x16 sized domains. What now if four additional OpenMP threads would perform these
computations in parallel ? With a perfect OpenMP scaling, computations would again happen
in  1.6  seconds.  However,  MPI  exchanges  would  now  involve  four  times  bigger  LBC
communications. In  a  third simulation, called “depletion” in  Table  2, we estimate the time
needed to exchange such LBC by performing computations of four times bigger subdomains
on the same 32 nodes. “Communication” timings are here evaluated to 1.45 seconds. In theory,
the total cost of an hybrid MPI/OpenMP on 32 nodes using four OpenMP threads can be
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evaluated to 1.6+1.45 = 3.05 seconds, which is bigger than the flat MPI performance on 32
nodes (2.1 seconds), this without taking into account an additional positive effect of tiling in
flat MPI mode.

This  result  is  explained  by  the  relatively  good  scaling  of  MPI  related  timings.  In  these
conditions, it is more interesting to reduce the subdomain size by adding more MPI processes
than keeping the same subdomain size for communication and reduce its size by spreading
computations on several OpenMP threads: computations are at best performed as quickly but
communications  are  necessarily  done  at  lower  speed.  A  case  study  where  MPI
communications would not scale anymore (or anti-scale) is out of reach on our machine. In
conclusion, as far as we can know after this study, it is not possible to recommend an OpenMP
parallelisation on top of the tiling loop.

4.3- Other solutions
A workaround of the mutual exclusion of MPI and OpenMP parallelisation in our model could
be proposed by selecting only parts of the code for OpenMP parallelisation and keeping the
other parts in flat MPI mode. Given the difficulty to instrument our code with both MPI and
OpenMP, a solution could be to split tasks on separate executables, differently parallelised,
and add a macro-task parallelism level for even better performance in concurrent execution.

MPI computations OpenMP computations

Synchro

Figure 12: Macro-task parallelism involving several parallel libraries

In the framework described on Figure 12, part of the code taking better benefit of one or the
other parallel library would be computed on separated executables and dedicated resources.
Of course, OpenMP parallelisation would be limited on one shared memory node, but one
can imagine that communication intense routines such as 2D time stepping or ice advection
would massively benefit of the disappearing of any LBC routines, that could compensate the
lack  of  parallelism  on  one  single  node.  This  strategy  would  necessary  rely  on  a  fast
synchronisation mechanism. For performance, the cost of one input/output gather/scatter
communications  would  necessarily  be  comparable  (if  not  lower)  with  the  cost  of  n LBC

exchanges  (and  sequential  computations).  Notice  that  this  strategy  would  also  have  a
promising GPU declination, particularly on recent unified memory APU infrastructures.
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As  a  side  study  regarding  OpenMP  parallelisation,  we  propose  the  modularisation  and
OpenMP parallelisation of one of our network bound routine on whole global domains. For
example, the existing TSUNAMI test case, including the 2D time stepping, could be OpenMP
instrumented from a starting version excluding MPI. In a second step, this module could be
coupled  to  the  complementary  NEMO  model,  to  better  evaluate  the  cost  of  realistic
communications  (gather/scatter),  taking  also  into  account  the  benefit  of  the  organised
asynchronism of our computations.

To summarise, the definition and deployment of  a NEMO version 5 benchmarking on the
NUMA DKRZ supercomputer has put in evidence the good potentiality for performance of
the existing tiling optimisation. However, and independently of the model performance paces
at which it  would be operated, it  looks difficult  to overcome the flat  MPI and even more
MPI+tiling performance with any hybrid MPI-OpenMP parallelisation built on the top of the
existing  tiling  decomposition.  The  only  optional  path  that  we  could  recommend  in  the
perspective of OpenMP instrumentation is the modularisation of communication intense parts
of the code such as 2D dynamics.

Our study has also put in evidence the necessity to check model performance at any pace
(memory, compute or network bound), as it is obvious that beneficial optimisations on one
part of the parallel spectrum could be totally counterproductive on other paces. This could
perfectly lead to the necessity to maintain several codes fitting different needs and different
architectures. Code processing tool such as PSyclone could be at this stage a valid option to
simplify this maintenance.
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