
HAL Id: hal-04937888
https://hal.sorbonne-universite.fr/hal-04937888v1

Preprint submitted on 10 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quasi-Linear Guessing of Minimal Lexicographic
Gröbner Bases of Ideals of C-Relations of Random

Bi-Indexed Sequences
Jérémy Berthomieu, Romain Lebreton, Kevin Tran

To cite this version:
Jérémy Berthomieu, Romain Lebreton, Kevin Tran. Quasi-Linear Guessing of Minimal Lexicographic
Gröbner Bases of Ideals of C-Relations of Random Bi-Indexed Sequences. 2025. �hal-04937888�

https://hal.sorbonne-universite.fr/hal-04937888v1
https://hal.archives-ouvertes.fr

Quasi-Linear Guessing of Minimal Lexicographic Gröbner Bases
of Ideals of C-Relations of Random Bi-Indexed Sequences

Jérémy Berthomieu
Sorbonne Université, CNRS, LIP6

Paris, France
jeremy.berthomieu@lip6.fr

Romain Lebreton
Université de Montpellier, CNRS, LIRMM

Montpellier, France
romain.lebreton@lirmm.fr

Kevin Tran
Sorbonne Université, CNRS, LIP6

Paris, France
kevin.tran@sorbonne-universite.fr

ABSTRACT

Computing recurrence relations for sequences is a central problem
in computer algebra, with applications in error-correcting codes,
Gröbner basis computation, and sparse interpolation. While uni-
indexed C-recursive sequences benefit from quasi-linear algorithms
leveraging the half-gcd method, the extension to multi-indexed se-
quences remains computationally challenging. Existing methods for
bi-indexed sequences achieve quadratic complexity at best, limiting
their practical use.

This paper presents a quasi-linear algorithm for computing lex-
icographic Gröbner bases of the ideal of C-relations associated
to bi-indexed sequences. Our approach extends the half-gcd algo-
rithm in KN [𝑦] by integrating a pseudo-Euclidean division. This
approach shows how to leverage the bi-Hankel structure of the ma-
trix, significantly improving the efficiency of computing minimal
C-relations closing the complexity gap between the uni- and bi-
indexed cases. Our algorithm is restricted to bi-indexed sequences
whose associated bi-Hankel matrix has generic row rank profile.

KEYWORDS

multi-indexed sequences, linear relation guessing, Hankel matrices,
Gröbner bases, half-gcd algorithm, quasi-linear algorithm

1 INTRODUCTION

Context. Guessing the minimal linear recurrence relation with
constant coefficients (C-relation) of order 𝑑 of a sequence (𝑢𝑖)𝑖∈N
is a fundamental problem in computer algebra and error correcting
codes. It is for instance one of the latter steps of the Wiedemann
algorithm [23] for computing the minimal polynomial of a matrix or
solving a sparse linear system. The multi-indexed analogue, that is
with a sequence (𝑢𝑖1,...,𝑖𝑛) (𝑖1,...,𝑖𝑛) ∈N𝑛 is at the root of𝑛-dimensional
cyclic codes and also the Sparse-FGLM variant [10] of the FGLM
algorithm [9] for Gröbner bases change of order.

Given the 𝐷 + 1 first terms 𝑢0, . . . , 𝑢𝐷 of a uni-indexed sequence,
the problem of computing the minimal C-relation can be modeled
through a kernel computation of a Hankel matrix. It computes the
correct relation as long as 𝐷 ≥ 2𝑑 . This Hankel structure leads to
non-naive algorithms with complexity much better than 𝑂 (𝐷𝜔),
where 2 ≤ 𝜔 < 3 is the matrix multiplication exponent, relying on
the extended Euclidean algorithm called on polynomials 𝑥𝐷+1 and∑𝐷
𝑖=0 𝑢𝑖𝑥

𝐷−𝑖 . The first instance of such a non-naive algorithm is due
independently to Berlekamp [1] and Massey [14], both targeting
an application to error correcting codes, and is now known as the
Berlekamp–Massey algorithm. Thanks to quasi-linear algorithms
for computing the extended Euclidean algorithm [7, 15], see also [22,
Chap. 11], the complexity of computing such a minimal C-relation
of order 𝑑 is 𝑂̃ (𝐷), as long as 𝐷 ≥ 2𝑑 .

Related work. The case of an 𝑛-indexed sequence, 𝑛 ≥ 2, 𝒖 =

(𝑢𝑖1,...,𝑖𝑛) (𝑖1,...,𝑖𝑛) ∈N𝑛 is more involved. The set of relations of 𝒖
forms an ideal, denoted 𝐼 (𝒖), which is 0-dimensional whenever 𝒖
is C-recursive. Guessing consists in computing a representation of
this ideal, that is a ≺-Gröbner basis for a given monomial order ≺
in the context of this paper. Denoting S𝒖 the ≺-staircase of 𝐼 (𝒖),
i.e. the monomials that are not ≺-leading monomials of 𝐼 (𝒖), and
G𝒖 the ≺-reduced Gröbner basis of 𝐼 (𝒖), the complexity of the
problem must depend on the number of given terms of 𝒖, and on
|G𝒖 | and |S𝒖 |, in order to encode the output in the monomial basis.
The first algorithm to guess such a Gröbner basis is due to Sakata
and extends the Berlekamp–Massey algorithm, leading the author
to calling it the Berlekamp–Massey–Sakata algorithm [18–20].
More recent algorithms were proposed based on linear algebra,
i.e. computing the kernel of a multi-Hankel matrix [2, 3] or us-
ing a Gram-Schmidt process [16]. Another approach is based on
multivariate polynomial arithmetic, especially division of polyno-
mials such as [4, 5], or specifically for the bivariate case [11] using
an approach similar to the uni-indexed case as they work on the
polynomial

∑𝐷𝑦

𝑗=0 (𝑢𝑖, 𝑗)𝑖∈N𝑦
𝐷𝑦− 𝑗 ∈ KN [𝑦]. Finally, let us mention

a bivariate Padé approximation method [17].
The complexity analysis of all these algorithms is not an easy

task. Restricting ourselves to the case where the number of known
terms of 𝒖 is minimal to ensure the correctness of the output allows
us to express their complexities more easily. In the uni-indexed
case, this would imply 𝐷 = Θ(𝑑), so that the complexity is 𝑂̃ (𝑑).

In [20], the complexity of the Berlekamp–Massey–Sakata al-
gorithm is 𝑂

(
|S𝒖 |2 · |G𝒖 |

)
, though the output need not be a re-

duced Gröbner basis. The complexity of the algorithm of [2, 3]
is 𝑂

(
(|S𝒖 |𝜔 + |S𝒖 |2 · |G𝒖 |

)
and the output is reduced. The algo-

rithm of [16] has complexity 𝑂
(
|S𝒖 |2 · (|S𝒖 | + |B𝒖 |)

)
, where B𝒖

is a border basis, and thus has larger size than G𝒖 , while the algo-
rithm [4, 5] has a similar complexity 𝑂

(
|S𝒖 |2 · (|S𝒖 + |G𝒖 |)

)
. Fur-

thermore, they all need the sequence terms𝑢𝑖1,...,𝑖𝑛 where 𝑥𝑖11 · · · 𝑥
𝑖𝑛
𝑛

is in the Minkowski sum of S𝒖 with itself, denoted 2S𝒖 . If we sim-
plify further to the bi-indexed case and we denote 𝑑𝑥 (resp. 𝑑𝑦)
the maximal degree in 𝑥 (resp. 𝑦) of G𝒖 , these complexity upper
bounds become at least 𝑂

(
max(𝑑𝑥 , 𝑑𝑦)2 |G𝒖 |

)
using the fact that

|S𝒖 | ≥ 𝑑𝑥 + 𝑑𝑦 − 1. Now, on the one hand, all the monomials 𝑥𝑖𝑦 𝑗
for 0 ≤ 𝑖 < 𝑑𝑥 and 0 ≤ 𝑗 < 𝑑𝑦 are in 2S𝒖 and, on the other hand, all
monomials in 2S𝒖 have degree in 𝑥 (resp. 𝑦) at most 2𝑑𝑥 − 2 (resp.
2𝑑𝑦 − 2). Hence, all these algorithms need exactly Θ(𝑑𝑥𝑑𝑦) terms.
Finally, using also Θ(𝑑𝑥𝑑𝑦) terms of 𝒖, the algorithm of [11] com-
putes a Gröbner basis of 𝐼 (𝒖) in 𝑂̃

(
𝑑𝜔+1𝑥 𝑑𝑦

)
operations, while [17]

requires 𝑂̃
(
min(𝑑𝑥 , 𝑑𝑦)𝜔𝑑𝑥𝑑𝑦

)
operations.

Contribution. The main contribution of this paper is Guessing-
Bivar, an algorithm that takes as an input the (𝐷𝑥 + 1) (𝐷𝑦 + 1)

, , J. Berthomieu, R. Lebreton, and K. Tran

sequence terms 𝑢𝑖, 𝑗 for 0 ≤ 𝑖 ≤ 𝐷𝑥 and 0 ≤ 𝑗 ≤ 𝐷𝑦 and re-
turns a minimal lexicographic Gröbner basis of 𝐼 (𝒖), with support
in {𝑥𝑖𝑦 𝑗 | 0 ≤ 𝑖 ≤ 𝑑𝑥 , 0 ≤ 𝑗 ≤ 𝑑𝑦} for 𝒖 = (𝑢𝑖, 𝑗) (𝑖, 𝑗) ∈N2 using
𝑂̃
(
𝐷𝑥𝐷𝑦 + 𝑑𝑥𝑑𝑦 |G𝒖 |

)
operations. This algorithm works under the

assumption that the multi-Hankel matrix (𝑢𝑖+𝑘,𝑗+ℓ)𝑥𝑖𝑦 𝑗 ,𝑥𝑘𝑦ℓ ∈S𝒖
has a LU decomposition without pivoting. This condition is exper-
imentally always satisfied whenever the terms (𝑢𝑖, 𝑗)𝑥𝑖𝑦 𝑗 ∈S𝒖 are
picked at random. As a consequence, this closes the complexity gap
between the uni-indexed case and the bi-indexed one.

Organization of the paper. In §2, we recall the polynomial repre-
sentation of C-relations, and also how to relate their guessing to
linear algebra and univariate gcd computation. In §3, we extend
this viewpoint to bi-indexed sequences under the aforementioned
assumption on the associated multi-Hankel matrix. In §4, we design
a half-gcd-like algorithm on bivariate polynomials and how it can
be used as a subroutine of GuessingBivar for guessing. Finally, our
benchmarks in §5 confirm the efficiency of our algorithm.

2 PRELIMINARIES

In this section, we recall all basic definitions and results on matri-
ces, C-recursive multi-indexed sequences, polynomials and Gröbner
bases. We consider N as the set of all natural numbers including 0,
also consider that deg(0) = −∞. We note 𝒙 = (𝑥1, . . . , 𝑥𝑛) the
variables used for polynomials and 𝒊 = (𝑖1, . . . , 𝑖𝑛) ∈ N𝑛 . We note
𝒙 𝒊 = 𝑥

𝑖1
1 𝑥

𝑖2
2 · · · 𝑥

𝑖𝑛
𝑛 . If there is no ambiguity on the number of vari-

ables or indices we denote K[𝒙] = K[𝑥1, . . . , 𝑥𝑛] and 𝒖 = (𝑢𝑖𝑖𝑖)𝑖𝑖𝑖∈N𝑛 .
2.1 Uni-indexed sequences

For uni-indexed sequences, C-recursive sequences are the ones
satisfying linear recurrences with constant coefficients.
Definition 2.1.1. A sequence (𝑢𝑖)𝑖∈N is C-recursive if there exist
𝑔0, . . . , 𝑔𝑑−1 ∈ K such that for 𝑖 ∈ N, 𝑢𝑖+𝑑 = 𝑔𝑑−1𝑢𝑖+𝑑−1 + . . . +𝑔0𝑢𝑖 .

Such a combination is called C-relation and can be represented as
a polynomial 𝑔 = 𝑥𝑑 −∑𝑑−1

𝑖=0 𝑔𝑖𝑥
𝑖 ∈ K[𝑥]. Computing a C-relation

can be reduced to a linear system solving problem.
The Hankel matrix of size 𝑑 associated to the sequence 𝒖 =

(𝑢𝑖)𝑖∈N isH = (𝑢𝑖+𝑗)0≤𝑖, 𝑗<𝑑 ∈ K𝑑×𝑑 . Moreover, one can compute
the C-relation 𝑔 = 𝑥𝑑 − ∑𝑑−1

𝑖=0 𝑔𝑖𝑥
𝑖 by solving the linear system[

𝑔0 𝑔1 . . . 𝑔𝑑−1
]
H =

[
𝑢𝑑 . . . 𝑢2𝑑−1

]
.

For a polynomial 𝑔 = 𝑥𝑑 − ∑𝑑−1
𝑖=0 𝑔𝑖𝑥

𝑖 ∈ K[𝑥], we define 𝑔 =

𝑥𝑑𝑔(1/𝑥) ∈ K[𝑥] as the mirror of 𝑔. Another approach is done
using generating series 𝑆 =

∑
𝑖∈N 𝑢𝑖𝑥

𝑖 ∈ K[[𝑥]]. The generating
series of a C-recursive sequence admits a finite representation.
Indeed, for such series 𝑆 there exists 𝑝, 𝑞 ∈ K[𝑥] such that 𝑞𝑆 = 𝑝

with deg(𝑝) < 𝑑 and 𝑞 = 𝑔. From the degree constraint on 𝑝 and 𝑞,
one can recover 𝑝 and 𝑞 from the relation 𝑞𝑆 = 𝑝 mod 𝑥𝐷+1 with
𝐷 ≥ 2𝑑 . This modular equation can be rewritten as a Bézout’s
identity 𝑞𝑆 + 𝑟𝑥𝐷+1 = 𝑝 with 𝑟 ∈ K[𝑥] and computing 𝑞 = 𝑔 comes
down to computing a Truncated Extended Euclidean algorithm. A
fast computation of this relation can be done through a call to the
half-gcd algorithm [12, 15, 21]. The half-gcd algorithm is based on
a fast reduction algorithm.

Lemma 2.1.2. Let 𝑎, 𝑏 ∈ K[𝑥] with deg(𝑎) = 𝐷 and deg(𝑏) = 𝑑

such that 𝐷 ≥ 𝑑 . Computing 𝑞, 𝑟 ∈ K[𝑥] satisfying 𝑎 = 𝑞𝑏 + 𝑟 with
deg(𝑟) < 𝑑 can be done in 𝑂̃ (𝐷) operations in K.

The transpose of this operation called the extension is computed

in the same complexity by the Tellegen’s principle [6]. This operation

corresponds to the extension of C-recursive sequences (𝑢𝑖)𝑖∈N by the

C-relation 𝑔 = 𝑥𝑑 − ∑𝑑−1
𝑖=0 𝑔𝑖𝑥

𝑖
, for 𝑆 =

∑𝑑−1
𝑖=0 𝑢𝑖𝑥

𝑖
, it computes

𝑆 =
∑𝐷
𝑖=0 𝑢𝑖𝑥

𝑖
using 𝑢𝑖+𝑑 = 𝑔𝑑−1𝑢𝑖+𝑑−1 + . . . 𝑔0𝑢𝑖 for 𝑖 ≥ 0.

Recall that 𝑂̃ (·) means that polylogarithmic factors are omitted.

Theorem 2.1.3. Computing the C-relation 𝑔 ∈ K[𝑥] on (𝑢𝑖)𝑖∈N of

degree 𝑑 , knowing the 𝐷 + 1 initial terms of (𝑢𝑖)𝑖∈N with 𝐷 ≥ 2𝑑 ,
can be done in 𝑂̃ (𝐷) operations in K.

The half-gcd algorithm can also be derived to a Hankel system
solving of size 𝑑 − 1 (see [7]) and can be done in 𝑂̃ (𝑑) operations.

2.2 Multivariate polynomial rings

For multi-indexed sequences, we use multivariate polynomials to
represent the C-relations. For a polynomial 𝑓 ∈ K[𝒙] and 𝜶 ∈ N𝑛 ,
we note 𝑓𝜶 the coefficient of 𝑓 associated to the monomial 𝒙𝜶 , the
support of 𝑓 is the monomial set supp(𝑓) = {𝒙𝜶 | 𝑓𝜶 ≠ 0}.

We define the boxmonomial set of parameter 𝒅 ∈ N𝑛 as 𝒅-box ≔

{𝒙𝜶 | 0 ≤ 𝛼 𝑗 ≤ 𝑑 𝑗 for all 1 ≤ 𝑗 ≤ 𝑛}. Also, we denote by K[𝒙]⪯𝒅
the set of polynomials with support in 𝒅-box.

For polynomials 𝑓 , 𝑔 ∈ K[𝒙]⪯𝒅 , the addition of 𝑓 + 𝑔 can be
computed using𝑂

(∏𝑛
𝑖=1 𝑑𝑖

)
operations in K and the multiplication

𝑓 𝑔 can be computed using 𝑂̃
(∏𝑛

𝑖=1 (2𝑑𝑖)
)
operations.

For multivariate polynomials, we have to define a total order
on the monomial set. In our study, we are only interested on the
lexicographic order, we refer to [8] for more general consideration.
We note ≺ the lexicographic order onK[𝑥1, . . . , 𝑥𝑛] with 𝑥1 ≺ . . . ≺
𝑥𝑛 and such that 𝒙𝜶 ≺ 𝒙𝜷 if there exists 1 ≤ 𝑘 ≤ 𝑛 such that for any
𝑗 < 𝑘, 𝛼 𝑗 = 𝛽 𝑗 and 𝛼𝑘 < 𝛽𝑘 . For a nonzero polynomial 𝑓 ∈ K[𝒙],
the leadingmonomial of 𝑓 w.r.t.≺ is noted lm (𝑓) and corresponds to
the maximum monomial of 𝑓 ordered by ≺. The leading coefficient
of 𝑓 w.r.t. ≺ is noted lc (𝑓) ∈ K is the coefficient associated to lm (𝑓).
The leading term of 𝑓 w.r.t. ≺ is noted lt (𝑓) = lc (𝑓) lm (𝑓).

An ideal of K[𝒙] can be generated by a finite set of polynomials.
Gröbner bases are particular sets of generators with interesting
computational properties. For an ideal 𝐼 ⊆ K[𝒙], a Gröbner basis G
of 𝐼 for the lexicographic order is a finite generating set of 𝐼 such that
⟨lm (G)⟩ = ⟨lm (𝐼)⟩, i.e. it spans lm (𝐼) as a monomial set. A minimal
Gröbner basis G is a Gröbner basis such that no lm (𝑔) ∈ lm (G)
is divisible by an element in lm (G\{𝑔}). The (unique) reduced
Gröbner basis G is a minimal Gröbner basis such that for all 𝑔 ∈ G,
the monomials𝑚 ∈ supp(𝑔) are not divisible by any lm (G\{𝑔}).

The staircase S associated to an ideal 𝐼 is S ≔ {𝒙𝜶 | 𝒙𝜶 ∉

lm (𝐼)}. It forms a K-vector space basis of the quotient ring K[𝒙]/𝐼 .
The polynomial division with remainder by a Gröbner basis (defined
in [8, Chapter 2.7]) gives a unique polynomial 𝑟 with support in
the staircase S. For 𝑓 ∈ K[𝒙], we denote by 𝑟 = 𝑓 rem(G) ∈ K[𝒙]
with supp(𝑟) ⊂ S the unique remainder of 𝑓 by a Gröbner basis G.
The polynomial division with remainder of 𝑓 ∈ K[𝒙] by a Gröbner
basis G, as defined in [8, Chapter 2.7], yields a unique polynomial
denoted 𝑟 = 𝑓 rem(G) ∈ K[𝒙] with support in the staircase S.

We recall the notion of colon ideal by one polynomial. A more
general description can be found in [8, Chapter 4.4]. Let 𝐼 be an
ideal of K[𝒙] and let 𝑓 ∈ K[𝒙], the colon ideal of 𝐼 by 𝑓 is 𝐼 : ⟨𝑓 ⟩ =
{𝑔 ∈ K[𝒙] | 𝑔𝑓 ∈ 𝐼 }.

Quasi-Linear Guessing of Minimal Lexicographic Gröbner Bases of C-Relations of Random Bi-Indexed Sequences , ,

2.3 Multi-indexed C-recursive sequences

For 𝑛 > 0, the setKN
𝑛
corresponds to the set of 𝑛-indexed sequence

𝒖 = (𝑢𝑖𝑖𝑖)𝑖𝑖𝑖∈N𝑛 with terms in K. We denote the zero sequence by
0 = (0)𝒊∈N𝑛 . For C-recursive sequences, we allow two types of
operations: index shifts and scalar multiplications on sequences.
These operations can be described by the action ★ of K[𝒙] in KN𝑛

such that 𝑥𝑑
𝑗
★ 𝒖 = (𝑢𝑖1,...,𝑖 𝑗+𝑑,...,𝑖𝑛) (𝑖1,...,𝑖𝑛) ∈N𝑛 for 1 ≤ 𝑗 ≤ 𝑛 and

𝑑 ∈ N, and extended by linearity to K[𝒙].
For a sequence 𝒖 = (𝑢𝑖𝑖𝑖)𝑖𝑖𝑖∈N𝑛 , a C-relation 𝑔 on 𝒖 is a polynomial

𝑔 ∈ K[𝒙] that satisfies 𝑔★𝒖 = 0. We note by 𝐼 (𝒖) = {𝑔 ∈ K[𝒙] | 𝑔★
𝒖 = 0} the ideal of relations of 𝒖. A sequence 𝒖 is C-recursive if the
ideal of relations 𝐼 (𝒖) is 0-dimensional i.e. dimK (K[𝒙]/𝐼 (𝒖)) < ∞.

For a sequence 𝒖, we denote by G𝒖 the reduced Gröbner basis
w.r.t. ≺ of the ideal of relations 𝐼 (𝒖), and S𝒖 the staircase w.r.t. ≺
of 𝐼 (𝒖) also we note S𝒖,≺𝑚 = {𝒙𝜶 ∈ S𝒖 | 𝒙𝜶 ≺ 𝑚}. We note
the exponents set of S𝒖 by E𝒖 = {𝜶 ∈ N𝑛 | 𝒙𝜶 ∈ S𝒖 } and
E𝒖,≺𝑒 = {𝜶 ∈ E𝒖 | 𝒙𝜶 ≺ 𝒙𝑒 }.

For 𝒖 a C-recursive sequence and G a Gröbner basis of 𝐼 (𝒖), any
term of 𝒖 can be computed from the relations in G and the initial
terms in S𝒖 [19]. A C-recursive sequence is uniquely determined
by the terms associated to the exponents from the staircase S𝒖 , as
the other terms are linear combinations of the ones in the staircase.

Lemma 2.3.1 ([20, §2]). Fix 𝐼 (𝒖) and G a Gröbner basis of 𝐼 (𝒖)
w.r.t. the order ≺. Then 𝐼 (𝒖) ⊂ 𝐼 (𝒗) iff for all 𝜷 ∈ lm (𝐼 (𝒖)), we have
𝑣𝜷 =

∑
𝜶 ∈E𝒖 𝑐𝜶 𝑣𝜶 with 𝒙𝜷 rem(G) = ∑

𝜶 ∈E𝒖 𝑐𝜶 𝒙
𝜶
.

For 𝑛 > 0 and 𝒖 ∈ KN𝑛 C-recursive, we define the K-linear
subspace L𝒖 ≔ {ℎ ★ 𝒖 | ℎ ∈ K[𝒙]} ⊂ KN𝑛 and consider the
linear application 𝜙 (ℎ) = ℎ ★ 𝒖 from K[𝒙] to L𝒖 . By construction,
𝜙 is surjective. As ker𝜙 = 𝐼 (𝒖), we can define the isomorphism
𝜙 : K[𝒙]/𝐼 (𝒖) → L𝒖 from 𝜙 . We define F = {𝑒𝒊}𝒊∈E𝒖 ⊂ KN

𝑛
with

𝑒𝒊 defined for 𝒋 ∈ E𝒖 such that (𝑒𝒊)𝒋 = 0 if 𝒋 ≠ 𝒊 and (𝑒𝒊)𝒊 = 1 and
outside E𝒖 we extend the terms of 𝑒𝒊 in E𝒖 by the relations in 𝐼 (𝒖).

Lemma 2.3.2. If 𝐼 (𝒖) ⊂ 𝐼 (𝒗) then 𝑣 ∈ spanK (F).

Proof. Let 𝒘 = 𝒗 − ∑
𝒊∈E𝒖 𝑣 𝒊𝑒𝒊 . For 𝒋 ∈ E𝒖 , we have by con-

struction 𝑤𝒋 = 0. From Lm. 2.3.1, we have 𝐼 (𝒖) ⊂ 𝐼 (𝑒𝒊) for any
𝒊 ∈ E𝒖 . Since 𝑓 ∈ 𝐼 (𝒖) is in 𝐼 (𝒗) and all 𝐼 (𝑒𝒊), we deduce that
𝐼 (𝒖) ⊂ 𝐼 (𝒘). Hence,𝒘 = 0 and 𝒗 =

∑
𝒊∈E𝒖 𝑣 𝒊𝑒𝒊 . □

Lemma 2.3.3. The family F is a basis of L𝒖 .

Proof. By construction, F is linearly independent. Let ℎ ★ 𝒖 ∈
L𝒖 , since for 𝑓 ∈ 𝐼 (𝒖), (𝑓 ℎ) ★ 𝒖 = 𝑓 ★ (ℎ ★ 𝒖) = 0, we have 𝐼 (𝒖) ⊂
𝐼 (ℎ ★ 𝒖). So we apply Lm. 2.3.2 and show that L𝒖 ⊂ spanK (F).
Since dimK (L𝒖) = dimK (K[𝒙]/𝐼 (𝒖)) = |S𝒖 |, we conclude that F
is a basis of L𝒖 . □

We noteHS𝒖 the matrix associated to 𝜙 , with the basis S𝒖 for
K[𝒙]/𝐼 (𝒖) and F for L𝒖 both ordered w.r.t. ≺. The application 𝜙 is
an isomorphism so the matrixHS𝒖 is invertible.

Theorem 2.3.4. Let 𝒖 and 𝒗 be two C-recursive sequences. The

following statements are equivalent:

(a) ∃!ℎ ∈ K[𝒙] with support in S𝒖 such that 𝒗 = ℎ ★ 𝒖;
(b) ∃ℎ ∈ K[𝒙] such that 𝐼 (𝒗) = 𝐼 (𝒖) : ⟨ℎ⟩;
(c) 𝐼 (𝒖) ⊂ 𝐼 (𝒗).

Proof. For (𝑎) ⇒ (𝑏), we have 𝑔 ∈ 𝐼 (𝒗) ⇔ 0 = 𝑔 ★ 𝒗 =

(𝑔ℎ) ★ 𝒖 ⇔ 𝑔 ∈ 𝐼 (𝒖) : ⟨ℎ⟩. For (𝑏) ⇒ (𝑐), it is direct by definition.
For (𝑐) ⇒ (𝑎), since 𝐼 (𝒖) ⊂ 𝐼 (𝒗) we can write 𝒗 =

∑
𝒊∈E𝒖 𝑣 𝒊𝑒𝒊 so

𝒗 ∈ L𝒖 by Lms. 2.3.2 and 2.3.3. For uniqueness, let ℎ′ ∈ K[𝒙] s.t. 𝒗 =

ℎ′★𝒖 and supp(ℎ′) ⊂ S𝒖 . We get (ℎ−ℎ′)★𝒖 = 0 soℎ−ℎ′ ∈ 𝐼 (𝒖) and
ℎ − ℎ′ rem(G𝒖) = 0. Since supp(ℎ), supp(ℎ′) ⊂ S𝒖 by the linearity
of the reduction we obtain ℎ = ℎ rem(G𝒖) = ℎ′ rem(G𝒖) = ℎ′. □

3 BI-INDEXED SEQUENCES

In this section, we restrict ourselves to C-recursive bi-indexed se-
quences 𝒗 = (𝑣𝑖, 𝑗)𝑖, 𝑗∈N. We denote by 𝑑𝑥 , 𝑑𝑦 ∈ N the exponents
satisfying 𝑥𝑑𝑥 , 𝑦𝑑𝑦 ∈ lm (G𝒗).

3.1 Hankel matrix and LU decomposition

For a bi-indexed sequence 𝒗 and 𝑗 ∈ N, we note the sub-sequences
𝒗∗, 𝑗 = (𝑣𝑖, 𝑗)𝑖∈N ∈ KN. Sub-sequences does not necessarily contain
enough information to recover the ideal 𝐼 (𝒗) ∩ K[𝑥].
Example 3.1.1. Let 𝒗 = ((−1)𝑖 𝑗)𝑖, 𝑗∈N, then 𝐼 (𝒗∗, 𝑗) = ⟨𝑥 − (−1) 𝑗 ⟩,
but 𝐼 (𝒗) ∩ K[𝑥] = ⟨𝑥2 − 1⟩.

To overcome the problem posed by Ex. 3.1.1, we make the fol-
lowing assumption on the sequence 𝒗.

Assumption A. The matrixHS𝒗 defined in §2.3 for the bi-indexed

sequence 𝒗 admits a LU decomposition.

For amatrixM ∈ K𝑛×𝑛 , the principal 𝑟×𝑟 submatrixM𝑟 ∈ K𝑟×𝑟
is the matrix built from the first 𝑟 rows and columns ofM. Recall
that an invertible matrixM ∈ K𝑛×𝑛 admits a LU decomposition iff
for 1 ≤ 𝑟 ≤ 𝑛, the submatrixM𝑟 is invertible.

ConsiderHS𝒗 = 𝐿𝑈 with 𝐿 a lower triangular matrix with ones
on the diagonal and𝑈 an upper triangular matrix. We note the rows
of 𝐿−1 =

[
ℓ𝑚

]
𝑚∈S𝒗 with ℓ𝑚 ∈ K1×|S𝒗 | . We note 𝑝𝑚 ∈ K[𝑥,𝑦] the

polynomial representing ℓ𝑚 in the basisS𝒗 . The matrix 𝐿−1 is lower
triangular with ones on its diagonal, so lt (𝑝𝑚) =𝑚 for all𝑚 ∈ S𝒗 .
For 𝑦 𝑗 ∈ S𝒗 , we denote by 𝒗 (𝑗) the sequence 𝑝𝑦 𝑗 ★ 𝒗.

Lemma 3.1.2. For 0 ≤ 𝑗 < 𝑑𝑦 , 𝒗 (𝑗) satisfies 𝒗
(𝑗)
∗,𝑘 = 0, for 0 ≤ 𝑘 < 𝑗 .

Proof. Let 𝑖 ∈ N, 𝑘 < 𝑗 and consider the term 𝒗 (𝑗)
𝑖,𝑘

of 𝒗 (𝑗) . By
construction, the row of 𝑈 indexed by 𝑦 𝑗 contains terms of 𝒗 (𝑗)

and in particular (𝒗 (𝑗))𝑟,𝑠 = 0 for (𝑟, 𝑠) ∈ E𝒗,≺(0, 𝑗) . Now, since
𝒗 (𝑗)
𝑖,𝑘

= (𝑥𝑖𝑦𝑘 ★ 𝒗 (𝑗))0,0 = ((𝑥𝑖𝑦𝑘 rem(G𝒗)) ★ 𝒗 (𝑗))0,0, we express
𝒗 (𝑗)
𝑖,𝑘

as a linear combination of 𝒗 (𝑗)𝑟,𝑠 = 0 for (𝑟, 𝑠) ∈ E𝒗,≺(0, 𝑗) . □

Lemma 3.1.3. Let 𝑗 ∈ N and 𝑡 ∈ K[𝑥,𝑦] such that (𝑡 ★ 𝒗)𝑟,𝑠 = 0
for (𝑟, 𝑠) ∈ E𝒗,≺(0, 𝑗) . If deg𝑦 (𝑡) < 𝑗 , then 𝑡 ∈ 𝐼 (𝒗). Otherwise, if
lt (𝑡) = 𝑦 𝑗 for 0 ≤ 𝑗 < 𝑑𝑦 , then 𝑝𝑦 𝑗 = 𝑡 rem(G𝒗).

Proof. Let HS𝒗,≺𝑦𝑗
be the principal submatrix of HS𝒗 with

rows indexed byS𝒗,≺𝑦 𝑗 and columns by (𝑒𝒊)𝒊∈E𝒗,≺(0, 𝑗) . If deg𝑦 (𝑡) <
𝑗 , we can represent the polynomial 𝑡 ≔ 𝑡 rem(G𝒗) by a vector ℓ
in the basis S𝒗,≺𝑦 𝑗 . Since (𝑡 ★ 𝒗)𝑟,𝑠 = 0 for (𝑟, 𝑠) ∈ E𝒗,≺(0, 𝑗) , ℓ
satisfies ℓHS𝒗,≺𝑦𝑗

= 0. As 𝒗 satisfies Asm. A,HS𝒗,≺𝑦𝑗
is invertible

so ℓ = 0, and 𝑡 ∈ 𝐼 (𝒗). Now, if lt (𝑡) = 𝑦 𝑗 for 0 ≤ 𝑗 < 𝑑𝑦 , then
𝑡 ≔ 𝑡 − 𝑝𝑦 𝑗 satisfies the hypotheses and deg𝑦 (𝑡) < 𝑗 , so 𝑡 ∈ 𝐼 (𝑢)
and 𝑝𝑦 𝑗 = 𝑝𝑦 𝑗 rem(G𝒗) = 𝑡 rem(G𝒗). □

, , J. Berthomieu, R. Lebreton, and K. Tran

Theorem 3.1.4. The family P = {𝑥𝑖𝑝𝑦 𝑗 | 𝑥𝑖𝑦 𝑗 ∈ S𝒗} is a basis of
K[𝑥,𝑦]/𝐼 (𝒗) as K-vector space.

Proof. Let 𝑥𝑖𝑦 𝑗 ∈ S𝒗 and consider 𝑔 = 𝑥𝑖𝑝𝑦 𝑗 rem(G𝒗). Since
lt (𝑥𝑖𝑝𝑦 𝑗) = 𝑥𝑖𝑦 𝑗 ∈ S𝒗 , we have 𝑔 = 𝑥𝑖𝑦 𝑗 +∑(𝑟,𝑠) ∈E𝒗,≺(𝑖,𝑗) 𝑐𝑟,𝑠𝑥𝑟𝑦𝑠 .
Hence, the change-of-basis matrix between the bases S𝒗 and P is
lower triangular with ones on its diagonal. □

We define the matrix HP representing the application 𝜙 (see
§2.3) with row basis P and column basis F defined in §2.3.

Lemma 3.1.5. The matrix HP is block upper triangular and its

diagonal blocks are invertible, i.e.

HP =



H0 H1 · · · H𝑑𝑦−1

0 H (1)1 · · · H (1)
𝑑𝑦−1

...
. . .

. . .
...

0 0 · · · H (𝑑𝑦−1)
𝑑𝑦−1


Proof. For 0 ≤ 𝑗 < 𝑑𝑦 , the 𝑗th row block starts with 𝑗 zero

matrices since 𝒗 (𝑗)∗,𝑘 = 0 for 0 ≤ 𝑘 < 𝑗 from Lm. 3.1.2 thus the matrix
HP is block upper triangular matrix. The matrixHP is invertible
since the linear application 𝜙 is an isomorphism, hence the block
diagonal matricesH (𝑗)

𝑗
are invertible. □

Theorem 3.1.6. For 0 ≤ 𝑗 < 𝑑𝑦 and 𝑑 𝑗 ∈ N, there exists 𝑔 ∈ 𝐼 (𝒗) s.t.
lm (𝑔) = 𝑥𝑑 𝑗𝑦 𝑗 iff there exists 𝑓𝑗 ∈ 𝐼 (𝒗 (𝑗)) ∩ K[𝑥] s.t. lm (𝑓𝑗) = 𝑥𝑑 𝑗

.

Proof. Let 𝑓𝑗 ∈ 𝐼 (𝒗 (𝑗)) ∩K[𝑥] with lm (𝑓𝑗) = 𝑥𝑑 𝑗 , by definition
0 = 𝑓𝑗 ★ 𝒗 (𝑗) = (𝑓𝑗𝑝𝑦 𝑗) ★ 𝒗 so 𝑔 = 𝑓𝑗𝑝𝑦 𝑗 ∈ 𝐼 (𝒗) and lm (𝑔) = 𝑥𝑑 𝑗𝑦 𝑗 .

Let𝑔 ∈ 𝐼 (𝒗) with lm (𝑔) = 𝑥𝑑 𝑗𝑦 𝑗 ∉ S𝒗 by definition. Consider the
sequence (𝑥𝑑 𝑗 𝑝𝑦 𝑗)★𝒗 = 𝑥𝑑 𝑗 ★𝒗 (𝑗) from Lm. 3.1.2 we have for 𝑘 < 𝑗 ,

(𝑥𝑑 𝑗 ★𝒗 (𝑗))∗,𝑘 = 0. From Lm. 3.1.5, the matrixH (𝑗)
𝑗

is invertible, so
there exists a polynomial 𝑓 ∈ K[𝑥] with supp(𝑓 𝑦 𝑗) ⊂ S𝒗 satisfying
(𝑓 ★ 𝒗 (𝑗))𝑟, 𝑗 = (𝑥𝑑 𝑗 ★ 𝒗 (𝑗))𝑟, 𝑗 for (𝑟, 𝑗) ∈ E𝒗 . By construction,
the polynomial 𝑡 = (𝑥𝑑 𝑗 − 𝑓)𝑝𝑦 𝑗 is such that (𝑡 ★ 𝒗)𝑟,𝑠 = 0 for
(𝑟, 𝑠) ∈ E𝒗,≺(0, 𝑗+1) and deg𝑦 (𝑡) = 𝑗 . So by Lm. 3.1.3, 𝑡 ∈ 𝐼 (𝒗) and
𝑓𝑗 = 𝑥𝑑 𝑗 − 𝑓 ∈ 𝐼 (𝒗 (𝑗)). Note that 𝑥𝑑 𝑗𝑦 𝑗 ∉ S𝒗 and supp(𝑓 𝑦 𝑗) ⊂ S𝒗 ,
so lm ((𝑥𝑑 𝑗 − 𝑓)𝑝𝑦 𝑗) = lm (𝑥𝑑 𝑗 𝑝𝑦 𝑗) = 𝑥𝑑 𝑗𝑦 𝑗 and lm (𝑓𝑗) = 𝑥𝑑 𝑗 . □

Theorem 3.1.7. For 0 ≤ 𝑗 < 𝑑𝑦 , the sequence 𝒗
(𝑗)
∗, 𝑗 ∈ K

N
is such

that 𝐼 (𝒗 (𝑗)∗, 𝑗) =
⋂

𝑘≥ 𝑗 𝐼 (𝒗
(𝑗)
∗,𝑘) i.e. 𝒗

(𝑗)
∗,𝑘 ∈ L

𝒗 (𝑗)∗, 𝑗
for 𝑘 ≥ 𝑗 .

Proof. The inclusion
⋂

𝑘≥ 𝑗 𝐼 (𝒗
(𝑗)
∗,𝑘) ⊂ 𝐼 (𝒗 (𝑗)∗, 𝑗) is direct. For the

reverse inclusion, let 𝑔 ∈ 𝐼 (𝒗 (𝑗)∗, 𝑗). The polynomial 𝑡 = 𝑔𝑝𝑦 𝑗 is
such that (𝑡 ★ 𝒗)𝑟,𝑠 = 0 for (𝑟, 𝑠) ∈ E𝒗,≺(0, 𝑗+1) , since it is zero
for 𝑠 < 𝑗 by Lm. 3.1.2, and for 𝑠 = 𝑗 by definition of 𝑔. Since
deg𝑦 (𝑡) ≤ 𝑗 (as lt (𝑝𝑦 𝑗) = 𝑦 𝑗), we have 𝑡 ∈ 𝐼 (𝒗) using Lm. 3.1.3,

and thus 𝑔 ★ 𝒗 (𝑗) = 𝑡 ★ 𝒗 = 0 so 𝑔 ∈ ⋂𝑘≥ 𝑗 𝐼 (𝒗
(𝑗)
∗,𝑘). □

From this property, we can find a relation between the sequences
(𝒗 (𝑗))0≤ 𝑗≤𝑑𝑦 with 𝒗 (𝑑𝑦) = 0.

Theorem 3.1.8. For 0 ≤ 𝑗 < 𝑑𝑦 , we have 𝒗
(𝑗+1)
∗, 𝑗+1 ∈ L

𝒗 (𝑗)∗, 𝑗
and there

exists (𝑎 𝑗 , 𝑏 𝑗) ∈ K[𝑥]2 with supp(𝑎 𝑗) ⊂ S𝒗 (𝑗−1)
∗, 𝑗−1

and supp(𝑏 𝑗) ⊂

S
𝒗 (𝑗)∗, 𝑗

satisfying 𝒗 (𝑗+1) = 𝑎 𝑗 ★ 𝒗 (𝑗−1) + (𝑦 − 𝑏 𝑗) ★ 𝒗 (𝑗) if 𝑗 ≠ 0 and

𝒗 (1) = (𝑦 − 𝑏0) ★ 𝒗 if 𝑗 = 0.
Proof. We prove the statement by induction on 𝑗 . For 𝑗 = 0, we

have by definition 𝒗 (1) = 𝑝𝑦★𝒗 with lt (𝑝𝑦) = 𝑦 and supp(𝑝𝑦) ⊂ S𝒗
so 𝑝𝑦 = 𝑦−𝑏0 with supp(𝑏0) ⊂ S𝒗∗,0 . From this relation, we deduce
that 𝒗 (1)∗,1 = 𝒗∗,0 − 𝑏0 ★ 𝒗∗,1 and by Thm. 3.1.7 it results that 𝒗 (1)∗,1 ∈
L𝒗∗,0 . For 1 ≤ 𝑗 < 𝑑𝑦−1, we suppose that the statement is true at step
𝑗−1 and prove that it holds at step 𝑗 . Consider (𝑎 𝑗 , 𝑏 𝑗) ∈ K[𝑥]2 with
supp(𝑎 𝑗) ⊂ S𝒗 (𝑗−1)

∗, 𝑗−1
and supp(𝑏 𝑗) ⊂ S𝒗 (𝑗)∗, 𝑗

satisfying 𝑎 𝑗 ★ 𝒗 (𝑗−1)
∗, 𝑗−1 =

−𝒗 (𝑗)∗, 𝑗 and 𝑎 𝑗 ★𝒗
(𝑗−1)
∗, 𝑗 +𝒗 (𝑗)∗, 𝑗+1 = 𝑏 𝑗 ★𝒗

(𝑗)
∗, 𝑗 . There exists 𝑎 𝑗 satisfying

the first equality by the induction hypothesis 𝒗 (𝑗)∗, 𝑗 ∈ L
𝒗 (𝑗−1)
∗, 𝑗−1

. For

𝑏 𝑗 , by Thm. 3.1.7 we have 𝑎 𝑗 ★ 𝒗 (𝑗−1)
∗, 𝑗 ∈ L

𝑎 𝑗★𝒗
(𝑗−1)
∗, 𝑗−1

= L
𝒗 (𝑗)∗, 𝑗

hence

from Thm. 2.3.4 we can find 𝑏 𝑗 satisfying the conditions. Let𝒘 =

𝑎 𝑗 ★𝒗 (𝑗−1) + (𝑦−𝑏 𝑗)★𝒗 (𝑗) . By construction of𝒘 , we have𝒘∗,𝑘 = 0
for 𝑘 < 𝑗 + 1 and 𝒘 = 𝑡 ★ 𝒗 with 𝑡 = (𝑎 𝑗𝑝𝑦 𝑗−1 + (𝑦 − 𝑏 𝑗)𝑝𝑦 𝑗).
If 𝑗 ≠ 𝑑𝑦 − 1 then by Lm. 3.1.3 since lt (𝑡) = 𝑦 𝑗+1 we deduce
that 𝑝𝑦 𝑗+1 = 𝑡 rem(G𝒗) and 𝒗 (𝑗+1) = 𝒘 , otherwise if 𝑗 = 𝑑𝑦 − 1
then 𝒘∗,𝑘 = 0 for 𝑘 ≤ 𝑑𝑦 so 𝒘 = 0 = 𝒗 (𝑑𝑦) . Finally, the relation
𝒗 (𝑗+1)∗, 𝑗+1 = 𝑎 𝑗 ★ 𝒗 (𝑗−1)

∗, 𝑗+1 + 𝒗
(𝑗)
∗, 𝑗 − 𝑏 𝑗 ★ 𝒗 (𝑗)∗, 𝑗+1 gives 𝒗

(𝑗+1)
∗, 𝑗+1 ∈ L

𝒗 (𝑗)∗, 𝑗
with

the same arguments used to prove the existence of 𝑏 𝑗 . □

Lemma 3.1.9. For 0 ≤ 𝑗 < 𝑑𝑦 , if we define

[
𝑠 𝑗 𝑡 𝑗

𝑠 𝑗+1 𝑡 𝑗+1

]
= 𝑄 𝑗 · · ·𝑄0

with 𝑄𝑘 =

[0 1
𝑎𝑘 𝑦−𝑏𝑘

]
then 𝑝𝑦 𝑗 = 𝑡 𝑗 rem(G𝒗) and 𝑡𝑑𝑦 ∈ 𝐼 (𝒗).

Proof. For 0 ≤ 𝑗 < 𝑑𝑦 , we have
[

𝒗 (𝑗)

𝒗 (𝑗+1)

]
= 𝑄 𝑗 · · ·𝑄1

[
𝒗 (0)

𝒗 (1)

]
. If

we note𝑅 𝑗 = 𝑄 𝑗 · · ·𝑄1 =

[
𝛼 𝑗 𝛽 𝑗

𝛾 𝑗 𝛿 𝑗

]
then

[
𝑠 𝑗 𝑡 𝑗

𝑠 𝑗+1 𝑡 𝑗+1

]
= 𝑅 𝑗

[0 1
𝑎0 (𝑦−𝑏0)

]
and 𝑡 𝑗 = 𝛼 𝑗 + (𝑦 − 𝑏0)𝛽 𝑗 . From Thm. 3.1.8, we have 𝒗 (1) = (𝑦 −
𝑏0) ★ 𝒗 (0) so 𝑡 𝑗 ★ 𝒗 = 𝛼 𝑗 ★ 𝒗 + 𝛽 𝑗 ★ 𝒗 (1) = 𝒗 (𝑗) . By the same rea-
soning, we obtain 𝑡 𝑗+1 ★ 𝒗 = 𝒗 (𝑗+1) . Therefore, (𝑝𝑦 𝑗 − 𝑡 𝑗) ★ 𝒗 = 0
so (𝑝𝑦 𝑗 − 𝑡 𝑗 rem(G𝒗)) = 0 and by linearity of the reduction we get
𝑝𝑦 𝑗 = 𝑝𝑦 𝑗 rem(G𝒗) = 𝑡 𝑗 rem(G𝒗). For 𝑗 = 𝑑𝑦 , we have 𝒗 (𝑑𝑦) = 0 =

𝑡𝑑𝑦 ★ 𝒗 so 𝑡𝑑𝑦 ∈ 𝐼 (𝒗). □

3.2 Pseudo-Euclidean division

In this subsection, following [11, Sec. 6], we work with polynomials
inKN [𝑦], the setKN is not a ring but is aK-vector space. We define
an arithmetic on KN [𝑦] that mimics the action ★ on sequences.
Definition 3.2.1. Let 𝑟 =

∑𝐷
𝑗=0 𝑟 𝑗𝑦

𝑗 ∈ KN [𝑦]. We define two opera-

tions: for 𝑔 ∈ K[𝑥], 𝑔 · 𝑟 = ∑𝐷
𝑗=0 (𝑔★ 𝑟 𝑗)𝑦 𝑗 and 𝑦𝑑 · 𝑟 =

∑𝐷
𝑗=0 𝑟 𝑗𝑦

𝑗+𝑑

and extend linearly the operation · for polynomials in K[𝑥,𝑦].
As in the uni-indexed case, our goal is to reduce the guessing

problem to the computation of successive remainders for that we
define a pseudo-Euclidean division in KN [𝑦].
Theorem 3.2.2. Let 𝑓 =

∑𝑑
𝑗=0 𝑓𝑗𝑦

𝑗
and 𝑔 =

∑𝑑−1
𝑗=0 𝑔 𝑗𝑦

𝑗
be two

polynomials in KN [𝑦] of respective degree 𝑑 and 𝑑 − 1 with 𝑑 ≥ 1.
If (𝑖) 𝑔𝑑−1 ∈ L𝑓𝑑 , (𝑖𝑖) 𝑓𝑑−1 ∈ L𝑓𝑑 , (𝑖𝑖𝑖) 𝑔𝑑−2 ∈ L𝑔𝑑−1 with 𝑓𝑑 C-

recursive then ∃!(𝑎, 𝑏) ∈ K[𝑥]2 with supp(𝑎) ⊂ S𝑓𝑑 and supp(𝑏) ⊂
S𝑔𝑑−1 satisfying 𝑎 · 𝑓 = (−𝑦 + 𝑏) · 𝑔 + 𝑟 with deg𝑦 (𝑟) < deg𝑦 (𝑔).

Quasi-Linear Guessing of Minimal Lexicographic Gröbner Bases of C-Relations of Random Bi-Indexed Sequences , ,

When the conditions (𝑖), (𝑖𝑖), (𝑖𝑖𝑖) of the previous theorem are
satisfied, we say that the pseudo-Euclidean division of 𝑓 by 𝑔 is
well-defined and that its result is (𝑎, 𝑏, 𝑟).

Proof. Consider such polynomials 𝑓 , 𝑔 ∈ KN [𝑦], since 𝑔𝑑−1 ∈
L𝑓𝑑 from Thm. 2.3.4 there exists a unique polynomial 𝑎 ∈ K[𝑥]
with supp(𝑎) ⊂ S𝑓𝑑 such that 𝑔𝑑−1 = −𝑎 ★ 𝑓𝑑 . We can construct
𝑔 = 𝑎 · 𝑓 +𝑦 ·𝑔 =

∑𝑑−1
𝑗=1 (𝑎★𝑓𝑗 +𝑔 𝑗−1)𝑦 𝑗 +𝑎★𝑓0. If deg𝑦 (𝑔) < 𝑑−1, then

𝑔 = 𝑟 and the pair (𝑎, 𝑏) = (𝑎, 0) satisfies the conditions. Otherwise,
we have lc (𝑔) = 𝑎★ 𝑓𝑑−1 +𝑔𝑑−2 since 𝑎★ 𝑓𝑑−1 ∈ L𝑎★𝑓𝑑 = L𝑔𝑑−1 and
𝑔𝑑−2 ∈ L𝑔𝑑−1 we deduce that lc (𝑔) ∈ L𝑔𝑑−1 . From Thm. 2.3.4, there
exists a unique polynomial 𝑏 ∈ K[𝑥] with supp(𝑏) ⊂ S𝑔𝑑−1 such
that lc (𝑔) = 𝑏 ★𝑔𝑑−1. Hence, by construction 𝑟 = 𝑎 · 𝑓 + (𝑦 − 𝑏) · 𝑔
has degree < deg𝑦 (𝑔). For the uniqueness of (𝑎, 𝑏), consider (𝑎′, 𝑏′)
another pair, which gives deg𝑦 ((𝑎−𝑎′) · 𝑓 + (𝑏′ −𝑏) ·𝑔) < deg𝑦 (𝑔).
So, (𝑎−𝑎′)★ 𝑓𝑑 = 0 and 𝑎 = 𝑎′ by Thm. 2.3.4. Finally, we must have
(𝑏 − 𝑏′) ★𝑔𝑑−1 = 0, so 𝑏 = 𝑏′ again by Thm. 2.3.4. □

Definition 3.2.3. For 0 ≤ 𝑗 < 𝑑𝑦 , we consider the reverse truncated

formal power series 𝑆 𝑗 =
∑𝐷𝑦

𝑘=𝑗
𝒗 (𝑗)∗,𝑘 𝑦

𝐷𝑦−𝑘
representing the sequence

𝒗 (𝑗) at precision 𝐷𝑦 with 𝐷𝑦 ≥ 2𝑑𝑦 . Also, we note 𝑆−1 = 𝒗 (0)∗,0 𝑦
𝐷𝑦+1

.

Lemma 3.2.4. For 0 ≤ 𝑗 < 𝑑𝑦 , the pseudo-Euclidean division of

𝑆 𝑗−1 by 𝑆 𝑗 is well-defined.

Proof. For 1 ≤ 𝑗 < 𝑑𝑦 , from Thms. 3.1.7 and 3.1.8 and the con-
struction of 𝑆 𝑗−1 and 𝑆 𝑗 we deduce that the hypotheses of Thm. 3.2.2
are satisfied. For 𝑗 = 0, by construction of 𝑆−1 the hypotheses of
Thm. 3.2.2 are also satisfied. Hence for 0 ≤ 𝑗 < 𝑑𝑦 , the pseudo-
Euclidean division of 𝑆 𝑗−1 by 𝑆 𝑗 is well-defined. □

The remainder of the pseudo-Euclidean division of 𝑆 𝑗−1 by 𝑆 𝑗 is
not exactly 𝑆 𝑗+1 but has the same leading terms.

Definition 3.2.5 ([22, §11.1]). For a polynomial 𝑝 =
∑𝑑

𝑗=0 𝑝 𝑗𝑦
𝑗 ∈

KN [𝑦] of degree 𝑑 in 𝑦 and 𝑘 ≤ 𝑑 , we note 𝑝↾𝑘=
∑𝑘

𝑗=0 𝑝𝑑− 𝑗𝑦
𝑘− 𝑗

and

𝑝↾𝑘= 𝑦𝑘−𝑑𝑝 when 𝑘 > 𝑑 .

Lemma 3.2.6. Let 𝑘 ≥ 1. For 𝑔 ∈ K[𝑥,𝑦] with deg𝑦 (𝑔) = 𝑑 ≤ 𝑘 ≤
deg𝑦 (𝑆0) = 𝐷𝑦 , we have 𝑔 · 𝑆0↾𝑘= 𝑓<𝑑 +

∑𝑘−𝑑
𝑗=0 𝒘∗, 𝑗𝑦𝑘− 𝑗 + 𝑓>𝑘 with

deg𝑦 (𝑓<𝑑) < 𝑑 and 𝑦𝑘+1 divides 𝑓>𝑘 .

Proof. Let 𝑝 = 𝑔 · 𝑆0↾𝑘∈ KN [𝑦]. If we note 𝑔∗,ℓ the polynomial
in K[𝑥] associated to the monomial 𝑦ℓ then from the arithmetic
on KN [𝑦] defined in Def. 3.2.1, we have 𝑝𝑘− 𝑗 =

∑𝑑
ℓ=0 𝑔∗,ℓ ★𝑣∗, 𝑗+ℓ =

(𝑔 ★ 𝒗)∗, 𝑗 for 0 ≤ 𝑗 ≤ 𝑘 − 𝑑 . □

Lemma 3.2.7. For 0 ≤ 𝑗 < 𝑑𝑦−1, if the pseudo-Euclidean division of
𝑆 𝑗−1 by 𝑆 𝑗 is (𝑐 𝑗 , 𝑑 𝑗 , 𝑆 𝑗+1) then we have 𝑐 𝑗 = 𝑎 𝑗 , 𝑑 𝑗 = 𝑏 𝑗 with (𝑎 𝑗 , 𝑏 𝑗)
defined in Thm. 3.1.8 and 𝑆 𝑗+1↾𝐷𝑦−(𝑗+1)−1= 𝑆 𝑗+1↾𝐷𝑦−(𝑗+1)−1.

Proof. For 𝑗 ≠ 0, the leading terms of 𝑆 𝑗−1 are 𝒗
(𝑗−1)
∗, 𝑗−1 𝑦

𝐷𝑦− 𝑗+1+
𝒗 (𝑗−1)
∗, 𝑗−2 𝑦

𝐷𝑦− 𝑗 and similarly for 𝑆 𝑗 we deduce from the proof of
Thm. 3.2.2 that 𝑐 𝑗 = 𝑎 𝑗 and 𝑑 𝑗 = 𝑏 𝑗 . For 𝑗 = 0, we have 𝑆−1 =

𝒗∗,0𝑦𝐷𝑦+1 and 𝑆0 has leading terms 𝒗∗,0𝑦𝐷𝑦 + 𝒗∗,1𝑦𝐷𝑦−1 so we de-
duce that 𝑐0 = 𝑎0 and 𝑑0 = 𝑏0.

For 1 ≤ 𝑗 < 𝑑𝑦 − 1, we have on the one hand the relation
𝒗 (𝑗+1)∗,𝑘 = 𝑎 𝑗 ★𝒗 (𝑗−1)

∗,𝑘 + 𝒗 (𝑗)∗,𝑘−1 − 𝑏 𝑗 ★𝒗 (𝑗)∗,𝑘 for 𝑘 > 0 from Thm. 3.1.8.

On the other hand, we have 𝑆 𝑗+1 = 𝑎 𝑗𝑆 𝑗−1 + (𝑦 −𝑏 𝑗)𝑆 𝑗 which gives
𝑆 𝑗+1 = (𝑎 𝑗 ★𝒗 (𝑗−1)

∗, 𝑗−1 +𝒗
(𝑗)
∗, 𝑗)𝑦

𝐷𝑦− 𝑗+1 +∑𝐷𝑦−1
𝑘=𝑗

(𝑎 𝑗 ★𝒗 (𝑗−1)
∗,𝑘 +𝒗 (𝑗)∗,𝑘−1−

𝑏 𝑗 ★ 𝒗 (𝑗)∗,𝑘)𝑦
𝐷𝑦−𝑘 + (𝑎 𝑗 ★ 𝒗 (𝑗−1)

∗,𝐷𝑦
− 𝑏 𝑗 ★ 𝒗 (𝑗)∗,𝐷𝑦

). By definition of 𝑎 𝑗
and from Thm. 3.1.8, we deduce that deg𝑦 (𝑆 𝑗+1) = 𝐷𝑦 − 𝑗 − 1 thus
𝑆 𝑗+1↾𝐷𝑦−(𝑗+1)−1= 𝑆 𝑗+1↾𝐷𝑦−(𝑗+1)−1. For 𝑗 = 0, we apply the same
arguments and obtain 𝑆1↾𝐷𝑦−2= 𝑆1↾𝐷𝑦−2. □

For the purposes of Lms. 3.2.8 and 3.2.9, let 𝑟0, 𝑟1, 𝑟 ′0, 𝑟
′
1 ∈ K

N [𝑦]
and 𝑘 ≥ 1 such that 𝑟0↾2𝑘= 𝑟 ′0↾2𝑘 and 𝑟1↾2𝑘−1= 𝑟 ′1↾2𝑘−1. Assume
that𝑑 ≔ deg𝑦 (𝑟0) = deg𝑦 (𝑟1)+1 and𝑑′ ≔ deg𝑦 (𝑟 ′0) = deg𝑦 (𝑟 ′1)+1.

Lemma3.2.8. Suppose that the pseudo-Euclidean division (𝑎1, 𝑏1, 𝑟2)
of 𝑟0 by 𝑟1 is well-defined, and that deg𝑦 (𝑟2) = 𝑑−2. Then, the pseudo-
Euclidean division (𝑎′1, 𝑏

′
1, 𝑟
′
2) of 𝑟

′
0 by 𝑟 ′1 is also well-defined, and

satisfies 𝑎1 = 𝑎′1, 𝑏1 = 𝑏′1, and 𝑟2↾2(𝑘−1)−1= 𝑟 ′2↾2(𝑘−1)−1. Moreover,

deg𝑦 (𝑟 ′2) = 𝑑′ − 2 provided that 𝑘 ≥ 2.

Proof. By assumption, the two leading terms of 𝑟0 and 𝑟 ′0 match,
and the same for 𝑟1 and 𝑟 ′1. Yet, the conditions (𝑖), (𝑖𝑖), (𝑖𝑖𝑖) of
Thm. 3.2.2 which determine if a pseudo-Euclidean division is well-
defined only depends on the two leading terms of the dividend and
the divisor. In fact, 𝑎1, 𝑏1 only depend on those same two leading
terms. As a consequence, the pseudo-Euclidean division of 𝑟 ′0 by 𝑟 ′1
is well-defined, and 𝑎1 = 𝑎′1, 𝑏1 = 𝑏′1.

Assume w.l.o.g. 𝑑′ ≤ 𝑑 . The hypothesis 𝑟0 ↾2𝑘= 𝑟 ′0 ↾2𝑘 can be
rewritten as deg𝑦 (𝑟0 − 𝑟 ′0𝑦

𝑑−𝑑 ′) ≤ 𝑑 − 2𝑘 − 1. Likewise, deg𝑦 (𝑟1 −
𝑟 ′1𝑦

𝑑−𝑑 ′) ≤ 𝑑 − 2𝑘 − 1. Considering that 𝑟2 = 𝑎1𝑟0 + (𝑦 − 𝑏1)𝑟1
and similarly for 𝑟 ′2, we obtain that deg𝑦 (𝑟2 − 𝑟 ′2𝑦

𝑑−𝑑 ′) ≤ 𝑑 − 2𝑘 .
Whenever 𝑘 ≥ 2, deg𝑦 (𝑟2) = 𝑑 − 2 > 𝑑 − 2𝑘 ≥ deg𝑦 (𝑟2 − 𝑟 ′2𝑦

𝑑−𝑑 ′),
which can only happen when deg𝑦 (𝑟2) = deg𝑦 (𝑟 ′2) + 𝑑 − 𝑑

′, i.e.
deg𝑦 (𝑟 ′2) = 𝑑′ − 2, and 𝑟2↾2(𝑘−1)−1= 𝑟 ′2↾2(𝑘−1)−1. □

Lemma 3.2.9. Suppose that the first 𝑘 pseudo-Euclidean divisions

(𝑎 𝑗 , 𝑏 𝑗 , 𝑟 𝑗+1)1≤ 𝑗≤𝑘 starting from 𝑟0 and 𝑟1 are well-defined, and that

deg𝑦 (𝑟 𝑗) = 𝑑 − 𝑗 for 1 ≤ 𝑗 ≤ 𝑘 .

Then the first 𝑘 pseudo-Euclidean divisions (𝑎′
𝑗
, 𝑏′

𝑗
, 𝑟 ′

𝑗+1)1≤ 𝑗≤𝑘
starting from 𝑟 ′0 and 𝑟 ′1 are also well-defined, and 𝑎 𝑗 = 𝑎′

𝑗
, 𝑏 𝑗 =

𝑏′
𝑗
, deg𝑦 (𝑟 ′𝑗) = 𝑑′ − 𝑗 for 1 ≤ 𝑗 ≤ 𝑘 . Moreover, 𝑟 𝑗+1 ↾2(𝑘− 𝑗)−1=

𝑟 ′
𝑗+1↾2(𝑘− 𝑗)−1 for 1 ≤ 𝑗 < 𝑘 .

Proof. Let us prove this statement by induction on 𝑘 . The base
case 𝑘 = 1 is a direct consequence of Lm. 3.2.8. For the induction
step, suppose that 𝑘 ≥ 2 and that the lemma holds for 𝑘−1. Lm. 3.2.8
states that the first pseudo-Euclidean divisions (𝑎′1, 𝑏

′
1, 𝑟
′
2) starting

from 𝑟 ′0 and 𝑟 ′1 is well-defined, deg𝑦 (𝑟 ′2) = 𝑑′ − 2, 𝑎′1 = 𝑎1, 𝑏′1 = 𝑏1,
and 𝑟2↾2(𝑘−1)−1= 𝑟 ′2↾2(𝑘−1)−1. It remains to apply our induction
hypothesis to 𝑘 − 1 and 𝑟1, 𝑟2, 𝑟 ′1, 𝑟

′
2 to conclude. □

If the 𝑘 pseudo-Euclidean divisions (𝑎 𝑗 , 𝑏 𝑗 , 𝑟 𝑗+1)0≤ 𝑗<𝑘 starting
from 𝑟−1 and 𝑟0 are well-defined then we have for 0 ≤ 𝑗 < 𝑘 the
matrix relations

[
𝑟 𝑗
𝑟 𝑗+1

]
= 𝑄 𝑗

[
𝑟 𝑗−1
𝑟 𝑗

]
where 𝑄 𝑗 ≔

[
0 1
𝑎 𝑗 𝑦−𝑏 𝑗

]
. Thus,

, , J. Berthomieu, R. Lebreton, and K. Tran[
𝑟 𝑗
𝑟 𝑗+1

]
= 𝑄 𝑗 · · ·𝑄0

[𝑟−1
𝑟0

]
and by defining

[
𝑠 𝑗 𝑡 𝑗
𝑠 𝑗+1 𝑡 𝑗+1

]
= 𝑄 𝑗 · · ·𝑄0,

we have 𝑠 𝑗𝑟−1 + 𝑡 𝑗𝑟0 = 𝑟 𝑗 for 0 ≤ 𝑗 ≤ 𝑘 .

Theorem 3.2.10. Let 𝑘 ≥ 1, 2𝑘 − 1 ≤ 𝐷𝑦 and 𝑟−1, 𝑟0 ∈ KN [𝑦]
such that 𝑟−1 = 𝑆−1↾2𝑘 and 𝑟0 = 𝑆0↾2𝑘−1. Then, for all 0 ≤ 𝑗 <

min(𝑘,𝑑𝑦) −1, the pseudo-Euclidean division (𝑎 𝑗 , 𝑏 𝑗 , 𝑟 𝑗+1) of 𝑟 𝑗−1 by

𝑟 𝑗 is well-defined, 𝑎 𝑗 = 𝑎 𝑗 and 𝑏 𝑗 = 𝑏 𝑗 defined in Thm. 3.1.8, and also

𝑟 𝑗↾2(𝑘− 𝑗−1)= 𝑆 𝑗↾2(𝑘− 𝑗−1) and 𝑟 𝑗+1↾2(𝑘− 𝑗−1)−1= 𝑆 𝑗+1↾2(𝑘− 𝑗−1)−1
with deg𝑦 (𝑟 𝑗+1) = deg𝑦 (𝑟0) − (𝑗 + 1). When 𝑗 = 𝑑𝑦 − 1 and 2𝑘 − 1 ≥
2𝑑𝑦 , the pseudo-Euclidean division (𝑎𝑑𝑦−1, 𝑏𝑑𝑦−1, 𝑟𝑑𝑦) on 𝑟𝑑𝑦−2 by
𝑟𝑑𝑦−1 is well-defined and deg𝑦 (𝑟𝑑𝑦) < deg𝑦 (𝑟0) − 𝑑𝑦 .

Proof. We prove by induction for 0 ≤ 𝑗 < min(𝑘,𝑑𝑦) − 1
that the pseudo-Euclidean division (𝑎 𝑗 , 𝑏 𝑗 , 𝑟 𝑗+1) of 𝑟 𝑗−1 by 𝑟 𝑗 is
well-defined and 𝑟 𝑗↾2(𝑘− 𝑗−1)= 𝑆 𝑗↾2(𝑘− 𝑗−1) and 𝑟 𝑗+1↾2(𝑘− 𝑗−1)−1=
𝑆 𝑗+1↾2(𝑘− 𝑗−1)−1. For 𝑗 > 0, we suppose that the statement is true
at step 𝑗 − 1 and we prove that it holds at step 𝑗 . For every 𝑗 , we
have that 𝑟 𝑗−1↾2(𝑘− 𝑗)= 𝑆 𝑗−1↾2(𝑘− 𝑗) and 𝑟 𝑗↾2(𝑘− 𝑗)−1= 𝑆 𝑗↾2(𝑘− 𝑗)−1
also from Lm. 3.2.7 the pseudo-Euclidean division (𝑎 𝑗 , 𝑏 𝑗 , 𝑆 𝑗+1) of
𝑆 𝑗−1 and 𝑆 𝑗 is well-defined. Since 𝑗 < 𝑘 − 1, we have 𝑘 − 𝑗 ≥ 2
also by construction deg𝑦 (𝑆 𝑗) = deg𝑦 (𝑆 𝑗−1) − 1 so we can apply
Lm. 3.2.8 and get that the pseudo-Euclidean (𝑎 𝑗 , 𝑏 𝑗 , 𝑟 𝑗+1) division
of 𝑟 𝑗−1 by 𝑟 𝑗 is well-defined. On the one hand from Lm. 3.2.8, we
have 𝑟 𝑗+1↾2(𝑘− 𝑗−1)−1= 𝑆 𝑗+1↾2(𝑘− 𝑗−1)−1. On the other hand from
Lm. 3.2.7, we have the equality 𝑆 𝑗+1↾𝐷𝑦−(𝑗+1)−1= 𝑆 𝑗+1↾𝐷𝑦−(𝑗+1)−1.
Since 2𝑘 − 1 ≤ 𝐷𝑦 and 𝑗 ≥ 0, we have 2𝑘 − 1 − 2 𝑗 − 2 ≤ 𝐷𝑦 − 𝑗 − 2
so we conclude that 𝑟 𝑗+1 ↾2(𝑘− 𝑗−1)−1= 𝑆 𝑗+1 ↾2(𝑘− 𝑗−1)−1. Also
from Lm. 3.2.8, we get 𝑎 𝑗 = 𝑎 𝑗 and 𝑏 𝑗 = 𝑏 𝑗 and deg𝑦 (𝑟 𝑗+1) =

deg𝑦 (𝑟0) − (𝑗 + 1).
When 𝑗 = 𝑑𝑦 − 1 and 2𝑘 − 1 ≥ 2𝑑𝑦 and the pseudo-Euclidean

division (𝑎𝑑𝑦−1, 𝑏𝑑𝑦−1, 𝑟𝑑𝑦) of 𝑟𝑑𝑦−2 by 𝑟𝑑𝑦−1 is well-defined by
the same arguments so we have the relation 𝑠𝑑𝑦𝑟−1 + 𝑡𝑑𝑦𝑟0 = 𝑟𝑑𝑦 .
By hypothesis, we have 𝑟0 = 𝑆0↾2𝑘 so from Lm. 3.2.6 we can rewrite
𝑡𝑑𝑦𝑟0 = 𝑓<𝑑𝑦+

∑2𝑘−1−𝑑𝑦
𝑗=0 𝒗

(𝑑𝑦)
∗, 𝑗 𝑦2𝑘−1− 𝑗+𝑓>2𝑘−1 with deg𝑦 (𝑓<𝑑𝑦) <

𝑑𝑦 and 𝑦2𝑘 divides 𝑓>2𝑘−1. We deduce from the division property
that deg𝑦 (𝑟𝑑𝑦) ≤ deg𝑦 (𝑟𝑑𝑦−1) −1 = 2𝑘 −1−𝑑𝑦 so by identification
on the monomial basis we deduce that 𝑠 𝑗𝑟−1 = 𝑓>2𝑘−1 also since
𝒗 (𝑑𝑦) = 0 we have deg𝑦 (𝑟𝑑𝑦) < deg𝑦 (𝑓<𝑑𝑦) < 𝑑𝑦 . Since 2𝑘 − 1 ≥
2𝑑𝑦 , it implies that 𝑑𝑦 ≤ 2𝑘 − 1 − 𝑑𝑦 = deg𝑦 (𝑟0) − 𝑑𝑦 hence
deg𝑦 (𝑟𝑑𝑦) < deg𝑦 (𝑟0) − 𝑑𝑦 . □

3.3 From successive remainders to C-relations

Let 𝑟−1 = 𝑆−1 and 𝑟0 = 𝑆0. The definition of 𝑆−1 is motivated
by Thm. 3.2.2 and Lm. 3.2.6. Consider the successive remainders
(𝑟−1, 𝑟0, . . . , 𝑟𝑑𝑦) and relations 𝑟 𝑗 = 𝑠 𝑗𝑟−1 + 𝑡 𝑗𝑟0.

Lemma 3.3.1. For 0 ≤ 𝑗 < 𝑑𝑦 , we have 𝐼 (lc (𝑟 𝑗)) = (𝐼 (𝒗) : ⟨𝑡 𝑗 ⟩) ∩
K[𝑥] and ⟨1⟩ = K[𝑥] = (𝐼 (𝒗) : ⟨𝑡𝑑𝑦 ⟩) ∩ K[𝑥].

Proof. Let 0 ≤ 𝑗 < 𝑑𝑦 , from Lm. 3.1.9 and Thm. 3.2.10 we have
𝒗 (𝑗) = 𝑡 𝑗 ★ 𝒗 and lc (𝑟 𝑗) = 𝒗 (𝑗)∗, 𝑗 . From Thm. 3.1.7, we deduce that

𝐼 (lc (𝑟 𝑗)) = 𝐼 (𝒗 (𝑗)∗, 𝑗) = 𝐼 (𝒗 (𝑗)) ∩ K[𝑥] = (𝐼 (𝒗) : ⟨𝑡 𝑗 ⟩) ∩ K[𝑥]. Also
from Lm. 3.1.9, since 𝑡𝑑𝑦 ∈ 𝐼 (𝒗) we deduce the equality. □

For 0 ≤ 𝑗 < 𝑑𝑦 , we note 𝑓𝑗 be s.t. ⟨𝑓𝑗 ⟩ = 𝐼 (lc (𝑟 𝑗)) and 𝑓𝑑𝑦 = 1.

Theorem 3.3.2. The set {𝑓𝑗 𝑡 𝑗 }0≤ 𝑗≤𝑑𝑦 is a Gröbner basis of 𝐼 (𝒗).

Proof. We verify that 𝑓𝑗 𝑡 𝑗 ∈ 𝐼 (𝒗) and ⟨lm (𝑓𝑗 𝑡 𝑗)⟩𝑗 = lm (𝐼 (𝒗)).
For 0 ≤ 𝑗 ≤ 𝑑𝑦 , from Lm. 3.3.1 the polynomial 𝑓𝑗 𝑡 𝑗 ∈ 𝐼 (𝒗). For
𝑥𝑟𝑦𝑠 ∈ lm (𝐼 (𝒗)), if 𝑠 ≥ 𝑑𝑦 then 𝑥𝑟𝑦𝑠 = lm (𝑥𝑟𝑦𝑠−𝑑𝑦 𝑡𝑑𝑦). Otherwise,
if 𝑠 < 𝑑𝑦 , by Thm. 3.1.6 we can find 𝑓𝑠 ∈ K[𝑥] such that 𝑓𝑠𝑝𝑦𝑠 ∈ 𝐼 (𝒗)
and lm (𝑓𝑠𝑝𝑦𝑠) = 𝑥𝑟𝑦𝑠 . Since 𝑝𝑦𝑠 = 𝑡𝑠 rem(G𝒗) by Thm. 3.2.10, we
deduce that 𝑓𝑠𝑡𝑠 ∈ 𝐼 (𝒗). Note that since lm (𝑡𝑠) = 𝑦𝑠 = lm (𝑝𝑦𝑠),
𝑓𝑠𝑡𝑠 still has leading term 𝑥𝑟𝑦𝑠 . □

From a Gröbner basis of 𝐼 (𝒗), one can compute a minimal Gröb-
ner basis of 𝐼 (𝒗) with the following corollary.

Corollary 3.3.3. For 1 ≤ 𝑗 ≤ 𝑑𝑦 , either lm (𝑓𝑗 𝑡 𝑗) ∈ lm (G𝒗) or
deg(𝑓𝑗−1) = deg(𝑓𝑗).

Proof. From the definition of minimal Gröbner basis, if ℓ ≠ 𝑗

and lm (𝑓ℓ𝑡ℓ) divides lm (𝑓𝑗 𝑡 𝑗) then ℓ ≤ 𝑗 and deg(𝑓ℓ) ≤ deg(𝑓𝑗). If
(deg(𝑓𝑗)) 𝑗 is a decreasing sequence then it proves the claim.

First, we prove that deg(𝑓𝑗) = min({𝑟 | 𝑥𝑟𝑦 𝑗 ∈ lm (𝐼 (𝒗))}). By
definition ⟨𝑓𝑗 ⟩ = 𝐼 (lc (𝑟 𝑗)) = (𝐼 (𝒗) : ⟨𝑡 𝑗 ⟩) ∩ K[𝑥] by Lm. 3.3.1 so
⟨𝑓𝑗 ⟩ = 𝐼 (𝒗 (𝑗)) ∩ K[𝑥] from Thm. 2.3.4 and 𝒗 (𝑗) = 𝑡 𝑗 ★ 𝒗. Finally
by Thm. 3.1.6, we can deduce that 𝐼 (𝒗 (𝑗)) ∩ K[𝑥] = {𝑟 | 𝑥𝑟𝑦 𝑗 ∈
lm (𝐼 (𝒗))}. To conclude, if 𝑥𝑑 𝑗 = deg(𝑓𝑗) then we have lm (𝑓𝑗 𝑡 𝑗) =
(𝑥𝑑 𝑗𝑦 𝑗)𝑦 = 𝑥𝑑 𝑗𝑦 𝑗+1 ∈ lm (𝐼 (𝒗)) so deg(𝑓𝑗+1) ≤ deg(𝑓𝑗). □

4 ALGORITHMS

In the previous sections, we have considered bi-indexed sequences
either as plain sequences 𝒗 = (𝑣𝑖, 𝑗)𝑖, 𝑗∈N ∈ KN

2
, or as polynomials

with sequence coefficients KN [𝑦] in order to get relations out of
a pseudo-Euclidean algorithm. At the moment, with the aim of
fully describing our algorithms, we need to specify how the oper-
ations in KN [𝑦] are to be performed. Finite exact representations
of univariate sequence include the representation by the initial 𝑑𝑥
terms and the minimal relation, or the representation with the first
𝐷𝑥 ≥ 2𝑑𝑥 terms, so that we can recover the relation. We choose
the latter representation, and map these first 𝐷𝑥 terms in a reverse
truncated formal power series as in [4, 5]. Doing so, the action 𝑡 ★𝒗
can be computed using bivariate polynomial multiplication, which
allows us to design efficient algorithms.

4.1 A finite polynomial representation

Let 𝒗 = (𝑣𝑖, 𝑗)𝑖, 𝑗∈N be a C-recursive sequence s.t. 𝑥𝑑𝑥 , 𝑦𝑑𝑦 ∈ lm (G𝒗)
and consider bounds 𝐷𝑥 ≥ 2𝑑𝑥 and 𝐷𝑦 ≥ 2𝑑𝑦 .

Definition 4.1.1. Fix 𝐷𝑥 ≥ 2𝑑𝑥 and 𝐷𝑦 ≥ 2𝑑𝑦 . A polynomial 𝑟 ∈
K[𝑥,𝑦] is a representation of 𝒗 at precision (𝑑, 𝛿) if 𝑟 ∈ K[𝑥,𝑦]⪯(𝐷𝑥 ,𝐷𝑦)
and 𝑟𝐷𝑥−𝑖,𝐷𝑦− 𝑗 = 𝑣𝑖, 𝑗 for 0 ≤ 𝑖 ≤ 𝑑 and 0 ≤ 𝑗 ≤ 𝛿 .

For a representation 𝑞 of 𝒖 at precision (𝐷𝑥 ,Δ), the addition
term by term gives 𝑞 + 𝑟 , a representation of 𝒖 + 𝒗 at precision
(𝐷𝑥 ,min(𝛿,Δ)). However, for the multiplication by polynomial in
K[𝑥,𝑦], we have to handle the same problem as inKN [𝑦] described
in Lm. 3.2.6.

Lemma 4.1.2. Let 𝑟 be a representation of 𝒗 at precision (𝑑, 𝛿) and
𝑡 ∈ K[𝑥,𝑦]⪯(𝑒,𝑓) . The polynomial 𝑝 = 𝑡𝑟 rem({𝑥𝐷𝑥+1, 𝑦𝐷𝑦+1}) is a
representation of 𝑡 ★ 𝒗 at precision (𝑑 − 𝑒, 𝛿 − 𝑓).

Quasi-Linear Guessing of Minimal Lexicographic Gröbner Bases of C-Relations of Random Bi-Indexed Sequences , ,

Proof. For 0 ≤ 𝑖 ≤ 𝑑 − 𝑒 and 0 ≤ 𝑗 ≤ 𝛿 − 𝑓 , we have

𝑝𝐷𝑥−𝑖,𝐷𝑦− 𝑗 =
∑︁

0≤𝑘≤𝑒

∑︁
0≤ℓ≤ 𝑓

𝑡𝑘,ℓ 𝑟𝐷𝑥−𝑖−𝑘,𝐷𝑦− 𝑗−ℓ

and 𝑟𝐷𝑥−𝑖−𝑘,𝐷𝑦− 𝑗−ℓ = 𝑣𝑖+𝑘,𝑗+ℓ by definition of a representation, so
𝑝𝐷𝑥−𝑖,𝐷𝑦− 𝑗 = (𝑡 ★𝒗)𝑖, 𝑗 . By construction, 𝑝 ∈ K[𝑥,𝑦]⪯(𝐷𝑥 ,𝐷𝑦) . □

To handle the problem of decreasing precision in 𝑥 , we can use
fast univariate algorithmic to recover precision in 𝑥 when the C-
relation 𝑓0 ∈ G𝒗 ∩ K[𝑥] is known.

Theorem 4.1.3. Let 𝑟 be a representation of 𝒗 at precision (𝐷𝑥 , 𝛿)
and 𝑡 ∈ K[𝑥,𝑦]⪯(𝑒,𝑓) with 𝑒 ≤ 𝐷𝑥 and 𝑓 ≤ 𝛿 . From 𝑟, 𝑡 and 𝑓0, one
can compute a representation 𝑝 , also denoted 𝑡 ·𝑓0 𝑟 , of𝒘 ≔ 𝑡 ★ 𝒗 at

precision (𝐷𝑥 , 𝛿 − 𝑓) in 𝑂̃ (𝐷𝑥𝛿) operations in K.

Proof. Let 𝑡 = 𝑡 rem(𝑓0) with deg𝑥 (𝑡) < 𝑑𝑥 . Since 𝑓0 ∈ 𝐼 (𝒗), we
deduce that 𝒘 = 𝑡 ★ 𝒗. The reduction of 𝑡 by 𝑓0 requires 𝑂̃ (𝐷𝑥𝛿)
operations by Lm. 2.1.2. Then, computing a representation 𝑝 of𝒘
at precision (𝐷𝑥 −𝑑𝑥 , 𝛿 − 𝑓) has complexity in 𝑂̃ (𝐷𝑥𝛿) using 𝑡 and
𝑟 . Since 𝐷𝑥 −𝑑𝑥 ≥ 𝑑𝑥 , we can extend 𝑝 with 𝑓0 from the univariate
extension of Lm. 2.1.2 in 𝑂̃ (𝐷𝑥𝛿) operations. □

We extend this definition of ·𝑓0 to matrix-vector multiplication
with entries in K[𝑥,𝑦]. With this new operations on representation
in K[𝑥,𝑦], we can mimic the K[𝑥,𝑦] action on KN [𝑦] and apply a
pseudo-Euclidean algorithm to solve the guessing problem on 𝒗.

4.2 Quotient algorithm

We now define the quotient algorithm of our pseudo-Euclidean
division. For that, we need two subroutines for C-recursive uni-
indexed sequences. The first one, GuessingUnivar(𝑟) takes a rep-
resentation 𝑟 ∈ K[𝑥] of a C-recursive sequence 𝒖 at precision 𝐷𝑥

with 𝐷𝑥 ≥ 2𝑑𝑥 and outputs the C-relation 𝑓 ∈ K[𝑥]≤𝑑𝑥 satis-
fying ⟨𝑓 ⟩ = 𝐼 (𝒖). The other one, HankelSolver(𝑞, 𝑟, 𝑓), takes a
representation 𝑞 ∈ K[𝑥] of a C-recursive sequence 𝒖 at precision
𝐷𝑥 ≥ 2(𝑑𝑥 − 1); a representation 𝑟 ∈ K[𝑥] of 𝒗 ∈ L𝒖 at precision
𝑑 ≥ 𝑑𝑥 − 1 and a C-relation 𝑓 ∈ K[𝑥]≤𝑑𝑥 s.t. ⟨𝑓 ⟩ = 𝐼 (𝒖), and
outputs 𝑏 ∈ K[𝑥]<𝑑𝑥 satisfying 𝑏 ★ 𝒖 = 𝒗. Both subroutines have
complexities 𝑂̃ (𝐷𝑥) (see §2.1).

Algorithm 1QuoBivar(𝑓 , 𝑔)

Input: Polynomials 𝑓 =
∑𝑑

𝑗=0 𝑓𝑗 (𝑥)𝑦 𝑗 and 𝑔 =
∑𝑑−1

𝑗=0 𝑔 𝑗 (𝑥)𝑦 𝑗 sat-
isfying the hypotheses of Thm. 3.2.2 when viewed in KN [𝑦]
using the representation of 𝐷𝑥 + 1 initial terms.

Output: 𝑄 ∈ K[𝑥,𝑦]2×2, {𝑝1} ⊂ K[𝑥] be s.t.
[
𝑔
𝑟

]
= 𝑄 ·𝑝0

[
𝑓
𝑔

]
with deg𝑦 (𝑟) < deg𝑦 (𝑔) and ⟨𝑝1⟩ = 𝐼 (𝑔𝑑−1).

1: 𝑝0 ← GuessingUnivar(𝑓𝑑 (𝑥))
2: 𝑎 ← HankelSolver(−𝑓𝑑 (𝑥), 𝑔𝑑−1 (𝑥), 𝑝0)
3: ℎ(𝑥) ← 𝑎 ·𝑝0 𝑓𝑑−1 (𝑥) + 𝑔𝑑−2 (𝑥)
4: 𝑝1 ← GuessingUnivar(𝑔𝑑−1 (𝑥))
5: 𝑏 ← HankelSolver(𝑔𝑑−1 (𝑥), ℎ(𝑥), 𝑝1)
6: return

[
0 1
𝑎 𝑦−𝑏

]
, {𝑝1}

Lemma 4.2.1. QuoBivar is correct and has complexity in 𝑂̃ (𝐷𝑥).

Proof. The polynomials 𝑓 , 𝑔 viewed in KN [𝑦] satisfy the hy-
potheses of Thm. 3.2.2 so we consider 𝑓𝑑 , 𝑓𝑑−1, 𝑔𝑑−1, 𝑔𝑑−2 ∈ KN the
sequences represented by 𝑓𝑑 (𝑥), 𝑓𝑑−1 (𝑥), 𝑔𝑑 (𝑥), 𝑔𝑑−1 (𝑥) ∈ K[𝑥].
Thm. 3.2.2 shows that there exists 𝑎 ∈ K[𝑥]<deg(𝑝0) such that
−𝑎★𝑓𝑑 = 𝑔𝑑−1, that the call to HankelSolver(−𝑓𝑑 (𝑥), 𝑔𝑑−1 (𝑥), 𝑝0)
computes. The update polynomial ℎ(𝑥) represents the sequence
𝑎★ 𝑓𝑑−1+𝑔𝑑−2. From Thm. 3.2.2, we can compute 𝑏 ∈ K[𝑥]<deg(𝑝1)
such that 𝑏 ★𝑔𝑑−1 = 𝑎 ★ 𝑓𝑑−1 + 𝑔𝑑−2 also computed by the call to
HankelSolver(𝑔𝑑−1 (𝑥), ℎ(𝑥), 𝑝1). By hypothesis of Thm. 3.2.2, 𝑝0
is a C-relation on 𝑓𝑑 , 𝑓𝑑−1, 𝑔𝑑−1, 𝑔𝑑−2, which ensures that deg𝑦 (𝑟) <
deg𝑦 (𝑔) by construction of the quotient matrix 𝑄 . Also, ⟨𝑝1⟩ =
𝐼 (𝑔𝑑−1) from the correctness of GuessingUnivar.

Computing 𝑝0, 𝑝1 ∈ K[𝑥]≤𝑑𝑥 and 𝑎, 𝑏 ∈ K[𝑥]<𝑑𝑥 have com-
plexity in 𝑂̃ (𝐷𝑥). The computation of ℎ(𝑥) corresponds to uni-
variate polynomial multiplication and addition of degree at most
𝐷𝑥 so it requires 𝑂̃ (𝐷𝑥). Hence, we can bound the complexity of
QuoBivar(𝑓 , 𝑔) in 𝑂̃ (𝐷𝑥). □

4.3 Recursive pseudo-Euclidean algorithm

Based on the half-gcd algorithm, we build a divide and conquer
pseudo-Euclidean algorithm, following the exposition of [22, Alg. 11.4].
Since our pseudo-Euclidean division has specific hypotheses, we
define an assumption on the input of our algorithm.
Assumption B. For the input (𝑟−1, 𝑟0, 𝑓0, 𝑘), 𝑓0 ∈ K[𝑥] is a C-

relation on the sequences represented by 𝑟−1 and 𝑟0, and there exists
0 ≤ ℓ ≤ 𝑘 such that the ℓ firsts pseudo-Euclidean division of 𝑟−1 by
𝑟0 are well-defined, and deg𝑦 (𝑟ℓ−1) − 1 > deg𝑦 (𝑟ℓ) if ℓ < 𝑘 .

Algorithm 2 half-gcd-seq(𝑟−1, 𝑟0, 𝑓0, 𝑘)
Input: Representations 𝑟−1, 𝑟0 ∈ K[𝑥,𝑦], a C-relation 𝑓0 ∈ K[𝑥]

and 𝑘 ∈ N satisfying Asm. B.
Output: 𝑅 ∈ K[𝑥,𝑦]2×2 s.t.

[𝑟ℓ−1
𝑟ℓ

]
= 𝑅 ·𝑓0

[𝑟−1
𝑟0

]
,𝑇 =

[𝑄0, . . . , 𝑄ℓ−1] ∈ (K[𝑥,𝑦]2×2)ℓ s.t. 𝑅 = 𝑄ℓ−1 · · ·𝑄0 rem(𝑓0)
and F = [𝑓0, . . . , 𝑓ℓ−1] ⊂ K[𝑥] s.t. ⟨𝑓𝑗 ⟩ = 𝐼 (𝒘 (𝑗)∗, 𝑗) with 𝒘 (𝑗)

corresponds to the sequence represented by 𝑟 𝑗 .
1: if 𝑘 = 0 then return

[1 0
0 1

]
, [], []

2: 𝑑 ← ⌈𝑘/2⌉, 𝑑∗ ← 𝑘 − 𝑑
3: 𝑅,𝑇 , F0 ← half-gcd-seq(𝑟−1↾2(𝑑−1) , 𝑟0↾2(𝑑−1)−1, 𝑓0, 𝑑 − 1)
4:

[𝑟𝑑−2
𝑟𝑑−1

]
← 𝑅 ·𝑓0

[𝑟−1
𝑟0

]
5: if deg𝑦 (𝑟𝑑−2) − 1 > deg𝑦 (𝑟𝑑−1) then return 𝑅,𝑇 , F0

6: 𝑄𝑑−1, {𝑓𝑑−1} ←QuoBivar(𝑟𝑑−2↾2, 𝑟𝑑−1↾1)
7:

[𝑟𝑑−1
𝑟𝑑

]
← 𝑄𝑑−1 ·𝑓0

[𝑟𝑑−2
𝑟𝑑−1

]
8: 𝑆,𝑈 , F1 ← half-gcd-seq(𝑟𝑑−1↾2𝑑∗ , 𝑟𝑑↾2𝑑∗−1, 𝑓0, 𝑑

∗)
9: return (𝑆𝑄𝑑−1𝑅) rem(𝑓0), [𝑇,𝑄𝑑−1,𝑈], [F0, 𝑓𝑑−1, F1]

Theorem 4.3.1. half-gcd-seq is correct. If 𝐷𝑥 (resp. 𝐷𝑦 + 1) is the
maximum degree in 𝑥 (resp. 𝑦) of 𝑟−1, 𝑟0 and ⌊𝐷𝑦/2⌋ ≤ 𝑘 ≤ 𝐷𝑦 then

half-gcd-seq(𝑟−1, 𝑟0, 𝑓0, 𝑘) requires 𝑂̃
(
𝐷𝑥𝐷𝑦

)
operations in K.

Proof. We prove by induction on 𝑗 , for any input (𝑟−1, 𝑟0, 𝑓0, 𝑗)
satisfyingAsm. B, half-gcd-seq is correct. For any input (𝑟−1, 𝑟0, 𝑓0,
0) satisfying Asm. B, the algorithm outputs (

[1 0
0 1

]
, [], []) which

satisfies all the conditions of the algorithm output.
For 𝑗 ∈ N, we suppose the induction hypothesis at each step

𝑖 < 𝑗 and we prove that the algorithm is correct for the input

, , J. Berthomieu, R. Lebreton, and K. Tran

(𝑟−1, 𝑟0, 𝑓0, 𝑗) satisfyingAsm. B. Consider the first ℓ pseudo-Euclidean
divisions (𝑎𝑖 , 𝑏𝑖 , 𝑟𝑖+1)0≤𝑖≤ℓ−1 of 𝑟−1 by 𝑟0 with 0 ≤ ℓ ≤ 𝑗 . Lm. 3.2.9
ensures that (𝑟−1↾2(𝑑−1) , 𝑟0↾2(𝑑−1)−1, 𝑓0, 𝑑 − 1) satisfies Asm. B so
by the induction hypothesis we have the same quotient matrices
𝑄𝑖 =

[
0 1
𝑎𝑖 𝑦−𝑏𝑖

]
for 0 ≤ 𝑖 < min(𝑑 − 1, ℓ). Since, 𝑓0 is a C-relation

on the sequences represented by 𝑟−1 and 𝑟0, it is a C-relation on
𝑟𝑖 due to 𝑟𝑖 = 𝑠𝑖𝑟−1 + 𝑡𝑖𝑟0 for 0 ≤ 𝑖 < min(𝑑, ℓ + 1). If ℓ ≤ 𝑑 − 1
then 𝑅 ·𝑓0

[𝑟−1
𝑟0

]
=

[𝑟ℓ−1
𝑟ℓ

]
at Step 4 and (𝑅,𝑇 , F0) is the correct

output. Otherwise, 𝑟𝑑−2 and 𝑟𝑑−1 are correctly computed at Step 4
from 𝑟−1, 𝑟0 and 𝑅 at precision 𝐷𝑥 in 𝑥 . So, we can compute the
quotient matrix 𝑄𝑑 from 𝑟𝑑−2 ↾2 and 𝑟𝑑−1 ↾1 since the quotient
algorithm only need the first two leading terms of each polynomial.
The computation of 𝑟𝑑 from 𝑟𝑑−2, 𝑟𝑑−1 and 𝑓0 is computed at full
precision in 𝑥 . From Lm. 3.2.9, since 𝑗 ≥ ℓ , we have 𝑑∗ ≥ ℓ − 𝑑 , so
the (ℓ − 𝑑) first pseudo-Euclidean division of 𝑟𝑑−1↾2𝑑∗ by 𝑟𝑑↾2𝑑∗−1
give the same results as the ones of 𝑟𝑑−1 and 𝑟𝑑 . The second re-
cursive call gives 𝑆 = 𝑄ℓ−1 · · ·𝑄𝑑 rem(𝑓0),𝑈 = [𝑄𝑑 , . . . , 𝑄ℓ−1] and
F = [𝑓𝑑 , . . . , 𝑓ℓ−1]. Therefore, half-gcd-seq is correct.

For the complexity analysis, we suppose that𝑘 is a power of 2 and
we note C(𝑘) the cost of the computation. The base case requires
𝑂 (1) operations in K. In the others cases due to the condition
𝑘 ∈ Θ(𝐷𝑦), the costs of the matrix multiplication ·𝑓0 is in 𝑂̃ (𝐷𝑥𝑘)
and the call toQuoBivar is in 𝑂̃ (𝐷𝑥) by Lm. 4.2.1. Finally, since the
quotient matrices have all degree 1 in 𝑦, we deduce that deg𝑦 (𝑆)
and deg𝑦 (𝑅) are less or equal to 𝑘/2 and the degree in 𝑥 is bounded
by 𝑂 (𝐷𝑥) since the matrices are reduced by the relation 𝑓0. Hence,
the last matrix multiplication is in 𝑂̃ (𝐷𝑥𝑘). Note that the recursive
calls continue to verify the condition ⌊𝐷𝑦/2⌋ ≤ 𝑘 ≤ 𝐷𝑦 . Thus, the
cost C(𝑘) follows the recurrence C(𝑘) = 2C(𝑘/2) + 𝑂̃ (𝐷𝑥𝑘) and by
the Master theorem we conclude that C(𝑘) = 𝑂̃

(
𝐷𝑥𝐷𝑦

)
. □

4.4 Guessing of bi-indexed sequences

From the result of Thm. 4.3.1, it remains to compute the cofactors
𝑡 𝑗 from the quotient matrices to obtain a Gröbner basis of 𝐼 (𝒗).

The product of matrices can be done recursively, we define
RecursiveMatrixProduct(𝑇, 𝑘, 𝑓0) with 𝑇 = [𝑄0, . . . , 𝑄ℓ−1] ∈
K[𝑥,𝑦]2×2 s.t. deg𝑦 (𝑄 𝑗) = 1, 0 ≤ 𝑘 < ℓ and 𝑓0 ∈ K[𝑥]≤𝑑𝑥 which
computes the matrix 𝑅 = 𝑄𝑘 · · ·𝑄0 rem(𝑓0). A call to Recursive-
MatrixProduct(𝑇, 𝑘, 𝑓0) requires 𝑂̃ (𝑑𝑥𝑘) operations.

By combining the algorithms half-gcd-seq and Recursive-
MatrixProduct, we obtain a quasi-linear guessing algorithm for
C-recursive bi-indexed sequences w.r.t. the lexicographic ordering.

Theorem 4.4.1. GuessingBivar is correct and has complexity in

𝑂̃
(
𝐷𝑥𝐷𝑦 + |G𝒗 |𝑑𝑥𝑑𝑦

)
.

Proof. For the correctness, the polynomial 𝑓0 computed from
the call to GuessingOnevar is in G𝒗 ∩K[𝑥] since 𝐼 (𝑣∗,0) = 𝐼 (𝒗) ∩
K[𝑥] by Thm. 3.1.7. From Thm. 3.2.10, we have that (𝑟−1, 𝑟0, 𝑓0, 𝑘)
satisfies Asm. B with ℓ = 𝑑𝑦 and by Thm. 4.3.1, we deduce that 𝑅 =

𝑄𝑑𝑦−1 · · ·𝑄0 rem(𝑓0),𝑇 = [𝑄0, . . . , 𝑄𝑑𝑦−1] andG𝑥 = [𝑓0, . . . , 𝑓𝑑𝑦−1]
with 𝑓𝑗 ∈ 𝐼 (𝒗 (𝑗)∗, 𝑗) = 𝐼 (𝒗 (𝑗)) ∩ K[𝑥] by Thm. 3.1.7. From Cor. 3.3.3,
we only have to compute the relations which are not divisible by a
previous one. For that, we distinguish them by the degree of 𝑓𝑗 and
compute the corresponding cofactor 𝑡 𝑗 when deg(𝑓𝑗−1) ≠ deg(𝑓𝑗).
Finally, we get 𝑡𝑑𝑦 from the matrix 𝑅. Hence, GuessingBivar out-
puts a minimal Gröbner basis of 𝐼 (𝒗) in G.

Algorithm 3 GuessingBivar(𝒗)
Input: The initial terms (𝑣𝑖, 𝑗)0≤𝑖≤𝐷𝑥 ,0≤ 𝑗≤𝐷𝑦

of a C-recursive se-
quence 𝒗 satisfying Asm. A with 𝐷𝑥 ≥ 2𝑑𝑥 and 𝐷𝑦 ≥ 2𝑑𝑦 .

Output: G a minimal Gröbner basis of 𝐼 (𝒗) w.r.t. the order ≺.
1: 𝑘 ← ⌊𝐷𝑦/2⌋
2: 𝑟−1 ←

∑𝐷𝑥

𝑖=0 𝑣𝑖,0𝑥
𝐷𝑥−𝑖𝑦𝐷𝑦+1, 𝑟0 ←

∑𝐷𝑦

𝑗=0
∑𝐷𝑥

𝑖=0 𝑣𝑖, 𝑗𝑥
𝐷𝑥−𝑖𝑦𝐷𝑦− 𝑗

3: 𝑓0 ← GuessingUnivar(∑𝐷𝑥

𝑖=0 𝑣𝑖,0𝑥
𝐷𝑥−𝑖)

4: 𝑅,𝑇 ,G𝑥 ← half-gcd-seq(𝑟−1, 𝑟0, 𝑓0, 𝑘)
5: 𝑑 ← 𝐷𝑥 + 1,G ← {}, 𝑗 ← 0
6: for 𝑓 ∈ G𝑥 do

7: if deg(𝑓) < 𝑑 then

8:
[

𝑠 𝑗 𝑡 𝑗
𝑠 𝑗+1 𝑡 𝑗+1

]
← RecursiveMatrixProduct(𝑇, 𝑗, 𝑓0)

9: G ← G ∪ {(𝑡 𝑗 𝑓) rem(𝑓0)}, 𝑑 ← deg(𝑓)
10: 𝑗 ← 𝑗 + 1
11: G ← G ∪ {𝑡𝑑𝑦 } ⊲ 𝑅 =

[𝑠𝑑𝑦−1 𝑡𝑑𝑦−1
𝑠𝑑𝑦 𝑡𝑑𝑦

]
rem(𝑓0)

12: return G

For the complexity analysis, calling half-gcd-seq is in 𝑂̃
(
𝐷𝑥𝐷𝑦

)
by Thm. 4.3.1. The loops on the polynomials ofG𝑥 add computations
only if they compute a new polynomial in the minimal Gröbner
basis and do at most 𝑂̃

(
𝑑𝑥𝑑𝑦

)
operations. Finally, all the others in-

structions of the algorithm are in 𝑂̃
(
𝐷𝑥𝐷𝑦

)
. Hence, the complexity

of GuessingBivar is in 𝑂̃
(
𝐷𝑥𝐷𝑦 + |G𝒗 |𝑑𝑥𝑑𝑦

)
. □

5 BENCHMARKS

The quasi-linearity of our guessing algorithm can be observed in
practice from our implementation in Maple (https://github.com/
ktran11/CrecbiseqGuessing). We compare the timings of our imple-
mentation also in Maple of guessing algorithms from [3, 16, 19].
For some we have to specialize the implementation for the lex-
icographic ordering with weighted degree ordering. For [3], we
consider the adaptive version of the algorithms. We do not compare
with [5], as under Asm. A, the computations are the same as in [3].

In our examples, we consider different shapes of staircase using
Lazard’s structure theorem [13] to build lm (G𝒗). We distinguish
two particular shapes: simplex with lm (G𝒗) = {𝑥𝑑𝑥− 𝑗𝑦 𝑗 }0≤ 𝑗≤𝑑𝑥
and L-shape with lm (G𝒗) = {𝑥𝑑𝑥 , 𝑥𝑦,𝑦𝑑𝑦 }.

To begin with, we consider that we know 𝑑𝑥 , 𝑑𝑦 and give exactly
𝐷𝑥 = 2𝑑𝑥 and 𝐷𝑦 = 2𝑑𝑦 in order to compute a minimal Gröbner
basis of 𝐼 (𝒗). The quantity size(G𝒗) corresponds to the number
of coefficients in K = F216+1 to represents G𝒗 . The timings are in
seconds, if the timing is greater than one day we use the symbol∞.

For simplex, Fig. 1 shows a quasi-linear growth on the timings
of Alg. 3 following the growth of the quantity |G𝒗 |𝑑𝑥𝑑𝑦 .

For L-shape, the timings of Alg. 3 also follow the complexity
found following the growth of the quantity 𝐷𝑥𝐷𝑦 . But it is outper-
formed by the adaptive version of the different algorithms.

Next, for the second row of the Fig. 1 we now consider more
initial terms of the sequence 𝒗 than 𝐷𝑥 = 2𝑑𝑥 and 𝐷𝑦 = 2𝑑𝑦 by
taking (𝐷𝑥 , 𝐷𝑦) = (𝑘𝑑𝑥 , 𝑘𝑑𝑦) with 𝑘 ∈ {10, 20, . . . , 50}.

On Fig. 2 when 𝑘 ≥ 30, there is a crossover point on which the
adaptive algorithm performs better, it is explained by the fact that
these adaptive versions do not depend on the number of initial
terms 𝐷𝑥𝐷𝑦 .

https://github.com/ktran11/CrecbiseqGuessing
https://github.com/ktran11/CrecbiseqGuessing

Quasi-Linear Guessing of Minimal Lexicographic Gröbner Bases of C-Relations of Random Bi-Indexed Sequences , ,

|G𝒗 |𝑑𝑥𝑑𝑦 𝐷𝑥𝐷𝑦 size(G𝒗) [19] [3] [16] Alg. 3

s
i
m
p
l
e
x

27900 3600 9951 287.8 20.5 4 4.2
127500 10000 44250 4530 777.2 22.1 14.6
347900 19600 119348 >10h 17857.2 79.1 35.6
737100 32400 251248 ∞ ∞ 206.6 71.7
1343100 48400 455937 ∞ ∞ 455.6 136.8
2213900 67600 749439 ∞ ∞ 922.9 231.6
3397500 90000 1147735 ∞ ∞ 1696.2 381.5
4941900 115600 1666819 ∞ ∞ 2871 650.5

L
-
s
h
a
p
e

21600 28800 250 ∞ 1.2 489.5 37.184
117600 156800 570 ∞ 12.8 34739.9 389.5
290400 387200 890 ∞ 67.5 ∞ 1825.8
540000 720000 1210 ∞ 209.8 ∞ 3666.9
866400 1155200 1530 ∞ 534.6 ∞ 6113.2
1269600 1692800 1850 ∞ 1201.9 ∞ 11422.7

Figure 1: Maple implementation of several examples with

initial terms (𝐷𝑥 , 𝐷𝑦) = (2𝑑𝑥 , 2𝑑𝑦), timings in seconds.

|G𝒗 |𝑑𝑥𝑑𝑦 𝐷𝑥𝐷𝑦 𝑘 [19] [3] [16] Alg. 3

s
i
m
p
l
e
x

127500 2500 2 4530 777.2 22.1 14.6
127500 250000 10 ∞ 777.2 5675.9 43.3
127500 1000000 20 ∞ 777.2 ∞ 202.7
127500 2250000 30 ∞ 777.2 ∞ 491.1
127500 4000000 40 ∞ 777.2 ∞ 924.2
127500 6250000 50 ∞ 777.2 ∞ 1870.8

Figure 2: Maple implementation of one example with initial

terms (𝐷𝑥 , 𝐷𝑦) = (𝑘𝑑𝑥 , 𝑘𝑑𝑦), timings in seconds.

REFERENCES

[1] E. Berlekamp. 1968. Nonbinary BCH decoding. IEEE Trans. Inform. Theory 14, 2
(1968), 242–242. https://doi.org/10.1109/TIT.1968.1054109

[2] J. Berthomieu, B. Boyer, and J.-Ch. Faugère. 2015. Linear Algebra for Computing
Gröbner Bases of Linear Recursive Multidimensional Sequences. In Proceedings of

the 2015 ACM on International Symposium on Symbolic and Algebraic Computation

(Bath, United Kingdom) (ISSAC ’15). ACM, New York, NY, USA, 61–68. https:
//doi.org/10.1145/2755996.2756673

[3] J. Berthomieu, B. Boyer, and J.-Ch. Faugère. 2017. Linear algebra for comput-
ing Gröbner bases of linear recursive multidimensional sequences. Journal of
Symbolic Computation 83 (2017), 36–67. https://doi.org/10.1016/j.jsc.2016.11.005
Special issue on the conference ISSAC 2015.

[4] J. Berthomieu and J.-Ch. Faugère. 2018. A Polynomial-Division-Based Algorithm
for Computing Linear Recurrence Relations. In Proceedings of the 2018 ACM

International Symposium on Symbolic and Algebraic Computation (New York, NY,
USA) (ISSAC ’18). ACM, New York, NY, USA, 79–86. https://doi.org/10.1145/
3208976.3209017

[5] J. Berthomieu and J.-Ch. Faugère. 2022. Polynomial-division-based algorithms
for computing linear recurrence relations. Journal of Symbolic Computation 109
(2022), 1–30. https://doi.org/10.1016/j.jsc.2021.07.002

[6] A. Bostan, G. Lecerf, and É. Schost. 2003. Tellegen’s principle into practice.
In Proceedings of the 2003 International Symposium on Symbolic and Algebraic

Computation (Philadelphia, PA, USA) (ISSAC ’03). Association for Computing
Machinery, New York, NY, USA, 37–44. https://doi.org/10.1145/860854.860870

[7] R. P. Brent, F. G. Gustavson, andD. Y. Y. Yun. 1980. Fast solution of toeplitz systems
of equations and computation of Padé approximants. Journal of Algorithms 1, 3
(1980), 259–295. https://doi.org/10.1016/0196-6774(80)90013-9

[8] D. A. Cox, J. Little, and D. O’Shea. 2015. Ideals, Varieties, and Algorithms (4 ed.).
Springer Cham. https://doi.org/10.1007/978-3-319-16721-3

[9] J-Ch. Faugère, P. Gianni, D. Lazard, and T. Mora. 1993. Efficient Computation of
Zero-dimensional Gröbner Bases by Change of Ordering. Journal of Symbolic

Computation 16, 4 (1993), 329–344. https://doi.org/10.1006/jsco.1993.1051
[10] J.-Ch. Faugère and Ch. Mou. 2017. Sparse FGLM Algorithms. Journal of Symbolic

Computation 80 (2017), 538–569. https://doi.org/10.1016/j.jsc.2016.07.025
[11] S. G. Hyun, V. Neiger, and É. Schost. 2021. Algorithms for Linearly Recurrent

Sequences of Truncated Polynomials. In Proceedings of the 2021 International

Symposium on Symbolic and Algebraic Computation (Virtual Event, Russian Fed-
eration) (ISSAC ’21). Association for Computing Machinery, New York, NY, USA,
201–208. https://doi.org/10.1145/3452143.3465533

[12] D. E Knuth. 1970. The analysis of algorithms. In Actes du Congres International

des Mathématiciens (Nice, 1970), Vol. 3. 269–274.

[13] D. Lazard. 1985. Ideal Bases and Primary Decomposition: Case of Two Variables. J.
Symb. Comput. 1, 3 (1985), 261–270. https://doi.org/10.1016/S0747-7171(85)80035-
3

[14] J. Massey. 1969. Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theor.
15, 1 (1969), 122–127. https://doi.org/10.1109/TIT.1969.1054260

[15] R. T. Moenck. 1973. Fast Computation of GCDs. In Proceedings of the Fifth

Annual ACM Symposium on Theory of Computing (Austin, Texas, USA) (STOC
’73). Association for Computing Machinery, New York, NY, USA, 142–151. https:
//doi.org/10.1145/800125.804045

[16] B. Mourrain. 2017. Fast Algorithm for Border Bases of Artinian Gorenstein
Algebras. In Proceedings of the 2017 ACM International Symposium on Symbolic

and Algebraic Computation (Kaiserslautern, Germany) (ISSAC ’17). Association
for Computing Machinery, New York, NY, USA, 333–340. https://doi.org/10.
1145/3087604.3087632

[17] S. Naldi and V. Neiger. 2020. A divide-and-conquer algorithm for computing
gröbner bases of syzygies in finite dimension. In Proceedings of the 45th Inter-

national Symposium on Symbolic and Algebraic Computation (Kalamata, Greece)
(ISSAC ’20). Association for Computing Machinery, New York, NY, USA, 380–387.
https://doi.org/10.1145/3373207.3404059

[18] Sh. Sakata. 1988. Finding a minimal set of linear recurring relations capable of
generating a given finite two-dimensional array. J. Symbolic Comput. 5, 3 (1988),
321–337. https://doi.org/10.1016/S0747-7171(88)80033-6

[19] Sh. Sakata. 1990. Extension of the Berlekamp-Massey Algorithm to𝑁 Dimensions.
Inform. and Comput. 84, 2 (1990), 207–239. https://doi.org/10.1016/0890-5401(90)
90039-K

[20] Sh. Sakata. 2009. The BMSAlgorithm. InGröbner Bases, Coding, and Cryptography,
Massimiliano Sala, Shojiro Sakata, Teo Mora, Carlo Traverso, and Ludovic Perret
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 143–163. https://doi.org/
10.1007/978-3-540-93806-4_9

[21] A. Schönhage. 1971. Schnelle Berechnung von Kettenbruchentwicklungen. Acta
Informatica 1, 2 (1971), 139–144. https://doi.org/10.1007/BF00289520

[22] J. von zur Gathen and J. Gerhard. 2013. Modern Computer Algebra (3 ed.). Cam-
bridge University Press. https://doi.org/10.1017/CBO9781139856065

[23] D. Wiedemann. 1986. Solving sparse linear equations over finite fields. IEEE
Trans. Inf. Theory 32, 1 (1986), 54–62.

https://doi.org/10.1109/TIT.1968.1054109
https://doi.org/10.1145/2755996.2756673
https://doi.org/10.1145/2755996.2756673
https://doi.org/10.1016/j.jsc.2016.11.005
https://doi.org/10.1145/3208976.3209017
https://doi.org/10.1145/3208976.3209017
https://doi.org/10.1016/j.jsc.2021.07.002
https://doi.org/10.1145/860854.860870
https://doi.org/10.1016/0196-6774(80)90013-9
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1006/jsco.1993.1051
https://doi.org/10.1016/j.jsc.2016.07.025
https://doi.org/10.1145/3452143.3465533
https://doi.org/10.1016/S0747-7171(85)80035-3
https://doi.org/10.1016/S0747-7171(85)80035-3
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1145/800125.804045
https://doi.org/10.1145/800125.804045
https://doi.org/10.1145/3087604.3087632
https://doi.org/10.1145/3087604.3087632
https://doi.org/10.1145/3373207.3404059
https://doi.org/10.1016/S0747-7171(88)80033-6
https://doi.org/10.1016/0890-5401(90)90039-K
https://doi.org/10.1016/0890-5401(90)90039-K
https://doi.org/10.1007/978-3-540-93806-4_9
https://doi.org/10.1007/978-3-540-93806-4_9
https://doi.org/10.1007/BF00289520
https://doi.org/10.1017/CBO9781139856065

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Uni-indexed sequences
	2.2 Multivariate polynomial rings
	2.3 Multi-indexed C-recursive sequences

	3 Bi-indexed sequences
	3.1 Hankel matrix and LU decomposition
	3.2 Pseudo-Euclidean division
	3.3 From successive remainders to C-relations

	4 Algorithms
	4.1 A finite polynomial representation
	4.2 Quotient algorithm
	4.3 Recursive pseudo-Euclidean algorithm
	4.4 Guessing of bi-indexed sequences

	5 Benchmarks
	References

