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ABSTRACT

Computing recurrence relations for sequences is a central problem
in computer algebra, with applications in error-correcting codes,
Gröbner basis computation, and sparse interpolation. While uni-
indexed C-recursive sequences benefit from quasi-linear algorithms
leveraging the half-gcd method, the extension to multi-indexed se-
quences remains computationally challenging. Existing methods for
bi-indexed sequences achieve quadratic complexity at best, limiting
their practical use.

This paper presents a quasi-linear algorithm for computing lex-
icographic Gröbner bases of the ideal of C-relations associated
to bi-indexed sequences. Our approach extends the half-gcd algo-
rithm in KN [𝑦] by integrating a pseudo-Euclidean division. This
approach shows how to leverage the bi-Hankel structure of the ma-
trix, significantly improving the efficiency of computing minimal
C-relations closing the complexity gap between the uni- and bi-
indexed cases. Our algorithm is restricted to bi-indexed sequences
whose associated bi-Hankel matrix has generic row rank profile.

KEYWORDS
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1 INTRODUCTION

Context. Guessing the minimal linear recurrence relation with
constant coefficients (C-relation) of order 𝑑 of a sequence (𝑢𝑖 )𝑖∈N
is a fundamental problem in computer algebra and error correcting
codes. It is for instance one of the latter steps of the Wiedemann
algorithm [23] for computing the minimal polynomial of a matrix or
solving a sparse linear system. The multi-indexed analogue, that is
with a sequence (𝑢𝑖1,...,𝑖𝑛 ) (𝑖1,...,𝑖𝑛 ) ∈N𝑛 is at the root of𝑛-dimensional
cyclic codes and also the Sparse-FGLM variant [10] of the FGLM
algorithm [9] for Gröbner bases change of order.

Given the 𝐷 + 1 first terms 𝑢0, . . . , 𝑢𝐷 of a uni-indexed sequence,
the problem of computing the minimal C-relation can be modeled
through a kernel computation of a Hankel matrix. It computes the
correct relation as long as 𝐷 ≥ 2𝑑 . This Hankel structure leads to
non-naive algorithms with complexity much better than 𝑂 (𝐷𝜔 ),
where 2 ≤ 𝜔 < 3 is the matrix multiplication exponent, relying on
the extended Euclidean algorithm called on polynomials 𝑥𝐷+1 and∑𝐷
𝑖=0 𝑢𝑖𝑥

𝐷−𝑖 . The first instance of such a non-naive algorithm is due
independently to Berlekamp [1] and Massey [14], both targeting
an application to error correcting codes, and is now known as the
Berlekamp–Massey algorithm. Thanks to quasi-linear algorithms
for computing the extended Euclidean algorithm [7, 15], see also [22,
Chap. 11], the complexity of computing such a minimal C-relation
of order 𝑑 is 𝑂̃ (𝐷), as long as 𝐷 ≥ 2𝑑 .

Related work. The case of an 𝑛-indexed sequence, 𝑛 ≥ 2, 𝒖 =

(𝑢𝑖1,...,𝑖𝑛 ) (𝑖1,...,𝑖𝑛 ) ∈N𝑛 is more involved. The set of relations of 𝒖
forms an ideal, denoted 𝐼 (𝒖), which is 0-dimensional whenever 𝒖
is C-recursive. Guessing consists in computing a representation of
this ideal, that is a ≺-Gröbner basis for a given monomial order ≺
in the context of this paper. Denoting S𝒖 the ≺-staircase of 𝐼 (𝒖),
i.e. the monomials that are not ≺-leading monomials of 𝐼 (𝒖), and
G𝒖 the ≺-reduced Gröbner basis of 𝐼 (𝒖), the complexity of the
problem must depend on the number of given terms of 𝒖, and on
|G𝒖 | and |S𝒖 |, in order to encode the output in the monomial basis.
The first algorithm to guess such a Gröbner basis is due to Sakata
and extends the Berlekamp–Massey algorithm, leading the author
to calling it the Berlekamp–Massey–Sakata algorithm [18–20].
More recent algorithms were proposed based on linear algebra,
i.e. computing the kernel of a multi-Hankel matrix [2, 3] or us-
ing a Gram-Schmidt process [16]. Another approach is based on
multivariate polynomial arithmetic, especially division of polyno-
mials such as [4, 5], or specifically for the bivariate case [11] using
an approach similar to the uni-indexed case as they work on the
polynomial

∑𝐷𝑦

𝑗=0 (𝑢𝑖, 𝑗 )𝑖∈N𝑦
𝐷𝑦− 𝑗 ∈ KN [𝑦]. Finally, let us mention

a bivariate Padé approximation method [17].
The complexity analysis of all these algorithms is not an easy

task. Restricting ourselves to the case where the number of known
terms of 𝒖 is minimal to ensure the correctness of the output allows
us to express their complexities more easily. In the uni-indexed
case, this would imply 𝐷 = Θ(𝑑), so that the complexity is 𝑂̃ (𝑑).

In [20], the complexity of the Berlekamp–Massey–Sakata al-
gorithm is 𝑂

(
|S𝒖 |2 · |G𝒖 |

)
, though the output need not be a re-

duced Gröbner basis. The complexity of the algorithm of [2, 3]
is 𝑂

(
( |S𝒖 |𝜔 + |S𝒖 |2 · |G𝒖 |

)
and the output is reduced. The algo-

rithm of [16] has complexity 𝑂
(
|S𝒖 |2 · ( |S𝒖 | + |B𝒖 |)

)
, where B𝒖

is a border basis, and thus has larger size than G𝒖 , while the algo-
rithm [4, 5] has a similar complexity 𝑂

(
|S𝒖 |2 · ( |S𝒖 + |G𝒖 |)

)
. Fur-

thermore, they all need the sequence terms𝑢𝑖1,...,𝑖𝑛 where 𝑥𝑖11 · · · 𝑥
𝑖𝑛
𝑛

is in the Minkowski sum of S𝒖 with itself, denoted 2S𝒖 . If we sim-
plify further to the bi-indexed case and we denote 𝑑𝑥 (resp. 𝑑𝑦 )
the maximal degree in 𝑥 (resp. 𝑦) of G𝒖 , these complexity upper
bounds become at least 𝑂

(
max(𝑑𝑥 , 𝑑𝑦)2 |G𝒖 |

)
using the fact that

|S𝒖 | ≥ 𝑑𝑥 + 𝑑𝑦 − 1. Now, on the one hand, all the monomials 𝑥𝑖𝑦 𝑗
for 0 ≤ 𝑖 < 𝑑𝑥 and 0 ≤ 𝑗 < 𝑑𝑦 are in 2S𝒖 and, on the other hand, all
monomials in 2S𝒖 have degree in 𝑥 (resp. 𝑦) at most 2𝑑𝑥 − 2 (resp.
2𝑑𝑦 − 2). Hence, all these algorithms need exactly Θ(𝑑𝑥𝑑𝑦) terms.
Finally, using also Θ(𝑑𝑥𝑑𝑦) terms of 𝒖, the algorithm of [11] com-
putes a Gröbner basis of 𝐼 (𝒖) in 𝑂̃

(
𝑑𝜔+1𝑥 𝑑𝑦

)
operations, while [17]

requires 𝑂̃
(
min(𝑑𝑥 , 𝑑𝑦)𝜔𝑑𝑥𝑑𝑦

)
operations.

Contribution. The main contribution of this paper is Guessing-
Bivar, an algorithm that takes as an input the (𝐷𝑥 + 1) (𝐷𝑦 + 1)
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sequence terms 𝑢𝑖, 𝑗 for 0 ≤ 𝑖 ≤ 𝐷𝑥 and 0 ≤ 𝑗 ≤ 𝐷𝑦 and re-
turns a minimal lexicographic Gröbner basis of 𝐼 (𝒖), with support
in {𝑥𝑖𝑦 𝑗 | 0 ≤ 𝑖 ≤ 𝑑𝑥 , 0 ≤ 𝑗 ≤ 𝑑𝑦} for 𝒖 = (𝑢𝑖, 𝑗 ) (𝑖, 𝑗 ) ∈N2 using
𝑂̃
(
𝐷𝑥𝐷𝑦 + 𝑑𝑥𝑑𝑦 |G𝒖 |

)
operations. This algorithm works under the

assumption that the multi-Hankel matrix (𝑢𝑖+𝑘,𝑗+ℓ )𝑥𝑖𝑦 𝑗 ,𝑥𝑘𝑦ℓ ∈S𝒖
has a LU decomposition without pivoting. This condition is exper-
imentally always satisfied whenever the terms (𝑢𝑖, 𝑗 )𝑥𝑖𝑦 𝑗 ∈S𝒖 are
picked at random. As a consequence, this closes the complexity gap
between the uni-indexed case and the bi-indexed one.

Organization of the paper. In §2, we recall the polynomial repre-
sentation of C-relations, and also how to relate their guessing to
linear algebra and univariate gcd computation. In §3, we extend
this viewpoint to bi-indexed sequences under the aforementioned
assumption on the associated multi-Hankel matrix. In §4, we design
a half-gcd-like algorithm on bivariate polynomials and how it can
be used as a subroutine of GuessingBivar for guessing. Finally, our
benchmarks in §5 confirm the efficiency of our algorithm.

2 PRELIMINARIES

In this section, we recall all basic definitions and results on matri-
ces, C-recursive multi-indexed sequences, polynomials and Gröbner
bases. We consider N as the set of all natural numbers including 0,
also consider that deg(0) = −∞. We note 𝒙 = (𝑥1, . . . , 𝑥𝑛) the
variables used for polynomials and 𝒊 = (𝑖1, . . . , 𝑖𝑛) ∈ N𝑛 . We note
𝒙 𝒊 = 𝑥

𝑖1
1 𝑥

𝑖2
2 · · · 𝑥

𝑖𝑛
𝑛 . If there is no ambiguity on the number of vari-

ables or indices we denote K[𝒙] = K[𝑥1, . . . , 𝑥𝑛] and 𝒖 = (𝑢𝑖𝑖𝑖 )𝑖𝑖𝑖∈N𝑛 .
2.1 Uni-indexed sequences

For uni-indexed sequences, C-recursive sequences are the ones
satisfying linear recurrences with constant coefficients.
Definition 2.1.1. A sequence (𝑢𝑖 )𝑖∈N is C-recursive if there exist
𝑔0, . . . , 𝑔𝑑−1 ∈ K such that for 𝑖 ∈ N, 𝑢𝑖+𝑑 = 𝑔𝑑−1𝑢𝑖+𝑑−1 + . . . +𝑔0𝑢𝑖 .

Such a combination is called C-relation and can be represented as
a polynomial 𝑔 = 𝑥𝑑 −∑𝑑−1

𝑖=0 𝑔𝑖𝑥
𝑖 ∈ K[𝑥]. Computing a C-relation

can be reduced to a linear system solving problem.
The Hankel matrix of size 𝑑 associated to the sequence 𝒖 =

(𝑢𝑖 )𝑖∈N isH = (𝑢𝑖+𝑗 )0≤𝑖, 𝑗<𝑑 ∈ K𝑑×𝑑 . Moreover, one can compute
the C-relation 𝑔 = 𝑥𝑑 − ∑𝑑−1

𝑖=0 𝑔𝑖𝑥
𝑖 by solving the linear system[

𝑔0 𝑔1 . . . 𝑔𝑑−1
]
H =

[
𝑢𝑑 . . . 𝑢2𝑑−1

]
.

For a polynomial 𝑔 = 𝑥𝑑 − ∑𝑑−1
𝑖=0 𝑔𝑖𝑥

𝑖 ∈ K[𝑥], we define 𝑔 =

𝑥𝑑𝑔(1/𝑥) ∈ K[𝑥] as the mirror of 𝑔. Another approach is done
using generating series 𝑆 =

∑
𝑖∈N 𝑢𝑖𝑥

𝑖 ∈ K[[𝑥]]. The generating
series of a C-recursive sequence admits a finite representation.
Indeed, for such series 𝑆 there exists 𝑝, 𝑞 ∈ K[𝑥] such that 𝑞𝑆 = 𝑝

with deg(𝑝) < 𝑑 and 𝑞 = 𝑔. From the degree constraint on 𝑝 and 𝑞,
one can recover 𝑝 and 𝑞 from the relation 𝑞𝑆 = 𝑝 mod 𝑥𝐷+1 with
𝐷 ≥ 2𝑑 . This modular equation can be rewritten as a Bézout’s
identity 𝑞𝑆 + 𝑟𝑥𝐷+1 = 𝑝 with 𝑟 ∈ K[𝑥] and computing 𝑞 = 𝑔 comes
down to computing a Truncated Extended Euclidean algorithm. A
fast computation of this relation can be done through a call to the
half-gcd algorithm [12, 15, 21]. The half-gcd algorithm is based on
a fast reduction algorithm.

Lemma 2.1.2. Let 𝑎, 𝑏 ∈ K[𝑥] with deg(𝑎) = 𝐷 and deg(𝑏) = 𝑑

such that 𝐷 ≥ 𝑑 . Computing 𝑞, 𝑟 ∈ K[𝑥] satisfying 𝑎 = 𝑞𝑏 + 𝑟 with
deg(𝑟 ) < 𝑑 can be done in 𝑂̃ (𝐷) operations in K.

The transpose of this operation called the extension is computed

in the same complexity by the Tellegen’s principle [6]. This operation

corresponds to the extension of C-recursive sequences (𝑢𝑖 )𝑖∈N by the

C-relation 𝑔 = 𝑥𝑑 − ∑𝑑−1
𝑖=0 𝑔𝑖𝑥

𝑖
, for 𝑆 =

∑𝑑−1
𝑖=0 𝑢𝑖𝑥

𝑖
, it computes

𝑆 =
∑𝐷
𝑖=0 𝑢𝑖𝑥

𝑖
using 𝑢𝑖+𝑑 = 𝑔𝑑−1𝑢𝑖+𝑑−1 + . . . 𝑔0𝑢𝑖 for 𝑖 ≥ 0.

Recall that 𝑂̃ (·) means that polylogarithmic factors are omitted.

Theorem 2.1.3. Computing the C-relation 𝑔 ∈ K[𝑥] on (𝑢𝑖 )𝑖∈N of

degree 𝑑 , knowing the 𝐷 + 1 initial terms of (𝑢𝑖 )𝑖∈N with 𝐷 ≥ 2𝑑 ,
can be done in 𝑂̃ (𝐷) operations in K.

The half-gcd algorithm can also be derived to a Hankel system
solving of size 𝑑 − 1 (see [7]) and can be done in 𝑂̃ (𝑑) operations.

2.2 Multivariate polynomial rings

For multi-indexed sequences, we use multivariate polynomials to
represent the C-relations. For a polynomial 𝑓 ∈ K[𝒙] and 𝜶 ∈ N𝑛 ,
we note 𝑓𝜶 the coefficient of 𝑓 associated to the monomial 𝒙𝜶 , the
support of 𝑓 is the monomial set supp(𝑓 ) = {𝒙𝜶 | 𝑓𝜶 ≠ 0}.

We define the boxmonomial set of parameter 𝒅 ∈ N𝑛 as 𝒅-box ≔

{𝒙𝜶 | 0 ≤ 𝛼 𝑗 ≤ 𝑑 𝑗 for all 1 ≤ 𝑗 ≤ 𝑛}. Also, we denote by K[𝒙]⪯𝒅
the set of polynomials with support in 𝒅-box.

For polynomials 𝑓 , 𝑔 ∈ K[𝒙]⪯𝒅 , the addition of 𝑓 + 𝑔 can be
computed using𝑂

(∏𝑛
𝑖=1 𝑑𝑖

)
operations in K and the multiplication

𝑓 𝑔 can be computed using 𝑂̃
(∏𝑛

𝑖=1 (2𝑑𝑖 )
)
operations.

For multivariate polynomials, we have to define a total order
on the monomial set. In our study, we are only interested on the
lexicographic order, we refer to [8] for more general consideration.
We note ≺ the lexicographic order onK[𝑥1, . . . , 𝑥𝑛] with 𝑥1 ≺ . . . ≺
𝑥𝑛 and such that 𝒙𝜶 ≺ 𝒙𝜷 if there exists 1 ≤ 𝑘 ≤ 𝑛 such that for any
𝑗 < 𝑘, 𝛼 𝑗 = 𝛽 𝑗 and 𝛼𝑘 < 𝛽𝑘 . For a nonzero polynomial 𝑓 ∈ K[𝒙],
the leadingmonomial of 𝑓 w.r.t.≺ is noted lm (𝑓 ) and corresponds to
the maximum monomial of 𝑓 ordered by ≺. The leading coefficient
of 𝑓 w.r.t. ≺ is noted lc (𝑓 ) ∈ K is the coefficient associated to lm (𝑓 ).
The leading term of 𝑓 w.r.t. ≺ is noted lt (𝑓 ) = lc (𝑓 ) lm (𝑓 ).

An ideal of K[𝒙] can be generated by a finite set of polynomials.
Gröbner bases are particular sets of generators with interesting
computational properties. For an ideal 𝐼 ⊆ K[𝒙], a Gröbner basis G
of 𝐼 for the lexicographic order is a finite generating set of 𝐼 such that
⟨lm (G)⟩ = ⟨lm (𝐼 )⟩, i.e. it spans lm (𝐼 ) as a monomial set. A minimal
Gröbner basis G is a Gröbner basis such that no lm (𝑔) ∈ lm (G)
is divisible by an element in lm (G\{𝑔}). The (unique) reduced
Gröbner basis G is a minimal Gröbner basis such that for all 𝑔 ∈ G,
the monomials𝑚 ∈ supp(𝑔) are not divisible by any lm (G\{𝑔}).

The staircase S associated to an ideal 𝐼 is S ≔ {𝒙𝜶 | 𝒙𝜶 ∉

lm (𝐼 )}. It forms a K-vector space basis of the quotient ring K[𝒙]/𝐼 .
The polynomial division with remainder by a Gröbner basis (defined
in [8, Chapter 2.7]) gives a unique polynomial 𝑟 with support in
the staircase S. For 𝑓 ∈ K[𝒙], we denote by 𝑟 = 𝑓 rem(G) ∈ K[𝒙]
with supp(𝑟 ) ⊂ S the unique remainder of 𝑓 by a Gröbner basis G.
The polynomial division with remainder of 𝑓 ∈ K[𝒙] by a Gröbner
basis G, as defined in [8, Chapter 2.7], yields a unique polynomial
denoted 𝑟 = 𝑓 rem(G) ∈ K[𝒙] with support in the staircase S.

We recall the notion of colon ideal by one polynomial. A more
general description can be found in [8, Chapter 4.4]. Let 𝐼 be an
ideal of K[𝒙] and let 𝑓 ∈ K[𝒙], the colon ideal of 𝐼 by 𝑓 is 𝐼 : ⟨𝑓 ⟩ =
{𝑔 ∈ K[𝒙] | 𝑔𝑓 ∈ 𝐼 }.
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2.3 Multi-indexed C-recursive sequences

For 𝑛 > 0, the setKN
𝑛
corresponds to the set of 𝑛-indexed sequence

𝒖 = (𝑢𝑖𝑖𝑖 )𝑖𝑖𝑖∈N𝑛 with terms in K. We denote the zero sequence by
0 = (0)𝒊∈N𝑛 . For C-recursive sequences, we allow two types of
operations: index shifts and scalar multiplications on sequences.
These operations can be described by the action ★ of K[𝒙] in KN𝑛

such that 𝑥𝑑
𝑗
★ 𝒖 = (𝑢𝑖1,...,𝑖 𝑗+𝑑,...,𝑖𝑛 ) (𝑖1,...,𝑖𝑛 ) ∈N𝑛 for 1 ≤ 𝑗 ≤ 𝑛 and

𝑑 ∈ N, and extended by linearity to K[𝒙].
For a sequence 𝒖 = (𝑢𝑖𝑖𝑖 )𝑖𝑖𝑖∈N𝑛 , a C-relation 𝑔 on 𝒖 is a polynomial

𝑔 ∈ K[𝒙] that satisfies 𝑔★𝒖 = 0. We note by 𝐼 (𝒖) = {𝑔 ∈ K[𝒙] | 𝑔★
𝒖 = 0} the ideal of relations of 𝒖. A sequence 𝒖 is C-recursive if the
ideal of relations 𝐼 (𝒖) is 0-dimensional i.e. dimK (K[𝒙]/𝐼 (𝒖)) < ∞.

For a sequence 𝒖, we denote by G𝒖 the reduced Gröbner basis
w.r.t. ≺ of the ideal of relations 𝐼 (𝒖), and S𝒖 the staircase w.r.t. ≺
of 𝐼 (𝒖) also we note S𝒖,≺𝑚 = {𝒙𝜶 ∈ S𝒖 | 𝒙𝜶 ≺ 𝑚}. We note
the exponents set of S𝒖 by E𝒖 = {𝜶 ∈ N𝑛 | 𝒙𝜶 ∈ S𝒖 } and
E𝒖,≺𝑒 = {𝜶 ∈ E𝒖 | 𝒙𝜶 ≺ 𝒙𝑒 }.

For 𝒖 a C-recursive sequence and G a Gröbner basis of 𝐼 (𝒖), any
term of 𝒖 can be computed from the relations in G and the initial
terms in S𝒖 [19]. A C-recursive sequence is uniquely determined
by the terms associated to the exponents from the staircase S𝒖 , as
the other terms are linear combinations of the ones in the staircase.

Lemma 2.3.1 ([20, §2]). Fix 𝐼 (𝒖) and G a Gröbner basis of 𝐼 (𝒖)
w.r.t. the order ≺. Then 𝐼 (𝒖) ⊂ 𝐼 (𝒗) iff for all 𝜷 ∈ lm (𝐼 (𝒖)), we have
𝑣𝜷 =

∑
𝜶 ∈E𝒖 𝑐𝜶 𝑣𝜶 with 𝒙𝜷 rem(G) = ∑

𝜶 ∈E𝒖 𝑐𝜶 𝒙
𝜶
.

For 𝑛 > 0 and 𝒖 ∈ KN𝑛 C-recursive, we define the K-linear
subspace L𝒖 ≔ {ℎ ★ 𝒖 | ℎ ∈ K[𝒙]} ⊂ KN𝑛 and consider the
linear application 𝜙 (ℎ) = ℎ ★ 𝒖 from K[𝒙] to L𝒖 . By construction,
𝜙 is surjective. As ker𝜙 = 𝐼 (𝒖), we can define the isomorphism
𝜙 : K[𝒙]/𝐼 (𝒖) → L𝒖 from 𝜙 . We define F = {𝑒𝒊}𝒊∈E𝒖 ⊂ KN

𝑛
with

𝑒𝒊 defined for 𝒋 ∈ E𝒖 such that (𝑒𝒊)𝒋 = 0 if 𝒋 ≠ 𝒊 and (𝑒𝒊)𝒊 = 1 and
outside E𝒖 we extend the terms of 𝑒𝒊 in E𝒖 by the relations in 𝐼 (𝒖).

Lemma 2.3.2. If 𝐼 (𝒖) ⊂ 𝐼 (𝒗) then 𝑣 ∈ spanK (F ).

Proof. Let 𝒘 = 𝒗 − ∑
𝒊∈E𝒖 𝑣 𝒊𝑒𝒊 . For 𝒋 ∈ E𝒖 , we have by con-

struction 𝑤𝒋 = 0. From Lm. 2.3.1, we have 𝐼 (𝒖) ⊂ 𝐼 (𝑒𝒊) for any
𝒊 ∈ E𝒖 . Since 𝑓 ∈ 𝐼 (𝒖) is in 𝐼 (𝒗) and all 𝐼 (𝑒𝒊), we deduce that
𝐼 (𝒖) ⊂ 𝐼 (𝒘). Hence,𝒘 = 0 and 𝒗 =

∑
𝒊∈E𝒖 𝑣 𝒊𝑒𝒊 . □

Lemma 2.3.3. The family F is a basis of L𝒖 .

Proof. By construction, F is linearly independent. Let ℎ ★ 𝒖 ∈
L𝒖 , since for 𝑓 ∈ 𝐼 (𝒖), (𝑓 ℎ) ★ 𝒖 = 𝑓 ★ (ℎ ★ 𝒖) = 0, we have 𝐼 (𝒖) ⊂
𝐼 (ℎ ★ 𝒖). So we apply Lm. 2.3.2 and show that L𝒖 ⊂ spanK (F ).
Since dimK (L𝒖 ) = dimK (K[𝒙]/𝐼 (𝒖)) = |S𝒖 |, we conclude that F
is a basis of L𝒖 . □

We noteHS𝒖 the matrix associated to 𝜙 , with the basis S𝒖 for
K[𝒙]/𝐼 (𝒖) and F for L𝒖 both ordered w.r.t. ≺. The application 𝜙 is
an isomorphism so the matrixHS𝒖 is invertible.

Theorem 2.3.4. Let 𝒖 and 𝒗 be two C-recursive sequences. The

following statements are equivalent:

(a) ∃!ℎ ∈ K[𝒙] with support in S𝒖 such that 𝒗 = ℎ ★ 𝒖;
(b) ∃ℎ ∈ K[𝒙] such that 𝐼 (𝒗) = 𝐼 (𝒖) : ⟨ℎ⟩;
(c) 𝐼 (𝒖) ⊂ 𝐼 (𝒗).

Proof. For (𝑎) ⇒ (𝑏), we have 𝑔 ∈ 𝐼 (𝒗) ⇔ 0 = 𝑔 ★ 𝒗 =

(𝑔ℎ) ★ 𝒖 ⇔ 𝑔 ∈ 𝐼 (𝒖) : ⟨ℎ⟩. For (𝑏) ⇒ (𝑐), it is direct by definition.
For (𝑐) ⇒ (𝑎), since 𝐼 (𝒖) ⊂ 𝐼 (𝒗) we can write 𝒗 =

∑
𝒊∈E𝒖 𝑣 𝒊𝑒𝒊 so

𝒗 ∈ L𝒖 by Lms. 2.3.2 and 2.3.3. For uniqueness, let ℎ′ ∈ K[𝒙] s.t. 𝒗 =

ℎ′★𝒖 and supp(ℎ′) ⊂ S𝒖 . We get (ℎ−ℎ′)★𝒖 = 0 soℎ−ℎ′ ∈ 𝐼 (𝒖) and
ℎ − ℎ′ rem(G𝒖 ) = 0. Since supp(ℎ), supp(ℎ′) ⊂ S𝒖 by the linearity
of the reduction we obtain ℎ = ℎ rem(G𝒖 ) = ℎ′ rem(G𝒖 ) = ℎ′. □

3 BI-INDEXED SEQUENCES

In this section, we restrict ourselves to C-recursive bi-indexed se-
quences 𝒗 = (𝑣𝑖, 𝑗 )𝑖, 𝑗∈N. We denote by 𝑑𝑥 , 𝑑𝑦 ∈ N the exponents
satisfying 𝑥𝑑𝑥 , 𝑦𝑑𝑦 ∈ lm (G𝒗).

3.1 Hankel matrix and LU decomposition

For a bi-indexed sequence 𝒗 and 𝑗 ∈ N, we note the sub-sequences
𝒗∗, 𝑗 = (𝑣𝑖, 𝑗 )𝑖∈N ∈ KN. Sub-sequences does not necessarily contain
enough information to recover the ideal 𝐼 (𝒗) ∩ K[𝑥].
Example 3.1.1. Let 𝒗 = ((−1)𝑖 𝑗 )𝑖, 𝑗∈N, then 𝐼 (𝒗∗, 𝑗 ) = ⟨𝑥 − (−1) 𝑗 ⟩,
but 𝐼 (𝒗) ∩ K[𝑥] = ⟨𝑥2 − 1⟩.

To overcome the problem posed by Ex. 3.1.1, we make the fol-
lowing assumption on the sequence 𝒗.

Assumption A. The matrixHS𝒗 defined in §2.3 for the bi-indexed

sequence 𝒗 admits a LU decomposition.

For amatrixM ∈ K𝑛×𝑛 , the principal 𝑟×𝑟 submatrixM𝑟 ∈ K𝑟×𝑟
is the matrix built from the first 𝑟 rows and columns ofM. Recall
that an invertible matrixM ∈ K𝑛×𝑛 admits a LU decomposition iff
for 1 ≤ 𝑟 ≤ 𝑛, the submatrixM𝑟 is invertible.

ConsiderHS𝒗 = 𝐿𝑈 with 𝐿 a lower triangular matrix with ones
on the diagonal and𝑈 an upper triangular matrix. We note the rows
of 𝐿−1 =

[
ℓ𝑚

]
𝑚∈S𝒗 with ℓ𝑚 ∈ K1×|S𝒗 | . We note 𝑝𝑚 ∈ K[𝑥,𝑦] the

polynomial representing ℓ𝑚 in the basisS𝒗 . The matrix 𝐿−1 is lower
triangular with ones on its diagonal, so lt (𝑝𝑚) =𝑚 for all𝑚 ∈ S𝒗 .
For 𝑦 𝑗 ∈ S𝒗 , we denote by 𝒗 ( 𝑗 ) the sequence 𝑝𝑦 𝑗 ★ 𝒗.

Lemma 3.1.2. For 0 ≤ 𝑗 < 𝑑𝑦 , 𝒗 ( 𝑗 ) satisfies 𝒗
( 𝑗 )
∗,𝑘 = 0, for 0 ≤ 𝑘 < 𝑗 .

Proof. Let 𝑖 ∈ N, 𝑘 < 𝑗 and consider the term 𝒗 ( 𝑗 )
𝑖,𝑘

of 𝒗 ( 𝑗 ) . By
construction, the row of 𝑈 indexed by 𝑦 𝑗 contains terms of 𝒗 ( 𝑗 )

and in particular (𝒗 ( 𝑗 ) )𝑟,𝑠 = 0 for (𝑟, 𝑠) ∈ E𝒗,≺(0, 𝑗 ) . Now, since
𝒗 ( 𝑗 )
𝑖,𝑘

= (𝑥𝑖𝑦𝑘 ★ 𝒗 ( 𝑗 ) )0,0 = ((𝑥𝑖𝑦𝑘 rem(G𝒗)) ★ 𝒗 ( 𝑗 ) )0,0, we express
𝒗 ( 𝑗 )
𝑖,𝑘

as a linear combination of 𝒗 ( 𝑗 )𝑟,𝑠 = 0 for (𝑟, 𝑠) ∈ E𝒗,≺(0, 𝑗 ) . □

Lemma 3.1.3. Let 𝑗 ∈ N and 𝑡 ∈ K[𝑥,𝑦] such that (𝑡 ★ 𝒗)𝑟,𝑠 = 0
for (𝑟, 𝑠) ∈ E𝒗,≺(0, 𝑗 ) . If deg𝑦 (𝑡) < 𝑗 , then 𝑡 ∈ 𝐼 (𝒗). Otherwise, if
lt (𝑡) = 𝑦 𝑗 for 0 ≤ 𝑗 < 𝑑𝑦 , then 𝑝𝑦 𝑗 = 𝑡 rem(G𝒗).

Proof. Let HS𝒗,≺𝑦𝑗
be the principal submatrix of HS𝒗 with

rows indexed byS𝒗,≺𝑦 𝑗 and columns by (𝑒𝒊)𝒊∈E𝒗,≺(0, 𝑗 ) . If deg𝑦 (𝑡) <
𝑗 , we can represent the polynomial 𝑡 ≔ 𝑡 rem(G𝒗) by a vector ℓ
in the basis S𝒗,≺𝑦 𝑗 . Since (𝑡 ★ 𝒗)𝑟,𝑠 = 0 for (𝑟, 𝑠) ∈ E𝒗,≺(0, 𝑗 ) , ℓ
satisfies ℓHS𝒗,≺𝑦𝑗

= 0. As 𝒗 satisfies Asm. A,HS𝒗,≺𝑦𝑗
is invertible

so ℓ = 0, and 𝑡 ∈ 𝐼 (𝒗). Now, if lt (𝑡) = 𝑦 𝑗 for 0 ≤ 𝑗 < 𝑑𝑦 , then
𝑡 ≔ 𝑡 − 𝑝𝑦 𝑗 satisfies the hypotheses and deg𝑦 (𝑡) < 𝑗 , so 𝑡 ∈ 𝐼 (𝑢)
and 𝑝𝑦 𝑗 = 𝑝𝑦 𝑗 rem(G𝒗) = 𝑡 rem(G𝒗). □
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Theorem 3.1.4. The family P = {𝑥𝑖𝑝𝑦 𝑗 | 𝑥𝑖𝑦 𝑗 ∈ S𝒗} is a basis of
K[𝑥,𝑦]/𝐼 (𝒗) as K-vector space.

Proof. Let 𝑥𝑖𝑦 𝑗 ∈ S𝒗 and consider 𝑔 = 𝑥𝑖𝑝𝑦 𝑗 rem(G𝒗). Since
lt (𝑥𝑖𝑝𝑦 𝑗 ) = 𝑥𝑖𝑦 𝑗 ∈ S𝒗 , we have 𝑔 = 𝑥𝑖𝑦 𝑗 +∑(𝑟,𝑠 ) ∈E𝒗,≺(𝑖,𝑗 ) 𝑐𝑟,𝑠𝑥𝑟𝑦𝑠 .
Hence, the change-of-basis matrix between the bases S𝒗 and P is
lower triangular with ones on its diagonal. □

We define the matrix HP representing the application 𝜙 (see
§2.3) with row basis P and column basis F defined in §2.3.

Lemma 3.1.5. The matrix HP is block upper triangular and its

diagonal blocks are invertible, i.e.

HP =



H0 H1 · · · H𝑑𝑦−1

0 H (1)1 · · · H (1)
𝑑𝑦−1

...
. . .

. . .
...

0 0 · · · H (𝑑𝑦−1)
𝑑𝑦−1


Proof. For 0 ≤ 𝑗 < 𝑑𝑦 , the 𝑗th row block starts with 𝑗 zero

matrices since 𝒗 ( 𝑗 )∗,𝑘 = 0 for 0 ≤ 𝑘 < 𝑗 from Lm. 3.1.2 thus the matrix
HP is block upper triangular matrix. The matrixHP is invertible
since the linear application 𝜙 is an isomorphism, hence the block
diagonal matricesH ( 𝑗 )

𝑗
are invertible. □

Theorem 3.1.6. For 0 ≤ 𝑗 < 𝑑𝑦 and 𝑑 𝑗 ∈ N, there exists 𝑔 ∈ 𝐼 (𝒗) s.t.
lm (𝑔) = 𝑥𝑑 𝑗𝑦 𝑗 iff there exists 𝑓𝑗 ∈ 𝐼 (𝒗 ( 𝑗 ) ) ∩ K[𝑥] s.t. lm (𝑓𝑗 ) = 𝑥𝑑 𝑗

.

Proof. Let 𝑓𝑗 ∈ 𝐼 (𝒗 ( 𝑗 ) ) ∩K[𝑥] with lm (𝑓𝑗 ) = 𝑥𝑑 𝑗 , by definition
0 = 𝑓𝑗 ★ 𝒗 ( 𝑗 ) = (𝑓𝑗𝑝𝑦 𝑗 ) ★ 𝒗 so 𝑔 = 𝑓𝑗𝑝𝑦 𝑗 ∈ 𝐼 (𝒗) and lm (𝑔) = 𝑥𝑑 𝑗𝑦 𝑗 .

Let𝑔 ∈ 𝐼 (𝒗) with lm (𝑔) = 𝑥𝑑 𝑗𝑦 𝑗 ∉ S𝒗 by definition. Consider the
sequence (𝑥𝑑 𝑗 𝑝𝑦 𝑗 )★𝒗 = 𝑥𝑑 𝑗 ★𝒗 ( 𝑗 ) from Lm. 3.1.2 we have for 𝑘 < 𝑗 ,

(𝑥𝑑 𝑗 ★𝒗 ( 𝑗 ) )∗,𝑘 = 0. From Lm. 3.1.5, the matrixH ( 𝑗 )
𝑗

is invertible, so
there exists a polynomial 𝑓 ∈ K[𝑥] with supp(𝑓 𝑦 𝑗 ) ⊂ S𝒗 satisfying
(𝑓 ★ 𝒗 ( 𝑗 ) )𝑟, 𝑗 = (𝑥𝑑 𝑗 ★ 𝒗 ( 𝑗 ) )𝑟, 𝑗 for (𝑟, 𝑗) ∈ E𝒗 . By construction,
the polynomial 𝑡 = (𝑥𝑑 𝑗 − 𝑓 )𝑝𝑦 𝑗 is such that (𝑡 ★ 𝒗)𝑟,𝑠 = 0 for
(𝑟, 𝑠) ∈ E𝒗,≺(0, 𝑗+1) and deg𝑦 (𝑡) = 𝑗 . So by Lm. 3.1.3, 𝑡 ∈ 𝐼 (𝒗) and
𝑓𝑗 = 𝑥𝑑 𝑗 − 𝑓 ∈ 𝐼 (𝒗 ( 𝑗 ) ). Note that 𝑥𝑑 𝑗𝑦 𝑗 ∉ S𝒗 and supp(𝑓 𝑦 𝑗 ) ⊂ S𝒗 ,
so lm ((𝑥𝑑 𝑗 − 𝑓 )𝑝𝑦 𝑗 ) = lm (𝑥𝑑 𝑗 𝑝𝑦 𝑗 ) = 𝑥𝑑 𝑗𝑦 𝑗 and lm (𝑓𝑗 ) = 𝑥𝑑 𝑗 . □

Theorem 3.1.7. For 0 ≤ 𝑗 < 𝑑𝑦 , the sequence 𝒗
( 𝑗 )
∗, 𝑗 ∈ K

N
is such

that 𝐼 (𝒗 ( 𝑗 )∗, 𝑗 ) =
⋂

𝑘≥ 𝑗 𝐼 (𝒗
( 𝑗 )
∗,𝑘 ) i.e. 𝒗

( 𝑗 )
∗,𝑘 ∈ L

𝒗 ( 𝑗 )∗, 𝑗
for 𝑘 ≥ 𝑗 .

Proof. The inclusion
⋂

𝑘≥ 𝑗 𝐼 (𝒗
( 𝑗 )
∗,𝑘 ) ⊂ 𝐼 (𝒗 ( 𝑗 )∗, 𝑗 ) is direct. For the

reverse inclusion, let 𝑔 ∈ 𝐼 (𝒗 ( 𝑗 )∗, 𝑗 ). The polynomial 𝑡 = 𝑔𝑝𝑦 𝑗 is
such that (𝑡 ★ 𝒗)𝑟,𝑠 = 0 for (𝑟, 𝑠) ∈ E𝒗,≺(0, 𝑗+1) , since it is zero
for 𝑠 < 𝑗 by Lm. 3.1.2, and for 𝑠 = 𝑗 by definition of 𝑔. Since
deg𝑦 (𝑡) ≤ 𝑗 (as lt (𝑝𝑦 𝑗 ) = 𝑦 𝑗 ), we have 𝑡 ∈ 𝐼 (𝒗) using Lm. 3.1.3,

and thus 𝑔 ★ 𝒗 ( 𝑗 ) = 𝑡 ★ 𝒗 = 0 so 𝑔 ∈ ⋂𝑘≥ 𝑗 𝐼 (𝒗
( 𝑗 )
∗,𝑘 ). □

From this property, we can find a relation between the sequences
(𝒗 ( 𝑗 ) )0≤ 𝑗≤𝑑𝑦 with 𝒗 (𝑑𝑦 ) = 0.

Theorem 3.1.8. For 0 ≤ 𝑗 < 𝑑𝑦 , we have 𝒗
( 𝑗+1)
∗, 𝑗+1 ∈ L

𝒗 ( 𝑗 )∗, 𝑗
and there

exists (𝑎 𝑗 , 𝑏 𝑗 ) ∈ K[𝑥]2 with supp(𝑎 𝑗 ) ⊂ S𝒗 ( 𝑗−1)
∗, 𝑗−1

and supp(𝑏 𝑗 ) ⊂

S
𝒗 ( 𝑗 )∗, 𝑗

satisfying 𝒗 ( 𝑗+1) = 𝑎 𝑗 ★ 𝒗 ( 𝑗−1) + (𝑦 − 𝑏 𝑗 ) ★ 𝒗 ( 𝑗 ) if 𝑗 ≠ 0 and

𝒗 (1) = (𝑦 − 𝑏0) ★ 𝒗 if 𝑗 = 0.
Proof. We prove the statement by induction on 𝑗 . For 𝑗 = 0, we

have by definition 𝒗 (1) = 𝑝𝑦★𝒗 with lt (𝑝𝑦) = 𝑦 and supp(𝑝𝑦) ⊂ S𝒗
so 𝑝𝑦 = 𝑦−𝑏0 with supp(𝑏0) ⊂ S𝒗∗,0 . From this relation, we deduce
that 𝒗 (1)∗,1 = 𝒗∗,0 − 𝑏0 ★ 𝒗∗,1 and by Thm. 3.1.7 it results that 𝒗 (1)∗,1 ∈
L𝒗∗,0 . For 1 ≤ 𝑗 < 𝑑𝑦−1, we suppose that the statement is true at step
𝑗−1 and prove that it holds at step 𝑗 . Consider (𝑎 𝑗 , 𝑏 𝑗 ) ∈ K[𝑥]2 with
supp(𝑎 𝑗 ) ⊂ S𝒗 ( 𝑗−1)

∗, 𝑗−1
and supp(𝑏 𝑗 ) ⊂ S𝒗 ( 𝑗 )∗, 𝑗

satisfying 𝑎 𝑗 ★ 𝒗 ( 𝑗−1)
∗, 𝑗−1 =

−𝒗 ( 𝑗 )∗, 𝑗 and 𝑎 𝑗 ★𝒗
( 𝑗−1)
∗, 𝑗 +𝒗 ( 𝑗 )∗, 𝑗+1 = 𝑏 𝑗 ★𝒗

( 𝑗 )
∗, 𝑗 . There exists 𝑎 𝑗 satisfying

the first equality by the induction hypothesis 𝒗 ( 𝑗 )∗, 𝑗 ∈ L
𝒗 ( 𝑗−1)
∗, 𝑗−1

. For

𝑏 𝑗 , by Thm. 3.1.7 we have 𝑎 𝑗 ★ 𝒗 ( 𝑗−1)
∗, 𝑗 ∈ L

𝑎 𝑗★𝒗
( 𝑗−1)
∗, 𝑗−1

= L
𝒗 ( 𝑗 )∗, 𝑗

hence

from Thm. 2.3.4 we can find 𝑏 𝑗 satisfying the conditions. Let𝒘 =

𝑎 𝑗 ★𝒗 ( 𝑗−1) + (𝑦−𝑏 𝑗 )★𝒗 ( 𝑗 ) . By construction of𝒘 , we have𝒘∗,𝑘 = 0
for 𝑘 < 𝑗 + 1 and 𝒘 = 𝑡 ★ 𝒗 with 𝑡 = (𝑎 𝑗𝑝𝑦 𝑗−1 + (𝑦 − 𝑏 𝑗 )𝑝𝑦 𝑗 ).
If 𝑗 ≠ 𝑑𝑦 − 1 then by Lm. 3.1.3 since lt (𝑡) = 𝑦 𝑗+1 we deduce
that 𝑝𝑦 𝑗+1 = 𝑡 rem(G𝒗) and 𝒗 ( 𝑗+1) = 𝒘 , otherwise if 𝑗 = 𝑑𝑦 − 1
then 𝒘∗,𝑘 = 0 for 𝑘 ≤ 𝑑𝑦 so 𝒘 = 0 = 𝒗 (𝑑𝑦 ) . Finally, the relation
𝒗 ( 𝑗+1)∗, 𝑗+1 = 𝑎 𝑗 ★ 𝒗 ( 𝑗−1)

∗, 𝑗+1 + 𝒗
( 𝑗 )
∗, 𝑗 − 𝑏 𝑗 ★ 𝒗 ( 𝑗 )∗, 𝑗+1 gives 𝒗

( 𝑗+1)
∗, 𝑗+1 ∈ L

𝒗 ( 𝑗 )∗, 𝑗
with

the same arguments used to prove the existence of 𝑏 𝑗 . □

Lemma 3.1.9. For 0 ≤ 𝑗 < 𝑑𝑦 , if we define

[
𝑠 𝑗 𝑡 𝑗

𝑠 𝑗+1 𝑡 𝑗+1

]
= 𝑄 𝑗 · · ·𝑄0

with 𝑄𝑘 =

[ 0 1
𝑎𝑘 𝑦−𝑏𝑘

]
then 𝑝𝑦 𝑗 = 𝑡 𝑗 rem(G𝒗) and 𝑡𝑑𝑦 ∈ 𝐼 (𝒗).

Proof. For 0 ≤ 𝑗 < 𝑑𝑦 , we have
[

𝒗 ( 𝑗 )

𝒗 ( 𝑗+1)

]
= 𝑄 𝑗 · · ·𝑄1

[
𝒗 (0)

𝒗 (1)

]
. If

we note𝑅 𝑗 = 𝑄 𝑗 · · ·𝑄1 =

[
𝛼 𝑗 𝛽 𝑗

𝛾 𝑗 𝛿 𝑗

]
then

[
𝑠 𝑗 𝑡 𝑗

𝑠 𝑗+1 𝑡 𝑗+1

]
= 𝑅 𝑗

[ 0 1
𝑎0 (𝑦−𝑏0 )

]
and 𝑡 𝑗 = 𝛼 𝑗 + (𝑦 − 𝑏0)𝛽 𝑗 . From Thm. 3.1.8, we have 𝒗 (1) = (𝑦 −
𝑏0) ★ 𝒗 (0) so 𝑡 𝑗 ★ 𝒗 = 𝛼 𝑗 ★ 𝒗 + 𝛽 𝑗 ★ 𝒗 (1) = 𝒗 ( 𝑗 ) . By the same rea-
soning, we obtain 𝑡 𝑗+1 ★ 𝒗 = 𝒗 ( 𝑗+1) . Therefore, (𝑝𝑦 𝑗 − 𝑡 𝑗 ) ★ 𝒗 = 0
so (𝑝𝑦 𝑗 − 𝑡 𝑗 rem(G𝒗)) = 0 and by linearity of the reduction we get
𝑝𝑦 𝑗 = 𝑝𝑦 𝑗 rem(G𝒗) = 𝑡 𝑗 rem(G𝒗). For 𝑗 = 𝑑𝑦 , we have 𝒗 (𝑑𝑦 ) = 0 =

𝑡𝑑𝑦 ★ 𝒗 so 𝑡𝑑𝑦 ∈ 𝐼 (𝒗). □

3.2 Pseudo-Euclidean division

In this subsection, following [11, Sec. 6], we work with polynomials
inKN [𝑦], the setKN is not a ring but is aK-vector space. We define
an arithmetic on KN [𝑦] that mimics the action ★ on sequences.
Definition 3.2.1. Let 𝑟 =

∑𝐷
𝑗=0 𝑟 𝑗𝑦

𝑗 ∈ KN [𝑦]. We define two opera-

tions: for 𝑔 ∈ K[𝑥], 𝑔 · 𝑟 = ∑𝐷
𝑗=0 (𝑔★ 𝑟 𝑗 )𝑦 𝑗 and 𝑦𝑑 · 𝑟 =

∑𝐷
𝑗=0 𝑟 𝑗𝑦

𝑗+𝑑

and extend linearly the operation · for polynomials in K[𝑥,𝑦].
As in the uni-indexed case, our goal is to reduce the guessing

problem to the computation of successive remainders for that we
define a pseudo-Euclidean division in KN [𝑦].
Theorem 3.2.2. Let 𝑓 =

∑𝑑
𝑗=0 𝑓𝑗𝑦

𝑗
and 𝑔 =

∑𝑑−1
𝑗=0 𝑔 𝑗𝑦

𝑗
be two

polynomials in KN [𝑦] of respective degree 𝑑 and 𝑑 − 1 with 𝑑 ≥ 1.
If (𝑖) 𝑔𝑑−1 ∈ L𝑓𝑑 , (𝑖𝑖) 𝑓𝑑−1 ∈ L𝑓𝑑 , (𝑖𝑖𝑖) 𝑔𝑑−2 ∈ L𝑔𝑑−1 with 𝑓𝑑 C-

recursive then ∃!(𝑎, 𝑏) ∈ K[𝑥]2 with supp(𝑎) ⊂ S𝑓𝑑 and supp(𝑏) ⊂
S𝑔𝑑−1 satisfying 𝑎 · 𝑓 = (−𝑦 + 𝑏) · 𝑔 + 𝑟 with deg𝑦 (𝑟 ) < deg𝑦 (𝑔).
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When the conditions (𝑖), (𝑖𝑖), (𝑖𝑖𝑖) of the previous theorem are
satisfied, we say that the pseudo-Euclidean division of 𝑓 by 𝑔 is
well-defined and that its result is (𝑎, 𝑏, 𝑟 ).

Proof. Consider such polynomials 𝑓 , 𝑔 ∈ KN [𝑦], since 𝑔𝑑−1 ∈
L𝑓𝑑 from Thm. 2.3.4 there exists a unique polynomial 𝑎 ∈ K[𝑥]
with supp(𝑎) ⊂ S𝑓𝑑 such that 𝑔𝑑−1 = −𝑎 ★ 𝑓𝑑 . We can construct
𝑔 = 𝑎 · 𝑓 +𝑦 ·𝑔 =

∑𝑑−1
𝑗=1 (𝑎★𝑓𝑗 +𝑔 𝑗−1)𝑦 𝑗 +𝑎★𝑓0. If deg𝑦 (𝑔) < 𝑑−1, then

𝑔 = 𝑟 and the pair (𝑎, 𝑏) = (𝑎, 0) satisfies the conditions. Otherwise,
we have lc (𝑔) = 𝑎★ 𝑓𝑑−1 +𝑔𝑑−2 since 𝑎★ 𝑓𝑑−1 ∈ L𝑎★𝑓𝑑 = L𝑔𝑑−1 and
𝑔𝑑−2 ∈ L𝑔𝑑−1 we deduce that lc (𝑔) ∈ L𝑔𝑑−1 . From Thm. 2.3.4, there
exists a unique polynomial 𝑏 ∈ K[𝑥] with supp(𝑏) ⊂ S𝑔𝑑−1 such
that lc (𝑔) = 𝑏 ★𝑔𝑑−1. Hence, by construction 𝑟 = 𝑎 · 𝑓 + (𝑦 − 𝑏) · 𝑔
has degree < deg𝑦 (𝑔). For the uniqueness of (𝑎, 𝑏), consider (𝑎′, 𝑏′)
another pair, which gives deg𝑦 ((𝑎−𝑎′) · 𝑓 + (𝑏′ −𝑏) ·𝑔) < deg𝑦 (𝑔).
So, (𝑎−𝑎′)★ 𝑓𝑑 = 0 and 𝑎 = 𝑎′ by Thm. 2.3.4. Finally, we must have
(𝑏 − 𝑏′) ★𝑔𝑑−1 = 0, so 𝑏 = 𝑏′ again by Thm. 2.3.4. □

Definition 3.2.3. For 0 ≤ 𝑗 < 𝑑𝑦 , we consider the reverse truncated

formal power series 𝑆 𝑗 =
∑𝐷𝑦

𝑘=𝑗
𝒗 ( 𝑗 )∗,𝑘 𝑦

𝐷𝑦−𝑘
representing the sequence

𝒗 ( 𝑗 ) at precision 𝐷𝑦 with 𝐷𝑦 ≥ 2𝑑𝑦 . Also, we note 𝑆−1 = 𝒗 (0)∗,0 𝑦
𝐷𝑦+1

.

Lemma 3.2.4. For 0 ≤ 𝑗 < 𝑑𝑦 , the pseudo-Euclidean division of

𝑆 𝑗−1 by 𝑆 𝑗 is well-defined.

Proof. For 1 ≤ 𝑗 < 𝑑𝑦 , from Thms. 3.1.7 and 3.1.8 and the con-
struction of 𝑆 𝑗−1 and 𝑆 𝑗 we deduce that the hypotheses of Thm. 3.2.2
are satisfied. For 𝑗 = 0, by construction of 𝑆−1 the hypotheses of
Thm. 3.2.2 are also satisfied. Hence for 0 ≤ 𝑗 < 𝑑𝑦 , the pseudo-
Euclidean division of 𝑆 𝑗−1 by 𝑆 𝑗 is well-defined. □

The remainder of the pseudo-Euclidean division of 𝑆 𝑗−1 by 𝑆 𝑗 is
not exactly 𝑆 𝑗+1 but has the same leading terms.

Definition 3.2.5 ([22, §11.1]). For a polynomial 𝑝 =
∑𝑑

𝑗=0 𝑝 𝑗𝑦
𝑗 ∈

KN [𝑦] of degree 𝑑 in 𝑦 and 𝑘 ≤ 𝑑 , we note 𝑝↾𝑘=
∑𝑘

𝑗=0 𝑝𝑑− 𝑗𝑦
𝑘− 𝑗

and

𝑝↾𝑘= 𝑦𝑘−𝑑𝑝 when 𝑘 > 𝑑 .

Lemma 3.2.6. Let 𝑘 ≥ 1. For 𝑔 ∈ K[𝑥,𝑦] with deg𝑦 (𝑔) = 𝑑 ≤ 𝑘 ≤
deg𝑦 (𝑆0) = 𝐷𝑦 , we have 𝑔 · 𝑆0↾𝑘= 𝑓<𝑑 +

∑𝑘−𝑑
𝑗=0 𝒘∗, 𝑗𝑦𝑘− 𝑗 + 𝑓>𝑘 with

deg𝑦 (𝑓<𝑑 ) < 𝑑 and 𝑦𝑘+1 divides 𝑓>𝑘 .

Proof. Let 𝑝 = 𝑔 · 𝑆0↾𝑘∈ KN [𝑦]. If we note 𝑔∗,ℓ the polynomial
in K[𝑥] associated to the monomial 𝑦ℓ then from the arithmetic
on KN [𝑦] defined in Def. 3.2.1, we have 𝑝𝑘− 𝑗 =

∑𝑑
ℓ=0 𝑔∗,ℓ ★𝑣∗, 𝑗+ℓ =

(𝑔 ★ 𝒗)∗, 𝑗 for 0 ≤ 𝑗 ≤ 𝑘 − 𝑑 . □

Lemma 3.2.7. For 0 ≤ 𝑗 < 𝑑𝑦−1, if the pseudo-Euclidean division of
𝑆 𝑗−1 by 𝑆 𝑗 is (𝑐 𝑗 , 𝑑 𝑗 , 𝑆 𝑗+1) then we have 𝑐 𝑗 = 𝑎 𝑗 , 𝑑 𝑗 = 𝑏 𝑗 with (𝑎 𝑗 , 𝑏 𝑗 )
defined in Thm. 3.1.8 and 𝑆 𝑗+1↾𝐷𝑦−( 𝑗+1)−1= 𝑆 𝑗+1↾𝐷𝑦−( 𝑗+1)−1.

Proof. For 𝑗 ≠ 0, the leading terms of 𝑆 𝑗−1 are 𝒗
( 𝑗−1)
∗, 𝑗−1 𝑦

𝐷𝑦− 𝑗+1+
𝒗 ( 𝑗−1)
∗, 𝑗−2 𝑦

𝐷𝑦− 𝑗 and similarly for 𝑆 𝑗 we deduce from the proof of
Thm. 3.2.2 that 𝑐 𝑗 = 𝑎 𝑗 and 𝑑 𝑗 = 𝑏 𝑗 . For 𝑗 = 0, we have 𝑆−1 =

𝒗∗,0𝑦𝐷𝑦+1 and 𝑆0 has leading terms 𝒗∗,0𝑦𝐷𝑦 + 𝒗∗,1𝑦𝐷𝑦−1 so we de-
duce that 𝑐0 = 𝑎0 and 𝑑0 = 𝑏0.

For 1 ≤ 𝑗 < 𝑑𝑦 − 1, we have on the one hand the relation
𝒗 ( 𝑗+1)∗,𝑘 = 𝑎 𝑗 ★𝒗 ( 𝑗−1)

∗,𝑘 + 𝒗 ( 𝑗 )∗,𝑘−1 − 𝑏 𝑗 ★𝒗 ( 𝑗 )∗,𝑘 for 𝑘 > 0 from Thm. 3.1.8.

On the other hand, we have 𝑆 𝑗+1 = 𝑎 𝑗𝑆 𝑗−1 + (𝑦 −𝑏 𝑗 )𝑆 𝑗 which gives
𝑆 𝑗+1 = (𝑎 𝑗 ★𝒗 ( 𝑗−1)

∗, 𝑗−1 +𝒗
( 𝑗 )
∗, 𝑗 )𝑦

𝐷𝑦− 𝑗+1 +∑𝐷𝑦−1
𝑘=𝑗

(𝑎 𝑗 ★𝒗 ( 𝑗−1)
∗,𝑘 +𝒗 ( 𝑗 )∗,𝑘−1−

𝑏 𝑗 ★ 𝒗 ( 𝑗 )∗,𝑘 )𝑦
𝐷𝑦−𝑘 + (𝑎 𝑗 ★ 𝒗 ( 𝑗−1)

∗,𝐷𝑦
− 𝑏 𝑗 ★ 𝒗 ( 𝑗 )∗,𝐷𝑦

). By definition of 𝑎 𝑗
and from Thm. 3.1.8, we deduce that deg𝑦 (𝑆 𝑗+1) = 𝐷𝑦 − 𝑗 − 1 thus
𝑆 𝑗+1↾𝐷𝑦−( 𝑗+1)−1= 𝑆 𝑗+1↾𝐷𝑦−( 𝑗+1)−1. For 𝑗 = 0, we apply the same
arguments and obtain 𝑆1↾𝐷𝑦−2= 𝑆1↾𝐷𝑦−2. □

For the purposes of Lms. 3.2.8 and 3.2.9, let 𝑟0, 𝑟1, 𝑟 ′0, 𝑟
′
1 ∈ K

N [𝑦]
and 𝑘 ≥ 1 such that 𝑟0↾2𝑘= 𝑟 ′0↾2𝑘 and 𝑟1↾2𝑘−1= 𝑟 ′1↾2𝑘−1. Assume
that𝑑 ≔ deg𝑦 (𝑟0) = deg𝑦 (𝑟1)+1 and𝑑′ ≔ deg𝑦 (𝑟 ′0) = deg𝑦 (𝑟 ′1)+1.

Lemma3.2.8. Suppose that the pseudo-Euclidean division (𝑎1, 𝑏1, 𝑟2)
of 𝑟0 by 𝑟1 is well-defined, and that deg𝑦 (𝑟2) = 𝑑−2. Then, the pseudo-
Euclidean division (𝑎′1, 𝑏

′
1, 𝑟
′
2) of 𝑟

′
0 by 𝑟 ′1 is also well-defined, and

satisfies 𝑎1 = 𝑎′1, 𝑏1 = 𝑏′1, and 𝑟2↾2(𝑘−1)−1= 𝑟 ′2↾2(𝑘−1)−1. Moreover,

deg𝑦 (𝑟 ′2) = 𝑑′ − 2 provided that 𝑘 ≥ 2.

Proof. By assumption, the two leading terms of 𝑟0 and 𝑟 ′0 match,
and the same for 𝑟1 and 𝑟 ′1. Yet, the conditions (𝑖), (𝑖𝑖), (𝑖𝑖𝑖) of
Thm. 3.2.2 which determine if a pseudo-Euclidean division is well-
defined only depends on the two leading terms of the dividend and
the divisor. In fact, 𝑎1, 𝑏1 only depend on those same two leading
terms. As a consequence, the pseudo-Euclidean division of 𝑟 ′0 by 𝑟 ′1
is well-defined, and 𝑎1 = 𝑎′1, 𝑏1 = 𝑏′1.

Assume w.l.o.g. 𝑑′ ≤ 𝑑 . The hypothesis 𝑟0 ↾2𝑘= 𝑟 ′0 ↾2𝑘 can be
rewritten as deg𝑦 (𝑟0 − 𝑟 ′0𝑦

𝑑−𝑑 ′ ) ≤ 𝑑 − 2𝑘 − 1. Likewise, deg𝑦 (𝑟1 −
𝑟 ′1𝑦

𝑑−𝑑 ′ ) ≤ 𝑑 − 2𝑘 − 1. Considering that 𝑟2 = 𝑎1𝑟0 + (𝑦 − 𝑏1)𝑟1
and similarly for 𝑟 ′2, we obtain that deg𝑦 (𝑟2 − 𝑟 ′2𝑦

𝑑−𝑑 ′ ) ≤ 𝑑 − 2𝑘 .
Whenever 𝑘 ≥ 2, deg𝑦 (𝑟2) = 𝑑 − 2 > 𝑑 − 2𝑘 ≥ deg𝑦 (𝑟2 − 𝑟 ′2𝑦

𝑑−𝑑 ′ ),
which can only happen when deg𝑦 (𝑟2) = deg𝑦 (𝑟 ′2) + 𝑑 − 𝑑

′, i.e.
deg𝑦 (𝑟 ′2) = 𝑑′ − 2, and 𝑟2↾2(𝑘−1)−1= 𝑟 ′2↾2(𝑘−1)−1. □

Lemma 3.2.9. Suppose that the first 𝑘 pseudo-Euclidean divisions

(𝑎 𝑗 , 𝑏 𝑗 , 𝑟 𝑗+1)1≤ 𝑗≤𝑘 starting from 𝑟0 and 𝑟1 are well-defined, and that

deg𝑦 (𝑟 𝑗 ) = 𝑑 − 𝑗 for 1 ≤ 𝑗 ≤ 𝑘 .

Then the first 𝑘 pseudo-Euclidean divisions (𝑎′
𝑗
, 𝑏′

𝑗
, 𝑟 ′

𝑗+1)1≤ 𝑗≤𝑘
starting from 𝑟 ′0 and 𝑟 ′1 are also well-defined, and 𝑎 𝑗 = 𝑎′

𝑗
, 𝑏 𝑗 =

𝑏′
𝑗
, deg𝑦 (𝑟 ′𝑗 ) = 𝑑′ − 𝑗 for 1 ≤ 𝑗 ≤ 𝑘 . Moreover, 𝑟 𝑗+1 ↾2(𝑘− 𝑗 )−1=

𝑟 ′
𝑗+1↾2(𝑘− 𝑗 )−1 for 1 ≤ 𝑗 < 𝑘 .

Proof. Let us prove this statement by induction on 𝑘 . The base
case 𝑘 = 1 is a direct consequence of Lm. 3.2.8. For the induction
step, suppose that 𝑘 ≥ 2 and that the lemma holds for 𝑘−1. Lm. 3.2.8
states that the first pseudo-Euclidean divisions (𝑎′1, 𝑏

′
1, 𝑟
′
2) starting

from 𝑟 ′0 and 𝑟 ′1 is well-defined, deg𝑦 (𝑟 ′2) = 𝑑′ − 2, 𝑎′1 = 𝑎1, 𝑏′1 = 𝑏1,
and 𝑟2↾2(𝑘−1)−1= 𝑟 ′2↾2(𝑘−1)−1. It remains to apply our induction
hypothesis to 𝑘 − 1 and 𝑟1, 𝑟2, 𝑟 ′1, 𝑟

′
2 to conclude. □

If the 𝑘 pseudo-Euclidean divisions (𝑎 𝑗 , 𝑏 𝑗 , 𝑟 𝑗+1)0≤ 𝑗<𝑘 starting
from 𝑟−1 and 𝑟0 are well-defined then we have for 0 ≤ 𝑗 < 𝑘 the
matrix relations

[
𝑟 𝑗
𝑟 𝑗+1

]
= 𝑄 𝑗

[
𝑟 𝑗−1
𝑟 𝑗

]
where 𝑄 𝑗 ≔

[
0 1
𝑎 𝑗 𝑦−𝑏 𝑗

]
. Thus,



, , J. Berthomieu, R. Lebreton, and K. Tran[
𝑟 𝑗
𝑟 𝑗+1

]
= 𝑄 𝑗 · · ·𝑄0

[ 𝑟−1
𝑟0

]
and by defining

[
𝑠 𝑗 𝑡 𝑗
𝑠 𝑗+1 𝑡 𝑗+1

]
= 𝑄 𝑗 · · ·𝑄0,

we have 𝑠 𝑗𝑟−1 + 𝑡 𝑗𝑟0 = 𝑟 𝑗 for 0 ≤ 𝑗 ≤ 𝑘 .

Theorem 3.2.10. Let 𝑘 ≥ 1, 2𝑘 − 1 ≤ 𝐷𝑦 and 𝑟−1, 𝑟0 ∈ KN [𝑦]
such that 𝑟−1 = 𝑆−1↾2𝑘 and 𝑟0 = 𝑆0↾2𝑘−1. Then, for all 0 ≤ 𝑗 <

min(𝑘,𝑑𝑦) −1, the pseudo-Euclidean division (𝑎 𝑗 , 𝑏 𝑗 , 𝑟 𝑗+1) of 𝑟 𝑗−1 by

𝑟 𝑗 is well-defined, 𝑎 𝑗 = 𝑎 𝑗 and 𝑏 𝑗 = 𝑏 𝑗 defined in Thm. 3.1.8, and also

𝑟 𝑗↾2(𝑘− 𝑗−1)= 𝑆 𝑗↾2(𝑘− 𝑗−1) and 𝑟 𝑗+1↾2(𝑘− 𝑗−1)−1= 𝑆 𝑗+1↾2(𝑘− 𝑗−1)−1
with deg𝑦 (𝑟 𝑗+1) = deg𝑦 (𝑟0) − ( 𝑗 + 1). When 𝑗 = 𝑑𝑦 − 1 and 2𝑘 − 1 ≥
2𝑑𝑦 , the pseudo-Euclidean division (𝑎𝑑𝑦−1, 𝑏𝑑𝑦−1, 𝑟𝑑𝑦 ) on 𝑟𝑑𝑦−2 by
𝑟𝑑𝑦−1 is well-defined and deg𝑦 (𝑟𝑑𝑦 ) < deg𝑦 (𝑟0) − 𝑑𝑦 .

Proof. We prove by induction for 0 ≤ 𝑗 < min(𝑘,𝑑𝑦) − 1
that the pseudo-Euclidean division (𝑎 𝑗 , 𝑏 𝑗 , 𝑟 𝑗+1) of 𝑟 𝑗−1 by 𝑟 𝑗 is
well-defined and 𝑟 𝑗↾2(𝑘− 𝑗−1)= 𝑆 𝑗↾2(𝑘− 𝑗−1) and 𝑟 𝑗+1↾2(𝑘− 𝑗−1)−1=
𝑆 𝑗+1↾2(𝑘− 𝑗−1)−1. For 𝑗 > 0, we suppose that the statement is true
at step 𝑗 − 1 and we prove that it holds at step 𝑗 . For every 𝑗 , we
have that 𝑟 𝑗−1↾2(𝑘− 𝑗 )= 𝑆 𝑗−1↾2(𝑘− 𝑗 ) and 𝑟 𝑗↾2(𝑘− 𝑗 )−1= 𝑆 𝑗↾2(𝑘− 𝑗 )−1
also from Lm. 3.2.7 the pseudo-Euclidean division (𝑎 𝑗 , 𝑏 𝑗 , 𝑆 𝑗+1) of
𝑆 𝑗−1 and 𝑆 𝑗 is well-defined. Since 𝑗 < 𝑘 − 1, we have 𝑘 − 𝑗 ≥ 2
also by construction deg𝑦 (𝑆 𝑗 ) = deg𝑦 (𝑆 𝑗−1) − 1 so we can apply
Lm. 3.2.8 and get that the pseudo-Euclidean (𝑎 𝑗 , 𝑏 𝑗 , 𝑟 𝑗+1) division
of 𝑟 𝑗−1 by 𝑟 𝑗 is well-defined. On the one hand from Lm. 3.2.8, we
have 𝑟 𝑗+1↾2(𝑘− 𝑗−1)−1= 𝑆 𝑗+1↾2(𝑘− 𝑗−1)−1. On the other hand from
Lm. 3.2.7, we have the equality 𝑆 𝑗+1↾𝐷𝑦−( 𝑗+1)−1= 𝑆 𝑗+1↾𝐷𝑦−( 𝑗+1)−1.
Since 2𝑘 − 1 ≤ 𝐷𝑦 and 𝑗 ≥ 0, we have 2𝑘 − 1 − 2 𝑗 − 2 ≤ 𝐷𝑦 − 𝑗 − 2
so we conclude that 𝑟 𝑗+1 ↾2(𝑘− 𝑗−1)−1= 𝑆 𝑗+1 ↾2(𝑘− 𝑗−1)−1. Also
from Lm. 3.2.8, we get 𝑎 𝑗 = 𝑎 𝑗 and 𝑏 𝑗 = 𝑏 𝑗 and deg𝑦 (𝑟 𝑗+1) =

deg𝑦 (𝑟0) − ( 𝑗 + 1).
When 𝑗 = 𝑑𝑦 − 1 and 2𝑘 − 1 ≥ 2𝑑𝑦 and the pseudo-Euclidean

division (𝑎𝑑𝑦−1, 𝑏𝑑𝑦−1, 𝑟𝑑𝑦 ) of 𝑟𝑑𝑦−2 by 𝑟𝑑𝑦−1 is well-defined by
the same arguments so we have the relation 𝑠𝑑𝑦𝑟−1 + 𝑡𝑑𝑦𝑟0 = 𝑟𝑑𝑦 .
By hypothesis, we have 𝑟0 = 𝑆0↾2𝑘 so from Lm. 3.2.6 we can rewrite
𝑡𝑑𝑦𝑟0 = 𝑓<𝑑𝑦+

∑2𝑘−1−𝑑𝑦
𝑗=0 𝒗

(𝑑𝑦 )
∗, 𝑗 𝑦2𝑘−1− 𝑗+𝑓>2𝑘−1 with deg𝑦 (𝑓<𝑑𝑦 ) <

𝑑𝑦 and 𝑦2𝑘 divides 𝑓>2𝑘−1. We deduce from the division property
that deg𝑦 (𝑟𝑑𝑦 ) ≤ deg𝑦 (𝑟𝑑𝑦−1) −1 = 2𝑘 −1−𝑑𝑦 so by identification
on the monomial basis we deduce that 𝑠 𝑗𝑟−1 = 𝑓>2𝑘−1 also since
𝒗 (𝑑𝑦 ) = 0 we have deg𝑦 (𝑟𝑑𝑦 ) < deg𝑦 (𝑓<𝑑𝑦 ) < 𝑑𝑦 . Since 2𝑘 − 1 ≥
2𝑑𝑦 , it implies that 𝑑𝑦 ≤ 2𝑘 − 1 − 𝑑𝑦 = deg𝑦 (𝑟0) − 𝑑𝑦 hence
deg𝑦 (𝑟𝑑𝑦 ) < deg𝑦 (𝑟0) − 𝑑𝑦 . □

3.3 From successive remainders to C-relations

Let 𝑟−1 = 𝑆−1 and 𝑟0 = 𝑆0. The definition of 𝑆−1 is motivated
by Thm. 3.2.2 and Lm. 3.2.6. Consider the successive remainders
(𝑟−1, 𝑟0, . . . , 𝑟𝑑𝑦 ) and relations 𝑟 𝑗 = 𝑠 𝑗𝑟−1 + 𝑡 𝑗𝑟0.

Lemma 3.3.1. For 0 ≤ 𝑗 < 𝑑𝑦 , we have 𝐼 (lc (𝑟 𝑗 )) = (𝐼 (𝒗) : ⟨𝑡 𝑗 ⟩) ∩
K[𝑥] and ⟨1⟩ = K[𝑥] = (𝐼 (𝒗) : ⟨𝑡𝑑𝑦 ⟩) ∩ K[𝑥].

Proof. Let 0 ≤ 𝑗 < 𝑑𝑦 , from Lm. 3.1.9 and Thm. 3.2.10 we have
𝒗 ( 𝑗 ) = 𝑡 𝑗 ★ 𝒗 and lc (𝑟 𝑗 ) = 𝒗 ( 𝑗 )∗, 𝑗 . From Thm. 3.1.7, we deduce that

𝐼 (lc (𝑟 𝑗 )) = 𝐼 (𝒗 ( 𝑗 )∗, 𝑗 ) = 𝐼 (𝒗 ( 𝑗 ) ) ∩ K[𝑥] = (𝐼 (𝒗) : ⟨𝑡 𝑗 ⟩) ∩ K[𝑥]. Also
from Lm. 3.1.9, since 𝑡𝑑𝑦 ∈ 𝐼 (𝒗) we deduce the equality. □

For 0 ≤ 𝑗 < 𝑑𝑦 , we note 𝑓𝑗 be s.t. ⟨𝑓𝑗 ⟩ = 𝐼 (lc (𝑟 𝑗 )) and 𝑓𝑑𝑦 = 1.

Theorem 3.3.2. The set {𝑓𝑗 𝑡 𝑗 }0≤ 𝑗≤𝑑𝑦 is a Gröbner basis of 𝐼 (𝒗).

Proof. We verify that 𝑓𝑗 𝑡 𝑗 ∈ 𝐼 (𝒗) and ⟨lm (𝑓𝑗 𝑡 𝑗 )⟩𝑗 = lm (𝐼 (𝒗)).
For 0 ≤ 𝑗 ≤ 𝑑𝑦 , from Lm. 3.3.1 the polynomial 𝑓𝑗 𝑡 𝑗 ∈ 𝐼 (𝒗). For
𝑥𝑟𝑦𝑠 ∈ lm (𝐼 (𝒗)), if 𝑠 ≥ 𝑑𝑦 then 𝑥𝑟𝑦𝑠 = lm (𝑥𝑟𝑦𝑠−𝑑𝑦 𝑡𝑑𝑦 ). Otherwise,
if 𝑠 < 𝑑𝑦 , by Thm. 3.1.6 we can find 𝑓𝑠 ∈ K[𝑥] such that 𝑓𝑠𝑝𝑦𝑠 ∈ 𝐼 (𝒗)
and lm (𝑓𝑠𝑝𝑦𝑠 ) = 𝑥𝑟𝑦𝑠 . Since 𝑝𝑦𝑠 = 𝑡𝑠 rem(G𝒗) by Thm. 3.2.10, we
deduce that 𝑓𝑠𝑡𝑠 ∈ 𝐼 (𝒗). Note that since lm (𝑡𝑠 ) = 𝑦𝑠 = lm (𝑝𝑦𝑠 ),
𝑓𝑠𝑡𝑠 still has leading term 𝑥𝑟𝑦𝑠 . □

From a Gröbner basis of 𝐼 (𝒗), one can compute a minimal Gröb-
ner basis of 𝐼 (𝒗) with the following corollary.

Corollary 3.3.3. For 1 ≤ 𝑗 ≤ 𝑑𝑦 , either lm (𝑓𝑗 𝑡 𝑗 ) ∈ lm (G𝒗) or
deg(𝑓𝑗−1) = deg(𝑓𝑗 ).

Proof. From the definition of minimal Gröbner basis, if ℓ ≠ 𝑗

and lm (𝑓ℓ𝑡ℓ ) divides lm (𝑓𝑗 𝑡 𝑗 ) then ℓ ≤ 𝑗 and deg(𝑓ℓ ) ≤ deg(𝑓𝑗 ). If
(deg(𝑓𝑗 )) 𝑗 is a decreasing sequence then it proves the claim.

First, we prove that deg(𝑓𝑗 ) = min({𝑟 | 𝑥𝑟𝑦 𝑗 ∈ lm (𝐼 (𝒗))}). By
definition ⟨𝑓𝑗 ⟩ = 𝐼 (lc (𝑟 𝑗 )) = (𝐼 (𝒗) : ⟨𝑡 𝑗 ⟩) ∩ K[𝑥] by Lm. 3.3.1 so
⟨𝑓𝑗 ⟩ = 𝐼 (𝒗 ( 𝑗 ) ) ∩ K[𝑥] from Thm. 2.3.4 and 𝒗 ( 𝑗 ) = 𝑡 𝑗 ★ 𝒗. Finally
by Thm. 3.1.6, we can deduce that 𝐼 (𝒗 ( 𝑗 ) ) ∩ K[𝑥] = {𝑟 | 𝑥𝑟𝑦 𝑗 ∈
lm (𝐼 (𝒗))}. To conclude, if 𝑥𝑑 𝑗 = deg(𝑓𝑗 ) then we have lm (𝑓𝑗 𝑡 𝑗 ) =
(𝑥𝑑 𝑗𝑦 𝑗 )𝑦 = 𝑥𝑑 𝑗𝑦 𝑗+1 ∈ lm (𝐼 (𝒗)) so deg(𝑓𝑗+1) ≤ deg(𝑓𝑗 ). □

4 ALGORITHMS

In the previous sections, we have considered bi-indexed sequences
either as plain sequences 𝒗 = (𝑣𝑖, 𝑗 )𝑖, 𝑗∈N ∈ KN

2
, or as polynomials

with sequence coefficients KN [𝑦] in order to get relations out of
a pseudo-Euclidean algorithm. At the moment, with the aim of
fully describing our algorithms, we need to specify how the oper-
ations in KN [𝑦] are to be performed. Finite exact representations
of univariate sequence include the representation by the initial 𝑑𝑥
terms and the minimal relation, or the representation with the first
𝐷𝑥 ≥ 2𝑑𝑥 terms, so that we can recover the relation. We choose
the latter representation, and map these first 𝐷𝑥 terms in a reverse
truncated formal power series as in [4, 5]. Doing so, the action 𝑡 ★𝒗
can be computed using bivariate polynomial multiplication, which
allows us to design efficient algorithms.

4.1 A finite polynomial representation

Let 𝒗 = (𝑣𝑖, 𝑗 )𝑖, 𝑗∈N be a C-recursive sequence s.t. 𝑥𝑑𝑥 , 𝑦𝑑𝑦 ∈ lm (G𝒗)
and consider bounds 𝐷𝑥 ≥ 2𝑑𝑥 and 𝐷𝑦 ≥ 2𝑑𝑦 .

Definition 4.1.1. Fix 𝐷𝑥 ≥ 2𝑑𝑥 and 𝐷𝑦 ≥ 2𝑑𝑦 . A polynomial 𝑟 ∈
K[𝑥,𝑦] is a representation of 𝒗 at precision (𝑑, 𝛿) if 𝑟 ∈ K[𝑥,𝑦]⪯(𝐷𝑥 ,𝐷𝑦 )
and 𝑟𝐷𝑥−𝑖,𝐷𝑦− 𝑗 = 𝑣𝑖, 𝑗 for 0 ≤ 𝑖 ≤ 𝑑 and 0 ≤ 𝑗 ≤ 𝛿 .

For a representation 𝑞 of 𝒖 at precision (𝐷𝑥 ,Δ), the addition
term by term gives 𝑞 + 𝑟 , a representation of 𝒖 + 𝒗 at precision
(𝐷𝑥 ,min(𝛿,Δ)). However, for the multiplication by polynomial in
K[𝑥,𝑦], we have to handle the same problem as inKN [𝑦] described
in Lm. 3.2.6.

Lemma 4.1.2. Let 𝑟 be a representation of 𝒗 at precision (𝑑, 𝛿) and
𝑡 ∈ K[𝑥,𝑦]⪯(𝑒,𝑓 ) . The polynomial 𝑝 = 𝑡𝑟 rem({𝑥𝐷𝑥+1, 𝑦𝐷𝑦+1}) is a
representation of 𝑡 ★ 𝒗 at precision (𝑑 − 𝑒, 𝛿 − 𝑓 ).
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Proof. For 0 ≤ 𝑖 ≤ 𝑑 − 𝑒 and 0 ≤ 𝑗 ≤ 𝛿 − 𝑓 , we have

𝑝𝐷𝑥−𝑖,𝐷𝑦− 𝑗 =
∑︁

0≤𝑘≤𝑒

∑︁
0≤ℓ≤ 𝑓

𝑡𝑘,ℓ 𝑟𝐷𝑥−𝑖−𝑘,𝐷𝑦− 𝑗−ℓ

and 𝑟𝐷𝑥−𝑖−𝑘,𝐷𝑦− 𝑗−ℓ = 𝑣𝑖+𝑘,𝑗+ℓ by definition of a representation, so
𝑝𝐷𝑥−𝑖,𝐷𝑦− 𝑗 = (𝑡 ★𝒗)𝑖, 𝑗 . By construction, 𝑝 ∈ K[𝑥,𝑦]⪯(𝐷𝑥 ,𝐷𝑦 ) . □

To handle the problem of decreasing precision in 𝑥 , we can use
fast univariate algorithmic to recover precision in 𝑥 when the C-
relation 𝑓0 ∈ G𝒗 ∩ K[𝑥] is known.

Theorem 4.1.3. Let 𝑟 be a representation of 𝒗 at precision (𝐷𝑥 , 𝛿)
and 𝑡 ∈ K[𝑥,𝑦]⪯(𝑒,𝑓 ) with 𝑒 ≤ 𝐷𝑥 and 𝑓 ≤ 𝛿 . From 𝑟, 𝑡 and 𝑓0, one
can compute a representation 𝑝 , also denoted 𝑡 ·𝑓0 𝑟 , of𝒘 ≔ 𝑡 ★ 𝒗 at

precision (𝐷𝑥 , 𝛿 − 𝑓 ) in 𝑂̃ (𝐷𝑥𝛿) operations in K.

Proof. Let 𝑡 = 𝑡 rem(𝑓0) with deg𝑥 (𝑡) < 𝑑𝑥 . Since 𝑓0 ∈ 𝐼 (𝒗), we
deduce that 𝒘 = 𝑡 ★ 𝒗. The reduction of 𝑡 by 𝑓0 requires 𝑂̃ (𝐷𝑥𝛿)
operations by Lm. 2.1.2. Then, computing a representation 𝑝 of𝒘
at precision (𝐷𝑥 −𝑑𝑥 , 𝛿 − 𝑓 ) has complexity in 𝑂̃ (𝐷𝑥𝛿) using 𝑡 and
𝑟 . Since 𝐷𝑥 −𝑑𝑥 ≥ 𝑑𝑥 , we can extend 𝑝 with 𝑓0 from the univariate
extension of Lm. 2.1.2 in 𝑂̃ (𝐷𝑥𝛿) operations. □

We extend this definition of ·𝑓0 to matrix-vector multiplication
with entries in K[𝑥,𝑦]. With this new operations on representation
in K[𝑥,𝑦], we can mimic the K[𝑥,𝑦] action on KN [𝑦] and apply a
pseudo-Euclidean algorithm to solve the guessing problem on 𝒗.

4.2 Quotient algorithm

We now define the quotient algorithm of our pseudo-Euclidean
division. For that, we need two subroutines for C-recursive uni-
indexed sequences. The first one, GuessingUnivar(𝑟 ) takes a rep-
resentation 𝑟 ∈ K[𝑥] of a C-recursive sequence 𝒖 at precision 𝐷𝑥

with 𝐷𝑥 ≥ 2𝑑𝑥 and outputs the C-relation 𝑓 ∈ K[𝑥]≤𝑑𝑥 satis-
fying ⟨𝑓 ⟩ = 𝐼 (𝒖). The other one, HankelSolver(𝑞, 𝑟, 𝑓 ), takes a
representation 𝑞 ∈ K[𝑥] of a C-recursive sequence 𝒖 at precision
𝐷𝑥 ≥ 2(𝑑𝑥 − 1); a representation 𝑟 ∈ K[𝑥] of 𝒗 ∈ L𝒖 at precision
𝑑 ≥ 𝑑𝑥 − 1 and a C-relation 𝑓 ∈ K[𝑥]≤𝑑𝑥 s.t. ⟨𝑓 ⟩ = 𝐼 (𝒖), and
outputs 𝑏 ∈ K[𝑥]<𝑑𝑥 satisfying 𝑏 ★ 𝒖 = 𝒗. Both subroutines have
complexities 𝑂̃ (𝐷𝑥 ) (see §2.1).

Algorithm 1QuoBivar(𝑓 , 𝑔)

Input: Polynomials 𝑓 =
∑𝑑

𝑗=0 𝑓𝑗 (𝑥)𝑦 𝑗 and 𝑔 =
∑𝑑−1

𝑗=0 𝑔 𝑗 (𝑥)𝑦 𝑗 sat-
isfying the hypotheses of Thm. 3.2.2 when viewed in KN [𝑦]
using the representation of 𝐷𝑥 + 1 initial terms.

Output: 𝑄 ∈ K[𝑥,𝑦]2×2, {𝑝1} ⊂ K[𝑥] be s.t.
[
𝑔
𝑟

]
= 𝑄 ·𝑝0

[
𝑓
𝑔

]
with deg𝑦 (𝑟 ) < deg𝑦 (𝑔) and ⟨𝑝1⟩ = 𝐼 (𝑔𝑑−1).

1: 𝑝0 ← GuessingUnivar(𝑓𝑑 (𝑥))
2: 𝑎 ← HankelSolver(−𝑓𝑑 (𝑥), 𝑔𝑑−1 (𝑥), 𝑝0)
3: ℎ(𝑥) ← 𝑎 ·𝑝0 𝑓𝑑−1 (𝑥) + 𝑔𝑑−2 (𝑥)
4: 𝑝1 ← GuessingUnivar(𝑔𝑑−1 (𝑥))
5: 𝑏 ← HankelSolver(𝑔𝑑−1 (𝑥), ℎ(𝑥), 𝑝1)
6: return

[
0 1
𝑎 𝑦−𝑏

]
, {𝑝1}

Lemma 4.2.1. QuoBivar is correct and has complexity in 𝑂̃ (𝐷𝑥 ).

Proof. The polynomials 𝑓 , 𝑔 viewed in KN [𝑦] satisfy the hy-
potheses of Thm. 3.2.2 so we consider 𝑓𝑑 , 𝑓𝑑−1, 𝑔𝑑−1, 𝑔𝑑−2 ∈ KN the
sequences represented by 𝑓𝑑 (𝑥), 𝑓𝑑−1 (𝑥), 𝑔𝑑 (𝑥), 𝑔𝑑−1 (𝑥) ∈ K[𝑥].
Thm. 3.2.2 shows that there exists 𝑎 ∈ K[𝑥]<deg(𝑝0 ) such that
−𝑎★𝑓𝑑 = 𝑔𝑑−1, that the call to HankelSolver(−𝑓𝑑 (𝑥), 𝑔𝑑−1 (𝑥), 𝑝0)
computes. The update polynomial ℎ(𝑥) represents the sequence
𝑎★ 𝑓𝑑−1+𝑔𝑑−2. From Thm. 3.2.2, we can compute 𝑏 ∈ K[𝑥]<deg(𝑝1 )
such that 𝑏 ★𝑔𝑑−1 = 𝑎 ★ 𝑓𝑑−1 + 𝑔𝑑−2 also computed by the call to
HankelSolver(𝑔𝑑−1 (𝑥), ℎ(𝑥), 𝑝1). By hypothesis of Thm. 3.2.2, 𝑝0
is a C-relation on 𝑓𝑑 , 𝑓𝑑−1, 𝑔𝑑−1, 𝑔𝑑−2, which ensures that deg𝑦 (𝑟 ) <
deg𝑦 (𝑔) by construction of the quotient matrix 𝑄 . Also, ⟨𝑝1⟩ =
𝐼 (𝑔𝑑−1) from the correctness of GuessingUnivar.

Computing 𝑝0, 𝑝1 ∈ K[𝑥]≤𝑑𝑥 and 𝑎, 𝑏 ∈ K[𝑥]<𝑑𝑥 have com-
plexity in 𝑂̃ (𝐷𝑥 ). The computation of ℎ(𝑥) corresponds to uni-
variate polynomial multiplication and addition of degree at most
𝐷𝑥 so it requires 𝑂̃ (𝐷𝑥 ). Hence, we can bound the complexity of
QuoBivar(𝑓 , 𝑔) in 𝑂̃ (𝐷𝑥 ). □

4.3 Recursive pseudo-Euclidean algorithm

Based on the half-gcd algorithm, we build a divide and conquer
pseudo-Euclidean algorithm, following the exposition of [22, Alg. 11.4].
Since our pseudo-Euclidean division has specific hypotheses, we
define an assumption on the input of our algorithm.
Assumption B. For the input (𝑟−1, 𝑟0, 𝑓0, 𝑘), 𝑓0 ∈ K[𝑥] is a C-

relation on the sequences represented by 𝑟−1 and 𝑟0, and there exists
0 ≤ ℓ ≤ 𝑘 such that the ℓ firsts pseudo-Euclidean division of 𝑟−1 by
𝑟0 are well-defined, and deg𝑦 (𝑟ℓ−1) − 1 > deg𝑦 (𝑟ℓ ) if ℓ < 𝑘 .

Algorithm 2 half-gcd-seq(𝑟−1, 𝑟0, 𝑓0, 𝑘)
Input: Representations 𝑟−1, 𝑟0 ∈ K[𝑥,𝑦], a C-relation 𝑓0 ∈ K[𝑥]

and 𝑘 ∈ N satisfying Asm. B.
Output: 𝑅 ∈ K[𝑥,𝑦]2×2 s.t.

[ 𝑟ℓ−1
𝑟ℓ

]
= 𝑅 ·𝑓0

[ 𝑟−1
𝑟0

]
,𝑇 =

[𝑄0, . . . , 𝑄ℓ−1] ∈ (K[𝑥,𝑦]2×2)ℓ s.t. 𝑅 = 𝑄ℓ−1 · · ·𝑄0 rem(𝑓0)
and F = [𝑓0, . . . , 𝑓ℓ−1] ⊂ K[𝑥] s.t. ⟨𝑓𝑗 ⟩ = 𝐼 (𝒘 ( 𝑗 )∗, 𝑗 ) with 𝒘 ( 𝑗 )

corresponds to the sequence represented by 𝑟 𝑗 .
1: if 𝑘 = 0 then return

[ 1 0
0 1

]
, [], []

2: 𝑑 ← ⌈𝑘/2⌉, 𝑑∗ ← 𝑘 − 𝑑
3: 𝑅,𝑇 , F0 ← half-gcd-seq(𝑟−1↾2(𝑑−1) , 𝑟0↾2(𝑑−1)−1, 𝑓0, 𝑑 − 1)
4:

[ 𝑟𝑑−2
𝑟𝑑−1

]
← 𝑅 ·𝑓0

[ 𝑟−1
𝑟0

]
5: if deg𝑦 (𝑟𝑑−2) − 1 > deg𝑦 (𝑟𝑑−1) then return 𝑅,𝑇 , F0

6: 𝑄𝑑−1, {𝑓𝑑−1} ←QuoBivar(𝑟𝑑−2↾2, 𝑟𝑑−1↾1)
7:

[ 𝑟𝑑−1
𝑟𝑑

]
← 𝑄𝑑−1 ·𝑓0

[ 𝑟𝑑−2
𝑟𝑑−1

]
8: 𝑆,𝑈 , F1 ← half-gcd-seq(𝑟𝑑−1↾2𝑑∗ , 𝑟𝑑↾2𝑑∗−1, 𝑓0, 𝑑

∗)
9: return (𝑆𝑄𝑑−1𝑅) rem(𝑓0), [𝑇,𝑄𝑑−1,𝑈 ], [F0, 𝑓𝑑−1, F1]

Theorem 4.3.1. half-gcd-seq is correct. If 𝐷𝑥 (resp. 𝐷𝑦 + 1) is the
maximum degree in 𝑥 (resp. 𝑦) of 𝑟−1, 𝑟0 and ⌊𝐷𝑦/2⌋ ≤ 𝑘 ≤ 𝐷𝑦 then

half-gcd-seq(𝑟−1, 𝑟0, 𝑓0, 𝑘) requires 𝑂̃
(
𝐷𝑥𝐷𝑦

)
operations in K.

Proof. We prove by induction on 𝑗 , for any input (𝑟−1, 𝑟0, 𝑓0, 𝑗)
satisfyingAsm. B, half-gcd-seq is correct. For any input (𝑟−1, 𝑟0, 𝑓0,
0) satisfying Asm. B, the algorithm outputs (

[ 1 0
0 1

]
, [], []) which

satisfies all the conditions of the algorithm output.
For 𝑗 ∈ N, we suppose the induction hypothesis at each step

𝑖 < 𝑗 and we prove that the algorithm is correct for the input
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(𝑟−1, 𝑟0, 𝑓0, 𝑗) satisfyingAsm. B. Consider the first ℓ pseudo-Euclidean
divisions (𝑎𝑖 , 𝑏𝑖 , 𝑟𝑖+1)0≤𝑖≤ℓ−1 of 𝑟−1 by 𝑟0 with 0 ≤ ℓ ≤ 𝑗 . Lm. 3.2.9
ensures that (𝑟−1↾2(𝑑−1) , 𝑟0↾2(𝑑−1)−1, 𝑓0, 𝑑 − 1) satisfies Asm. B so
by the induction hypothesis we have the same quotient matrices
𝑄𝑖 =

[
0 1
𝑎𝑖 𝑦−𝑏𝑖

]
for 0 ≤ 𝑖 < min(𝑑 − 1, ℓ). Since, 𝑓0 is a C-relation

on the sequences represented by 𝑟−1 and 𝑟0, it is a C-relation on
𝑟𝑖 due to 𝑟𝑖 = 𝑠𝑖𝑟−1 + 𝑡𝑖𝑟0 for 0 ≤ 𝑖 < min(𝑑, ℓ + 1). If ℓ ≤ 𝑑 − 1
then 𝑅 ·𝑓0

[ 𝑟−1
𝑟0

]
=

[ 𝑟ℓ−1
𝑟ℓ

]
at Step 4 and (𝑅,𝑇 , F0) is the correct

output. Otherwise, 𝑟𝑑−2 and 𝑟𝑑−1 are correctly computed at Step 4
from 𝑟−1, 𝑟0 and 𝑅 at precision 𝐷𝑥 in 𝑥 . So, we can compute the
quotient matrix 𝑄𝑑 from 𝑟𝑑−2 ↾2 and 𝑟𝑑−1 ↾1 since the quotient
algorithm only need the first two leading terms of each polynomial.
The computation of 𝑟𝑑 from 𝑟𝑑−2, 𝑟𝑑−1 and 𝑓0 is computed at full
precision in 𝑥 . From Lm. 3.2.9, since 𝑗 ≥ ℓ , we have 𝑑∗ ≥ ℓ − 𝑑 , so
the (ℓ − 𝑑) first pseudo-Euclidean division of 𝑟𝑑−1↾2𝑑∗ by 𝑟𝑑↾2𝑑∗−1
give the same results as the ones of 𝑟𝑑−1 and 𝑟𝑑 . The second re-
cursive call gives 𝑆 = 𝑄ℓ−1 · · ·𝑄𝑑 rem(𝑓0),𝑈 = [𝑄𝑑 , . . . , 𝑄ℓ−1] and
F = [𝑓𝑑 , . . . , 𝑓ℓ−1]. Therefore, half-gcd-seq is correct.

For the complexity analysis, we suppose that𝑘 is a power of 2 and
we note C(𝑘) the cost of the computation. The base case requires
𝑂 (1) operations in K. In the others cases due to the condition
𝑘 ∈ Θ(𝐷𝑦), the costs of the matrix multiplication ·𝑓0 is in 𝑂̃ (𝐷𝑥𝑘)
and the call toQuoBivar is in 𝑂̃ (𝐷𝑥 ) by Lm. 4.2.1. Finally, since the
quotient matrices have all degree 1 in 𝑦, we deduce that deg𝑦 (𝑆)
and deg𝑦 (𝑅) are less or equal to 𝑘/2 and the degree in 𝑥 is bounded
by 𝑂 (𝐷𝑥 ) since the matrices are reduced by the relation 𝑓0. Hence,
the last matrix multiplication is in 𝑂̃ (𝐷𝑥𝑘). Note that the recursive
calls continue to verify the condition ⌊𝐷𝑦/2⌋ ≤ 𝑘 ≤ 𝐷𝑦 . Thus, the
cost C(𝑘) follows the recurrence C(𝑘) = 2C(𝑘/2) + 𝑂̃ (𝐷𝑥𝑘) and by
the Master theorem we conclude that C(𝑘) = 𝑂̃

(
𝐷𝑥𝐷𝑦

)
. □

4.4 Guessing of bi-indexed sequences

From the result of Thm. 4.3.1, it remains to compute the cofactors
𝑡 𝑗 from the quotient matrices to obtain a Gröbner basis of 𝐼 (𝒗).

The product of matrices can be done recursively, we define
RecursiveMatrixProduct(𝑇, 𝑘, 𝑓0) with 𝑇 = [𝑄0, . . . , 𝑄ℓ−1] ∈
K[𝑥,𝑦]2×2 s.t. deg𝑦 (𝑄 𝑗 ) = 1, 0 ≤ 𝑘 < ℓ and 𝑓0 ∈ K[𝑥]≤𝑑𝑥 which
computes the matrix 𝑅 = 𝑄𝑘 · · ·𝑄0 rem(𝑓0). A call to Recursive-
MatrixProduct(𝑇, 𝑘, 𝑓0) requires 𝑂̃ (𝑑𝑥𝑘) operations.

By combining the algorithms half-gcd-seq and Recursive-
MatrixProduct, we obtain a quasi-linear guessing algorithm for
C-recursive bi-indexed sequences w.r.t. the lexicographic ordering.

Theorem 4.4.1. GuessingBivar is correct and has complexity in

𝑂̃
(
𝐷𝑥𝐷𝑦 + |G𝒗 |𝑑𝑥𝑑𝑦

)
.

Proof. For the correctness, the polynomial 𝑓0 computed from
the call to GuessingOnevar is in G𝒗 ∩K[𝑥] since 𝐼 (𝑣∗,0) = 𝐼 (𝒗) ∩
K[𝑥] by Thm. 3.1.7. From Thm. 3.2.10, we have that (𝑟−1, 𝑟0, 𝑓0, 𝑘)
satisfies Asm. B with ℓ = 𝑑𝑦 and by Thm. 4.3.1, we deduce that 𝑅 =

𝑄𝑑𝑦−1 · · ·𝑄0 rem(𝑓0),𝑇 = [𝑄0, . . . , 𝑄𝑑𝑦−1] andG𝑥 = [𝑓0, . . . , 𝑓𝑑𝑦−1]
with 𝑓𝑗 ∈ 𝐼 (𝒗 ( 𝑗 )∗, 𝑗 ) = 𝐼 (𝒗 ( 𝑗 ) ) ∩ K[𝑥] by Thm. 3.1.7. From Cor. 3.3.3,
we only have to compute the relations which are not divisible by a
previous one. For that, we distinguish them by the degree of 𝑓𝑗 and
compute the corresponding cofactor 𝑡 𝑗 when deg(𝑓𝑗−1) ≠ deg(𝑓𝑗 ).
Finally, we get 𝑡𝑑𝑦 from the matrix 𝑅. Hence, GuessingBivar out-
puts a minimal Gröbner basis of 𝐼 (𝒗) in G.

Algorithm 3 GuessingBivar(𝒗)
Input: The initial terms (𝑣𝑖, 𝑗 )0≤𝑖≤𝐷𝑥 ,0≤ 𝑗≤𝐷𝑦

of a C-recursive se-
quence 𝒗 satisfying Asm. A with 𝐷𝑥 ≥ 2𝑑𝑥 and 𝐷𝑦 ≥ 2𝑑𝑦 .

Output: G a minimal Gröbner basis of 𝐼 (𝒗) w.r.t. the order ≺.
1: 𝑘 ← ⌊𝐷𝑦/2⌋
2: 𝑟−1 ←

∑𝐷𝑥

𝑖=0 𝑣𝑖,0𝑥
𝐷𝑥−𝑖𝑦𝐷𝑦+1, 𝑟0 ←

∑𝐷𝑦

𝑗=0
∑𝐷𝑥

𝑖=0 𝑣𝑖, 𝑗𝑥
𝐷𝑥−𝑖𝑦𝐷𝑦− 𝑗

3: 𝑓0 ← GuessingUnivar(∑𝐷𝑥

𝑖=0 𝑣𝑖,0𝑥
𝐷𝑥−𝑖 )

4: 𝑅,𝑇 ,G𝑥 ← half-gcd-seq(𝑟−1, 𝑟0, 𝑓0, 𝑘)
5: 𝑑 ← 𝐷𝑥 + 1,G ← {}, 𝑗 ← 0
6: for 𝑓 ∈ G𝑥 do

7: if deg(𝑓 ) < 𝑑 then

8:
[

𝑠 𝑗 𝑡 𝑗
𝑠 𝑗+1 𝑡 𝑗+1

]
← RecursiveMatrixProduct(𝑇, 𝑗, 𝑓0)

9: G ← G ∪ {(𝑡 𝑗 𝑓 ) rem(𝑓0)}, 𝑑 ← deg(𝑓 )
10: 𝑗 ← 𝑗 + 1
11: G ← G ∪ {𝑡𝑑𝑦 } ⊲ 𝑅 =

[ 𝑠𝑑𝑦−1 𝑡𝑑𝑦−1
𝑠𝑑𝑦 𝑡𝑑𝑦

]
rem(𝑓0 )

12: return G

For the complexity analysis, calling half-gcd-seq is in 𝑂̃
(
𝐷𝑥𝐷𝑦

)
by Thm. 4.3.1. The loops on the polynomials ofG𝑥 add computations
only if they compute a new polynomial in the minimal Gröbner
basis and do at most 𝑂̃

(
𝑑𝑥𝑑𝑦

)
operations. Finally, all the others in-

structions of the algorithm are in 𝑂̃
(
𝐷𝑥𝐷𝑦

)
. Hence, the complexity

of GuessingBivar is in 𝑂̃
(
𝐷𝑥𝐷𝑦 + |G𝒗 |𝑑𝑥𝑑𝑦

)
. □

5 BENCHMARKS

The quasi-linearity of our guessing algorithm can be observed in
practice from our implementation in Maple (https://github.com/
ktran11/CrecbiseqGuessing). We compare the timings of our imple-
mentation also in Maple of guessing algorithms from [3, 16, 19].
For some we have to specialize the implementation for the lex-
icographic ordering with weighted degree ordering. For [3], we
consider the adaptive version of the algorithms. We do not compare
with [5], as under Asm. A, the computations are the same as in [3].

In our examples, we consider different shapes of staircase using
Lazard’s structure theorem [13] to build lm (G𝒗). We distinguish
two particular shapes: simplex with lm (G𝒗) = {𝑥𝑑𝑥− 𝑗𝑦 𝑗 }0≤ 𝑗≤𝑑𝑥
and L-shape with lm (G𝒗) = {𝑥𝑑𝑥 , 𝑥𝑦,𝑦𝑑𝑦 }.

To begin with, we consider that we know 𝑑𝑥 , 𝑑𝑦 and give exactly
𝐷𝑥 = 2𝑑𝑥 and 𝐷𝑦 = 2𝑑𝑦 in order to compute a minimal Gröbner
basis of 𝐼 (𝒗). The quantity size(G𝒗) corresponds to the number
of coefficients in K = F216+1 to represents G𝒗 . The timings are in
seconds, if the timing is greater than one day we use the symbol∞.

For simplex, Fig. 1 shows a quasi-linear growth on the timings
of Alg. 3 following the growth of the quantity |G𝒗 |𝑑𝑥𝑑𝑦 .

For L-shape, the timings of Alg. 3 also follow the complexity
found following the growth of the quantity 𝐷𝑥𝐷𝑦 . But it is outper-
formed by the adaptive version of the different algorithms.

Next, for the second row of the Fig. 1 we now consider more
initial terms of the sequence 𝒗 than 𝐷𝑥 = 2𝑑𝑥 and 𝐷𝑦 = 2𝑑𝑦 by
taking (𝐷𝑥 , 𝐷𝑦) = (𝑘𝑑𝑥 , 𝑘𝑑𝑦) with 𝑘 ∈ {10, 20, . . . , 50}.

On Fig. 2 when 𝑘 ≥ 30, there is a crossover point on which the
adaptive algorithm performs better, it is explained by the fact that
these adaptive versions do not depend on the number of initial
terms 𝐷𝑥𝐷𝑦 .

https://github.com/ktran11/CrecbiseqGuessing
https://github.com/ktran11/CrecbiseqGuessing
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|G𝒗 |𝑑𝑥𝑑𝑦 𝐷𝑥𝐷𝑦 size(G𝒗) [19] [3] [16] Alg. 3

s
i
m
p
l
e
x

27900 3600 9951 287.8 20.5 4 4.2
127500 10000 44250 4530 777.2 22.1 14.6
347900 19600 119348 >10h 17857.2 79.1 35.6
737100 32400 251248 ∞ ∞ 206.6 71.7
1343100 48400 455937 ∞ ∞ 455.6 136.8
2213900 67600 749439 ∞ ∞ 922.9 231.6
3397500 90000 1147735 ∞ ∞ 1696.2 381.5
4941900 115600 1666819 ∞ ∞ 2871 650.5

L
-
s
h
a
p
e

21600 28800 250 ∞ 1.2 489.5 37.184
117600 156800 570 ∞ 12.8 34739.9 389.5
290400 387200 890 ∞ 67.5 ∞ 1825.8
540000 720000 1210 ∞ 209.8 ∞ 3666.9
866400 1155200 1530 ∞ 534.6 ∞ 6113.2
1269600 1692800 1850 ∞ 1201.9 ∞ 11422.7

Figure 1: Maple implementation of several examples with

initial terms (𝐷𝑥 , 𝐷𝑦) = (2𝑑𝑥 , 2𝑑𝑦), timings in seconds.

|G𝒗 |𝑑𝑥𝑑𝑦 𝐷𝑥𝐷𝑦 𝑘 [19] [3] [16] Alg. 3

s
i
m
p
l
e
x

127500 2500 2 4530 777.2 22.1 14.6
127500 250000 10 ∞ 777.2 5675.9 43.3
127500 1000000 20 ∞ 777.2 ∞ 202.7
127500 2250000 30 ∞ 777.2 ∞ 491.1
127500 4000000 40 ∞ 777.2 ∞ 924.2
127500 6250000 50 ∞ 777.2 ∞ 1870.8

Figure 2: Maple implementation of one example with initial

terms (𝐷𝑥 , 𝐷𝑦) = (𝑘𝑑𝑥 , 𝑘𝑑𝑦), timings in seconds.
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