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Quasi-Linear Guessing of Minimal Lexicographic Grobner Bases
of Ideals of C-Relations of Random Bi-Indexed Sequences

Jérémy Berthomieu

Paris, France
jeremy.berthomieu@lip6.fr

ABSTRACT

Computing recurrence relations for sequences is a central problem
in computer algebra, with applications in error-correcting codes,
Grobner basis computation, and sparse interpolation. While uni-
indexed C-recursive sequences benefit from quasi-linear algorithms
leveraging the half-gcd method, the extension to multi-indexed se-
quences remains computationally challenging. Existing methods for
bi-indexed sequences achieve quadratic complexity at best, limiting
their practical use.

This paper presents a quasi-linear algorithm for computing lex-
icographic Grobner bases of the ideal of C-relations associated
to bi-indexed sequences. Our approach extends the half-gcd algo-
rithm in KN[y] by integrating a pseudo-Euclidean division. This
approach shows how to leverage the bi-Hankel structure of the ma-
trix, significantly improving the efficiency of computing minimal
C-relations closing the complexity gap between the uni- and bi-
indexed cases. Our algorithm is restricted to bi-indexed sequences
whose associated bi-Hankel matrix has generic row rank profile.

KEYWORDS

multi-indexed sequences, linear relation guessing, Hankel matrices,
Grobner bases, half-ged algorithm, quasi-linear algorithm

1 INTRODUCTION

Context. Guessing the minimal linear recurrence relation with
constant coefficients (C-relation) of order d of a sequence (u;);en
is a fundamental problem in computer algebra and error correcting
codes. It is for instance one of the latter steps of the Wiedemann
algorithm [23] for computing the minimal polynomial of a matrix or
solving a sparse linear system. The multi-indexed analogue, that is
with a sequence (i, ._.i, ) (i,,....i,) eNn 18 at the root of n-dimensional
cyclic codes and also the SPARSE-FGLM variant [10] of the FGLM
algorithm [9] for Grobner bases change of order.

Given the D + 1 first terms uy, . . ., up of a uni-indexed sequence,
the problem of computing the minimal C-relation can be modeled
through a kernel computation of a Hankel matrix. It computes the
correct relation as long as D > 2d. This Hankel structure leads to
non-naive algorithms with complexity much better than O(D®),
where 2 < w < 3 is the matrix multiplication exponent, relying on
the extended Euclidean algorithm called on polynomials xP*! and
Z?: 0 u;xP~% The first instance of such a non-naive algorithm is due
independently to Berlekamp [1] and Massey [14], both targeting
an application to error correcting codes, and is now known as the
BERLEKAMP-MASSEY algorithm. Thanks to quasi-linear algorithms
for computing the extended Euclidean algorithm [7, 15], see also [22,
Chap. 11], the complexity of computing such a minimal C-relation
of order d is O(D), aslong as D > 2d.
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Related work. The case of an n-indexed sequence, n > 2, u =
(iy,....in) (iy,...in)eNr is more involved. The set of relations of u
forms an ideal, denoted I(u), which is 0-dimensional whenever u
is C-recursive. Guessing consists in computing a representation of
this ideal, that is a <-Grébner basis for a given monomial order <
in the context of this paper. Denoting S, the <-staircase of I(u),
i.e. the monomials that are not <-leading monomials of I(u), and
Gu the <-reduced Grébner basis of I(u), the complexity of the
problem must depend on the number of given terms of u, and on
|Gul and | Sy, in order to encode the output in the monomial basis.
The first algorithm to guess such a Grébner basis is due to Sakata
and extends the BERLEKAMP-MASSEY algorithm, leading the author
to calling it the BERLEKAMP-MASSEY-SAKATA algorithm [18-20].
More recent algorithms were proposed based on linear algebra,
i.e. computing the kernel of a multi-Hankel matrix [2, 3] or us-
ing a Gram-Schmidt process [16]. Another approach is based on
multivariate polynomial arithmetic, especially division of polyno-
mials such as [4, 5], or specifically for the bivariate case [11] using
an approach similar to the uni-indexed case as they work on the
polynomial Zf:yo(ui, j)ieNyD v=J e KN [y]. Finally, let us mention
a bivariate Padé approximation method [17].

The complexity analysis of all these algorithms is not an easy
task. Restricting ourselves to the case where the number of known
terms of u is minimal to ensure the correctness of the output allows
us to express their complexities more easily. In the uni-indexed
case, this would imply D = ©(d), so that the complexity is O(d).

In [20], the complexity of the BERLEKAMP—-MASSEY—SAKATA al-
gorithm is O(|Su|2 -|Gul), though the output need not be a re-
duced Grobner basis. The complexity of the algorithm of [2, 3]
is O((|Sul® + |Syl? - |Gul) and the output is reduced. The algo-
rithm of [16] has complexity O(|Sy|? - (|Su| + |Bul)), where B,
is a border basis, and thus has larger size than G, while the algo-
rithm [4, 5] has a similar complexity O(lSu|2 - (|Sy + |Gul)). Fur-
thermore, they all need the sequence terms u;,, ._;, where xil . x;'l”
is in the Minkowski sum of S, with itself, denoted 2S,,. If we sim-
plify further to the bi-indexed case and we denote dx (resp. dy)
the maximal degree in x (resp. y) of Gy, these complexity upper
bounds become at least O(max(dyx, dy)2|§u|) using the fact that
|Sul > dx +dy — 1. Now, on the one hand, all the monomials xiy/
for0 <i<dyand0 < j < dyarein 28, and, on the other hand, all
monomials in 28, have degree in x (resp. y) at most 2dy — 2 (resp.
2dy — 2). Hence, all these algorithms need exactly ©(dxdy) terms.
Finally, using also ©(dxdy) terms of u, the algorithm of [11] com-
putes a Grobner basis of I(u) in O(d,‘;’“dy) operations, while [17]
requires O (min(dx, dy)“dxdy) operations.

Contribution. The main contribution of this paper is GUESSING-
BIVAR, an algorithm that takes as an input the (Dx + 1)(Dy + 1)



sequence terms u;j for 0 < i < Dy and 0 < j < Dy and re-
turns a minimal lexicographic Grébner basis of I(u), with support
in {x'y/ [0 < i < dy,0<j<dy}foru= (ui,j) (i, j)ene using
O(Dny +dxdy|Gu |) operations. This algorithm works under the
assumption that the multi-Hankel matrix (u; j+[)xiy JxkyteS,
has a LU decomposition without pivoting. This condition is exper-
imentally always satisfied whenever the terms (u;j)yiyics, are
picked at random. As a consequence, this closes the complexity gap
between the uni-indexed case and the bi-indexed one.
Organization of the paper. In §2, we recall the polynomial repre-
sentation of C-relations, and also how to relate their guessing to
linear algebra and univariate ged computation. In §3, we extend
this viewpoint to bi-indexed sequences under the aforementioned
assumption on the associated multi-Hankel matrix. In §4, we design
a half-gcd-like algorithm on bivariate polynomials and how it can
be used as a subroutine of GUESSINGBIVAR for guessing. Finally, our
benchmarks in §5 confirm the efficiency of our algorithm.

2 PRELIMINARIES

In this section, we recall all basic definitions and results on matri-
ces, C-recursive multi-indexed sequences, polynomials and Grobner
bases. We consider N as the set of all natural numbers including 0,
also consider that deg(0) = —oco. We note x = (x1,...,xp) the
variables used for polynomials and i = (iy, ..., in) € N". We note
xi= xil xéz - -x,i{‘. If there is no ambiguity on the number of vari-
ables or indices we denote K[x] = K[x1,...,x,] and u = (43)jenn.

2.1 Uni-indexed sequences

For uni-indexed sequences, C-recursive sequences are the ones
satisfying linear recurrences with constant coefficients.

Definition 2.1.1. A sequence (u;);en is C-recursive if there exist
90, - - -, 9d—1 € K such that fori € N, uj, g = gg_1Uivd—1+- - - +goui.

Such a combination is called C-relation and can be represented as
a polynomial g = x9 — Z?:_Ol gix! € K[x]. Computing a C-relation
can be reduced to a linear system solving problem.

The Hankel matrix of size d associated to the sequence u =
(ui)ien is H = (uirjlo<ij<d € K9%4 Moreover, one can compute
the C-relation g = x? - Z?:_Ol gix® by solving the linear system
[90 a1 ga-1] H = [ua Ugd-1] -

For a polynomial g = x? — Z?;OI gix! € K[x], we define § =
xdg(l/x) € K[x] as the mirror of g. Another approach is done
using generating series S = Y;en uix! € K[[x]]. The generating
series of a C-recursive sequence admits a finite representation.
Indeed, for such series S there exists p, ¢ € K[x] such that ¢S = p
with deg(p) < d and g = §. From the degree constraint on p and g,
one can recover p and ¢ from the relation ¢S = p mod xP*! with
D > 2d. This modular equation can be rewritten as a Bézout’s
identity ¢S + rxP*! = p with r € K[x] and computing g = § comes
down to computing a Truncated Extended Euclidean algorithm. A
fast computation of this relation can be done through a call to the
half-ged algorithm [12, 15, 21]. The half-gcd algorithm is based on
a fast reduction algorithm.

Lemma 2.1.2. Leta, b € K[x] with deg(a) = D and deg(b) = d
such that D > d. Computing q,r € K[x] satisfying a = gb + r with
deg(r) < d can be done in O(D) operations in K.
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The transpose of this operation called the extension is computed
in the same complexity by the Tellegen’s principle [6]. This operation
corresponds to the extension of C-recursive sequences (u;)ien by the
C-relation g = x4 — Z?:_Ol gix!, for S = Z?:_Ol uixt, it computes

S= Zgo uix® using uj g = gg—1Uird—1 + - - - goti fori = 0.
Recall that O(-) means that polylogarithmic factors are omitted.

Theorem 2.1.3. Computing the C-relation g € K[x] on (u;)ien of
degree d, knowing the D + 1 initial terms of (u;);jen with D > 2d,
can be done in O(D) operations in K.

The half-ged algorithm can also be derived to a Hankel system
solving of size d — 1 (see [7]) and can be done in O(d) operations.

2.2 Multivariate polynomial rings

For multi-indexed sequences, we use multivariate polynomials to
represent the C-relations. For a polynomial f € K[x] and & € N,
we note fg the coefficient of f associated to the monomial x%, the
support of f is the monomial set supp(f) = {x% | fo # 0}.

We define the box monomial set of parameter d € N" as d-box :=
{x* 0 <aj <djforalll < j < n}. Also, we denote by K[x] <4
the set of polynomials with support in d-box.

For polynomials f,g € K[x]<g4, the addition of f + g can be
computed using O ([}, d;) operations in K and the multiplication
fg can be computed using (5(]_[1'.‘:1 (2d;)) operations.

For multivariate polynomials, we have to define a total order
on the monomial set. In our study, we are only interested on the
lexicographic order, we refer to [8] for more general consideration.
We note < the lexicographic order on K[x1, ..., x,] withx; < ... <
xn, and such that x* < xB if there exists 1 < k < n such that for any
Jj < k,aj = Bj and aj < . For a nonzero polynomial f € K[x],
the leading monomial of f w.r.t. < is noted Im (f) and corresponds to
the maximum monomial of f ordered by <. The leading coefficient
of f w.rt. < isnoted lc(f) € Kis the coefficient associated to Im ().
The leading term of f w.r.t. < is noted It(f) = lc(f) Im(f).

An ideal of K[x] can be generated by a finite set of polynomials.
Grobner bases are particular sets of generators with interesting
computational properties. For an ideal I C K[x], a Grébner basis G
of I for the lexicographic order is a finite generating set of I such that
(Im(G)) = (Im(I)), i.e. it spans Im(I) as a monomial set. A minimal
Grobner basis G is a Grobner basis such that no Im(g) € Im(G)
is divisible by an element in Im(G\{g}). The (unique) reduced
Groébner basis G is a minimal Grobner basis such that for all g € G,
the monomials m € supp(g) are not divisible by any Im(G\{g}).

The staircase S associated to an ideal [ is S = {x%* | x* ¢
Im(I)}. It forms a K-vector space basis of the quotient ring K[x]/I.
The polynomial division with remainder by a Grébner basis (defined
in [8, Chapter 2.7]) gives a unique polynomial r with support in
the staircase S. For f € K[x], we denote by r = frem(G) € K[x]
with supp(r) € S the unique remainder of f by a Grobner basis G.
The polynomial division with remainder of f € K[x] by a Grébner
basis G, as defined in [8, Chapter 2.7], yields a unique polynomial
denoted r = frem(G) € K[x] with support in the staircase S.

We recall the notion of colon ideal by one polynomial. A more
general description can be found in [8, Chapter 4.4]. Let I be an
ideal of K[x] and let f € K[x], the colon ideal of I by fisI: (f) =

{geK[x] | gf €1}
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2.3 Multi-indexed C-recursive sequences

For n > 0, the set KMV" corresponds to the set of n-indexed sequence
u = (uj)jenrn with terms in K. We denote the zero sequence by
0 = (0)jenn. For C-recursive sequences, we allow two types of
operations: index shifts and scalar multiplications on sequences.
These operations can be described by the action % of K[x] in KNV
d € N, and extended by linearity to K[x].

For a sequence u = (u;)jenn, a C-relation g on u is a polynomial
g € K[x] that satisfies gxu = 0. We note by I(u) = {g € K[x] | g%
u = 0} the ideal of relations of u. A sequence u is C-recursive if the
ideal of relations I(u) is 0-dimensional i.e. dimg (K[x]/I(u)) < oco.

For a sequence u, we denote by Gy, the reduced Grébner basis
w.r.t. < of the ideal of relations I(u), and Sy the staircase w.r.t. <
of I(u) also we note Sy,<m = {x* € Sy | x* < m}. We note
the exponents set of Sy, by &4, = {&¢ € N* | x¥ € S,} and
Eu<e={a €&y | x% < x}.

For u a C-recursive sequence and G a Grébner basis of I(u), any
term of u can be computed from the relations in G and the initial
terms in Sy [19]. A C-recursive sequence is uniquely determined
by the terms associated to the exponents from the staircase Sy, as
the other terms are linear combinations of the ones in the staircase.

Lemma 2.3.1 ([20, §2]). Fix I(u) and G a Grébner basis of I(u)
w.r.t. the order <. Then I(u) C I(v) iff for all B € Im(I(u)), we have

vg = caVq with xP rem = cax®.
B Zaesu ala acé, ta

Forn > 0 and u € K C-recursive, we define the K-linear
subspace L, = {h*xu | h € K[x]} c KM" and consider the
linear application ¢(h) = h % u from K[x] to L,. By construction,
¢ is surjective. As ker ¢ = I(u), we can define the isomorphism
¢ : K[x]/I(u) — L, from ¢. We define ¥ = {ei}ics, C KN with
e; defined for j € &, such that (e;); = 0if j # i and (e;); = 1 and
outside &, we extend the terms of e; in &, by the relations in I(u).

Lemma 2.3.2. IfI(u) C I(v) thenv € spang (F).

PrOOF. Letw = v — 3 ;cg, viei. For j € &, we have by con-
struction w; = 0. From Lm. 2.3.1, we have I(u) C I(e;) for any
i € &y. Since f € I(u) is in I(v) and all I(e;), we deduce that
I(u) C I(w). Hence,w =0 and v = };c g5 vie;. O

Lemma 2.3.3. The family ¥ is a basis of Ly,.

ProoOF. By construction, ¥ is linearly independent. Let h x u €
Ly, since for f € I(u), (fh) xu = f *x (h *xu) = 0, we have I(u) C
I(h % u). So we apply Lm. 2.3.2 and show that L, C spang ().
Since dimg (Ly,) = dimg (K[x]/I(u)) = |Sy|, we conclude that
is a basis of L. |

We note (HS,, the matrix associated to gﬁ with the basis Sy, for

K[x]/I(u) and F for L, both ordered w.r.t. <. The application 5 is
an isomorphism so the matrix Hg,, is invertible.

Theorem 2.3.4. Let u and v be two C-recursive sequences. The
following statements are equivalent:

(a) 3'h € K[x] with support in Sy such thatv = h % u;

(b) 3h € K[x] such that I(v) = I(u) : {h);

(c) I(u) C I(v).

Proor. For (a) = (b), wehaveg € I(v) & 0 = gxv =
(gh) xu & g € I(u) : (h). For (b) = (c), it is direct by definition.
For (¢) = (a), since I(u) C I(v) we can write v = };c g, vi€;i SO
v € Ly by Lms. 2.3.2 and 2.3.3. For uniqueness, let i’ € K[x] s.t.o =
K %u and supp(h’) € Sy. We get (h—h’)*u = 0so h—h’ € I(u) and
h— K rem(G,) = 0. Since supp(h), supp(h’) C Sy by the linearity
of the reduction we obtain h = hrem(G,) = k' rem(Gy) =h'. O

3 BI-INDEXED SEQUENCES

In this section, we restrict ourselves to C-recursive bi-indexed se-
quences v = (v; j); jen. We denote by dy,dy € N the exponents

satisfying x%, y%v € Im(Gy).

3.1 Hankel matrix and LU decomposition

For a bi-indexed sequence v and j € N, we note the sub-sequences
vsj = (0jj)ieN € KN, Sub-sequences does not necessarily contain
enough information to recover the ideal I(v) N K[x].

Example 3.1.1. Letv = ((—l)ij)l-,jeN, then I(vs,j) = (x — (-1)%),
but I(v) NK[x] = (x? — 1).

To overcome the problem posed by Ex. 3.1.1, we make the fol-
lowing assumption on the sequence v.

Assumption A. The matrix Hg, defined in §2.3 for the bi-indexed
sequence v admits a LU decomposition.

For a matrix M € K"*", the principal rxr submatrix M, € K™*"
is the matrix built from the first r rows and columns of M. Recall
that an invertible matrix M € K"*" admits a LU decomposition iff
for 1 < r < n, the submatrix M, is invertible.

Consider Hg, = LU with L a lower triangular matrix with ones
on the diagonal and U an upper triangular matrix. We note the rows
of L7l = [fm]meSv with ¢, € K!XISs! We note pm € K[x,y] the
polynomial representing £, in the basis S,. The matrix L™ is lower
triangular with ones on its diagonal, so lt(py,) = mforallm € S,,.
For y/ € Sy, we denote by o) the sequence p; * v.

Lemma 3.1.2. For0 < j < dy,u(j) satisfies viJZ =0, for0 <k <j.

Proor. Leti € N, k < j and consider the term vi(gc) of o), By
construction, the row of U indexed by y/ contains terms of o)
and in particular (u(j))r,s = 0 for (r,s) € &, <(o,j)- Now, since
ugjc) = (xiyk * u(j))o,o = ((xiyk r_em(gu)) * v(j))o,o, we express
xc) as a linear combination of vﬁ)js) =0for (r,s) € Ey<(0j)- O
Lemma 3.1.3. Let j € N andt € K[x,y] such that (t xv),s =0
for (r.s) € Ey <(0,j)- Ifdegy(t) < j, thent € I(v). Otherwise, if
t(t)y=y/ foro<j< dy, then p; = trem(Go).
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Proor. Let Hg . be the principal submatrix of Hg, with
u,<Y- v

o<(0)- Hdegy (1) <
j, we can represent the polynomial # := ¢t rem(G,) by a vector ¢
in the basis SU’<yj. Since (t x v)r5s = 0 for (r,s) € Eu<(0,))s £
satisfies [7-(50)<yj = 0. As v satisfies Asm. A, 7—{30,<yj is invertible
sof =0,and t € I(v). Now, if lt(t) = y/ for0 < j < dy, then
t=t— py satisfies the hypotheses and degy(f) < j,sot€I(u)
and p,j = pyjrem(Go) = t rem(Go). O

rows indexed by Su; <y and columns by (ei) icg



Theorem 3.1.4. The family P = {xipyj | x'y/ € Sy} is a basis of
K[x,y]/I(v) as K-vector space.
Proor. Let x'y/ € S, and consider g = xipyj rem(Gy). Since

lt(xipyj) = xiyj € Sy, we have g = xiyj +Z(r,s)€8[,y<(,-yj) crsx" Yt
Hence, the change-of-basis matrix between the bases S, and P is
lower triangular with ones on its diagonal. ]

We define the matrix Hyp representing the application a (see
§2.3) with row basis  and column basis ¥ defined in §2.3.

Lemma 3.1.5. The matrix Hyp is block upper triangular and its
diagonal blocks are invertible, i.e.

Ho | Hi Ha,—1

0 7_(1(1) L. 7_{(1) '
Hp =

0 0 W(d Il)

Proor. For 0 < j < dy, the jth row block starts with j zero
matrices since v(Jk) =0for 0 < k < j from Lm. 3.1.2 thus the matrix
Hep is block upper trlangular matrix. The matrix Hp is invertible
since the linear application ¢ is an isomorphism, hence the block

diagonal matrices W}j ) are invertible. O

Theorem 3.1.6. For0 < j < dyanddj € N, there existsg € 1(0) s.t.
Im(g) = xdfyj iff there exists f; € (o) nK[x] s.t Im(f;) = x4

ProOF. Let f; € I(0")) NK[x] with Im(f;) = x%, by definition
0=f; * o) = (fjpy,-) *x0vs0g =‘f_"'pyj € I(v) and Im(g) = xdfy].

Letg € I(v) withIm(g) = x%y/ ¢ S, by definition. Consider the
sequernce (xdf'pyj)*v = x% %xo() from Lm. 3.1.2 we have for k < j,
(x% %0 () )ik = 0.From Lm. 3.1.5, the matrix 7—(}.(” is invertible, so
there exists a polynomial f € K[x] with supp(fy’/) c S, satisfying
(f % v(j))r,j = (x¥ * v(j))r,j for (r,j) € Ey. By construction,
the polynomial t = (x% — f)pys is such that (¢ x v),,s = 0 for
(r.s) € &y, <(0,j+1) and degy(t) =j.SobyLm.3.1.3,t € I(v) and
fi= x4~ fe I(v)). Note that x4yl ¢ S, and supp(fy’) c S,
so Im((x% —f)pyj) = lm(xdfpyj) = xdl'yj and Im(fj) = 4. o
Theorem 3.1.7. For0 < j < dy, the sequence U( 7 e KN is such
thatI(v(])) =MNik> ]I(u(j))le v, ) eL ()fork >]

Proor. The inclusion (g3 ; I(v(])) c I(v(])) is direct. For the

reverse inclusion, let g € I (ui’jj)). The polynomial ¢ = gp,; is
such that (¢t x v),s = 0 for (r,s) € &y <(0,j+1), since it is zero
for s < j by Lm. 3.1.2, and for s = j by definition of g. Since
degy(t) < j(as lt(pyj) = y/), we have t € I(v) using Lm. 3.1.3,

andthusg*v(f)—t*v—Osogeﬂk>]I(v(j)) O
From this property, we can find a relation between the sequences
(u(j))ogsdy with (%) = 0.

(Jj+1)

Theorem 3.1.8. For0 < j < dy, we havev, i+l

€ Lvm and there
)

exists (aj,Zj) € K[x]? with supp(a;) C Sv(jfll) and supp(zj) c
o j—
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SU»E],.') satisfyingv(j“) =ajx oU-D 4 (y —Ej) *x o) if j # 0 and

o) = (y—EO)*v ifj=0.

Proor. We prove the statement by induction on j. For j = 0, we
have by definition () = py*v withlt(py) = yand supp(py) € Sy
S0 py = y—Eo with supp(Eo) C Sy, From this relation, we deduce

that U>«(<11) =040 — EO * vy 1 and by Thm. 3.1.7 it results that v*(ll) €
Ly, . For1 < j < dy—1, we suppose that the statement is true at step

Jj—1and prove that it holds at step j. Consider (a j,Ej) € K[x]? with

(] 1) _

supp(aj) € S (, » and supp(bj) cS (,) satisfying a; x 0”. |

() (} 1) (})

-0, andajxo, +o = b *v(j.). There exists a; satlsfymg

(]? eL (J 1) - For

Yj-1
) EL oD =L (]) hence

#,j—1

the first equahty by the 1nduct10n hypothesis v

bj,byThm 3.1.7 we have a; *v(]

from Thm. 2.3.4 we can find b j satisfying the COl’ldlthl’lS. Letw =
aj *olU~D 4 (y —Ej) *ov/), By construction of w, we have Wi =0
fork < j+landw =t xo with t = (Ejpyj-1 +(y - Ej)pyj).
If j # dy — 1 then by Lm. 3.1.3 since lt(¢) = y/*! we deduce
that Py = trem(Gy) and 0U*D = w, otherwise if j = dy—1
thenw, ; = 0 for k < dy sow =0 = oy, Finally, the relation

j+1 1 I +1 .
vi’]jil) =aj* v(J )+ (j) -bj* v(]) | gives vijjﬂ) € Luijj? with
the same arguments used to prove the existence of E i O
Lemma 3.1.9. For0 < j < dy, if we define [ 5 ] 0;:- 60

Sj+1 t]+1 J

. 0 -
with Qk = [Ek y*Ek] thenpyj =tjrem(Gy) and td € I(v).

. ) = (0)

Proor. For 0 < j < dy, we have [ ‘(’jil)] =Qj-- ["(1) ] If

_A a; Bj _p.lo 1
wenoteRj =0, -0y = | /57| then [Sm tm] =R, [ao (w50 |

a_md ti=aj+(y- bo)ﬁj. From Thm. 3.1.8, we have o) = (y —
bo) x v(?) so tixv=ajxv+f;* o) = (), By the same rea-
soning, we obtain j4 * v = oUD)  Therefore, (pyj —tj))*xv=0
Y (py] -
Py =Py rem(G,) = fj rem(Gy). For j = dyy, we have oldy) =0 =
fdy*vso Edy € I(v). O

tjrem(Gy)) = 0 and by linearity of the reduction we get

3.2 Pseudo-Euclidean division

In this subsection, following [11, Sec. 6], we work with polynomials
in KN[y], the set K is not a ring but is a K-vector space. We define
an arithmetic on KN [y] that mimics the action * on sequences.
Definition 3.2.1. Letr = Z]D:() riy) € KN[y]. We define two opera-
tions: forg e K[x], g -r = Z?:O(g* ri)y andy® - r = Z?:o riyi*d
and extend linearly the operation - for polynomials in K[x, y].

As in the uni-indexed case, our goal is to reduce the guessing
problem to the computation of successive remainders for that we
define a pseudo-Euclidean division in KN[y].

Theorem 3.2.2. Let f = Z ijyf and g = 27 0 gjy’ be two
polynomials in KN [y] ofrespectwe degreed andd — 1 withd > 1.

If (i) ga-1 € Ly, (i1) fa-1 € Ly, (iii) gg—2 € Lg, , with fg C-
recursive then 3!(a, b) € K[x]? with supp(a) C Sy, and supp(b) C
Syq_, satisfyinga- f = (-y+Db)-g+r with degy(r) < degy(g).
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When the conditions (i), (ii), (iii) of the previous theorem are
satisfied, we say that the pseudo-Euclidean division of f by g is
well-defined and that its result is (a, b, r).

Proor. Consider such polynomials f, g € KN [y], since g4_; €
Lg, from Thm. 2.3.4 there exists a unique polynomial a € K[x]
with supp(a) C Sy, such that g;_; = —a x f3. We can construct
j=af+yg= Z?z_ll(a*fj+gj_1)yj+a*ﬁ). If deg, (§) < d—1,then
g = r and the pair (a, b) = (a, 0) satisfies the conditions. Otherwise,
we havelc(§) = ax fg_1+9gq-2 since ax fg_1 € Lgyp, =Lg, , and
9d—2 € Lg,_, we deduce that Ic(g) € Ly,_,. From Thm. 2.3.4, there
exists a unique polynomial b € K[x] with supp(b) C S,_, such
that Ic(g) = b * g4_1. Hence, by constructionr =a- f+ (y—>b) - g
has degree < degy(g). For the uniqueness of (a, b), consider (a’, b”)
another pair, which gives degy((a —a)-f+('-b)-g) < degy(g).
So, (a—a’) * fy = 0 and a = @’ by Thm. 2.3.4. Finally, we must have
(b—=b")*xgq_1 =0,s0b=">" again by Thm. 2.3.4. ]

Definition 3.2.3. For0 < j < dy, we consider the reverse truncated

; _vPy (), Dy—k ;
formal power series Sj = Zk:j v, Y v representing the sequence

o) at precision Dy with Dy > 2dy. Also, we note S_1 = vi%) yPy*1,
Lemma 3.2.4. For0 < j < dy, the pseudo-Euclidean division of
Sj-1 by S;j is well-defined.

Proor. For1 < j < dy, from Thms. 3.1.7 and 3.1.8 and the con-
struction of S;—1 and S; we deduce that the hypotheses of Thm. 3.2.2
are satisfied. For j = 0, by construction of S_; the hypotheses of
Thm. 3.2.2 are also satisfied. Hence for 0 < j < dy, the pseudo-
Euclidean division of Sj—1 by S; is well-defined. O

The remainder of the pseudo-Euclidean division of Sj_1 by S; is
not exactly Sj4+1 but has the same leading terms.

Definition 3.2.5 ([22, §11.1]). For a polynomial p = Z?:o pjyj €
KN[y] of degreed iny and k < d, we note ply= 21;20 pd_jyk’j and
ple= yk_dp when k > d.

Lemma 3.2.6. Letk > 1. Forg € K[x,y] withdeg,(9) =d <k <
degy(So) =Dy, we haveg - Solr= feq + Z?;giw*,jyk_j + for with
deg, (f<q) < d and y**! divides f. .

PROOF. Let p = g- Solr€ KN[y]. If we note g, the polynomial
in K[x] associated to the monomial y¢ then from the arithmetic
on KN[y] defined in Def. 3.2.1, we have Pk—j = 2?20 G0 K Vs jp =
(g*v)sjfor0<j<k-d O

Lemma 3.2.7. For0 < j < dy—1, if the pseudo-Euclidean division of
.Sj_l bij is (Cj,dj, §j+1) then we havecj = Ej,dj = Ej with (Ej,gj)
defined in Thm. 3.1.8 and Sj+1 IDy-(j+1)-1= Sj+1[Dy - (j+1)-1-
Proor. For j # 0, the leading terms of S; 1 are v*(jj__ll) yPy=i+
(-1
*,j—2 -
Thm. 3.2.2 that ¢; = aj and dj = b;. For j = 0, we have S_; =
Dy—1

+

v yPv~J and similarly for § i we deduce from the proof of

s 0yP¥*! and Sy has leading terms v.yP¥ + v, 1y so we de-

duce that ¢y = ag and dy = by.

For 1 < j < dy — 1, we have on the one hand the relation

vi’]}:l) =aj* ”ii_l) + vii)_l - Ej * vi]k) for k > 0 from Thm. 3.1.8.

On the other hand, we have .§j+1 =a;Sj-1+(y —Ej)Sj which gives
- N i1 ; . Dy—1,_ i—1 i

Sj+l = (aj *Ui,jj—l) +U’E’]j))yDy Jj+1 +Zk:yj (aj *vi,]k ) +Ui:]k)_1 -
7% 0N Dy=k (7. 4,0 _ 7. ) s =,
bj * v% )y v+ (aj x %.p, bj % u*,D},)‘ By definition of a;
and from Thm. 3.1.8, we deduce that degy(5j+1) =Dy — j—1thus
§j+1 ID,-(j+1)-1= Sj+11D,—(j+1)-1- For j =0, we apply the same
arguments and obtain 3 ID,-2=S1 rDy_g. m]

For the purposes of Lms. 3.2.8 and 3.2.9, let ro, r1, r6, r{ € KN[y]
and k > 1 such that rol o= r{ o and rilgp_1= r{ok—1. Assume
thatd = degy(ro) = degy(r1)+1 andd’ = degy(ré) = degy(r{)+1.

Lemma 3.2.8. Suppose that the pseudo-Euclidean division (a1, b1, r2)
of ro byry is well-defined, and thatdegy(rz) = d—2. Then, the pseudo-
Euclidean division (a, b{,ré) of rg by r{ is also well-defined, and
satisfies ay = af, by = by, and r2ty(k—1)-1= 13l 2(k—1)—1. Moreover,
deg, (ry) = d’ — 2 provided that k > 2.

ProOF. By assumption, the two leading terms of ry and rj match,
and the same for r; and r]. Yet, the conditions (i), (ii), (iii) of
Thm. 3.2.2 which determine if a pseudo-Euclidean division is well-
defined only depends on the two leading terms of the dividend and
the divisor. In fact, ay, b1 only depend on those same two leading
terms. As a consequence, the pseudo-Euclidean division of r] by r]
is well-defined, and a1 = a7, by = b].

Assume w.lo.g. d’ < d. The hypothesis ro 2= r{ 2% can be
rewritten as degy(ro - r(’)yd_dl) < d — 2k — 1. Likewise, degy(rl -
riydﬁd,) < d — 2k — 1. Considering that rp = ajro + (y — b1)ry
and similarly for r), we obtain that deg, (r; - réyd_d,) <d-2k.
Whenever k > 2, degy(rg) =d-2>d-2k > degy(rg - réyd_d/),
which can only happen when deg, (r2) = deg, (ry) +d - d’, ie.
degy(ré) =d —2,and r2r2(k—l)71: Vérz(k,l),l. m}

Lemma 3.2.9. Suppose that the first k pseudo-Euclidean divisions
(aj, bj,rj+1)1<j<k starting fromry and ry are well-defined, and that
degy(rj) =d-—jfor1<j<k

Then the first k pseudo-Euclidean divisions (a;., b;., ’}H)lsjsk
starting from r{ and r| are also well-defined, and a; = a;., bj =
b}, degy(r}) =d —jfor1l < j < k. Moreover, rji1 l(k—j)-1=

r}+1 r2(k*j)*l forl < _] <k.

Proor. Let us prove this statement by induction on k. The base
case k = 1 is a direct consequence of Lm. 3.2.8. For the induction
step, suppose that k > 2 and that the lemma holds for k—1.Lm. 3.2.8
states that the first pseudo-Euclidean divisions (a], b7, ;) starting
from r(’) and r{ is well-defined, degy(ré) =d' -2,a] = a1, b} = by,
and r g (k-1)-1= 73 [2(k=1)—1- It remains to apply our induction
hypothesis to k — 1 and ry, o, r{, ré to conclude. O

If the k pseudo-Euclidean divisions (aj, bj, rj+1)o< j<k Starting
from r_1 and ry are well-defined then we have for 0 < j < k the

matrix relations [r:il] =Qj [rjr;l] where Q; = [[?j y_lbj ] Thus,



[rjr.il] =Qj Qo [rfol] and by defining [Sjil t_:il] = Qj Qo

we have sjr_1 +tjrg =rjfor0 < j < k.

Theorem 3.2.10. Letk > 1,2k -1 < Dy andr_1,ry € KN[y]
such thatr—1 = S—1 [y andrg = Solor_1. Then, forall0 < j <
min(k, dy) — 1, the pseudo-Euclidean division (aj,bj,rj+1) of rj—1 by
rj is well-defined, aj = aj andb; = Ej defined in Thm. 3.1.8, and also
rilagk=j-1)= Sjla(k=j-1) andrjsilack—j-1)-1= Sjr1la(k=j-1)-1
with degy(rj+1) = degy(ro) —(j+1). When j =dy—1and2k—1>
2dy, the pseudo-Euclidean division (ady_l, bdy_l, rdy) onrq,—» by
Td,—11s well-defined and degy(rdy) < degy(ro) —dy.

Proor. We prove by induction for 0 < j < min(k,dy) - 1
that the pseudo-Euclidean division (aj, bj,rj+1) of rj_1 by rj is
well-defined and 71y (k- j_1)= Sjl2(k—j-1) and rj+1la(k—j-1)-1=
Sj+112(k-j-1)—1- For j > 0, we suppose that the statement is true
at step j — 1 and we prove that it holds at step j. For every j, we
have that rj—112(k-j)= Sj-1T2(k—j) and rjla(k—j)-1= Sjl2(k-j)-1
also from Lm. 3.2.7 the pseudo-Euclidean division (Ej,gj, §j+1) of
Sj-1 and §; is well-defined. Since j < k — 1, we have k — j > 2
also by construction deg, (S;) = deg, (Sj-1) — 1 so we can apply
Lm. 3.2.8 and get that the pseudo-Euclidean (aj, bj, rj+1) division
of rj—1 by rj is well-defined. On the one hand from Lm. 3.2.8, we
have rjs1lo(k—jo1)-1= §j+1 l2(k-j-1)-1- On the other hand from
Lm. 3.2.7, we have the equality §j+1 ny—(j+1)—1: Sj+1 rDy—(j+1)—1~
Since 2k —1 < Dy and j 2 0, we have 2k —1-2j -2 < Dy —j-2
so we conclude that Tj+1 r2(k—j—1)—1= Sj+1 rZ(k—j—l)—1~ Also
from Lm. 3.2.8, we get a; = @; and b; = Ej and degy(rj+1) =
deg, (ro) = (j +1).

When j = dy — 1and 2k — 1 > 2d, and the pseudo-Euclidean
division (ady_l,Edy_l, rdy) of Td,-2 by rd,-1is well-defined by
the same arguments so we have the relation Sd,r-1+ Edy ro=rq,.

By hypothesis, we have ro = So 5% so from Lm. 3.2.6 we can rewrite
- 2k—1-dy (dy) ok_1—i .
tdy ro = f<dy+zj20 v v*’jy ka ! ]+f>2k—1 with degy(f<dy) <

dy and y2* divides foj_;. We deduce from the division property
that degy(rdy) < degy(rdy,l) —1=2k—1-dy so by identification
on the monomial basis we deduce that 5jr_; = f5y;_; also since
() = 0 we have degy(rdy) < degy(f<dy) < dy.Since 2k -1 >
2dy, it implies that dy < 2k — 1 —dy = deg,(ro) — dy hence
degy(rdy) < degy(ro) —dy. O

3.3 From successive remainders to C-relations

Let r—1 = S_1 and ry = Sy. The definition of S_; is motivated
by Thm. 3.2.2 and Lm. 3.2.6. Consider the successive remainders
(r-=1,70, - -, de) and relations r; = sjr—1 + t;ro.

Lemma 3.3.1. For0 < j < dy, we haveI(lc(rj)) = (I(v) : {t;)) N
K[x] and (1) =K[x] = (I(v) : (tdy>) NK[x].

Proor. Let 0 < j < dy, from Lm. 3.1.9 and Thm. 3.2.10 we have
o) = tj xvandlc(r;) = vijj) From Thm. 3.1.7, we deduce that
10c(ry) = I(2Y)) = 10V) N K[x] = (1(0) : (1)) N K[x]. Also

from Lm. 3.1.9, since tqg, €1 (v) we deduce the equality. O

For 0 < j < dy, we note fj be s.t. (fj) = I(Ic(r;)) andfdy =1.

J. Berthomieu, R. Lebreton, and K. Tran

Theorem 3.3.2. The set {f; tj}OSdey is a Grobner basis of I(v).

Proor. We verify that fjt; € I(v) and (Im(fjt;)); = Im(I(9)).
For 0 < j < dy, from Lm. 3.3.1 the polynomial f;t; € I(v). For
x"y* € Im(I(v)),if s > dy thenx"y® = lm(x'ys_dy tdy). Otherwise,
if s < dy, by Thm. 3.1.6 we can find f; € K[x] suchthat fspys € I()
and Im(fspys) = x"y*. Since pys = ts rem(Gy) by Thm. 3.2.10, we
deduce that fsts € I(v). Note that since Im (%) = y° = Im(pys),
fsts still has leading term x"y*. O

From a Grébner basis of I(v), one can compute a minimal Gréb-
ner basis of I(v) with the following corollary.

Corollary 3.3.3. For1 < j < dy, either Im(fjt;) € Im(Gy) or
deg(fj-1) = deg(f).

ProoF. From the definition of minimal Grébner basis, if £ # j
and Im(frt,) divides Im(fjt;) then ¢ < j and deg(f;) < deg(f;). If
(deg(fj)); is a decreasing sequence then it proves the claim.

First, we prove that deg(fj) = min({r | x"y/ € Im(I(v))}). By
definition (fj) = I(Ic(rj)) = (I(v) : (t;)) NK[x] by Lm. 3.3.1 so
(fi) = I(v)) N K[x] from Thm. 2.3.4 and o) = tj % v. Finally
by Thm. 3.1.6, we can deduce that 1Y) nK[x] = {r | "yl e
Im(I(v))}. To conclude, if x%/ = deg(f;) then we have Im(fjt;) =

(xdfyj)y = de'ijr1 € Im(I(v)) so deg(fj+1) < deg(fj). O

4 ALGORITHMS

In the previous sections, we have considered bi-indexed sequences
either as plain sequences v = (v;,j); jen € KNZ, or as polynomials
with sequence coefficients KN [y] in order to get relations out of
a pseudo-Euclidean algorithm. At the moment, with the aim of
fully describing our algorithms, we need to specify how the oper-
ations in KN [y] are to be performed. Finite exact representations
of univariate sequence include the representation by the initial dy
terms and the minimal relation, or the representation with the first
Dy > 2dy terms, so that we can recover the relation. We choose
the latter representation, and map these first Dy terms in a reverse
truncated formal power series as in [4, 5]. Doing so, the action ¢ x v
can be computed using bivariate polynomial multiplication, which
allows us to design efficient algorithms.

4.1 A finite polynomial representation

Letv = (vj j); jen be a C-recursive sequence s.t. xx, ydy € lm(Gy)
and consider bounds Dy > 2dx and Dy > 2dy.

Definition 4.1.1. Fix Dx > 2dx and Dy > 2dy,. A polynomialr €
K[x, y] is a representation of v at precision (d, 8) ifr € K[x,y] <(Dy,Dy)
anerx_i,Dy_j =vjjfor0<i<dand0<j<6é.

For a representation g of u at precision (Dy, A), the addition
term by term gives g + r, a representation of u + v at precision
(Dyx, min(8, A)). However, for the multiplication by polynomial in
K[x, y], we have to handle the same problem as in KX [y/] described
in Lm. 3.2.6.

Lemma 4.1.2. Let r be a representation of v at precision (d, §) and
t € K[x,yl<(e,r)- The polynomial p = tr rem({xPx*1 yPv*1}) is q
representation of t x v at precision (d — e,d — f).
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ProoF. For0 <i<d-eand0 < j < — f, we have

PD,-iD,—j = Lkt "Dy —i—k,Dy—j—t
vy y

0<k<e0<t<f

and TDy—i—k,Dy—j—t = Vitk j+t by definition of a representation, so
PD.-iDy-j = (t *v);, j. By construction, p € K[x, y]S(ijDy). O

To handle the problem of decreasing precision in x, we can use
fast univariate algorithmic to recover precision in x when the C-
relation fy € G, N K[x] is known.

Theorem 4.1.3. Let r be a representation of v at precision (Dy, 5)
andt € K|[x, y]ﬁ(e,f) withe < Dy and f < 6. Fromr,t and f;, one
can compute a representation p, also denoted t -f, r, ofw := t x v at
precision (Dy, 8 — f) in O(Dy6) operations in K.

Proo¥. Let? = trem(fp) with deg, (¥) < dy. Since fy € I(v), we
deduce that w = 7 * v. The reduction of ¢ by f requires O(Dy5)
operations by Lm. 2.1.2. Then, computing a representation p of w
at precision (Dy — dy, 8 — f) has complexity in O(D,6) using ¥ and
r.Since Dy —dy > dyx, we can extend p with fy from the univariate
extension of Lm. 2.1.2 in O(Dy8) operations. |

We extend this definition of - ;; to matrix-vector multiplication
with entries in K[x, y]. With this new operations on representation
in K[x, y], we can mimic the K[x, y] action on KN [y] and apply a
pseudo-Euclidean algorithm to solve the guessing problem on v.

4.2 Quotient algorithm

We now define the quotient algorithm of our pseudo-Euclidean
division. For that, we need two subroutines for C-recursive uni-
indexed sequences. The first one, GUESSINGUNIVAR(r) takes a rep-
resentation r € K[x] of a C-recursive sequence u at precision Dy
with Dy > 2d, and outputs the C-relation f € K[x]4 satis-
fying (f) = I(u). The other one, HANKELSOLVER(q, 1, ), takes a
representation q € K[x] of a C-recursive sequence u at precision
Dy > 2(dyx — 1); a representation r € K[x] of v € L, at precision
d 2 dx — 1 and a C-relation f € K[x]<q4, st (f) = I(u), and
outputs b € K[x].4_satisfying b * u = v. Both subroutines have
complexities O(Dy) (see §2.1).

Algorithm 1 QUoBIVAR(f, g)

Input: Polynomials f = 2?20 fj(x)yj and g = Z?:_OI gj(x)yj sat-
isfying the hypotheses of Thm. 3.2.2 when viewed in KN [y]

using the representation of Dy + 1 initial terms.
Output: Q € K[x,y]?? {p1} © K[x] best. [¢] = Q -, [g]

with deg, (1) < deg, (g) and (p1) = I(gg_1).

1: po < GUESSINGUNIVAR( f;(x))

2: a < HANKELSOLVER(—f;(x), gg_1(x), po)

3 h(x) < ap, fa—1(x) +gg_2(x)

4 p1 < GUESSINGUNIVAR(gg_1(x))

5: b < HANKELSOLVER(gy_1(x), h(x), p1)

6: return [2 ylb],{Pl}

Lemma 4.2.1. QUOBIVAR is correct and has complexity in O(Dy.).

Proor. The polynomials f, g viewed in KN [y] satisfy the hy-
potheses of Thm. 3.2.2 so we consider fy, fi—1,9d—1,9d—2 € KY the
sequences represented by f;(x), fy_1(x),94(x),g4_1(x) € K[x].
Thm. 3.2.2 shows that there exists a € K[x]<deg(p,) such that
—axfy = gq_1, that the call to HANKELSOLVER(—f; (x), g4_1 (x), po)
computes. The update polynomial h(x) represents the sequence
a* fg_1+9gq—o- From Thm. 3.2.2, we can compute b € K[x] <geg(p,)
such that b x gg_; = ax fy_1 + g4_, also computed by the call to
HANKELSOLVER(gg4_1(x), h(x), p1). By hypothesis of Thm. 3.2.2, py
isa C-relation on fy, fg—1, 9d-1 92, which ensures that deg,, (r) <
deg, (g) by construction of the quotient matrix Q. Also, (p1) =
I(gq_1) from the correctness of GUESSINGUNIVAR.

Computing po, p1 € K[x]<4, and a,b € K[x]4, have com-
plexity in O(Dy). The computation of h(x) corresponds to uni-
variate polynomial multiplication and addition of degree at most
Dy so it requires O(Dy). Hence, we can bound the complexity of
QUOBIVAR(f, g) in O(Dy). O

4.3 Recursive pseudo-Euclidean algorithm

Based on the half-gcd algorithm, we build a divide and conquer
pseudo-Euclidean algorithm, following the exposition of [22, Alg. 11.4].
Since our pseudo-Euclidean division has specific hypotheses, we
define an assumption on the input of our algorithm.
Assumption B. For the input (r_1,ro, fo. k), fo € K[x] is a C-
relation on the sequences represented by r_1 and ry, and there exists
0 < ¢ < k such that the ¢ firsts pseudo-Euclidean division of r—1 by
ro are well-defined, and deg, (r¢—1) — 1 > deg, (r¢) ift < k.

Algorithm 2 HALF-GCD-SEQ(r—1, 1o, fo, k)

Input: Representations r_1,rg € K[x,y], a C-relation fy € K[x]
and k € N satisfying Asm. B.

Output: R € K[x,y]*? st. ["5'] = R f LT o=
[Qos...,Qr-1] € (K[x,y]?*?)! st. R = Qp1- -+~ Qo rem(fo)
and F = [fo,.... fii1] € K[x] st. (fj) = I(W,ffj)) with w()
corresponds to the sequence represented by r;.

1: if k = 0 then return [(1) (1)] IRl

cd e [k/2],d* — k—-d

: R,T,Fo ¢ HALF-GCD-SEQ(r—13(d—1) 0l 2(d-1)—15 Jo, d — 1)

e Rg [

- if degy(rd,z) -1> degy(rd,l) then return R, T, %y

+ Qa1 {fa-1} — QUOBIVAR(rg—3 2. 7a-111)

'] < Qar g [

: S,U, F1 < HALF-GCD-SEQ(7g_1l24+ Tal2q*~1, fo. d*)

: return (SQg_1R) rem(fy), [T, Qq_1, U], [Fo, fa—1, F1l

g WN

© ® I

Theorem 4.3.1. HALF-GCD-SEQ is correct. If Dy (resp. Dy + 1) is the
maximum degree in x (resp.y) of r—1,rg and [ Dy /2] < k < Dy then
HALF-GCD-SEQ(r—1, 7o, fo, k) requires O(DxDy) operations in K.

Proor. We prove by induction on j, for any input (r_1, ro, fo, j)
satisfying Asm. B, HALF-GCD-SEQ is correct. For any input (r—1, ro, fo,
0) satisfying Asm. B, the algorithm outputs ([(l) (1)] ,[1, [1) which
satisfies all the conditions of the algorithm output.

For j € N, we suppose the induction hypothesis at each step
i < j and we prove that the algorithm is correct for the input



(r-1,ro, fo, j) satisfying Asm. B. Consider the first £ pseudo-Euclidean
divisions (a;, b, ri+1)o<i<e—1 of r—1 by ro with 0 < ¢ < j. Lm. 3.2.9
ensures that (r-1l2(4-1), "ol2(d-1)-1, fo.d — 1) satisfies Asm. B so
by the induction hypothesis we have the same quotient matrices

Qi = [‘?i y—lb,-] for 0 < i < min(d — 1,¢). Since, fy is a C-relation
on the sequences represented by r_; and ry, it is a C-relation on
riduetor; =sjr—y+tirgfor0 <i < min(d, £+ 1).If¢ <d -1
then R -5 [r;ol] = [”};1] at Step 4 and (R, T, o) is the correct
output. Otherwise, ry_, and ry_; are correctly computed at Step 4
from r_1,r9 and R at precision Dy in x. So, we can compute the
quotient matrix Qg from ry_, 2 and ry_; [1 since the quotient
algorithm only need the first two leading terms of each polynomial.
The computation of ry from ry_,,rg_; and fp is computed at full
precision in x. From Lm. 3.2.9, since j > ¢, we have d* > ¢ — d, so
the (¢ — d) first pseudo-Euclidean division of rg_; a4« by rglags—1
give the same results as the ones of r;_; and r;. The second re-
cursive call gives S = Qp—1--- Qg rem(fp), U = [Qy, ..., Qr-1] and
F =1f4,--., fe—1]. Therefore, HALF-GCD-SEQ is correct.

For the complexity analysis, we suppose that k is a power of 2 and
we note C(k) the cost of the computation. The base case requires
O(1) operations in K. In the others cases due to the condition
k € ©(Dy), the costs of the matrix multiplication £, is in O(Dyk)
and the call to QUoBIVAR is in O(Dy) by Lm. 4.2.1. Finally, since the
quotient matrices have all degree 1 in y, we deduce that degy(S)
and degy(R) are less or equal to k/2 and the degree in x is bounded
by O(Dy) since the matrices are reduced by the relation fy. Hence,
the last matrix multiplication is in O(Dyxk). Note that the recursive
calls continue to verify the condition | Dy /2] < k < Dy. Thus, the
cost C(k) follows the recurrence C(k) = 2C(k/2) + O(Dyk) and by
the Master theorem we conclude that C(k) = O(Dny). O

4.4 Guessing of bi-indexed sequences

From the result of Thm. 4.3.1, it remains to compute the cofactors
tj from the quotient matrices to obtain a Grébner basis of I(v).

The product of matrices can be done recursively, we define
RecursIvEMATRIXPRODUCT(T, k, fo) with T = [Qo,...,Qp-1] €
K[x,y]®*? st. deg,(Qj) =1,0 < k < fand fo € K[x] <4, which
computes the matrix R = Qg - - - Qp rem(fp). A call to RECURSIVE-
MartrixPropouct(T, k, fy) requires O(dyk) operations.

By combining the algorithms HALF-GCD-SEQ and RECURSIVE-
MATRIXPRODUCT, we obtain a quasi-linear guessing algorithm for
C-recursive bi-indexed sequences w.r.t. the lexicographic ordering.

Theorem 4.4.1. GUESSINGBIVAR is correct and has complexity in
O(DxDy + |Goldxdy).

Proor. For the correctness, the polynomial fy computed from
the call to GUESSINGONEVAR is in G, N K[x] since I(vs9) = I(v) N
K[x] by Thm. 3.1.7. From Thm. 3.2.10, we have that (r_1, ro, fo, k)
satisfies Asm. B with £ = dy and by Thm. 4.3.1, we deduce that R =
Q4,1+~ Qorem(f).T = [Qo. ., Qg 1) and G = [for- . fi1, 1]
with f; € I(ui]j)) = I(0")) N K[x] by Thm. 3.1.7. From Cor. 3.3.3,
we only have to compute the relations which are not divisible by a
previous one. For that, we distinguish them by the degree of f; and
compute the corresponding cofactor t; when deg(fj—1) # deg(f;).
Finally, we get tq, from the matrix R. Hence, GUESSINGBIVAR out-
puts a minimal Grébner basis of I(v) in G.

J. Berthomieu, R. Lebreton, and K. Tran

Algorithm 3 GUESSINGBIVAR(v)

Input: The initial terms (Ui,j)osisDx,OsjsDy of a C-recursive se-
quence v satisfying Asm. A with Dy > 2dy and Dy > 2d.
Output: G a minimal Grébner basis of I(v) w.r.t. the order <.
1. k «— I_Dy/ZJ
Dy
2 r_q — Zizo 00X

Dye—iy Dy+1 D Dy—i

yvtin e« X5 X 0ijx
3 fo — GUESSINGUNIVAR(ZIZ’B 0 0xPx~1)

4 R, T, Gx < HALF-GCD-SEQ(r—1, 0, fo, k)
5:de—Dxy+1,G«—{},j<0

6: for f € Gx do

7 if deg(f) < d then

N7 .
8: [ S tin ] «— RecursiveMaTrixPropuct(T, j, fo)

9 G — GU{(tjf) rem(fy)}, d < deg(f)
10: ] «— J +1
1: G — GU {tdy}

12: return G

yPv=i

Sdy-1 tdy-1
s R= [T [ rem(h)

For the complexity analysis, calling HALF-GCD-SEQ is in O(Dny)
by Thm. 4.3.1. The loops on the polynomials of Gx add computations
only if they compute a new polynomial in the minimal Grébner
basis and do at most é(dxdy) operations. Finally, all the others in-
structions of the algorithm are in O(Dny). Hence, the complexity
of GUESSINGBIVAR is in O(Dny +|Goldxdy). u]

5 BENCHMARKS

The quasi-linearity of our guessing algorithm can be observed in
practice from our implementation in MAPLE (https://github.com/
ktran11/CrecbiseqGuessing). We compare the timings of our imple-
mentation also in MAPLE of guessing algorithms from [3, 16, 19].
For some we have to specialize the implementation for the lex-
icographic ordering with weighted degree ordering. For [3], we
consider the adaptive version of the algorithms. We do not compare
with [5], as under Asm. A, the computations are the same as in [3].

In our examples, we consider different shapes of staircase using
Lazard’s structure theorem [13] to build Im(G,). We distinguish
two particular shapes: simplex with Im(G,) = {xdx—jyj}OSjsdx
and L-shape with Im(Gy) = {x%x, Xy, ydy}.

To begin with, we consider that we know dy, dy, and give exactly
Dy = 2dx and Dy = 2dy in order to compute a minimal Grébner
basis of I(v). The quantity size(Gy) corresponds to the number
of coefficients in K = Fyi6,; to represents G,. The timings are in
seconds, if the timing is greater than one day we use the symbol co.

For simplex, Fig. 1 shows a quasi-linear growth on the timings
of Alg. 3 following the growth of the quantity |Gy |dxdy.

For L-shape, the timings of Alg. 3 also follow the complexity
found following the growth of the quantity Dy Dy. But it is outper-
formed by the adaptive version of the different algorithms.

Next, for the second row of the Fig. 1 we now consider more
initial terms of the sequence v than Dy = 2dx and Dy = 2dy by
taking (Dx, Dy) = (kdx, kdy) with k € {10,20,...,50}.

On Fig. 2 when k > 30, there is a crossover point on which the
adaptive algorithm performs better, it is explained by the fact that
these adaptive versions do not depend on the number of initial
terms Dy Dy.
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