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Abstract: 43 

Introduction: Positive cardiovascular and renal outcomes associated with the Sodium-44 

Glucose cotransporter 2 inhibitor (SGLT2i) use are attributed to their anti-inflammatory 45 

properties. Persistent immune activation accounts for part of people living with HIV (PWH) 46 

elevated cardiovascular risk, but SGLT2i impact on this population has been poorly 47 

described. 48 

Methods: All PWH with a history of SGLT2i treatment from May 2020 to April 2023 49 

receiving care at Pitié-Salpêtrière Hospital (Paris, France) with pre- and post-treatment 50 

available blood samples were included. Clinical and biological data were extracted from 51 

medical records, metabolic and immune biomarkers from cryopreserved plasma samples. 52 

Results: Most of the 20 patients with SGLT2i treatment were male (75%), with a median 53 

[IQR] age of 59 [55;68] years, receiving antiretroviral therapy for a median of 21.5 54 

[15.3;26.5] years. Most had type 2 diabetes (95%), chronic kidney disease (90%), 55 

dyslipidemia (80%), and hypertension (75%). SGLT2i treatment was associated with a 56 

median of 3 kg weight loss, an increase in hematocrit and decreased AST levels. LDL, HDL, 57 

oxLDL and Lp-PLA2 levels were unaffected. SGLT2i was associated with inflammasome 58 

inhibition, with decreased circulating levels of IL-1β and IL-8. There was also a decrease in 59 

cytokines associated with the recruitment and activation of monocytes-macrophages MCP-1, 60 

MIP-1α, MIP-1β, Eotaxin, RANTES, IL-8, and their positive feedback, IL-13/IL-4. 61 

Decreased IL-6, CRP and sCD14 levels were non- significant. 62 

Conclusion: on PWH, SGLT2i was associated with weight loss and a broad impact on innate 63 

immunity, with inhibition of inflammasome and monocyte-macrophage activation.  64 

Keywords: dapagliflozin; empagliflozin; HIV; SGLT2; inflammation; metabolism 65 
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Highlights 67 

 68 

- SGLT2i use was associated with a median weight loss in PWH of 3 kg 69 

- SGLT2i use in PWH was linked to significant changes in surrogate markers associated 70 

with their clinical impact. 71 

- SGLT2i may decrease IL-1 β and IL-8 levels, consistent with inflammasome 72 

inhibition 73 

- SGLT2i may inhibit both monocyte-macrophage associated cytokines and their 74 

feedbacks 75 

 76 

  77 
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1. Introduction 78 

Initially developed as glucose-lowering agents, sodium-glucose co-transporter 2 inhibitors 79 

(SGLT2i) have shown remarkable effects on improving cardiovascular and renal outcomes in 80 

patients with and without type 2 diabetes mellitus (DM) (1,2). Mechanisms underlying their 81 

characteristics are still unclear but seem to involve changes in body weight, blood pressure, 82 

diuresis, and cellular metabolism (1–4). This last property accounts for their significant anti-83 

inflammatory effects, which manifest in both innate (mostly through inflammasome 84 

inhibition) and adaptive immunity (mostly through Th17 inhibition) (5–7). 85 

Compared to the general population, people living with HIV (PWH) have an increased risk of 86 

cardiovascular disease (CVD), even after adjusting for traditional risk factors (8). This 87 

elevated risk is attributed, at least partially, to a residual immune activation that is not fully 88 

suppressed with antiretroviral therapy (ART) (9).  89 

To date, however, potential effects of SGLT2i on HIV-associated inflammation remain to be 90 

studied. The aim of this study is to evaluate the impact of SGLT2i on clinical, biological and 91 

immunological parameters in PWH. 92 

2. Methods 93 

1. Patients and samples: All adult PWH patients with a history of SGLT2i treatment from 94 

May 2020 to May 2023, who routinely received care at Pitié-Salpêtrière Hospital (Paris, 95 

France), and had blood samples available both before and after treatment initiation, were 96 

included. If multiple post-treatment samples were available, the one closest to the 6-month 97 

post-treatment mark was selected to minimize potential biases. Patient with hematologic 98 

malignancies or with samples collected only under acute conditions were excluded. Finally, 99 

10 healthy, non-SGLT2i treated patients routinely followed at Pitié Salpêtrière Hospital were 100 

selected to compare their cytokine levels with PWH before and after treatment initiation. Due 101 
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to legal constraints and sample availability, they were selected among pre-exposure 102 

prophylaxis (PrEP) users. Because the use of SGLT2i as a primary-prevention treatment 103 

would be to reduce the cardiovascular risk of PWH to the level of the general population, we 104 

selected PrEP users within the same age range as the SGLT2i patients with either no or 105 

limited co-existing diseases. 106 

2. Data collection and sample processing: Patient’s clinical and biological characteristics 107 

were retrospectively extracted from the medical records. Inflammatory and immune activation 108 

biomarkers were assessed in duplicate from -80°C stored plasma samples using the Bio-Plex 109 

Human Cytokine 27-Plex Panel (Bio-Rad, Hercules, CA, USA), Human C-Reactive 110 

Protein/CRP QuicKit ELISA (R&D Systems Inc, Minneapolis, MN, USA), and Human CD14 111 

Quantikine ELISA Kit (R&D Systems Inc, Minneapolis, MN, USA) according to their 112 

respective manufacturer’s recommendations on a Luminex 200 platform. The values below 113 

the detection limit were set to zero. Lipoprotein-associated phospholipase A2 (Lp-PLA2) 114 

activity was measured using the i-plaq Test (Techno-path Manufacturing Ltd., Ireland) on a 115 

Konelab 20i analyser (Thermo Fisher Diagnostics, France), and oxidized Low-Density 116 

Lipoprotein (oxLDL) using Mercodia oxidized LDL ELISA (Mercodia, Sweden). 117 

Quantification of total HIV-1 DNA was performed from frozen-stored cell pellets using the 118 

Generic HIV DNA Cell kit (Biocentric, Bandol, France) on a LightCycler480 (Roche) 119 

platform. 120 

3. Statistical analysis: Statistical analyses were performed using R software. Categorical 121 

variables were expressed as numbers (percentages) and continuous variables as medians 122 

(interquartile ranges [IQR]). Univariate analyses were performed using Wilcoxon signed-rank 123 

test for continuous variables and McNemar test for categorical variables, with p<0.05 124 

considered to be statistically significant.  125 
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4. Ethics: In accordance with French laws, patients were informed about the anonymous data 126 

collection and told that they could decline inclusion. Database is registered within the French 127 

National Information Technology and Civil Liberties Board (registration No. 770134, MR004 128 

No 20231013131200). Patients were systematically notified of any supplementary biological 129 

analyses on frozen samples, initially collected as part of routine clinical practice. 130 

 131 

3. Results  132 

1. Baseline Characteristics 133 

Among the 4323 PWH routinely followed in Pitié-Salpêtrière Hospital, 35 had an history of 134 

SGLT2i treatment, with biological data and frozen stored plasma samples available for 20 of 135 

them. One patient was excluded for no attending follow-up visit after treatment initiation, 136 

three for non-compliance with treatment, two because of acute hematological malignancies, 137 

and one because the only post-SGLT2i visit was because of a malaria episode. Eight were 138 

excluded due to lack of available samples. There were no significant differences between 139 

these eight patients and the included ones in term of age, BMI, CD4 nadir, time on ART, 140 

diabetes, dyslipidemia, statin use, hypertension, tobacco status and ARV or glucose-lowering 141 

therapies. Baseline characteristics of the study population is summarized in Table 1. Most 142 

patients were male (75%), with a median age of 59 years (IQR 55-68). The majority had 143 

chronic kidney disease (90%) and cardiovascular conditions, such as diabetes mellitus (95%), 144 

dyslipidemia (80%) and arterial hypertension (75%). They had been on ART for a median of 145 

21.5 years (IQR 15.3-26.5). The most common current ART regimen was a combination of an 146 

integrase strand-transfer inhibitor (INSTI) with one or two nucleoside reverse transcriptase 147 

inhibitors. Eighty-eight percent of INSTI users were on second-generation INSTIs 148 

(dolutegravir, bictegravir, and elvitegravir), for a median of 3.7 (IQR [2.8-4.7]) years.  149 
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2. Changes in clinical and routine laboratory variables after SGLT2i treatment 150 

Dapagliflozin was prescribed for all patients except one, who was prescribed Empagliflozin. 151 

After a median of treatment of 8.3 months (IQR [6.3-12.9]), there was no significant adverse 152 

event but significant clinical and laboratory changes. Weight decreased for a median of 3 kg 153 

(p = 0.0018), AST decreased for a median of 5 UI/L (p=0.0224), while hematocrit rose for a 154 

median 2% (p=0.0094) and creatinine 17.5 µmol/l (p=0.029). There was a trend for a 155 

diminution of uric acid level (median - 36.5 µmol/l compared to baseline), although it did not 156 

reach significance (p=0.08). Of note, there was a non-significant decrease in blood pressure 157 

and, while glycated hemoglobin (HbA1c) and lipid profiles, including oxLDL and Lp-PLA2 158 

activity were unchanged. Finally, there was no change in HIV-related variables, with HIV 159 

viral load, HIV cell-associated DNA, CD4 level, CD8 levels and CD4/CD8 ratio roughly 160 

similar after treatment (Table 2). 161 

3. Immunomodulatory Effects of SGLT2i on People Living with HIV 162 

Introduction of SGLT2i was associated with a significant drop of inflammasome-related 163 

activity, with lower values of circulating IL-1β (p=0.0026) and IL-8 (p=0.036). Treatment 164 

was also associated with a decreased recruitment activity of macrophages and monocytes, as 165 

evidenced by a statistically significant reduction in MCP-1/CCL2 (p=0.0042), MIP-1α/CCL3 166 

(p=0.045), MIP-1β/CCL4 (p=0.012), Eotaxin/CCL11 (p=0.0027), RANTES/CCL5 (p=0.011), 167 

IL-8 (p=0.036) and their positive feedback regulators IL-13 (p=0.0009), IL-4 (p=0.029) and 168 

GM-CSF (p=0.035). However, this reduced innate-immunity activity did not translated into 169 

significantly reduced levels of IL-6 (p=0.13), nor CRP (p=0.21). IL-15, a marker of 170 

atherosclerosis was also reduced after treatment (p=0.016). However, sCD14, a common 171 

marker of microbial translocation and mucosal integrity, was unaffected by treatment 172 

introduction (p=0.43). Changes in immunological markers after SGLT2i treatment are 173 

summarized in the Table 3 and Sup. Table 1. 174 
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Finally, we performed exploratory analyses to compare these immunological parameters with 175 

a control group composed of healthy subjects with similar age chosen among PrEP users 176 

(n=10). Because they were selected to have limited or no co-existing diseases, their clinical 177 

characteristics, as summarized in Sup. Table 2 are quite distinct from the SGLT2i group. For 178 

instance, there was no healthy subjects with a history of chronic kidney disease or any 179 

cardiovascular event, and none were on SGLT2i treatment. As expected, overall inflammation 180 

markers were numerically lower in the control group compared to PWH (Sup. Table 3). 181 

Interestingly, the use of SGLT2i was linked with a decrease in circulating IL-6, IL-13, IP-10, 182 

GM-CSF, MIP1β, and RANTES levels, which became similar to the control group. However, 183 

IL-5 level remained significantly higher in PWH compared to the control group, even after 184 

SGLT2i treatment. 185 

4. Discussion 186 

We present the first study addressing clinical, biological, metabolic and immunological 187 

parameters changes associated with SGLT2i treatment in PWH. Use of SGLT2i was 188 

associated with a median weight loss of 3 kg, an increase in hemoglobin / hematocrit and 189 

creatinine level, and a modest diminution of AST and uric acid levels compared to baseline. 190 

Immunological changes affected mainly inflammasome and monocyte-macrophage activation 191 

pathways, while CD4 level, CD8 level, CD4/CD8 ratio and HIV-associated cell DNA were 192 

unaffected. Of note, there was no significant change on lipid metabolism: total cholesterol, 193 

LDL-cholesterol, HDL-cholesterol and Triglycerides (TG) were roughly identical, as well as 194 

the more specialized parameters oxidized LDL and Lp-PLA2 activity. 195 

Despite the limited number of patients included, changes in clinical and laboratory parameters 196 

remarkably aligned with data from previous cohort or randomized controlled trials performed 197 

on HIV-uninfected individuals. Weight has been reported to decrease from 1 to 3 kg, systolic 198 
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blood pressure around 1-5 mmHg and serum uric acid around 50-100 µmol/L, while 199 

hematocrit rose from 1 to 5 % (7,10–14). These last two points are especially of interest since 200 

they were repeatedly identified as the statistical determinants between SGLT2i use and their 201 

reduction in heart failure hospitalizations and major adverse renal events (3,15–17). Decrease 202 

in AST and ALT levels were inconsistently reported, and occurred mostly on patients with 203 

non-alcoholic fatty liver disease (NASH) (7,11,18,19) due to a broad impact on liver 204 

metabolism (20–22). Finally, we observed a significant increase in creatinine levels, a 205 

phenomenon attributed to the reduction in intraglomerular pressure and glomerular 206 

hyperfiltration (23,24). Importantly, this early decline is not associated with higher rates of 207 

kidney disease progression (24).  208 

Inhibition of inflammasome activity by SGLT2i was expected, as it was a consistent finding 209 

from in-vitro and cohort studies (7,25,26). This point is of interest as inflammasome 210 

activation has been linked to higher coronary plaque and cardiovascular risk on PWH (27,28). 211 

Inhibition of IL-6 and CRP has also been steadily described (25,29), but did not reach 212 

statistical significance in the present study, owing probably to a lack of power and relatively 213 

low baseline levels due to long-term ARV. Inhibition of monocyte-macrophage activation by 214 

SGLT2i has been previously described in vitro or in animal studies (30–32), with conflicting 215 

in-vivo results (29,33). The relatively high impact of SGLT2i with both lower levels of 216 

cytokines associated with  monocyte-macrophage inhibition MCP-1, MIP-1α, MIP-1β and 217 

RANTES (34,35) and cytokines associated with their positive feedbacks IL-13, IL-4 and GM-218 

CSF (36,37) could be explained by the persisting upregulation of these cytokines in PWH 219 

despite effective ARV therapy (9,38), with this upregulation even more pronounced in the 220 

setting of CVD (39,40). In this setting, lower IL-15 levels post SGLT2i treatment is a 221 

compelling finding, as IL-15 levels have already been linked to cardiovascular risk in people 222 

with diabetes, regardless of HIV status (41,42). 223 
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Overall, SGLT2i concurrent impacts on innate immunity offers a promising therapy for the 224 

inflammatory part of HIV-associated cardiovascular risk. 225 

This study has several limitations. First, we were able to include only 20 patients among the 226 

4323 PWH routinely followed in this center. This finding is consistent with previous reports 227 

that highlighted that SGLT2i are substantially under-prescribed in this population (43,44). 228 

Second, due to its retrospective design SGLT2i duration length varied, although its impact on 229 

surrogate markers seems to be steady after 1 month treatment (11), and we could not prevent 230 

the introduction of other glucose-lowering agent. Fortunately, 90% of the patients studied had 231 

no introduction of other DM treatment, and opposed to GLP1 agonists SGLT2i does not seem 232 

to be associated with changes in food habits (45). Third, we presented a monocentric study 233 

from a high-income country. However, 70% of the patients included are non-native French, 234 

most of whom were born in Africa, reflecting the diversity of people followed-up in our 235 

center. Finally, choosing a limited number of healthy PrEP users as a control group to 236 

compare cytokines evolutions is another limitation. PrEP users are known to have slightly 237 

distinct inflammatory profiles from the general population (46), and intra-individual cytokine 238 

variabilities are not always non-negligible(47). These elements explained why these results 239 

can only be interpreted as exploratory, with further studies in larger groups needed to confirm 240 

these trends. 241 

Conclusion 242 

Overall, clinical, biological, metabolic and immunological parameters induced by SGLT2i 243 

treatment on PWH reflect the beneficial changes observed in previous clinical trials and 244 

cohort studies on HIV-negative people. SGLT2i may also have a broader influence on 245 

inflammation compared to the general population, presumably due to the increased basal 246 

levels present in PWH. As a consequence, SGLT2i offers a promising strategy for 247 
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cardiovascular risk reduction in PWH. Prospectives studies are needed to evaluate to what 248 

extent these changes might affect morbidity and mortality outcomes. 249 
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Table 1: Baseline demographic and characteristics 411 

Characteristic SGLT2i patients (n=20) 
Age, years, median (IQR) 59 (55-68) 
Male sex at birth, n (%) 15 (75%) 
BMI, kg/m², median (IQR) 26.7 (24.1-28.7) 
Non-native French, n (%) 14 (70%) 
Cardiovascular and metabolic 
Past tobacco smoker, n (%) 5 (25%) 
Current tobacco smoker, n (%) 2 (10%) 
Arterial hypertension, n (%) 15 (75%) 
Dyslipidemia, n (%) 16 (80%) 
Diabetes mellitus, n (%) 19 (95%) 
Statin use, n (%) 14 (70%) 
History of cardiovascular event, n 
(%) 

5 (25%) 

Chronic heart failure, n (%) 4 (20%) 
Chronic kidney disease  
Stage 1, n (%) 2 (10%) 
Stage 2, n (%) 7 (35%) 
Stage 3A / 3B, n (%) 5 (25%) / 4 (20%) 
Stage 4, n (%) 2 (10%) 
HIV related health history 
Time since HIV diagnosis, years, 
median (IQR) 

22.3 (16.3-25.9) 

Total ART duration, years, median 
(IQR) 

21.5 (15.3-26.5) 

Nadir CD4 count, median (IQR) 166 (79-208) 
Prior AIDS-defining event, n (%) 6 (30%) 
Current ART regimen  
INSTI with NRTI, n (%) 14 (70%) 
INSTI with NNRTI, n (%) 2 (10%) 
NRTI with NNRTI, n (%) 1 (5%) 
PI + INSTI + Maraviroc / PI alone, 
n (%) 

2 (10%) / 1 (5%) 

SGLT2i prescription  
Diabetologist 9 (45%) 
Cardiologist 3 (15%) 
Nephrologist 3 (15%) 
General practitioner  2 (10%) 
Infectious disease specialist 3 (15%) 
Glucose lowering therapy co-
medication 

 

Metformin 12 (60%) 
sulfonylureas 6 (30%) 
GLP-1 agonist 4 (20%) 
DPP-4 inhibitor 1 (5%) 
Insulin 6 (30%) 
 412 

  413 
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Table 2: Changes in clinical and biological variables after SGLT2i treatment.  414 

Variables Baseline After iSGLT2 
treatment 

P valuea 

Clinical 

Weight (kg) 80.0 (74.0 - 89.5) 79.0 (68.0 - 85.8) <0.01 

BMI (kg/m²) 26.7 (24.1 - 28.7) 25.2 (22.9 - 28.2) <0.01 

SBP (mmHg) 137.5 (129.5 - 151.0) 135.0 (123.0 -149.5) 0.33 

DBP (mmHg) 83.5 (80.0 - 90.3) 79.0 (71.5 - 86.0) 0.14 

Laboratory 

Hemoglobin (g/dl) 13.0 (12.1 - 13.9) 14.2 (13.2 - 14.6) 0.017 

Hematocrit (%) 38.2 (36.8 - 40.9) 41.5 (38.6 - 42.8) <0.01 

Leukocyte (cell/µL) 5.4 (4.8 - 6.0) 6.0 (4.6 - 6.5) 0.11 

Creatinine (µmol/L) 113.5 (89.0 - 146.0) 122.5 (104.5 - 160.0) 0.029 

Uric acid (µmol/L) 374.5 (320 - 432) 339 (266 - 382) 0.086 

AST (UI/L) 29.0 (20.0 - 38.3) 26.0 (21.0 - 27.8) 0.024 

ALT (UI/L) 26.5 (19.5 - 37.8) 23.5 (20.3 - 30.8) 0.16 

Metabolic 

HbA1c (%) 7.1 (6.5 - 8.0) 6.7 (6.2 - 7.1) 0.29 

TC (mg/dl) 1.56 (1.33 - 1.78) 1.39 (1.30 - 1.80) 0.64 

LDL-C (mg/dL) 0.82 (0.65 - 1.09) 0.76 (0.65 - 0.86) 0.97 

HDL-C (mg/dL) 0.46 (0.41 - 0.53) 0.48 (0.44 - 0.52) 0.23 

TG (mg/dL) 0.86 (0.76 - 1.74) 0.96 (0.75 - 1.68) 0.79 

oxLDL (mU/L) 31.6 (27.6 - 37.0) 31.3 (24.4 - 44.4) 0.76 

LP-PLA2 (nmol/min/mL) 353.2 (311.2 - 451.9) 379.1 (275.6 - 483.8) 0.49 

HIV-related variables 

Viral load below 20 
cp/µL, n (%) 

16 (80%) 17 (85%) 1
b
 

CD4 (cell/µL) 586 (453 -744) 555 (468 - 724) 0.32 

CD8 (cell/µL) 669 (545 - 816) 663 (587 - 840) 0.84 

CD4/CD8 ratio 0.84 (0.68 - 1.05) 0.76 (0.61 - 1.04) 0.56 

HIV-DNA (cp/10
6
cells) 50.16 (5.02 - 76.92) 38.41 (4.83 - 86.25) 0.62 

Results are expressed as medians and interquartile ranges (IQR).  415 

a Wilcoxon signed-rank test unless otherwise specified. 416 

b Using McNemar test. 417 

SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; LP-PLA2, Lipoprotein-associated 418 

phospholipase A2; ALT, alanine aminotransferase, AST, aspartate aminotransferase; HBA1C, glycated 419 

haemoglobin, TC, total cholesterol; LDL-C, low density lipoprotein cholesterol; HDL-C, high density 420 

lipoprotein cholesterol, TG, Triglycerides 421 
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Table 3: Immunological changes associated with SGLT2i treatment.  423 

Analyte Before treatment After treatment P value* 

Inflammatory markers performed in routine care 

IL-6 0.68 (0.27; 0.91) 0.55 (0.13; 0.72) 0.13 

CRP (mg/l) 1.22 (0.68; 2.08) 0.83 (0.32; 1.97) 0.21 

sCD14 (ng/mL) 1.27 (1.04; 1.48) 1.40 (1.10; 1.62) 0.43 

Inflammasome-associated cytokines 

IL-1β 0.616 (0.506; 1.002) 0.517 (0.320; 0.532) < 0.01 

IL-8 4.91 (3.08; 6.43) 3.42 (2.73; 4.39) 0.036 

Cytokines associated with monocyte-macrophage activation  

MIP-1α / CCL3 0.683 (0.605; 0.934) 0.673 (0.559; 0.866) 0.045 

MIP-1β / CCL4 82.40 (76.11; 86.75) 77.49 (67.88; 81.92) 0.012 

MCP-1 /CCL2 8.73 (7.49; 10.20) 7.14 (5.85; 8.33) < 0.01 

RANTES  724.2 (669.7; 773.6) 492.2 (426.5; 748.1) 0.011 

Eotaxin / CCL11 36.79 (31.89; 48.18) 31.27 (21.90; 42.75) < 0.01 

Cytokines associated with positive feedback of monocyte-macrophage activation 

IL-4 1.60 (1.50; 2.19) 1.52 (1.24; 1.93) 0.029 

IL-13 1.98 (1.26; 3.89) 1.34 (1.03 ;1.61) < 0.01 

GM-CSF 0.92 (0; 1.36) 0.19 (0; 0.65) 0.035 

Cytokine associated with cardiovascular risk in people with diabetes 

IL-15 42.8 (0; 65.8) 0 (0; 0) 0.016 

Concentrations are expressed in pg/mL Results are expressed as median (IQR) unless otherwise 424 

specified. 425 

* Wilcoxon signed-rank test 426 
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Supplementary Table 1: Cytokine quantification before and after SGLT2i treatment on PWH. 428 

Analyte Before treatment After treatment Difference (IQR) P value* 

CRP 1226.1 (678.9; 
2076.1) 

829.6 (317.1; 
1971.0) 

-453.6 (-1158; 150.6 0.21 

IL-1β 0.616 (0.506; 1.002) 0.517 (0.320; 0.532) -0.200 (-0.399; -0.097) 2.6e-3 

IL-1RA 95.3 (81.6; 124.0) 80.3 (64.7; 98.4) -19.37 (-58.7; 10.9) 0.080 

IL-2 0.14 (0; 1.00) 0 (0; 0.24) -0.03 (-0.79; 0) 0.093 

IL-4 1.60 (1.50; 2.19) 1.52 (1.24; 1.93) -0.16 (-0.42; 0) 0.029 

IL-5 5.63 (2.62; 7.43) 5.64 (3.33; 10.46) 0.81 (-2.3; 4.7) 0.57 

IL-6 0.68 (0.27; 0.91) 0.55 (0.13; 0.72) -0.14 (-0.44; 0.13) 0.13 

IL-7 5.27 (3.45; 6.73) 4.29 (3.80; 6.33) -0.92 (-3.12; 1.11) 0.37 

IL-8 4.91 (3.08; 6.43) 3.42 (2.73; 4.39) -1.06 (-2.98; 0.57) 0.036 

IL-9 148.2 (141.9; 169.9) 140.4 (120.2; 168.4) -14.9 (-24. 
8 ; 6.6) 

0.22 

IL-10 1.20 (0.74; 1.69) 0.64 (0.35; 1.33) -0.27 (-0.86; 0.56) 0.33 

IL-12 2.44 (2.31; 4.34) 2.43 (1.03; 3.60) -1.05 (-1.72; 1.18) 0.43 

IL-13 1.98 (1.26; 3.89) 1.34 (1.03 ;1.61) -0.54 (-2.18; -0.24) 9e-4 

IL-15 42.8 (0; 65.8) 0 (0; 0) -55.55 (-15.21; 0) 0.016 

IL-17A 2.98 (2.09; 4.00) 2.57 (2.00; 3.13) -0.87 (-1.01; 0.33) 0.17 

IP-10 151.8 (129.3; 195.3) 138.2 (101.9; 167.1) -19.5 (-35.5; 12.4) 0.23 

IFN-γ 2.46 (1.86; 3.66) 2.06 (1.55; 2.69) -0.39 (-1.59; 0.29) 0.095 

G-CSF 26.60 (16.85; 30.56) 19.64 (17.06; 24.77) -7.47 (-10.42; -1.78) 0.076 

GM-CSF 0.92 (0; 1.36) 0.19 (0; 0.65) -0.26 (-1.21; 0) 0.035 

FGF 5.08 (4.28; 6.14) 4.49 (4.18; 5.61) -0.07 (-1.12; 0.67) 0.47 

Eotaxin / CCL11 36.79 (31.89; 48.18) 31.27 (21.90; 42.75) -6.74 (-14.09; -0.74) 2.7e-3 

MIP-1α / CCL3 0.683 (0.605; 0.934) 0.673 (0.559; 0.866) -0.076 (-0.215; 0.004) 0.045 

MIP-1β / CCL4 82.40 (76.11; 86.75) 77.49 (67.88; 81.92) -8.25 (-10.6; 2.45) 0.012 

PDGF-BB 9.42 (0; 20.43) 0 (0; 8.49) 0 (-10.6; 0) 0.23 

RANTES  724.2 (669.7; 773.6) 492.2 (426.5; 748.1) -269.0 (-354.3; 34.0) 0.011 

MCP-1 /CCL2 8.73 (7.49; 10.20) 7.14 (5.85; 8.33) -1.85 (-2.94; -0.27) 4.2e-3 

TNF-α 10.33 (8.69; 13.55) 9.52 (7.86; 12.15) -1.22 (-4.03; 1.04) 0.16 

VEGF 0 (0; 0) 0 (0; 0) 0 (0; 0) 0.28 

sCD14 1268316  
(1039405; 1478206) 

1402230  
(1097271; 1624068) 

104589  
(-220533; 383804) 

0.43 

Concentrations are expressed in pg/mL Results are expressed as median (IQR). 429 

* Wilcoxon signed-rank test   430 
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Supplementary table 2: PrEP user demographic and characteristics 431 

Characteristic PrEP users (n=10) 

Age, years, median (IQR) 61 (59–63.5) 

Male sex at birth, n (%) 10 (100%) 

BMI, kg/m², median (IQR) 29.6 (28.8-30.3) 

Non-native French, n (%) 3 (30%) 

Cardiovascular and metabolic  
Past tobacco smoker, n (%) 1 (10%) 
Current tobacco smoker, n (%) 3 (30%) 
Arterial hypertension, n (%) 2 (20%) 
Dyslipidemia, n (%) 2 (20%) 
Diabetes mellitus, n (%) 1 (10%) 
Statin use, n (%) 2 (20%) 
History of cardiovascular event, n (%) 0 (0%) 
Chronic heart failure, n (%) 0 (0%) 
Chronic kidney disease (any), n (%) 0 (0%) 
Biological parameters  
Creatinine (µmol/L) 79 (72-83) 
ASAT (UI/L) 29 (19-32) 
ALAT (UI/L) 29 (27-34) 
  432 
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Supplementary table 3: Comparison of immunological parameters between PrEP users and PWH  433 

Analyte Before treatment After treatment PrEP users, n=10 P value PrEP 
users vs PWH 
before iSGLT2 
treatment* 

P value PrEP 
users vs PWH 
after iSGLT2 
treatment* 

CRP 1226.1 (678.9-
2076.1) 

829.6 (317.1-
1971.0) 

675.9 (608.6-
1005.9) 

0.42 0.64 

IL-1β 0.616 (0.506-
1.002) 

0.517 (0.320-
0.532) 

0.42 (0.24-0.67) 0.067 0.76 

IL-1RA 95.3 (81.6-124.0) 80.3 (64.7-98.4) 95.1 (73.41 -
109.17) 

0.69 0.47 

IL-2 0.14 (0-1.00) 0 (0-0.24) 0 (0-0.18 0.26 0.98 

IL-4 1.60 (1.50-2.19) 1.52 (1.24-1.93) 1.58 (1.52-1.97) 0.71 0.61 

IL-5 5.63 (2.62-7.43) 5.64 (3.33-10.46) 0.95 (0-3.33) 0.017 6.8e-4 

IL-6 0.68 (0.27-0.91) 0.55 (0.13-0.72) 0.27 (0.034-0.41) 0.035 0.30 

IL-7 5.27 (3.45-6.73) 4.29 (3.80-6.33) 4.79 (3.34-7.53) 0.76 0.70 

IL-8 4.91 (3.08-6.43) 3.42 (2.73-4.39) 3.24 (2.76-4.04) 0.075 0.79 

IL-9 148.2 (141.9-
169.9) 

140.4 (120.2-
168.4) 

133.6 (125.2-
146.1) 

0.065 0.40 

IL-10 1.20 (0.74-1.69) 0.64 (0.35-1.33) 0.64 (0.35—1.59) 0.32 0.89 

IL-12 2.44 (2.31-4.34) 2.43 (1.03-3.60) 1.68 (0.7-3.81) 0.23 0.74 

IL-13 1.98 (1.26-3.89) 1.34 (1.03-1.61) 1.16 (0.93-1.56) 0.023 0.64 

IL-15 42.8 (0-65.8) 0 (0-0) 0 (0-19.29) 0.23 0.31 

IL-17A 2.98 (2.09-4.00) 2.57 (2.00-3.13) 2.50 (1.74-3.21) 0.47 0.98 

IP-10 151.8 (129.3-
195.3) 

138.2 (101.9-
167.1) 

102.7 (97.4-112.5) 0.0023 0.059 

IFN-γ 2.46 (1.86-3.66) 2.06 (1.55-2.69) 2.35 (1.18-2.75) 0.28 0.96 

G-CSF 26.60 (16.85-
30.56) 

19.64 (17.06-
24.77) 

17.33 (14.70-
29.42) 

0.34 0.86 

GM-CSF 0.92 (0-1.36) 0.19 (0-0.65) 0 (0-0) 0.034 0.27 

FGF 5.08 (4.28-6.14) 4.49 (4.18-5.61) 5.00 (4.28-6.11) 0.98 0.66 

Eotaxin 36.79 (31.89-
48.18) 

31.27 (21.90-
42.75) 

32.96 (24.15-
43.22) 

0.23 0.81 

MIP-1α 0.683 (0.605-
0.934) 

0.673 (0.559-
0.866) 

0.544 (0.447-
0.785) 

0.0501 0.15 

MIP-1β 82.40 (76.11-
86.75) 

77.49 (67.88-
81.92) 

73.43 (65.87-
75.23) 

0.0062 0.27 

PDGF-BB 9.42 (0-20.43) 0 (0-8.49) 0 (0-1.44) 0.094 0.79 

RANTES 724.2 (669.7-
773.6) 

492.2 (426.5-
748.1) 

541.2 (477.0-
591.0) 

0.0045 0.91 

MCP-1 8.73 (7.49-10.20) 7.14 (5.85-8.33) 8.36 (6.78-10.20) 0.54 0.39 

TNF-α 10.33 (8.69-13.55) 9.52 (7.86-12.15) 9.10 (7.75-11.39) 0.25 0.81 

VEGF 0 (0-0) 0 (0-0) 0 (0-0) 0.47 0.68 

sCD14 1268316  
(1039405-
1478206) 

1402230  
(1097271-
1624068) 

1265577 
(1214559-
1359647) 

0.71 0.59 

Concentrations are expressed in pg/mL. 434 

Results are expressed as median (IQR). 435 

* using Wilcoxon unpaired test. 436 
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